1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 32 * $FreeBSD$ 33 */ 34 #include "opt_ddb.h" 35 #include "opt_route.h" 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/jail.h> 41 #include <sys/kernel.h> 42 #include <sys/domain.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/protosw.h> 49 #include <sys/rmlock.h> 50 #include <sys/rwlock.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/systm.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_llatbl.h> 61 #include <net/if_types.h> 62 #include <net/netisr.h> 63 #include <net/raw_cb.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/route_var.h> 67 #ifdef RADIX_MPATH 68 #include <net/radix_mpath.h> 69 #endif 70 #include <net/vnet.h> 71 72 #include <netinet/in.h> 73 #include <netinet/if_ether.h> 74 #include <netinet/ip_carp.h> 75 #ifdef INET6 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #endif 79 #include <net/route/nhop.h> 80 81 #ifdef COMPAT_FREEBSD32 82 #include <sys/mount.h> 83 #include <compat/freebsd32/freebsd32.h> 84 85 struct if_msghdr32 { 86 uint16_t ifm_msglen; 87 uint8_t ifm_version; 88 uint8_t ifm_type; 89 int32_t ifm_addrs; 90 int32_t ifm_flags; 91 uint16_t ifm_index; 92 uint16_t _ifm_spare1; 93 struct if_data ifm_data; 94 }; 95 96 struct if_msghdrl32 { 97 uint16_t ifm_msglen; 98 uint8_t ifm_version; 99 uint8_t ifm_type; 100 int32_t ifm_addrs; 101 int32_t ifm_flags; 102 uint16_t ifm_index; 103 uint16_t _ifm_spare1; 104 uint16_t ifm_len; 105 uint16_t ifm_data_off; 106 uint32_t _ifm_spare2; 107 struct if_data ifm_data; 108 }; 109 110 struct ifa_msghdrl32 { 111 uint16_t ifam_msglen; 112 uint8_t ifam_version; 113 uint8_t ifam_type; 114 int32_t ifam_addrs; 115 int32_t ifam_flags; 116 uint16_t ifam_index; 117 uint16_t _ifam_spare1; 118 uint16_t ifam_len; 119 uint16_t ifam_data_off; 120 int32_t ifam_metric; 121 struct if_data ifam_data; 122 }; 123 124 #define SA_SIZE32(sa) \ 125 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 126 sizeof(int) : \ 127 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 128 129 #endif /* COMPAT_FREEBSD32 */ 130 131 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 132 133 /* NB: these are not modified */ 134 static struct sockaddr route_src = { 2, PF_ROUTE, }; 135 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 136 137 /* These are external hooks for CARP. */ 138 int (*carp_get_vhid_p)(struct ifaddr *); 139 140 /* 141 * Used by rtsock/raw_input callback code to decide whether to filter the update 142 * notification to a socket bound to a particular FIB. 143 */ 144 #define RTS_FILTER_FIB M_PROTO8 145 146 typedef struct { 147 int ip_count; /* attached w/ AF_INET */ 148 int ip6_count; /* attached w/ AF_INET6 */ 149 int any_count; /* total attached */ 150 } route_cb_t; 151 VNET_DEFINE_STATIC(route_cb_t, route_cb); 152 #define V_route_cb VNET(route_cb) 153 154 struct mtx rtsock_mtx; 155 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 156 157 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 158 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 159 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 160 161 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 162 163 struct walkarg { 164 int w_tmemsize; 165 int w_op, w_arg; 166 caddr_t w_tmem; 167 struct sysctl_req *w_req; 168 }; 169 170 static void rts_input(struct mbuf *m); 171 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 172 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 173 struct walkarg *w, int *plen); 174 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 175 struct rt_addrinfo *rtinfo); 176 static int sysctl_dumpentry(struct radix_node *rn, void *vw); 177 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 178 uint32_t weight, struct walkarg *w); 179 static int sysctl_iflist(int af, struct walkarg *w); 180 static int sysctl_ifmalist(int af, struct walkarg *w); 181 static int route_output(struct mbuf *m, struct socket *so, ...); 182 static void rt_getmetrics(const struct rtentry *rt, 183 const struct nhop_object *nh, struct rt_metrics *out); 184 static void rt_dispatch(struct mbuf *, sa_family_t); 185 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 186 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 187 static int update_rtm_from_rc(struct rt_addrinfo *info, 188 struct rt_msghdr **prtm, int alloc_len, 189 struct rib_cmd_info *rc, struct nhop_object *nh); 190 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 191 struct mbuf *m, sa_family_t saf, u_int fibnum, 192 int rtm_errno); 193 static int can_export_rte(struct ucred *td_ucred, const struct rtentry *rt); 194 195 static struct netisr_handler rtsock_nh = { 196 .nh_name = "rtsock", 197 .nh_handler = rts_input, 198 .nh_proto = NETISR_ROUTE, 199 .nh_policy = NETISR_POLICY_SOURCE, 200 }; 201 202 static int 203 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 204 { 205 int error, qlimit; 206 207 netisr_getqlimit(&rtsock_nh, &qlimit); 208 error = sysctl_handle_int(oidp, &qlimit, 0, req); 209 if (error || !req->newptr) 210 return (error); 211 if (qlimit < 1) 212 return (EINVAL); 213 return (netisr_setqlimit(&rtsock_nh, qlimit)); 214 } 215 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 216 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 217 0, 0, sysctl_route_netisr_maxqlen, "I", 218 "maximum routing socket dispatch queue length"); 219 220 static void 221 vnet_rts_init(void) 222 { 223 int tmp; 224 225 if (IS_DEFAULT_VNET(curvnet)) { 226 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 227 rtsock_nh.nh_qlimit = tmp; 228 netisr_register(&rtsock_nh); 229 } 230 #ifdef VIMAGE 231 else 232 netisr_register_vnet(&rtsock_nh); 233 #endif 234 } 235 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 236 vnet_rts_init, 0); 237 238 #ifdef VIMAGE 239 static void 240 vnet_rts_uninit(void) 241 { 242 243 netisr_unregister_vnet(&rtsock_nh); 244 } 245 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 246 vnet_rts_uninit, 0); 247 #endif 248 249 static int 250 raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, 251 struct rawcb *rp) 252 { 253 int fibnum; 254 255 KASSERT(m != NULL, ("%s: m is NULL", __func__)); 256 KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); 257 KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); 258 259 /* No filtering requested. */ 260 if ((m->m_flags & RTS_FILTER_FIB) == 0) 261 return (0); 262 263 /* Check if it is a rts and the fib matches the one of the socket. */ 264 fibnum = M_GETFIB(m); 265 if (proto->sp_family != PF_ROUTE || 266 rp->rcb_socket == NULL || 267 rp->rcb_socket->so_fibnum == fibnum) 268 return (0); 269 270 /* Filtering requested and no match, the socket shall be skipped. */ 271 return (1); 272 } 273 274 static void 275 rts_input(struct mbuf *m) 276 { 277 struct sockproto route_proto; 278 unsigned short *family; 279 struct m_tag *tag; 280 281 route_proto.sp_family = PF_ROUTE; 282 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); 283 if (tag != NULL) { 284 family = (unsigned short *)(tag + 1); 285 route_proto.sp_protocol = *family; 286 m_tag_delete(m, tag); 287 } else 288 route_proto.sp_protocol = 0; 289 290 raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); 291 } 292 293 /* 294 * It really doesn't make any sense at all for this code to share much 295 * with raw_usrreq.c, since its functionality is so restricted. XXX 296 */ 297 static void 298 rts_abort(struct socket *so) 299 { 300 301 raw_usrreqs.pru_abort(so); 302 } 303 304 static void 305 rts_close(struct socket *so) 306 { 307 308 raw_usrreqs.pru_close(so); 309 } 310 311 /* pru_accept is EOPNOTSUPP */ 312 313 static int 314 rts_attach(struct socket *so, int proto, struct thread *td) 315 { 316 struct rawcb *rp; 317 int error; 318 319 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); 320 321 /* XXX */ 322 rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); 323 324 so->so_pcb = (caddr_t)rp; 325 so->so_fibnum = td->td_proc->p_fibnum; 326 error = raw_attach(so, proto); 327 rp = sotorawcb(so); 328 if (error) { 329 so->so_pcb = NULL; 330 free(rp, M_PCB); 331 return error; 332 } 333 RTSOCK_LOCK(); 334 switch(rp->rcb_proto.sp_protocol) { 335 case AF_INET: 336 V_route_cb.ip_count++; 337 break; 338 case AF_INET6: 339 V_route_cb.ip6_count++; 340 break; 341 } 342 V_route_cb.any_count++; 343 RTSOCK_UNLOCK(); 344 soisconnected(so); 345 so->so_options |= SO_USELOOPBACK; 346 return 0; 347 } 348 349 static int 350 rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 351 { 352 353 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ 354 } 355 356 static int 357 rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 358 { 359 360 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ 361 } 362 363 /* pru_connect2 is EOPNOTSUPP */ 364 /* pru_control is EOPNOTSUPP */ 365 366 static void 367 rts_detach(struct socket *so) 368 { 369 struct rawcb *rp = sotorawcb(so); 370 371 KASSERT(rp != NULL, ("rts_detach: rp == NULL")); 372 373 RTSOCK_LOCK(); 374 switch(rp->rcb_proto.sp_protocol) { 375 case AF_INET: 376 V_route_cb.ip_count--; 377 break; 378 case AF_INET6: 379 V_route_cb.ip6_count--; 380 break; 381 } 382 V_route_cb.any_count--; 383 RTSOCK_UNLOCK(); 384 raw_usrreqs.pru_detach(so); 385 } 386 387 static int 388 rts_disconnect(struct socket *so) 389 { 390 391 return (raw_usrreqs.pru_disconnect(so)); 392 } 393 394 /* pru_listen is EOPNOTSUPP */ 395 396 static int 397 rts_peeraddr(struct socket *so, struct sockaddr **nam) 398 { 399 400 return (raw_usrreqs.pru_peeraddr(so, nam)); 401 } 402 403 /* pru_rcvd is EOPNOTSUPP */ 404 /* pru_rcvoob is EOPNOTSUPP */ 405 406 static int 407 rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, 408 struct mbuf *control, struct thread *td) 409 { 410 411 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); 412 } 413 414 /* pru_sense is null */ 415 416 static int 417 rts_shutdown(struct socket *so) 418 { 419 420 return (raw_usrreqs.pru_shutdown(so)); 421 } 422 423 static int 424 rts_sockaddr(struct socket *so, struct sockaddr **nam) 425 { 426 427 return (raw_usrreqs.pru_sockaddr(so, nam)); 428 } 429 430 static struct pr_usrreqs route_usrreqs = { 431 .pru_abort = rts_abort, 432 .pru_attach = rts_attach, 433 .pru_bind = rts_bind, 434 .pru_connect = rts_connect, 435 .pru_detach = rts_detach, 436 .pru_disconnect = rts_disconnect, 437 .pru_peeraddr = rts_peeraddr, 438 .pru_send = rts_send, 439 .pru_shutdown = rts_shutdown, 440 .pru_sockaddr = rts_sockaddr, 441 .pru_close = rts_close, 442 }; 443 444 #ifndef _SOCKADDR_UNION_DEFINED 445 #define _SOCKADDR_UNION_DEFINED 446 /* 447 * The union of all possible address formats we handle. 448 */ 449 union sockaddr_union { 450 struct sockaddr sa; 451 struct sockaddr_in sin; 452 struct sockaddr_in6 sin6; 453 }; 454 #endif /* _SOCKADDR_UNION_DEFINED */ 455 456 static int 457 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 458 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 459 { 460 #if defined(INET) || defined(INET6) 461 struct epoch_tracker et; 462 #endif 463 464 /* First, see if the returned address is part of the jail. */ 465 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 466 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 467 return (0); 468 } 469 470 switch (info->rti_info[RTAX_DST]->sa_family) { 471 #ifdef INET 472 case AF_INET: 473 { 474 struct in_addr ia; 475 struct ifaddr *ifa; 476 int found; 477 478 found = 0; 479 /* 480 * Try to find an address on the given outgoing interface 481 * that belongs to the jail. 482 */ 483 NET_EPOCH_ENTER(et); 484 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 485 struct sockaddr *sa; 486 sa = ifa->ifa_addr; 487 if (sa->sa_family != AF_INET) 488 continue; 489 ia = ((struct sockaddr_in *)sa)->sin_addr; 490 if (prison_check_ip4(cred, &ia) == 0) { 491 found = 1; 492 break; 493 } 494 } 495 NET_EPOCH_EXIT(et); 496 if (!found) { 497 /* 498 * As a last resort return the 'default' jail address. 499 */ 500 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 501 sin_addr; 502 if (prison_get_ip4(cred, &ia) != 0) 503 return (ESRCH); 504 } 505 bzero(&saun->sin, sizeof(struct sockaddr_in)); 506 saun->sin.sin_len = sizeof(struct sockaddr_in); 507 saun->sin.sin_family = AF_INET; 508 saun->sin.sin_addr.s_addr = ia.s_addr; 509 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 510 break; 511 } 512 #endif 513 #ifdef INET6 514 case AF_INET6: 515 { 516 struct in6_addr ia6; 517 struct ifaddr *ifa; 518 int found; 519 520 found = 0; 521 /* 522 * Try to find an address on the given outgoing interface 523 * that belongs to the jail. 524 */ 525 NET_EPOCH_ENTER(et); 526 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 527 struct sockaddr *sa; 528 sa = ifa->ifa_addr; 529 if (sa->sa_family != AF_INET6) 530 continue; 531 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 532 &ia6, sizeof(struct in6_addr)); 533 if (prison_check_ip6(cred, &ia6) == 0) { 534 found = 1; 535 break; 536 } 537 } 538 NET_EPOCH_EXIT(et); 539 if (!found) { 540 /* 541 * As a last resort return the 'default' jail address. 542 */ 543 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 544 sin6_addr; 545 if (prison_get_ip6(cred, &ia6) != 0) 546 return (ESRCH); 547 } 548 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 549 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 550 saun->sin6.sin6_family = AF_INET6; 551 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 552 if (sa6_recoverscope(&saun->sin6) != 0) 553 return (ESRCH); 554 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 555 break; 556 } 557 #endif 558 default: 559 return (ESRCH); 560 } 561 return (0); 562 } 563 564 /* 565 * Fills in @info based on userland-provided @rtm message. 566 * 567 * Returns 0 on success. 568 */ 569 static int 570 fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info) 571 { 572 int error; 573 sa_family_t saf; 574 575 rtm->rtm_pid = curproc->p_pid; 576 info->rti_addrs = rtm->rtm_addrs; 577 578 info->rti_mflags = rtm->rtm_inits; 579 info->rti_rmx = &rtm->rtm_rmx; 580 581 /* 582 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 583 * link-local address because rtrequest requires addresses with 584 * embedded scope id. 585 */ 586 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 587 return (EINVAL); 588 589 if (rtm->rtm_flags & RTF_RNH_LOCKED) 590 return (EINVAL); 591 info->rti_flags = rtm->rtm_flags; 592 if (info->rti_info[RTAX_DST] == NULL || 593 info->rti_info[RTAX_DST]->sa_family >= AF_MAX || 594 (info->rti_info[RTAX_GATEWAY] != NULL && 595 info->rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 596 return (EINVAL); 597 saf = info->rti_info[RTAX_DST]->sa_family; 598 /* 599 * Verify that the caller has the appropriate privilege; RTM_GET 600 * is the only operation the non-superuser is allowed. 601 */ 602 if (rtm->rtm_type != RTM_GET) { 603 error = priv_check(curthread, PRIV_NET_ROUTE); 604 if (error != 0) 605 return (error); 606 } 607 608 /* 609 * The given gateway address may be an interface address. 610 * For example, issuing a "route change" command on a route 611 * entry that was created from a tunnel, and the gateway 612 * address given is the local end point. In this case the 613 * RTF_GATEWAY flag must be cleared or the destination will 614 * not be reachable even though there is no error message. 615 */ 616 if (info->rti_info[RTAX_GATEWAY] != NULL && 617 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 618 struct rt_addrinfo ginfo; 619 struct sockaddr *gdst; 620 struct sockaddr_storage ss; 621 622 bzero(&ginfo, sizeof(ginfo)); 623 bzero(&ss, sizeof(ss)); 624 ss.ss_len = sizeof(ss); 625 626 ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; 627 gdst = info->rti_info[RTAX_GATEWAY]; 628 629 /* 630 * A host route through the loopback interface is 631 * installed for each interface adddress. In pre 8.0 632 * releases the interface address of a PPP link type 633 * is not reachable locally. This behavior is fixed as 634 * part of the new L2/L3 redesign and rewrite work. The 635 * signature of this interface address route is the 636 * AF_LINK sa_family type of the gateway, and the 637 * rt_ifp has the IFF_LOOPBACK flag set. 638 */ 639 if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { 640 if (ss.ss_family == AF_LINK && 641 ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { 642 info->rti_flags &= ~RTF_GATEWAY; 643 info->rti_flags |= RTF_GWFLAG_COMPAT; 644 } 645 rib_free_info(&ginfo); 646 } 647 } 648 649 return (0); 650 } 651 652 static struct nhop_object * 653 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 654 { 655 if (!NH_IS_NHGRP(nh)) 656 return (nh); 657 #ifdef ROUTE_MPATH 658 struct weightened_nhop *wn; 659 uint32_t num_nhops; 660 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 661 if (gw == NULL) 662 return (wn[0].nh); 663 for (int i = 0; i < num_nhops; i++) { 664 if (match_nhop_gw(wn[i].nh, gw)) 665 return (wn[i].nh); 666 } 667 #endif 668 return (NULL); 669 } 670 671 /* 672 * Handles RTM_GET message from routing socket, returning matching rt. 673 * 674 * Returns: 675 * 0 on success, with locked and referenced matching rt in @rt_nrt 676 * errno of failure 677 */ 678 static int 679 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 680 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 681 { 682 RIB_RLOCK_TRACKER; 683 struct rib_head *rnh; 684 struct nhop_object *nh; 685 sa_family_t saf; 686 687 saf = info->rti_info[RTAX_DST]->sa_family; 688 689 rnh = rt_tables_get_rnh(fibnum, saf); 690 if (rnh == NULL) 691 return (EAFNOSUPPORT); 692 693 RIB_RLOCK(rnh); 694 695 if (info->rti_info[RTAX_NETMASK] == NULL) { 696 /* 697 * Provide longest prefix match for 698 * address lookup (no mask). 699 * 'route -n get addr' 700 */ 701 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 702 info->rti_info[RTAX_DST], &rnh->head); 703 } else 704 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 705 info->rti_info[RTAX_DST], 706 info->rti_info[RTAX_NETMASK], &rnh->head); 707 708 if (rc->rc_rt == NULL) { 709 RIB_RUNLOCK(rnh); 710 return (ESRCH); 711 } 712 713 nh = select_nhop(rc->rc_rt->rt_nhop, info->rti_info[RTAX_GATEWAY]); 714 if (nh == NULL) { 715 RIB_RUNLOCK(rnh); 716 return (ESRCH); 717 } 718 /* 719 * If performing proxied L2 entry insertion, and 720 * the actual PPP host entry is found, perform 721 * another search to retrieve the prefix route of 722 * the local end point of the PPP link. 723 * TODO: move this logic to userland. 724 */ 725 if (rtm->rtm_flags & RTF_ANNOUNCE) { 726 struct sockaddr laddr; 727 struct nhop_object *nh; 728 729 nh = rc->rc_rt->rt_nhop; 730 if (nh->nh_ifp != NULL && 731 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 732 struct ifaddr *ifa; 733 734 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 735 RT_ALL_FIBS); 736 if (ifa != NULL) 737 rt_maskedcopy(ifa->ifa_addr, 738 &laddr, 739 ifa->ifa_netmask); 740 } else 741 rt_maskedcopy(nh->nh_ifa->ifa_addr, 742 &laddr, 743 nh->nh_ifa->ifa_netmask); 744 /* 745 * refactor rt and no lock operation necessary 746 */ 747 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, 748 &rnh->head); 749 if (rc->rc_rt == NULL) { 750 RIB_RUNLOCK(rnh); 751 return (ESRCH); 752 } 753 nh = select_nhop(rc->rc_rt->rt_nhop, info->rti_info[RTAX_GATEWAY]); 754 if (nh == NULL) { 755 RIB_RUNLOCK(rnh); 756 return (ESRCH); 757 } 758 } 759 rc->rc_nh_new = nh; 760 rc->rc_nh_weight = rc->rc_rt->rt_weight; 761 RIB_RUNLOCK(rnh); 762 763 return (0); 764 } 765 766 /* 767 * Update sockaddrs, flags, etc in @prtm based on @rc data. 768 * rtm can be reallocated. 769 * 770 * Returns 0 on success, along with pointer to (potentially reallocated) 771 * rtm. 772 * 773 */ 774 static int 775 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 776 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 777 { 778 struct sockaddr_storage netmask_ss; 779 struct walkarg w; 780 union sockaddr_union saun; 781 struct rt_msghdr *rtm, *orig_rtm = NULL; 782 struct ifnet *ifp; 783 int error, len; 784 785 rtm = *prtm; 786 787 info->rti_info[RTAX_DST] = rt_key(rc->rc_rt); 788 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 789 info->rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rc->rc_rt), 790 rt_mask(rc->rc_rt), &netmask_ss); 791 info->rti_info[RTAX_GENMASK] = 0; 792 ifp = nh->nh_ifp; 793 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 794 if (ifp) { 795 info->rti_info[RTAX_IFP] = 796 ifp->if_addr->ifa_addr; 797 error = rtm_get_jailed(info, ifp, nh, 798 &saun, curthread->td_ucred); 799 if (error != 0) 800 return (error); 801 if (ifp->if_flags & IFF_POINTOPOINT) 802 info->rti_info[RTAX_BRD] = 803 nh->nh_ifa->ifa_dstaddr; 804 rtm->rtm_index = ifp->if_index; 805 } else { 806 info->rti_info[RTAX_IFP] = NULL; 807 info->rti_info[RTAX_IFA] = NULL; 808 } 809 } else if (ifp != NULL) 810 rtm->rtm_index = ifp->if_index; 811 812 /* Check if we need to realloc storage */ 813 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 814 if (len > alloc_len) { 815 struct rt_msghdr *tmp_rtm; 816 817 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 818 if (tmp_rtm == NULL) 819 return (ENOBUFS); 820 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 821 orig_rtm = rtm; 822 rtm = tmp_rtm; 823 alloc_len = len; 824 825 /* 826 * Delay freeing original rtm as info contains 827 * data referencing it. 828 */ 829 } 830 831 w.w_tmem = (caddr_t)rtm; 832 w.w_tmemsize = alloc_len; 833 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 834 835 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 836 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 837 rtm->rtm_flags = RTF_GATEWAY | 838 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 839 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 840 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 841 rtm->rtm_addrs = info->rti_addrs; 842 843 if (orig_rtm != NULL) 844 free(orig_rtm, M_TEMP); 845 *prtm = rtm; 846 847 return (0); 848 } 849 850 #ifdef ROUTE_MPATH 851 static void 852 save_del_notification(struct rib_cmd_info *rc, void *_cbdata) 853 { 854 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 855 856 if (rc->rc_cmd == RTM_DELETE) 857 *rc_new = *rc; 858 } 859 860 static void 861 save_add_notification(struct rib_cmd_info *rc, void *_cbdata) 862 { 863 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 864 865 if (rc->rc_cmd == RTM_ADD) 866 *rc_new = *rc; 867 } 868 #endif 869 870 /*ARGSUSED*/ 871 static int 872 route_output(struct mbuf *m, struct socket *so, ...) 873 { 874 struct rt_msghdr *rtm = NULL; 875 struct rtentry *rt = NULL; 876 struct rt_addrinfo info; 877 struct epoch_tracker et; 878 #ifdef INET6 879 struct sockaddr_storage ss; 880 struct sockaddr_in6 *sin6; 881 int i, rti_need_deembed = 0; 882 #endif 883 int alloc_len = 0, len, error = 0, fibnum; 884 sa_family_t saf = AF_UNSPEC; 885 struct walkarg w; 886 struct rib_cmd_info rc; 887 struct nhop_object *nh; 888 889 fibnum = so->so_fibnum; 890 #define senderr(e) { error = e; goto flush;} 891 if (m == NULL || ((m->m_len < sizeof(long)) && 892 (m = m_pullup(m, sizeof(long))) == NULL)) 893 return (ENOBUFS); 894 if ((m->m_flags & M_PKTHDR) == 0) 895 panic("route_output"); 896 NET_EPOCH_ENTER(et); 897 len = m->m_pkthdr.len; 898 if (len < sizeof(*rtm) || 899 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 900 senderr(EINVAL); 901 902 /* 903 * Most of current messages are in range 200-240 bytes, 904 * minimize possible re-allocation on reply using larger size 905 * buffer aligned on 1k boundaty. 906 */ 907 alloc_len = roundup2(len, 1024); 908 if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) 909 senderr(ENOBUFS); 910 911 m_copydata(m, 0, len, (caddr_t)rtm); 912 bzero(&info, sizeof(info)); 913 bzero(&w, sizeof(w)); 914 nh = NULL; 915 916 if (rtm->rtm_version != RTM_VERSION) { 917 /* Do not touch message since format is unknown */ 918 free(rtm, M_TEMP); 919 rtm = NULL; 920 senderr(EPROTONOSUPPORT); 921 } 922 923 /* 924 * Starting from here, it is possible 925 * to alter original message and insert 926 * caller PID and error value. 927 */ 928 929 if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) { 930 senderr(error); 931 } 932 933 saf = info.rti_info[RTAX_DST]->sa_family; 934 935 /* support for new ARP code */ 936 if (rtm->rtm_flags & RTF_LLDATA) { 937 error = lla_rt_output(rtm, &info); 938 #ifdef INET6 939 if (error == 0) 940 rti_need_deembed = 1; 941 #endif 942 goto flush; 943 } 944 945 switch (rtm->rtm_type) { 946 case RTM_ADD: 947 case RTM_CHANGE: 948 if (rtm->rtm_type == RTM_ADD) { 949 if (info.rti_info[RTAX_GATEWAY] == NULL) 950 senderr(EINVAL); 951 } 952 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 953 if (error == 0) { 954 #ifdef INET6 955 rti_need_deembed = 1; 956 #endif 957 #ifdef ROUTE_MPATH 958 if (NH_IS_NHGRP(rc.rc_nh_new) || 959 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 960 struct rib_cmd_info rc_simple = {}; 961 rib_decompose_notification(&rc, 962 save_add_notification, (void *)&rc_simple); 963 rc = rc_simple; 964 } 965 #endif 966 nh = rc.rc_nh_new; 967 rtm->rtm_index = nh->nh_ifp->if_index; 968 } 969 break; 970 971 case RTM_DELETE: 972 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 973 if (error == 0) { 974 #ifdef ROUTE_MPATH 975 if (NH_IS_NHGRP(rc.rc_nh_old) || 976 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 977 struct rib_cmd_info rc_simple = {}; 978 rib_decompose_notification(&rc, 979 save_del_notification, (void *)&rc_simple); 980 rc = rc_simple; 981 } 982 #endif 983 nh = rc.rc_nh_old; 984 goto report; 985 } 986 #ifdef INET6 987 /* rt_msg2() will not be used when RTM_DELETE fails. */ 988 rti_need_deembed = 1; 989 #endif 990 break; 991 992 case RTM_GET: 993 error = handle_rtm_get(&info, fibnum, rtm, &rc); 994 if (error != 0) 995 senderr(error); 996 nh = rc.rc_nh_new; 997 998 report: 999 if (!can_export_rte(curthread->td_ucred, rc.rc_rt)) { 1000 senderr(ESRCH); 1001 } 1002 1003 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1004 /* 1005 * Note that some sockaddr pointers may have changed to 1006 * point to memory outsize @rtm. Some may be pointing 1007 * to the on-stack variables. 1008 * Given that, any pointer in @info CANNOT BE USED. 1009 */ 1010 1011 /* 1012 * scopeid deembedding has been performed while 1013 * writing updated rtm in rtsock_msg_buffer(). 1014 * With that in mind, skip deembedding procedure below. 1015 */ 1016 #ifdef INET6 1017 rti_need_deembed = 0; 1018 #endif 1019 if (error != 0) 1020 senderr(error); 1021 break; 1022 1023 default: 1024 senderr(EOPNOTSUPP); 1025 } 1026 1027 flush: 1028 NET_EPOCH_EXIT(et); 1029 rt = NULL; 1030 1031 #ifdef INET6 1032 if (rtm != NULL) { 1033 if (rti_need_deembed) { 1034 /* sin6_scope_id is recovered before sending rtm. */ 1035 sin6 = (struct sockaddr_in6 *)&ss; 1036 for (i = 0; i < RTAX_MAX; i++) { 1037 if (info.rti_info[i] == NULL) 1038 continue; 1039 if (info.rti_info[i]->sa_family != AF_INET6) 1040 continue; 1041 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1042 if (sa6_recoverscope(sin6) == 0) 1043 bcopy(sin6, info.rti_info[i], 1044 sizeof(*sin6)); 1045 } 1046 } 1047 } 1048 #endif 1049 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1050 1051 return (error); 1052 } 1053 1054 /* 1055 * Sends the prepared reply message in @rtm to all rtsock clients. 1056 * Frees @m and @rtm. 1057 * 1058 */ 1059 static void 1060 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1061 sa_family_t saf, u_int fibnum, int rtm_errno) 1062 { 1063 struct rawcb *rp = NULL; 1064 1065 /* 1066 * Check to see if we don't want our own messages. 1067 */ 1068 if ((so->so_options & SO_USELOOPBACK) == 0) { 1069 if (V_route_cb.any_count <= 1) { 1070 if (rtm != NULL) 1071 free(rtm, M_TEMP); 1072 m_freem(m); 1073 return; 1074 } 1075 /* There is another listener, so construct message */ 1076 rp = sotorawcb(so); 1077 } 1078 1079 if (rtm != NULL) { 1080 if (rtm_errno!= 0) 1081 rtm->rtm_errno = rtm_errno; 1082 else 1083 rtm->rtm_flags |= RTF_DONE; 1084 1085 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1086 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1087 m_freem(m); 1088 m = NULL; 1089 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1090 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1091 1092 free(rtm, M_TEMP); 1093 } 1094 if (m != NULL) { 1095 M_SETFIB(m, fibnum); 1096 m->m_flags |= RTS_FILTER_FIB; 1097 if (rp) { 1098 /* 1099 * XXX insure we don't get a copy by 1100 * invalidating our protocol 1101 */ 1102 unsigned short family = rp->rcb_proto.sp_family; 1103 rp->rcb_proto.sp_family = 0; 1104 rt_dispatch(m, saf); 1105 rp->rcb_proto.sp_family = family; 1106 } else 1107 rt_dispatch(m, saf); 1108 } 1109 } 1110 1111 static void 1112 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1113 struct rt_metrics *out) 1114 { 1115 1116 bzero(out, sizeof(*out)); 1117 out->rmx_mtu = nh->nh_mtu; 1118 out->rmx_weight = rt->rt_weight; 1119 out->rmx_nhidx = nhop_get_idx(nh); 1120 /* Kernel -> userland timebase conversion. */ 1121 out->rmx_expire = rt->rt_expire ? 1122 rt->rt_expire - time_uptime + time_second : 0; 1123 } 1124 1125 /* 1126 * Extract the addresses of the passed sockaddrs. 1127 * Do a little sanity checking so as to avoid bad memory references. 1128 * This data is derived straight from userland. 1129 */ 1130 static int 1131 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1132 { 1133 struct sockaddr *sa; 1134 int i; 1135 1136 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1137 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1138 continue; 1139 sa = (struct sockaddr *)cp; 1140 /* 1141 * It won't fit. 1142 */ 1143 if (cp + sa->sa_len > cplim) 1144 return (EINVAL); 1145 /* 1146 * there are no more.. quit now 1147 * If there are more bits, they are in error. 1148 * I've seen this. route(1) can evidently generate these. 1149 * This causes kernel to core dump. 1150 * for compatibility, If we see this, point to a safe address. 1151 */ 1152 if (sa->sa_len == 0) { 1153 rtinfo->rti_info[i] = &sa_zero; 1154 return (0); /* should be EINVAL but for compat */ 1155 } 1156 /* accept it */ 1157 #ifdef INET6 1158 if (sa->sa_family == AF_INET6) 1159 sa6_embedscope((struct sockaddr_in6 *)sa, 1160 V_ip6_use_defzone); 1161 #endif 1162 rtinfo->rti_info[i] = sa; 1163 cp += SA_SIZE(sa); 1164 } 1165 return (0); 1166 } 1167 1168 /* 1169 * Fill in @dmask with valid netmask leaving original @smask 1170 * intact. Mostly used with radix netmasks. 1171 */ 1172 struct sockaddr * 1173 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1174 struct sockaddr_storage *dmask) 1175 { 1176 if (dst == NULL || smask == NULL) 1177 return (NULL); 1178 1179 memset(dmask, 0, dst->sa_len); 1180 memcpy(dmask, smask, smask->sa_len); 1181 dmask->ss_len = dst->sa_len; 1182 dmask->ss_family = dst->sa_family; 1183 1184 return ((struct sockaddr *)dmask); 1185 } 1186 1187 /* 1188 * Writes information related to @rtinfo object to newly-allocated mbuf. 1189 * Assumes MCLBYTES is enough to construct any message. 1190 * Used for OS notifications of vaious events (if/ifa announces,etc) 1191 * 1192 * Returns allocated mbuf or NULL on failure. 1193 */ 1194 static struct mbuf * 1195 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1196 { 1197 struct rt_msghdr *rtm; 1198 struct mbuf *m; 1199 int i; 1200 struct sockaddr *sa; 1201 #ifdef INET6 1202 struct sockaddr_storage ss; 1203 struct sockaddr_in6 *sin6; 1204 #endif 1205 int len, dlen; 1206 1207 switch (type) { 1208 case RTM_DELADDR: 1209 case RTM_NEWADDR: 1210 len = sizeof(struct ifa_msghdr); 1211 break; 1212 1213 case RTM_DELMADDR: 1214 case RTM_NEWMADDR: 1215 len = sizeof(struct ifma_msghdr); 1216 break; 1217 1218 case RTM_IFINFO: 1219 len = sizeof(struct if_msghdr); 1220 break; 1221 1222 case RTM_IFANNOUNCE: 1223 case RTM_IEEE80211: 1224 len = sizeof(struct if_announcemsghdr); 1225 break; 1226 1227 default: 1228 len = sizeof(struct rt_msghdr); 1229 } 1230 1231 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1232 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1233 if (len > MHLEN) 1234 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1235 else 1236 m = m_gethdr(M_NOWAIT, MT_DATA); 1237 if (m == NULL) 1238 return (m); 1239 1240 m->m_pkthdr.len = m->m_len = len; 1241 rtm = mtod(m, struct rt_msghdr *); 1242 bzero((caddr_t)rtm, len); 1243 for (i = 0; i < RTAX_MAX; i++) { 1244 if ((sa = rtinfo->rti_info[i]) == NULL) 1245 continue; 1246 rtinfo->rti_addrs |= (1 << i); 1247 dlen = SA_SIZE(sa); 1248 #ifdef INET6 1249 if (sa->sa_family == AF_INET6) { 1250 sin6 = (struct sockaddr_in6 *)&ss; 1251 bcopy(sa, sin6, sizeof(*sin6)); 1252 if (sa6_recoverscope(sin6) == 0) 1253 sa = (struct sockaddr *)sin6; 1254 } 1255 #endif 1256 m_copyback(m, len, dlen, (caddr_t)sa); 1257 len += dlen; 1258 } 1259 if (m->m_pkthdr.len != len) { 1260 m_freem(m); 1261 return (NULL); 1262 } 1263 rtm->rtm_msglen = len; 1264 rtm->rtm_version = RTM_VERSION; 1265 rtm->rtm_type = type; 1266 return (m); 1267 } 1268 1269 /* 1270 * Writes information related to @rtinfo object to preallocated buffer. 1271 * Stores needed size in @plen. If @w is NULL, calculates size without 1272 * writing. 1273 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1274 * 1275 * Returns 0 on success. 1276 * 1277 */ 1278 static int 1279 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1280 { 1281 int i; 1282 int len, buflen = 0, dlen; 1283 caddr_t cp = NULL; 1284 struct rt_msghdr *rtm = NULL; 1285 #ifdef INET6 1286 struct sockaddr_storage ss; 1287 struct sockaddr_in6 *sin6; 1288 #endif 1289 #ifdef COMPAT_FREEBSD32 1290 bool compat32 = false; 1291 #endif 1292 1293 switch (type) { 1294 case RTM_DELADDR: 1295 case RTM_NEWADDR: 1296 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1297 #ifdef COMPAT_FREEBSD32 1298 if (w->w_req->flags & SCTL_MASK32) { 1299 len = sizeof(struct ifa_msghdrl32); 1300 compat32 = true; 1301 } else 1302 #endif 1303 len = sizeof(struct ifa_msghdrl); 1304 } else 1305 len = sizeof(struct ifa_msghdr); 1306 break; 1307 1308 case RTM_IFINFO: 1309 #ifdef COMPAT_FREEBSD32 1310 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1311 if (w->w_op == NET_RT_IFLISTL) 1312 len = sizeof(struct if_msghdrl32); 1313 else 1314 len = sizeof(struct if_msghdr32); 1315 compat32 = true; 1316 break; 1317 } 1318 #endif 1319 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1320 len = sizeof(struct if_msghdrl); 1321 else 1322 len = sizeof(struct if_msghdr); 1323 break; 1324 1325 case RTM_NEWMADDR: 1326 len = sizeof(struct ifma_msghdr); 1327 break; 1328 1329 default: 1330 len = sizeof(struct rt_msghdr); 1331 } 1332 1333 if (w != NULL) { 1334 rtm = (struct rt_msghdr *)w->w_tmem; 1335 buflen = w->w_tmemsize - len; 1336 cp = (caddr_t)w->w_tmem + len; 1337 } 1338 1339 rtinfo->rti_addrs = 0; 1340 for (i = 0; i < RTAX_MAX; i++) { 1341 struct sockaddr *sa; 1342 1343 if ((sa = rtinfo->rti_info[i]) == NULL) 1344 continue; 1345 rtinfo->rti_addrs |= (1 << i); 1346 #ifdef COMPAT_FREEBSD32 1347 if (compat32) 1348 dlen = SA_SIZE32(sa); 1349 else 1350 #endif 1351 dlen = SA_SIZE(sa); 1352 if (cp != NULL && buflen >= dlen) { 1353 #ifdef INET6 1354 if (sa->sa_family == AF_INET6) { 1355 sin6 = (struct sockaddr_in6 *)&ss; 1356 bcopy(sa, sin6, sizeof(*sin6)); 1357 if (sa6_recoverscope(sin6) == 0) 1358 sa = (struct sockaddr *)sin6; 1359 } 1360 #endif 1361 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1362 cp += dlen; 1363 buflen -= dlen; 1364 } else if (cp != NULL) { 1365 /* 1366 * Buffer too small. Count needed size 1367 * and return with error. 1368 */ 1369 cp = NULL; 1370 } 1371 1372 len += dlen; 1373 } 1374 1375 if (cp != NULL) { 1376 dlen = ALIGN(len) - len; 1377 if (buflen < dlen) 1378 cp = NULL; 1379 else { 1380 bzero(cp, dlen); 1381 cp += dlen; 1382 buflen -= dlen; 1383 } 1384 } 1385 len = ALIGN(len); 1386 1387 if (cp != NULL) { 1388 /* fill header iff buffer is large enough */ 1389 rtm->rtm_version = RTM_VERSION; 1390 rtm->rtm_type = type; 1391 rtm->rtm_msglen = len; 1392 } 1393 1394 *plen = len; 1395 1396 if (w != NULL && cp == NULL) 1397 return (ENOBUFS); 1398 1399 return (0); 1400 } 1401 1402 /* 1403 * This routine is called to generate a message from the routing 1404 * socket indicating that a redirect has occurred, a routing lookup 1405 * has failed, or that a protocol has detected timeouts to a particular 1406 * destination. 1407 */ 1408 void 1409 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1410 int fibnum) 1411 { 1412 struct rt_msghdr *rtm; 1413 struct mbuf *m; 1414 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1415 1416 if (V_route_cb.any_count == 0) 1417 return; 1418 m = rtsock_msg_mbuf(type, rtinfo); 1419 if (m == NULL) 1420 return; 1421 1422 if (fibnum != RT_ALL_FIBS) { 1423 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1424 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1425 M_SETFIB(m, fibnum); 1426 m->m_flags |= RTS_FILTER_FIB; 1427 } 1428 1429 rtm = mtod(m, struct rt_msghdr *); 1430 rtm->rtm_flags = RTF_DONE | flags; 1431 rtm->rtm_errno = error; 1432 rtm->rtm_addrs = rtinfo->rti_addrs; 1433 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1434 } 1435 1436 void 1437 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1438 { 1439 1440 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1441 } 1442 1443 /* 1444 * This routine is called to generate a message from the routing 1445 * socket indicating that the status of a network interface has changed. 1446 */ 1447 void 1448 rt_ifmsg(struct ifnet *ifp) 1449 { 1450 struct if_msghdr *ifm; 1451 struct mbuf *m; 1452 struct rt_addrinfo info; 1453 1454 if (V_route_cb.any_count == 0) 1455 return; 1456 bzero((caddr_t)&info, sizeof(info)); 1457 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1458 if (m == NULL) 1459 return; 1460 ifm = mtod(m, struct if_msghdr *); 1461 ifm->ifm_index = ifp->if_index; 1462 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1463 if_data_copy(ifp, &ifm->ifm_data); 1464 ifm->ifm_addrs = 0; 1465 rt_dispatch(m, AF_UNSPEC); 1466 } 1467 1468 /* 1469 * Announce interface address arrival/withdraw. 1470 * Please do not call directly, use rt_addrmsg(). 1471 * Assume input data to be valid. 1472 * Returns 0 on success. 1473 */ 1474 int 1475 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1476 { 1477 struct rt_addrinfo info; 1478 struct sockaddr *sa; 1479 int ncmd; 1480 struct mbuf *m; 1481 struct ifa_msghdr *ifam; 1482 struct ifnet *ifp = ifa->ifa_ifp; 1483 struct sockaddr_storage ss; 1484 1485 if (V_route_cb.any_count == 0) 1486 return (0); 1487 1488 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1489 1490 bzero((caddr_t)&info, sizeof(info)); 1491 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1492 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1493 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1494 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1495 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1496 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1497 return (ENOBUFS); 1498 ifam = mtod(m, struct ifa_msghdr *); 1499 ifam->ifam_index = ifp->if_index; 1500 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1501 ifam->ifam_flags = ifa->ifa_flags; 1502 ifam->ifam_addrs = info.rti_addrs; 1503 1504 if (fibnum != RT_ALL_FIBS) { 1505 M_SETFIB(m, fibnum); 1506 m->m_flags |= RTS_FILTER_FIB; 1507 } 1508 1509 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1510 1511 return (0); 1512 } 1513 1514 /* 1515 * Announce route addition/removal to rtsock based on @rt data. 1516 * Callers are advives to use rt_routemsg() instead of using this 1517 * function directly. 1518 * Assume @rt data is consistent. 1519 * 1520 * Returns 0 on success. 1521 */ 1522 int 1523 rtsock_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs, 1524 int fibnum) 1525 { 1526 struct sockaddr_storage ss; 1527 struct rt_addrinfo info; 1528 struct nhop_object *nh; 1529 1530 if (V_route_cb.any_count == 0) 1531 return (0); 1532 1533 nh = rt->rt_nhop; 1534 bzero((caddr_t)&info, sizeof(info)); 1535 info.rti_info[RTAX_DST] = rt_key(rt); 1536 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), rt_mask(rt), &ss); 1537 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1538 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 1539 info.rti_ifp = ifp; 1540 1541 return (rtsock_routemsg_info(cmd, &info, fibnum)); 1542 } 1543 1544 int 1545 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 1546 { 1547 struct rt_msghdr *rtm; 1548 struct sockaddr *sa; 1549 struct mbuf *m; 1550 1551 if (V_route_cb.any_count == 0) 1552 return (0); 1553 1554 if (info->rti_flags & RTF_HOST) 1555 info->rti_info[RTAX_NETMASK] = NULL; 1556 1557 m = rtsock_msg_mbuf(cmd, info); 1558 if (m == NULL) 1559 return (ENOBUFS); 1560 1561 if (fibnum != RT_ALL_FIBS) { 1562 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1563 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1564 M_SETFIB(m, fibnum); 1565 m->m_flags |= RTS_FILTER_FIB; 1566 } 1567 1568 rtm = mtod(m, struct rt_msghdr *); 1569 rtm->rtm_addrs = info->rti_addrs; 1570 if (info->rti_ifp != NULL) 1571 rtm->rtm_index = info->rti_ifp->if_index; 1572 /* Add RTF_DONE to indicate command 'completion' required by API */ 1573 info->rti_flags |= RTF_DONE; 1574 /* Reported routes has to be up */ 1575 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 1576 info->rti_flags |= RTF_UP; 1577 rtm->rtm_flags = info->rti_flags; 1578 1579 sa = info->rti_info[RTAX_DST]; 1580 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1581 1582 return (0); 1583 } 1584 1585 /* 1586 * This is the analogue to the rt_newaddrmsg which performs the same 1587 * function but for multicast group memberhips. This is easier since 1588 * there is no route state to worry about. 1589 */ 1590 void 1591 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 1592 { 1593 struct rt_addrinfo info; 1594 struct mbuf *m = NULL; 1595 struct ifnet *ifp = ifma->ifma_ifp; 1596 struct ifma_msghdr *ifmam; 1597 1598 if (V_route_cb.any_count == 0) 1599 return; 1600 1601 bzero((caddr_t)&info, sizeof(info)); 1602 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 1603 if (ifp && ifp->if_addr) 1604 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1605 else 1606 info.rti_info[RTAX_IFP] = NULL; 1607 /* 1608 * If a link-layer address is present, present it as a ``gateway'' 1609 * (similarly to how ARP entries, e.g., are presented). 1610 */ 1611 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 1612 m = rtsock_msg_mbuf(cmd, &info); 1613 if (m == NULL) 1614 return; 1615 ifmam = mtod(m, struct ifma_msghdr *); 1616 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 1617 __func__)); 1618 ifmam->ifmam_index = ifp->if_index; 1619 ifmam->ifmam_addrs = info.rti_addrs; 1620 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 1621 } 1622 1623 static struct mbuf * 1624 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 1625 struct rt_addrinfo *info) 1626 { 1627 struct if_announcemsghdr *ifan; 1628 struct mbuf *m; 1629 1630 if (V_route_cb.any_count == 0) 1631 return NULL; 1632 bzero((caddr_t)info, sizeof(*info)); 1633 m = rtsock_msg_mbuf(type, info); 1634 if (m != NULL) { 1635 ifan = mtod(m, struct if_announcemsghdr *); 1636 ifan->ifan_index = ifp->if_index; 1637 strlcpy(ifan->ifan_name, ifp->if_xname, 1638 sizeof(ifan->ifan_name)); 1639 ifan->ifan_what = what; 1640 } 1641 return m; 1642 } 1643 1644 /* 1645 * This is called to generate routing socket messages indicating 1646 * IEEE80211 wireless events. 1647 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 1648 */ 1649 void 1650 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 1651 { 1652 struct mbuf *m; 1653 struct rt_addrinfo info; 1654 1655 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 1656 if (m != NULL) { 1657 /* 1658 * Append the ieee80211 data. Try to stick it in the 1659 * mbuf containing the ifannounce msg; otherwise allocate 1660 * a new mbuf and append. 1661 * 1662 * NB: we assume m is a single mbuf. 1663 */ 1664 if (data_len > M_TRAILINGSPACE(m)) { 1665 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 1666 if (n == NULL) { 1667 m_freem(m); 1668 return; 1669 } 1670 bcopy(data, mtod(n, void *), data_len); 1671 n->m_len = data_len; 1672 m->m_next = n; 1673 } else if (data_len > 0) { 1674 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 1675 m->m_len += data_len; 1676 } 1677 if (m->m_flags & M_PKTHDR) 1678 m->m_pkthdr.len += data_len; 1679 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 1680 rt_dispatch(m, AF_UNSPEC); 1681 } 1682 } 1683 1684 /* 1685 * This is called to generate routing socket messages indicating 1686 * network interface arrival and departure. 1687 */ 1688 void 1689 rt_ifannouncemsg(struct ifnet *ifp, int what) 1690 { 1691 struct mbuf *m; 1692 struct rt_addrinfo info; 1693 1694 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 1695 if (m != NULL) 1696 rt_dispatch(m, AF_UNSPEC); 1697 } 1698 1699 static void 1700 rt_dispatch(struct mbuf *m, sa_family_t saf) 1701 { 1702 struct m_tag *tag; 1703 1704 /* 1705 * Preserve the family from the sockaddr, if any, in an m_tag for 1706 * use when injecting the mbuf into the routing socket buffer from 1707 * the netisr. 1708 */ 1709 if (saf != AF_UNSPEC) { 1710 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), 1711 M_NOWAIT); 1712 if (tag == NULL) { 1713 m_freem(m); 1714 return; 1715 } 1716 *(unsigned short *)(tag + 1) = saf; 1717 m_tag_prepend(m, tag); 1718 } 1719 #ifdef VIMAGE 1720 if (V_loif) 1721 m->m_pkthdr.rcvif = V_loif; 1722 else { 1723 m_freem(m); 1724 return; 1725 } 1726 #endif 1727 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 1728 } 1729 1730 /* 1731 * Checks if rte can be exported v.r.t jails/vnets. 1732 * 1733 * Returns 1 if it can, 0 otherwise. 1734 */ 1735 static int 1736 can_export_rte(struct ucred *td_ucred, const struct rtentry *rt) 1737 { 1738 1739 if ((rt->rte_flags & RTF_HOST) == 0 1740 ? jailed_without_vnet(td_ucred) 1741 : prison_if(td_ucred, rt_key_const(rt)) != 0) 1742 return (0); 1743 return (1); 1744 } 1745 1746 /* 1747 * This is used in dumping the kernel table via sysctl(). 1748 */ 1749 static int 1750 sysctl_dumpentry(struct radix_node *rn, void *vw) 1751 { 1752 struct walkarg *w = vw; 1753 struct rtentry *rt = (struct rtentry *)rn; 1754 struct nhop_object *nh; 1755 int error = 0; 1756 1757 NET_EPOCH_ASSERT(); 1758 1759 if (w->w_op == NET_RT_FLAGS && !(rt->rte_flags & w->w_arg)) 1760 return 0; 1761 if (!can_export_rte(w->w_req->td->td_ucred, rt)) 1762 return (0); 1763 nh = rt->rt_nhop; 1764 #ifdef ROUTE_MPATH 1765 if (NH_IS_NHGRP(nh)) { 1766 struct weightened_nhop *wn; 1767 uint32_t num_nhops; 1768 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 1769 for (int i = 0; i < num_nhops; i++) { 1770 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 1771 if (error != 0) 1772 return (error); 1773 } 1774 } else 1775 #endif 1776 error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 1777 1778 return (0); 1779 } 1780 1781 1782 static int 1783 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 1784 struct walkarg *w) 1785 { 1786 struct rt_addrinfo info; 1787 int error = 0, size; 1788 struct sockaddr_storage ss; 1789 1790 bzero((caddr_t)&info, sizeof(info)); 1791 info.rti_info[RTAX_DST] = rt_key(rt); 1792 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 1793 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(rt_key(rt), 1794 rt_mask(rt), &ss); 1795 info.rti_info[RTAX_GENMASK] = 0; 1796 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 1797 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 1798 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 1799 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 1800 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 1801 } 1802 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 1803 return (error); 1804 if (w->w_req && w->w_tmem) { 1805 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1806 1807 bzero(&rtm->rtm_index, 1808 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 1809 if (rt->rte_flags & RTF_GWFLAG_COMPAT) 1810 rtm->rtm_flags = RTF_GATEWAY | 1811 (rt->rte_flags & ~RTF_GWFLAG_COMPAT); 1812 else 1813 rtm->rtm_flags = rt->rte_flags; 1814 rtm->rtm_flags |= nhop_get_rtflags(nh); 1815 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 1816 rtm->rtm_rmx.rmx_weight = weight; 1817 rtm->rtm_index = nh->nh_ifp->if_index; 1818 rtm->rtm_addrs = info.rti_addrs; 1819 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 1820 return (error); 1821 } 1822 return (error); 1823 } 1824 1825 static int 1826 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 1827 struct rt_addrinfo *info, struct walkarg *w, int len) 1828 { 1829 struct if_msghdrl *ifm; 1830 struct if_data *ifd; 1831 1832 ifm = (struct if_msghdrl *)w->w_tmem; 1833 1834 #ifdef COMPAT_FREEBSD32 1835 if (w->w_req->flags & SCTL_MASK32) { 1836 struct if_msghdrl32 *ifm32; 1837 1838 ifm32 = (struct if_msghdrl32 *)ifm; 1839 ifm32->ifm_addrs = info->rti_addrs; 1840 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1841 ifm32->ifm_index = ifp->if_index; 1842 ifm32->_ifm_spare1 = 0; 1843 ifm32->ifm_len = sizeof(*ifm32); 1844 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 1845 ifm32->_ifm_spare2 = 0; 1846 ifd = &ifm32->ifm_data; 1847 } else 1848 #endif 1849 { 1850 ifm->ifm_addrs = info->rti_addrs; 1851 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1852 ifm->ifm_index = ifp->if_index; 1853 ifm->_ifm_spare1 = 0; 1854 ifm->ifm_len = sizeof(*ifm); 1855 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 1856 ifm->_ifm_spare2 = 0; 1857 ifd = &ifm->ifm_data; 1858 } 1859 1860 memcpy(ifd, src_ifd, sizeof(*ifd)); 1861 1862 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1863 } 1864 1865 static int 1866 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 1867 struct rt_addrinfo *info, struct walkarg *w, int len) 1868 { 1869 struct if_msghdr *ifm; 1870 struct if_data *ifd; 1871 1872 ifm = (struct if_msghdr *)w->w_tmem; 1873 1874 #ifdef COMPAT_FREEBSD32 1875 if (w->w_req->flags & SCTL_MASK32) { 1876 struct if_msghdr32 *ifm32; 1877 1878 ifm32 = (struct if_msghdr32 *)ifm; 1879 ifm32->ifm_addrs = info->rti_addrs; 1880 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1881 ifm32->ifm_index = ifp->if_index; 1882 ifm32->_ifm_spare1 = 0; 1883 ifd = &ifm32->ifm_data; 1884 } else 1885 #endif 1886 { 1887 ifm->ifm_addrs = info->rti_addrs; 1888 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1889 ifm->ifm_index = ifp->if_index; 1890 ifm->_ifm_spare1 = 0; 1891 ifd = &ifm->ifm_data; 1892 } 1893 1894 memcpy(ifd, src_ifd, sizeof(*ifd)); 1895 1896 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 1897 } 1898 1899 static int 1900 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 1901 struct walkarg *w, int len) 1902 { 1903 struct ifa_msghdrl *ifam; 1904 struct if_data *ifd; 1905 1906 ifam = (struct ifa_msghdrl *)w->w_tmem; 1907 1908 #ifdef COMPAT_FREEBSD32 1909 if (w->w_req->flags & SCTL_MASK32) { 1910 struct ifa_msghdrl32 *ifam32; 1911 1912 ifam32 = (struct ifa_msghdrl32 *)ifam; 1913 ifam32->ifam_addrs = info->rti_addrs; 1914 ifam32->ifam_flags = ifa->ifa_flags; 1915 ifam32->ifam_index = ifa->ifa_ifp->if_index; 1916 ifam32->_ifam_spare1 = 0; 1917 ifam32->ifam_len = sizeof(*ifam32); 1918 ifam32->ifam_data_off = 1919 offsetof(struct ifa_msghdrl32, ifam_data); 1920 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 1921 ifd = &ifam32->ifam_data; 1922 } else 1923 #endif 1924 { 1925 ifam->ifam_addrs = info->rti_addrs; 1926 ifam->ifam_flags = ifa->ifa_flags; 1927 ifam->ifam_index = ifa->ifa_ifp->if_index; 1928 ifam->_ifam_spare1 = 0; 1929 ifam->ifam_len = sizeof(*ifam); 1930 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 1931 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1932 ifd = &ifam->ifam_data; 1933 } 1934 1935 bzero(ifd, sizeof(*ifd)); 1936 ifd->ifi_datalen = sizeof(struct if_data); 1937 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 1938 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 1939 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 1940 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 1941 1942 /* Fixup if_data carp(4) vhid. */ 1943 if (carp_get_vhid_p != NULL) 1944 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 1945 1946 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1947 } 1948 1949 static int 1950 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 1951 struct walkarg *w, int len) 1952 { 1953 struct ifa_msghdr *ifam; 1954 1955 ifam = (struct ifa_msghdr *)w->w_tmem; 1956 ifam->ifam_addrs = info->rti_addrs; 1957 ifam->ifam_flags = ifa->ifa_flags; 1958 ifam->ifam_index = ifa->ifa_ifp->if_index; 1959 ifam->_ifam_spare1 = 0; 1960 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1961 1962 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 1963 } 1964 1965 static int 1966 sysctl_iflist(int af, struct walkarg *w) 1967 { 1968 struct ifnet *ifp; 1969 struct ifaddr *ifa; 1970 struct if_data ifd; 1971 struct rt_addrinfo info; 1972 int len, error = 0; 1973 struct sockaddr_storage ss; 1974 1975 bzero((caddr_t)&info, sizeof(info)); 1976 bzero(&ifd, sizeof(ifd)); 1977 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1978 if (w->w_arg && w->w_arg != ifp->if_index) 1979 continue; 1980 if_data_copy(ifp, &ifd); 1981 ifa = ifp->if_addr; 1982 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 1983 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 1984 if (error != 0) 1985 goto done; 1986 info.rti_info[RTAX_IFP] = NULL; 1987 if (w->w_req && w->w_tmem) { 1988 if (w->w_op == NET_RT_IFLISTL) 1989 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 1990 len); 1991 else 1992 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 1993 len); 1994 if (error) 1995 goto done; 1996 } 1997 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 1998 if (af && af != ifa->ifa_addr->sa_family) 1999 continue; 2000 if (prison_if(w->w_req->td->td_ucred, 2001 ifa->ifa_addr) != 0) 2002 continue; 2003 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2004 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2005 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2006 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2007 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2008 if (error != 0) 2009 goto done; 2010 if (w->w_req && w->w_tmem) { 2011 if (w->w_op == NET_RT_IFLISTL) 2012 error = sysctl_iflist_ifaml(ifa, &info, 2013 w, len); 2014 else 2015 error = sysctl_iflist_ifam(ifa, &info, 2016 w, len); 2017 if (error) 2018 goto done; 2019 } 2020 } 2021 info.rti_info[RTAX_IFA] = NULL; 2022 info.rti_info[RTAX_NETMASK] = NULL; 2023 info.rti_info[RTAX_BRD] = NULL; 2024 } 2025 done: 2026 return (error); 2027 } 2028 2029 static int 2030 sysctl_ifmalist(int af, struct walkarg *w) 2031 { 2032 struct rt_addrinfo info; 2033 struct ifaddr *ifa; 2034 struct ifmultiaddr *ifma; 2035 struct ifnet *ifp; 2036 int error, len; 2037 2038 NET_EPOCH_ASSERT(); 2039 2040 error = 0; 2041 bzero((caddr_t)&info, sizeof(info)); 2042 2043 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2044 if (w->w_arg && w->w_arg != ifp->if_index) 2045 continue; 2046 ifa = ifp->if_addr; 2047 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2048 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2049 if (af && af != ifma->ifma_addr->sa_family) 2050 continue; 2051 if (prison_if(w->w_req->td->td_ucred, 2052 ifma->ifma_addr) != 0) 2053 continue; 2054 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2055 info.rti_info[RTAX_GATEWAY] = 2056 (ifma->ifma_addr->sa_family != AF_LINK) ? 2057 ifma->ifma_lladdr : NULL; 2058 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2059 if (error != 0) 2060 break; 2061 if (w->w_req && w->w_tmem) { 2062 struct ifma_msghdr *ifmam; 2063 2064 ifmam = (struct ifma_msghdr *)w->w_tmem; 2065 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2066 ifmam->ifmam_flags = 0; 2067 ifmam->ifmam_addrs = info.rti_addrs; 2068 ifmam->_ifmam_spare1 = 0; 2069 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2070 if (error != 0) 2071 break; 2072 } 2073 } 2074 if (error != 0) 2075 break; 2076 } 2077 return (error); 2078 } 2079 2080 static int 2081 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2082 { 2083 RIB_RLOCK_TRACKER; 2084 struct epoch_tracker et; 2085 int *name = (int *)arg1; 2086 u_int namelen = arg2; 2087 struct rib_head *rnh = NULL; /* silence compiler. */ 2088 int i, lim, error = EINVAL; 2089 int fib = 0; 2090 u_char af; 2091 struct walkarg w; 2092 2093 name ++; 2094 namelen--; 2095 if (req->newptr) 2096 return (EPERM); 2097 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2098 if (namelen == 3) 2099 fib = req->td->td_proc->p_fibnum; 2100 else if (namelen == 4) 2101 fib = (name[3] == RT_ALL_FIBS) ? 2102 req->td->td_proc->p_fibnum : name[3]; 2103 else 2104 return ((namelen < 3) ? EISDIR : ENOTDIR); 2105 if (fib < 0 || fib >= rt_numfibs) 2106 return (EINVAL); 2107 } else if (namelen != 3) 2108 return ((namelen < 3) ? EISDIR : ENOTDIR); 2109 af = name[0]; 2110 if (af > AF_MAX) 2111 return (EINVAL); 2112 bzero(&w, sizeof(w)); 2113 w.w_op = name[1]; 2114 w.w_arg = name[2]; 2115 w.w_req = req; 2116 2117 error = sysctl_wire_old_buffer(req, 0); 2118 if (error) 2119 return (error); 2120 2121 /* 2122 * Allocate reply buffer in advance. 2123 * All rtsock messages has maximum length of u_short. 2124 */ 2125 w.w_tmemsize = 65536; 2126 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2127 2128 NET_EPOCH_ENTER(et); 2129 switch (w.w_op) { 2130 case NET_RT_DUMP: 2131 case NET_RT_FLAGS: 2132 if (af == 0) { /* dump all tables */ 2133 i = 1; 2134 lim = AF_MAX; 2135 } else /* dump only one table */ 2136 i = lim = af; 2137 2138 /* 2139 * take care of llinfo entries, the caller must 2140 * specify an AF 2141 */ 2142 if (w.w_op == NET_RT_FLAGS && 2143 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2144 if (af != 0) 2145 error = lltable_sysctl_dumparp(af, w.w_req); 2146 else 2147 error = EINVAL; 2148 break; 2149 } 2150 /* 2151 * take care of routing entries 2152 */ 2153 for (error = 0; error == 0 && i <= lim; i++) { 2154 rnh = rt_tables_get_rnh(fib, i); 2155 if (rnh != NULL) { 2156 RIB_RLOCK(rnh); 2157 error = rnh->rnh_walktree(&rnh->head, 2158 sysctl_dumpentry, &w); 2159 RIB_RUNLOCK(rnh); 2160 } else if (af != 0) 2161 error = EAFNOSUPPORT; 2162 } 2163 break; 2164 case NET_RT_NHOP: 2165 case NET_RT_NHGRP: 2166 /* Allow dumping one specific af/fib at a time */ 2167 if (namelen < 4) { 2168 error = EINVAL; 2169 break; 2170 } 2171 fib = name[3]; 2172 if (fib < 0 || fib > rt_numfibs) { 2173 error = EINVAL; 2174 break; 2175 } 2176 rnh = rt_tables_get_rnh(fib, af); 2177 if (rnh == NULL) { 2178 error = EAFNOSUPPORT; 2179 break; 2180 } 2181 if (w.w_op == NET_RT_NHOP) 2182 error = nhops_dump_sysctl(rnh, w.w_req); 2183 else 2184 #ifdef ROUTE_MPATH 2185 error = nhgrp_dump_sysctl(rnh, w.w_req); 2186 #else 2187 error = ENOTSUP; 2188 #endif 2189 break; 2190 case NET_RT_IFLIST: 2191 case NET_RT_IFLISTL: 2192 error = sysctl_iflist(af, &w); 2193 break; 2194 2195 case NET_RT_IFMALIST: 2196 error = sysctl_ifmalist(af, &w); 2197 break; 2198 } 2199 NET_EPOCH_EXIT(et); 2200 2201 free(w.w_tmem, M_TEMP); 2202 return (error); 2203 } 2204 2205 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2206 sysctl_rtsock, "Return route tables and interface/address lists"); 2207 2208 /* 2209 * Definitions of protocols supported in the ROUTE domain. 2210 */ 2211 2212 static struct domain routedomain; /* or at least forward */ 2213 2214 static struct protosw routesw[] = { 2215 { 2216 .pr_type = SOCK_RAW, 2217 .pr_domain = &routedomain, 2218 .pr_flags = PR_ATOMIC|PR_ADDR, 2219 .pr_output = route_output, 2220 .pr_ctlinput = raw_ctlinput, 2221 .pr_init = raw_init, 2222 .pr_usrreqs = &route_usrreqs 2223 } 2224 }; 2225 2226 static struct domain routedomain = { 2227 .dom_family = PF_ROUTE, 2228 .dom_name = "route", 2229 .dom_protosw = routesw, 2230 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2231 }; 2232 2233 VNET_DOMAIN_SET(route); 2234