1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 #include "opt_ddb.h" 32 #include "opt_route.h" 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 36 #include <sys/param.h> 37 #include <sys/jail.h> 38 #include <sys/kernel.h> 39 #include <sys/eventhandler.h> 40 #include <sys/domain.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/rmlock.h> 48 #include <sys/rwlock.h> 49 #include <sys/signalvar.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/systm.h> 54 55 #include <net/if.h> 56 #include <net/if_var.h> 57 #include <net/if_private.h> 58 #include <net/if_dl.h> 59 #include <net/if_llatbl.h> 60 #include <net/if_types.h> 61 #include <net/netisr.h> 62 #include <net/route.h> 63 #include <net/route/route_ctl.h> 64 #include <net/route/route_var.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/if_ether.h> 69 #include <netinet/ip_carp.h> 70 #ifdef INET6 71 #include <netinet6/in6_var.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #endif 75 #include <net/route/nhop.h> 76 77 #define DEBUG_MOD_NAME rtsock 78 #define DEBUG_MAX_LEVEL LOG_DEBUG 79 #include <net/route/route_debug.h> 80 _DECLARE_DEBUG(LOG_INFO); 81 82 #ifdef COMPAT_FREEBSD32 83 #include <sys/mount.h> 84 #include <compat/freebsd32/freebsd32.h> 85 86 struct if_msghdr32 { 87 uint16_t ifm_msglen; 88 uint8_t ifm_version; 89 uint8_t ifm_type; 90 int32_t ifm_addrs; 91 int32_t ifm_flags; 92 uint16_t ifm_index; 93 uint16_t _ifm_spare1; 94 struct if_data ifm_data; 95 }; 96 97 struct if_msghdrl32 { 98 uint16_t ifm_msglen; 99 uint8_t ifm_version; 100 uint8_t ifm_type; 101 int32_t ifm_addrs; 102 int32_t ifm_flags; 103 uint16_t ifm_index; 104 uint16_t _ifm_spare1; 105 uint16_t ifm_len; 106 uint16_t ifm_data_off; 107 uint32_t _ifm_spare2; 108 struct if_data ifm_data; 109 }; 110 111 struct ifa_msghdrl32 { 112 uint16_t ifam_msglen; 113 uint8_t ifam_version; 114 uint8_t ifam_type; 115 int32_t ifam_addrs; 116 int32_t ifam_flags; 117 uint16_t ifam_index; 118 uint16_t _ifam_spare1; 119 uint16_t ifam_len; 120 uint16_t ifam_data_off; 121 int32_t ifam_metric; 122 struct if_data ifam_data; 123 }; 124 125 #define SA_SIZE32(sa) \ 126 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ 127 sizeof(int) : \ 128 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) 129 130 #endif /* COMPAT_FREEBSD32 */ 131 132 struct linear_buffer { 133 char *base; /* Base allocated memory pointer */ 134 uint32_t offset; /* Currently used offset */ 135 uint32_t size; /* Total buffer size */ 136 }; 137 #define SCRATCH_BUFFER_SIZE 1024 138 139 #define RTS_PID_LOG(_l, _fmt, ...) RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, ## __VA_ARGS__) 140 141 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); 142 143 /* NB: these are not modified */ 144 static struct sockaddr route_src = { 2, PF_ROUTE, }; 145 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; 146 147 /* These are external hooks for CARP. */ 148 int (*carp_get_vhid_p)(struct ifaddr *); 149 150 /* 151 * Used by rtsock callback code to decide whether to filter the update 152 * notification to a socket bound to a particular FIB. 153 */ 154 #define RTS_FILTER_FIB M_PROTO8 155 /* 156 * Used to store address family of the notification. 157 */ 158 #define m_rtsock_family m_pkthdr.PH_loc.eight[0] 159 160 struct rcb { 161 LIST_ENTRY(rcb) list; 162 struct socket *rcb_socket; 163 sa_family_t rcb_family; 164 }; 165 166 typedef struct { 167 LIST_HEAD(, rcb) cblist; 168 int ip_count; /* attached w/ AF_INET */ 169 int ip6_count; /* attached w/ AF_INET6 */ 170 int any_count; /* total attached */ 171 } route_cb_t; 172 VNET_DEFINE_STATIC(route_cb_t, route_cb); 173 #define V_route_cb VNET(route_cb) 174 175 struct mtx rtsock_mtx; 176 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); 177 178 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) 179 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) 180 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) 181 182 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); 183 184 struct walkarg { 185 int family; 186 int w_tmemsize; 187 int w_op, w_arg; 188 caddr_t w_tmem; 189 struct sysctl_req *w_req; 190 struct sockaddr *dst; 191 struct sockaddr *mask; 192 }; 193 194 static void rts_input(struct mbuf *m); 195 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); 196 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, 197 struct walkarg *w, int *plen); 198 static int rt_xaddrs(caddr_t cp, caddr_t cplim, 199 struct rt_addrinfo *rtinfo); 200 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); 201 static int sysctl_dumpentry(struct rtentry *rt, void *vw); 202 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, 203 uint32_t weight, struct walkarg *w); 204 static int sysctl_iflist(int af, struct walkarg *w); 205 static int sysctl_ifmalist(int af, struct walkarg *w); 206 static void rt_getmetrics(const struct rtentry *rt, 207 const struct nhop_object *nh, struct rt_metrics *out); 208 static void rt_dispatch(struct mbuf *, sa_family_t); 209 static void rt_ifannouncemsg(struct ifnet *ifp, int what); 210 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 211 struct rt_msghdr *rtm, struct rib_cmd_info *rc); 212 static int update_rtm_from_rc(struct rt_addrinfo *info, 213 struct rt_msghdr **prtm, int alloc_len, 214 struct rib_cmd_info *rc, struct nhop_object *nh); 215 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, 216 struct mbuf *m, sa_family_t saf, u_int fibnum, 217 int rtm_errno); 218 static void rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc); 219 static void rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask); 220 221 static struct netisr_handler rtsock_nh = { 222 .nh_name = "rtsock", 223 .nh_handler = rts_input, 224 .nh_proto = NETISR_ROUTE, 225 .nh_policy = NETISR_POLICY_SOURCE, 226 }; 227 228 static int 229 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) 230 { 231 int error, qlimit; 232 233 netisr_getqlimit(&rtsock_nh, &qlimit); 234 error = sysctl_handle_int(oidp, &qlimit, 0, req); 235 if (error || !req->newptr) 236 return (error); 237 if (qlimit < 1) 238 return (EINVAL); 239 return (netisr_setqlimit(&rtsock_nh, qlimit)); 240 } 241 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, 242 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE, 243 0, 0, sysctl_route_netisr_maxqlen, "I", 244 "maximum routing socket dispatch queue length"); 245 246 static void 247 vnet_rts_init(void) 248 { 249 int tmp; 250 251 if (IS_DEFAULT_VNET(curvnet)) { 252 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) 253 rtsock_nh.nh_qlimit = tmp; 254 netisr_register(&rtsock_nh); 255 } 256 #ifdef VIMAGE 257 else 258 netisr_register_vnet(&rtsock_nh); 259 #endif 260 } 261 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 262 vnet_rts_init, 0); 263 264 #ifdef VIMAGE 265 static void 266 vnet_rts_uninit(void) 267 { 268 269 netisr_unregister_vnet(&rtsock_nh); 270 } 271 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 272 vnet_rts_uninit, 0); 273 #endif 274 275 static void 276 report_route_event(const struct rib_cmd_info *rc, void *_cbdata) 277 { 278 uint32_t fibnum = (uint32_t)(uintptr_t)_cbdata; 279 struct nhop_object *nh; 280 281 nh = rc->rc_cmd == RTM_DELETE ? rc->rc_nh_old : rc->rc_nh_new; 282 rt_routemsg(rc->rc_cmd, rc->rc_rt, nh, fibnum); 283 } 284 285 static void 286 rts_handle_route_event(uint32_t fibnum, const struct rib_cmd_info *rc) 287 { 288 #ifdef ROUTE_MPATH 289 if ((rc->rc_nh_new && NH_IS_NHGRP(rc->rc_nh_new)) || 290 (rc->rc_nh_old && NH_IS_NHGRP(rc->rc_nh_old))) { 291 rib_decompose_notification(rc, report_route_event, 292 (void *)(uintptr_t)fibnum); 293 } else 294 #endif 295 report_route_event(rc, (void *)(uintptr_t)fibnum); 296 } 297 static struct rtbridge rtsbridge = { 298 .route_f = rts_handle_route_event, 299 .ifmsg_f = rtsock_ifmsg, 300 }; 301 static struct rtbridge *rtsbridge_orig_p; 302 303 static void 304 rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc) 305 { 306 netlink_callback_p->route_f(fibnum, rc); 307 } 308 309 static void 310 rtsock_init(void) 311 { 312 rtsbridge_orig_p = rtsock_callback_p; 313 rtsock_callback_p = &rtsbridge; 314 } 315 SYSINIT(rtsock_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rtsock_init, NULL); 316 317 static void 318 rts_handle_ifnet_arrival(void *arg __unused, struct ifnet *ifp) 319 { 320 rt_ifannouncemsg(ifp, IFAN_ARRIVAL); 321 } 322 EVENTHANDLER_DEFINE(ifnet_arrival_event, rts_handle_ifnet_arrival, NULL, 0); 323 324 static void 325 rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp) 326 { 327 rt_ifannouncemsg(ifp, IFAN_DEPARTURE); 328 } 329 EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0); 330 331 static void 332 rts_append_data(struct socket *so, struct mbuf *m) 333 { 334 335 if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) { 336 soroverflow(so); 337 m_freem(m); 338 } else 339 sorwakeup(so); 340 } 341 342 static void 343 rts_input(struct mbuf *m) 344 { 345 struct rcb *rcb; 346 struct socket *last; 347 348 last = NULL; 349 RTSOCK_LOCK(); 350 LIST_FOREACH(rcb, &V_route_cb.cblist, list) { 351 if (rcb->rcb_family != AF_UNSPEC && 352 rcb->rcb_family != m->m_rtsock_family) 353 continue; 354 if ((m->m_flags & RTS_FILTER_FIB) && 355 M_GETFIB(m) != rcb->rcb_socket->so_fibnum) 356 continue; 357 if (last != NULL) { 358 struct mbuf *n; 359 360 n = m_copym(m, 0, M_COPYALL, M_NOWAIT); 361 if (n != NULL) 362 rts_append_data(last, n); 363 } 364 last = rcb->rcb_socket; 365 } 366 if (last != NULL) 367 rts_append_data(last, m); 368 else 369 m_freem(m); 370 RTSOCK_UNLOCK(); 371 } 372 373 static void 374 rts_close(struct socket *so) 375 { 376 377 soisdisconnected(so); 378 } 379 380 static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 381 "Routing socket infrastructure"); 382 static u_long rts_sendspace = 8192; 383 SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0, 384 "Default routing socket send space"); 385 static u_long rts_recvspace = 8192; 386 SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0, 387 "Default routing socket receive space"); 388 389 static int 390 rts_attach(struct socket *so, int proto, struct thread *td) 391 { 392 struct rcb *rcb; 393 int error; 394 395 error = soreserve(so, rts_sendspace, rts_recvspace); 396 if (error) 397 return (error); 398 399 rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK); 400 rcb->rcb_socket = so; 401 rcb->rcb_family = proto; 402 403 so->so_pcb = rcb; 404 so->so_fibnum = td->td_proc->p_fibnum; 405 so->so_options |= SO_USELOOPBACK; 406 407 RTSOCK_LOCK(); 408 LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list); 409 switch (proto) { 410 case AF_INET: 411 V_route_cb.ip_count++; 412 break; 413 case AF_INET6: 414 V_route_cb.ip6_count++; 415 break; 416 } 417 V_route_cb.any_count++; 418 RTSOCK_UNLOCK(); 419 soisconnected(so); 420 421 return (0); 422 } 423 424 static void 425 rts_detach(struct socket *so) 426 { 427 struct rcb *rcb = so->so_pcb; 428 429 RTSOCK_LOCK(); 430 LIST_REMOVE(rcb, list); 431 switch(rcb->rcb_family) { 432 case AF_INET: 433 V_route_cb.ip_count--; 434 break; 435 case AF_INET6: 436 V_route_cb.ip6_count--; 437 break; 438 } 439 V_route_cb.any_count--; 440 RTSOCK_UNLOCK(); 441 free(rcb, M_PCB); 442 so->so_pcb = NULL; 443 } 444 445 static int 446 rts_disconnect(struct socket *so) 447 { 448 449 return (ENOTCONN); 450 } 451 452 static int 453 rts_shutdown(struct socket *so) 454 { 455 456 socantsendmore(so); 457 return (0); 458 } 459 460 #ifndef _SOCKADDR_UNION_DEFINED 461 #define _SOCKADDR_UNION_DEFINED 462 /* 463 * The union of all possible address formats we handle. 464 */ 465 union sockaddr_union { 466 struct sockaddr sa; 467 struct sockaddr_in sin; 468 struct sockaddr_in6 sin6; 469 }; 470 #endif /* _SOCKADDR_UNION_DEFINED */ 471 472 static int 473 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, 474 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) 475 { 476 #if defined(INET) || defined(INET6) 477 struct epoch_tracker et; 478 #endif 479 480 /* First, see if the returned address is part of the jail. */ 481 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { 482 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 483 return (0); 484 } 485 486 switch (info->rti_info[RTAX_DST]->sa_family) { 487 #ifdef INET 488 case AF_INET: 489 { 490 struct in_addr ia; 491 struct ifaddr *ifa; 492 int found; 493 494 found = 0; 495 /* 496 * Try to find an address on the given outgoing interface 497 * that belongs to the jail. 498 */ 499 NET_EPOCH_ENTER(et); 500 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 501 struct sockaddr *sa; 502 sa = ifa->ifa_addr; 503 if (sa->sa_family != AF_INET) 504 continue; 505 ia = ((struct sockaddr_in *)sa)->sin_addr; 506 if (prison_check_ip4(cred, &ia) == 0) { 507 found = 1; 508 break; 509 } 510 } 511 NET_EPOCH_EXIT(et); 512 if (!found) { 513 /* 514 * As a last resort return the 'default' jail address. 515 */ 516 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> 517 sin_addr; 518 if (prison_get_ip4(cred, &ia) != 0) 519 return (ESRCH); 520 } 521 bzero(&saun->sin, sizeof(struct sockaddr_in)); 522 saun->sin.sin_len = sizeof(struct sockaddr_in); 523 saun->sin.sin_family = AF_INET; 524 saun->sin.sin_addr.s_addr = ia.s_addr; 525 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; 526 break; 527 } 528 #endif 529 #ifdef INET6 530 case AF_INET6: 531 { 532 struct in6_addr ia6; 533 struct ifaddr *ifa; 534 int found; 535 536 found = 0; 537 /* 538 * Try to find an address on the given outgoing interface 539 * that belongs to the jail. 540 */ 541 NET_EPOCH_ENTER(et); 542 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 543 struct sockaddr *sa; 544 sa = ifa->ifa_addr; 545 if (sa->sa_family != AF_INET6) 546 continue; 547 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, 548 &ia6, sizeof(struct in6_addr)); 549 if (prison_check_ip6(cred, &ia6) == 0) { 550 found = 1; 551 break; 552 } 553 } 554 NET_EPOCH_EXIT(et); 555 if (!found) { 556 /* 557 * As a last resort return the 'default' jail address. 558 */ 559 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> 560 sin6_addr; 561 if (prison_get_ip6(cred, &ia6) != 0) 562 return (ESRCH); 563 } 564 bzero(&saun->sin6, sizeof(struct sockaddr_in6)); 565 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 566 saun->sin6.sin6_family = AF_INET6; 567 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); 568 if (sa6_recoverscope(&saun->sin6) != 0) 569 return (ESRCH); 570 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; 571 break; 572 } 573 #endif 574 default: 575 return (ESRCH); 576 } 577 return (0); 578 } 579 580 static int 581 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) 582 { 583 struct ifaddr *ifa; 584 sa_family_t saf; 585 586 if (V_loif == NULL) { 587 RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback"); 588 return (ENOTSUP); 589 } 590 info->rti_ifp = V_loif; 591 592 saf = info->rti_info[RTAX_DST]->sa_family; 593 594 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { 595 if (ifa->ifa_addr->sa_family == saf) { 596 info->rti_ifa = ifa; 597 break; 598 } 599 } 600 if (info->rti_ifa == NULL) { 601 RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop"); 602 return (ENOTSUP); 603 } 604 605 bzero(saun, sizeof(union sockaddr_union)); 606 switch (saf) { 607 #ifdef INET 608 case AF_INET: 609 saun->sin.sin_family = AF_INET; 610 saun->sin.sin_len = sizeof(struct sockaddr_in); 611 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 612 break; 613 #endif 614 #ifdef INET6 615 case AF_INET6: 616 saun->sin6.sin6_family = AF_INET6; 617 saun->sin6.sin6_len = sizeof(struct sockaddr_in6); 618 saun->sin6.sin6_addr = in6addr_loopback; 619 break; 620 #endif 621 default: 622 RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf); 623 return (ENOTSUP); 624 } 625 info->rti_info[RTAX_GATEWAY] = &saun->sa; 626 info->rti_flags |= RTF_GATEWAY; 627 628 return (0); 629 } 630 631 /* 632 * Fills in @info based on userland-provided @rtm message. 633 * 634 * Returns 0 on success. 635 */ 636 static int 637 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, 638 struct rt_addrinfo *info) 639 { 640 int error; 641 642 rtm->rtm_pid = curproc->p_pid; 643 info->rti_addrs = rtm->rtm_addrs; 644 645 info->rti_mflags = rtm->rtm_inits; 646 info->rti_rmx = &rtm->rtm_rmx; 647 648 /* 649 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 650 * link-local address because rtrequest requires addresses with 651 * embedded scope id. 652 */ 653 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) 654 return (EINVAL); 655 656 info->rti_flags = rtm->rtm_flags; 657 error = cleanup_xaddrs(info, lb); 658 if (error != 0) 659 return (error); 660 /* 661 * Verify that the caller has the appropriate privilege; RTM_GET 662 * is the only operation the non-superuser is allowed. 663 */ 664 if (rtm->rtm_type != RTM_GET) { 665 error = priv_check(curthread, PRIV_NET_ROUTE); 666 if (error != 0) 667 return (error); 668 } 669 670 /* 671 * The given gateway address may be an interface address. 672 * For example, issuing a "route change" command on a route 673 * entry that was created from a tunnel, and the gateway 674 * address given is the local end point. In this case the 675 * RTF_GATEWAY flag must be cleared or the destination will 676 * not be reachable even though there is no error message. 677 */ 678 if (info->rti_info[RTAX_GATEWAY] != NULL && 679 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { 680 struct nhop_object *nh; 681 682 /* 683 * A host route through the loopback interface is 684 * installed for each interface adddress. In pre 8.0 685 * releases the interface address of a PPP link type 686 * is not reachable locally. This behavior is fixed as 687 * part of the new L2/L3 redesign and rewrite work. The 688 * signature of this interface address route is the 689 * AF_LINK sa_family type of the gateway, and the 690 * rt_ifp has the IFF_LOOPBACK flag set. 691 */ 692 nh = rib_lookup(fibnum, info->rti_info[RTAX_GATEWAY], NHR_NONE, 0); 693 if (nh != NULL && nh->gw_sa.sa_family == AF_LINK && 694 nh->nh_ifp->if_flags & IFF_LOOPBACK) { 695 info->rti_flags &= ~RTF_GATEWAY; 696 info->rti_flags |= RTF_GWFLAG_COMPAT; 697 } 698 } 699 700 return (0); 701 } 702 703 static struct nhop_object * 704 select_nhop(struct nhop_object *nh, const struct sockaddr *gw) 705 { 706 if (!NH_IS_NHGRP(nh)) 707 return (nh); 708 #ifdef ROUTE_MPATH 709 const struct weightened_nhop *wn; 710 uint32_t num_nhops; 711 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 712 if (gw == NULL) 713 return (wn[0].nh); 714 for (int i = 0; i < num_nhops; i++) { 715 if (match_nhop_gw(wn[i].nh, gw)) 716 return (wn[i].nh); 717 } 718 #endif 719 return (NULL); 720 } 721 722 /* 723 * Handles RTM_GET message from routing socket, returning matching rt. 724 * 725 * Returns: 726 * 0 on success, with locked and referenced matching rt in @rt_nrt 727 * errno of failure 728 */ 729 static int 730 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, 731 struct rt_msghdr *rtm, struct rib_cmd_info *rc) 732 { 733 RIB_RLOCK_TRACKER; 734 struct rib_head *rnh; 735 struct nhop_object *nh; 736 sa_family_t saf; 737 738 saf = info->rti_info[RTAX_DST]->sa_family; 739 740 rnh = rt_tables_get_rnh(fibnum, saf); 741 if (rnh == NULL) 742 return (EAFNOSUPPORT); 743 744 RIB_RLOCK(rnh); 745 746 /* 747 * By (implicit) convention host route (one without netmask) 748 * means longest-prefix-match request and the route with netmask 749 * means exact-match lookup. 750 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 751 * prefixes, use original data to check for the netmask presence. 752 */ 753 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { 754 /* 755 * Provide longest prefix match for 756 * address lookup (no mask). 757 * 'route -n get addr' 758 */ 759 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( 760 info->rti_info[RTAX_DST], &rnh->head); 761 } else 762 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( 763 info->rti_info[RTAX_DST], 764 info->rti_info[RTAX_NETMASK], &rnh->head); 765 766 if (rc->rc_rt == NULL) { 767 RIB_RUNLOCK(rnh); 768 return (ESRCH); 769 } 770 771 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 772 if (nh == NULL) { 773 RIB_RUNLOCK(rnh); 774 return (ESRCH); 775 } 776 /* 777 * If performing proxied L2 entry insertion, and 778 * the actual PPP host entry is found, perform 779 * another search to retrieve the prefix route of 780 * the local end point of the PPP link. 781 * TODO: move this logic to userland. 782 */ 783 if (rtm->rtm_flags & RTF_ANNOUNCE) { 784 struct sockaddr_storage laddr; 785 786 if (nh->nh_ifp != NULL && 787 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { 788 struct ifaddr *ifa; 789 790 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, 791 RT_ALL_FIBS); 792 if (ifa != NULL) 793 rt_maskedcopy(ifa->ifa_addr, 794 (struct sockaddr *)&laddr, 795 ifa->ifa_netmask); 796 } else 797 rt_maskedcopy(nh->nh_ifa->ifa_addr, 798 (struct sockaddr *)&laddr, 799 nh->nh_ifa->ifa_netmask); 800 /* 801 * refactor rt and no lock operation necessary 802 */ 803 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr( 804 (struct sockaddr *)&laddr, &rnh->head); 805 if (rc->rc_rt == NULL) { 806 RIB_RUNLOCK(rnh); 807 return (ESRCH); 808 } 809 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); 810 if (nh == NULL) { 811 RIB_RUNLOCK(rnh); 812 return (ESRCH); 813 } 814 } 815 rc->rc_nh_new = nh; 816 rc->rc_nh_weight = rc->rc_rt->rt_weight; 817 RIB_RUNLOCK(rnh); 818 819 return (0); 820 } 821 822 static void 823 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) 824 { 825 #ifdef INET 826 if (family == AF_INET) { 827 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 828 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 829 830 bzero(dst4, sizeof(struct sockaddr_in)); 831 bzero(mask4, sizeof(struct sockaddr_in)); 832 833 dst4->sin_family = AF_INET; 834 dst4->sin_len = sizeof(struct sockaddr_in); 835 mask4->sin_family = AF_INET; 836 mask4->sin_len = sizeof(struct sockaddr_in); 837 } 838 #endif 839 #ifdef INET6 840 if (family == AF_INET6) { 841 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 842 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 843 844 bzero(dst6, sizeof(struct sockaddr_in6)); 845 bzero(mask6, sizeof(struct sockaddr_in6)); 846 847 dst6->sin6_family = AF_INET6; 848 dst6->sin6_len = sizeof(struct sockaddr_in6); 849 mask6->sin6_family = AF_INET6; 850 mask6->sin6_len = sizeof(struct sockaddr_in6); 851 } 852 #endif 853 } 854 855 static void 856 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, 857 struct sockaddr *mask) 858 { 859 #ifdef INET 860 if (dst->sa_family == AF_INET) { 861 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; 862 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; 863 uint32_t scopeid = 0; 864 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, 865 &scopeid); 866 return; 867 } 868 #endif 869 #ifdef INET6 870 if (dst->sa_family == AF_INET6) { 871 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; 872 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; 873 uint32_t scopeid = 0; 874 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, 875 &mask6->sin6_addr, &scopeid); 876 dst6->sin6_scope_id = scopeid; 877 return; 878 } 879 #endif 880 } 881 882 static int 883 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, 884 int alloc_len) 885 { 886 struct rt_msghdr *rtm, *orig_rtm = NULL; 887 struct walkarg w; 888 int len; 889 890 rtm = *prtm; 891 /* Check if we need to realloc storage */ 892 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); 893 if (len > alloc_len) { 894 struct rt_msghdr *tmp_rtm; 895 896 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); 897 if (tmp_rtm == NULL) 898 return (ENOBUFS); 899 bcopy(rtm, tmp_rtm, rtm->rtm_msglen); 900 orig_rtm = rtm; 901 rtm = tmp_rtm; 902 alloc_len = len; 903 904 /* 905 * Delay freeing original rtm as info contains 906 * data referencing it. 907 */ 908 } 909 910 w.w_tmem = (caddr_t)rtm; 911 w.w_tmemsize = alloc_len; 912 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); 913 rtm->rtm_addrs = info->rti_addrs; 914 915 if (orig_rtm != NULL) 916 free(orig_rtm, M_TEMP); 917 *prtm = rtm; 918 return (0); 919 } 920 921 922 /* 923 * Update sockaddrs, flags, etc in @prtm based on @rc data. 924 * rtm can be reallocated. 925 * 926 * Returns 0 on success, along with pointer to (potentially reallocated) 927 * rtm. 928 * 929 */ 930 static int 931 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, 932 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) 933 { 934 union sockaddr_union saun; 935 struct rt_msghdr *rtm; 936 struct ifnet *ifp; 937 int error; 938 939 rtm = *prtm; 940 union sockaddr_union sa_dst, sa_mask; 941 int family = info->rti_info[RTAX_DST]->sa_family; 942 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); 943 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); 944 945 info->rti_info[RTAX_DST] = &sa_dst.sa; 946 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; 947 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; 948 info->rti_info[RTAX_GENMASK] = 0; 949 ifp = nh->nh_ifp; 950 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { 951 if (ifp) { 952 info->rti_info[RTAX_IFP] = 953 ifp->if_addr->ifa_addr; 954 error = rtm_get_jailed(info, ifp, nh, 955 &saun, curthread->td_ucred); 956 if (error != 0) 957 return (error); 958 if (ifp->if_flags & IFF_POINTOPOINT) 959 info->rti_info[RTAX_BRD] = 960 nh->nh_ifa->ifa_dstaddr; 961 rtm->rtm_index = ifp->if_index; 962 } else { 963 info->rti_info[RTAX_IFP] = NULL; 964 info->rti_info[RTAX_IFA] = NULL; 965 } 966 } else if (ifp != NULL) 967 rtm->rtm_index = ifp->if_index; 968 969 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) 970 return (error); 971 972 rtm = *prtm; 973 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); 974 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 975 rtm->rtm_flags = RTF_GATEWAY | 976 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 977 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); 978 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; 979 980 return (0); 981 } 982 983 #ifdef ROUTE_MPATH 984 static void 985 save_del_notification(const struct rib_cmd_info *rc, void *_cbdata) 986 { 987 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 988 989 if (rc->rc_cmd == RTM_DELETE) 990 *rc_new = *rc; 991 } 992 993 static void 994 save_add_notification(const struct rib_cmd_info *rc, void *_cbdata) 995 { 996 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; 997 998 if (rc->rc_cmd == RTM_ADD) 999 *rc_new = *rc; 1000 } 1001 #endif 1002 1003 #if defined(INET6) || defined(INET) 1004 static struct sockaddr * 1005 alloc_sockaddr_aligned(struct linear_buffer *lb, int len) 1006 { 1007 len = roundup2(len, sizeof(uint64_t)); 1008 if (lb->offset + len > lb->size) 1009 return (NULL); 1010 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); 1011 lb->offset += len; 1012 return (sa); 1013 } 1014 #endif 1015 1016 static int 1017 rts_send(struct socket *so, int flags, struct mbuf *m, 1018 struct sockaddr *nam, struct mbuf *control, struct thread *td) 1019 { 1020 struct rt_msghdr *rtm = NULL; 1021 struct rt_addrinfo info; 1022 struct epoch_tracker et; 1023 #ifdef INET6 1024 struct sockaddr_storage ss; 1025 struct sockaddr_in6 *sin6; 1026 int i, rti_need_deembed = 0; 1027 #endif 1028 int alloc_len = 0, len, error = 0, fibnum; 1029 sa_family_t saf = AF_UNSPEC; 1030 struct rib_cmd_info rc; 1031 struct nhop_object *nh; 1032 1033 if ((flags & PRUS_OOB) || control != NULL) { 1034 m_freem(m); 1035 if (control != NULL) 1036 m_freem(control); 1037 return (EOPNOTSUPP); 1038 } 1039 1040 fibnum = so->so_fibnum; 1041 #define senderr(e) { error = e; goto flush;} 1042 if (m == NULL || ((m->m_len < sizeof(long)) && 1043 (m = m_pullup(m, sizeof(long))) == NULL)) 1044 return (ENOBUFS); 1045 if ((m->m_flags & M_PKTHDR) == 0) 1046 panic("route_output"); 1047 NET_EPOCH_ENTER(et); 1048 len = m->m_pkthdr.len; 1049 if (len < sizeof(*rtm) || 1050 len != mtod(m, struct rt_msghdr *)->rtm_msglen) 1051 senderr(EINVAL); 1052 1053 /* 1054 * Most of current messages are in range 200-240 bytes, 1055 * minimize possible re-allocation on reply using larger size 1056 * buffer aligned on 1k boundaty. 1057 */ 1058 alloc_len = roundup2(len, 1024); 1059 int total_len = alloc_len + SCRATCH_BUFFER_SIZE; 1060 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) 1061 senderr(ENOBUFS); 1062 1063 m_copydata(m, 0, len, (caddr_t)rtm); 1064 bzero(&info, sizeof(info)); 1065 nh = NULL; 1066 struct linear_buffer lb = { 1067 .base = (char *)rtm + alloc_len, 1068 .size = SCRATCH_BUFFER_SIZE, 1069 }; 1070 1071 if (rtm->rtm_version != RTM_VERSION) { 1072 /* Do not touch message since format is unknown */ 1073 free(rtm, M_TEMP); 1074 rtm = NULL; 1075 senderr(EPROTONOSUPPORT); 1076 } 1077 1078 /* 1079 * Starting from here, it is possible 1080 * to alter original message and insert 1081 * caller PID and error value. 1082 */ 1083 1084 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { 1085 senderr(error); 1086 } 1087 /* fill_addringo() embeds scope into IPv6 addresses */ 1088 #ifdef INET6 1089 rti_need_deembed = 1; 1090 #endif 1091 1092 saf = info.rti_info[RTAX_DST]->sa_family; 1093 1094 /* support for new ARP code */ 1095 if (rtm->rtm_flags & RTF_LLDATA) { 1096 error = lla_rt_output(rtm, &info); 1097 goto flush; 1098 } 1099 1100 union sockaddr_union gw_saun; 1101 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); 1102 if (blackhole_flags != 0) { 1103 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) 1104 error = fill_blackholeinfo(&info, &gw_saun); 1105 else { 1106 RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied"); 1107 error = EINVAL; 1108 } 1109 if (error != 0) 1110 senderr(error); 1111 } 1112 1113 switch (rtm->rtm_type) { 1114 case RTM_ADD: 1115 case RTM_CHANGE: 1116 if (rtm->rtm_type == RTM_ADD) { 1117 if (info.rti_info[RTAX_GATEWAY] == NULL) { 1118 RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway"); 1119 senderr(EINVAL); 1120 } 1121 } 1122 error = rib_action(fibnum, rtm->rtm_type, &info, &rc); 1123 if (error == 0) { 1124 rtsock_notify_event(fibnum, &rc); 1125 #ifdef ROUTE_MPATH 1126 if (NH_IS_NHGRP(rc.rc_nh_new) || 1127 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { 1128 struct rib_cmd_info rc_simple = {}; 1129 rib_decompose_notification(&rc, 1130 save_add_notification, (void *)&rc_simple); 1131 rc = rc_simple; 1132 } 1133 #endif 1134 /* nh MAY be empty if RTM_CHANGE request is no-op */ 1135 nh = rc.rc_nh_new; 1136 if (nh != NULL) { 1137 rtm->rtm_index = nh->nh_ifp->if_index; 1138 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); 1139 } 1140 } 1141 break; 1142 1143 case RTM_DELETE: 1144 error = rib_action(fibnum, RTM_DELETE, &info, &rc); 1145 if (error == 0) { 1146 rtsock_notify_event(fibnum, &rc); 1147 #ifdef ROUTE_MPATH 1148 if (NH_IS_NHGRP(rc.rc_nh_old) || 1149 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { 1150 struct rib_cmd_info rc_simple = {}; 1151 rib_decompose_notification(&rc, 1152 save_del_notification, (void *)&rc_simple); 1153 rc = rc_simple; 1154 } 1155 #endif 1156 nh = rc.rc_nh_old; 1157 } 1158 break; 1159 1160 case RTM_GET: 1161 error = handle_rtm_get(&info, fibnum, rtm, &rc); 1162 if (error != 0) 1163 senderr(error); 1164 nh = rc.rc_nh_new; 1165 1166 if (!rt_is_exportable(rc.rc_rt, curthread->td_ucred)) 1167 senderr(ESRCH); 1168 break; 1169 1170 default: 1171 senderr(EOPNOTSUPP); 1172 } 1173 1174 if (error == 0 && nh != NULL) { 1175 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); 1176 /* 1177 * Note that some sockaddr pointers may have changed to 1178 * point to memory outsize @rtm. Some may be pointing 1179 * to the on-stack variables. 1180 * Given that, any pointer in @info CANNOT BE USED. 1181 */ 1182 1183 /* 1184 * scopeid deembedding has been performed while 1185 * writing updated rtm in rtsock_msg_buffer(). 1186 * With that in mind, skip deembedding procedure below. 1187 */ 1188 #ifdef INET6 1189 rti_need_deembed = 0; 1190 #endif 1191 } 1192 1193 flush: 1194 NET_EPOCH_EXIT(et); 1195 1196 #ifdef INET6 1197 if (rtm != NULL) { 1198 if (rti_need_deembed) { 1199 /* sin6_scope_id is recovered before sending rtm. */ 1200 sin6 = (struct sockaddr_in6 *)&ss; 1201 for (i = 0; i < RTAX_MAX; i++) { 1202 if (info.rti_info[i] == NULL) 1203 continue; 1204 if (info.rti_info[i]->sa_family != AF_INET6) 1205 continue; 1206 bcopy(info.rti_info[i], sin6, sizeof(*sin6)); 1207 if (sa6_recoverscope(sin6) == 0) 1208 bcopy(sin6, info.rti_info[i], 1209 sizeof(*sin6)); 1210 } 1211 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { 1212 if (error != 0) 1213 error = ENOBUFS; 1214 } 1215 } 1216 } 1217 #endif 1218 send_rtm_reply(so, rtm, m, saf, fibnum, error); 1219 1220 return (error); 1221 } 1222 1223 /* 1224 * Sends the prepared reply message in @rtm to all rtsock clients. 1225 * Frees @m and @rtm. 1226 * 1227 */ 1228 static void 1229 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, 1230 sa_family_t saf, u_int fibnum, int rtm_errno) 1231 { 1232 struct rcb *rcb = NULL; 1233 1234 /* 1235 * Check to see if we don't want our own messages. 1236 */ 1237 if ((so->so_options & SO_USELOOPBACK) == 0) { 1238 if (V_route_cb.any_count <= 1) { 1239 if (rtm != NULL) 1240 free(rtm, M_TEMP); 1241 m_freem(m); 1242 return; 1243 } 1244 /* There is another listener, so construct message */ 1245 rcb = so->so_pcb; 1246 } 1247 1248 if (rtm != NULL) { 1249 if (rtm_errno!= 0) 1250 rtm->rtm_errno = rtm_errno; 1251 else 1252 rtm->rtm_flags |= RTF_DONE; 1253 1254 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); 1255 if (m->m_pkthdr.len < rtm->rtm_msglen) { 1256 m_freem(m); 1257 m = NULL; 1258 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 1259 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 1260 1261 free(rtm, M_TEMP); 1262 } 1263 if (m != NULL) { 1264 M_SETFIB(m, fibnum); 1265 m->m_flags |= RTS_FILTER_FIB; 1266 if (rcb) { 1267 /* 1268 * XXX insure we don't get a copy by 1269 * invalidating our protocol 1270 */ 1271 sa_family_t family = rcb->rcb_family; 1272 rcb->rcb_family = AF_UNSPEC; 1273 rt_dispatch(m, saf); 1274 rcb->rcb_family = family; 1275 } else 1276 rt_dispatch(m, saf); 1277 } 1278 } 1279 1280 static void 1281 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, 1282 struct rt_metrics *out) 1283 { 1284 1285 bzero(out, sizeof(*out)); 1286 out->rmx_mtu = nh->nh_mtu; 1287 out->rmx_weight = rt->rt_weight; 1288 out->rmx_nhidx = nhop_get_idx(nh); 1289 /* Kernel -> userland timebase conversion. */ 1290 out->rmx_expire = nhop_get_expire(nh) ? 1291 nhop_get_expire(nh) - time_uptime + time_second : 0; 1292 } 1293 1294 /* 1295 * Extract the addresses of the passed sockaddrs. 1296 * Do a little sanity checking so as to avoid bad memory references. 1297 * This data is derived straight from userland. 1298 */ 1299 static int 1300 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1301 { 1302 struct sockaddr *sa; 1303 int i; 1304 1305 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 1306 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1307 continue; 1308 sa = (struct sockaddr *)cp; 1309 /* 1310 * It won't fit. 1311 */ 1312 if (cp + sa->sa_len > cplim) { 1313 RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i); 1314 return (EINVAL); 1315 } 1316 /* 1317 * there are no more.. quit now 1318 * If there are more bits, they are in error. 1319 * I've seen this. route(1) can evidently generate these. 1320 * This causes kernel to core dump. 1321 * for compatibility, If we see this, point to a safe address. 1322 */ 1323 if (sa->sa_len == 0) { 1324 rtinfo->rti_info[i] = &sa_zero; 1325 return (0); /* should be EINVAL but for compat */ 1326 } 1327 /* accept it */ 1328 #ifdef INET6 1329 if (sa->sa_family == AF_INET6) 1330 sa6_embedscope((struct sockaddr_in6 *)sa, 1331 V_ip6_use_defzone); 1332 #endif 1333 rtinfo->rti_info[i] = sa; 1334 cp += SA_SIZE(sa); 1335 } 1336 return (0); 1337 } 1338 1339 #ifdef INET 1340 static inline void 1341 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) 1342 { 1343 1344 const struct sockaddr_in nsin = { 1345 .sin_family = AF_INET, 1346 .sin_len = sizeof(struct sockaddr_in), 1347 .sin_addr = addr, 1348 }; 1349 *sin = nsin; 1350 } 1351 #endif 1352 1353 #ifdef INET6 1354 static inline void 1355 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, 1356 uint32_t scopeid) 1357 { 1358 1359 const struct sockaddr_in6 nsin6 = { 1360 .sin6_family = AF_INET6, 1361 .sin6_len = sizeof(struct sockaddr_in6), 1362 .sin6_addr = *addr6, 1363 .sin6_scope_id = scopeid, 1364 }; 1365 *sin6 = nsin6; 1366 } 1367 #endif 1368 1369 #if defined(INET6) || defined(INET) 1370 /* 1371 * Checks if gateway is suitable for lltable operations. 1372 * Lltable code requires AF_LINK gateway with ifindex 1373 * and mac address specified. 1374 * Returns 0 on success. 1375 */ 1376 static int 1377 cleanup_xaddrs_lladdr(struct rt_addrinfo *info) 1378 { 1379 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; 1380 1381 if (sdl->sdl_family != AF_LINK) 1382 return (EINVAL); 1383 1384 if (sdl->sdl_index == 0) { 1385 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex"); 1386 return (EINVAL); 1387 } 1388 1389 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) { 1390 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large"); 1391 return (EINVAL); 1392 } 1393 1394 return (0); 1395 } 1396 1397 static int 1398 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) 1399 { 1400 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; 1401 struct sockaddr *sa; 1402 1403 if (info->rti_flags & RTF_LLDATA) 1404 return (cleanup_xaddrs_lladdr(info)); 1405 1406 switch (gw->sa_family) { 1407 #ifdef INET 1408 case AF_INET: 1409 { 1410 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; 1411 1412 /* Ensure reads do not go beyoud SA boundary */ 1413 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { 1414 RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d", 1415 gw->sa_len); 1416 return (EINVAL); 1417 } 1418 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); 1419 if (sa == NULL) 1420 return (ENOBUFS); 1421 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); 1422 info->rti_info[RTAX_GATEWAY] = sa; 1423 } 1424 break; 1425 #endif 1426 #ifdef INET6 1427 case AF_INET6: 1428 { 1429 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; 1430 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { 1431 RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d", 1432 gw->sa_len); 1433 return (EINVAL); 1434 } 1435 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); 1436 break; 1437 } 1438 #endif 1439 case AF_LINK: 1440 { 1441 struct sockaddr_dl *gw_sdl; 1442 1443 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); 1444 gw_sdl = (struct sockaddr_dl *)gw; 1445 if (gw_sdl->sdl_len < sdl_min_len) { 1446 RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d", 1447 gw_sdl->sdl_len); 1448 return (EINVAL); 1449 } 1450 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); 1451 if (sa == NULL) 1452 return (ENOBUFS); 1453 1454 const struct sockaddr_dl_short sdl = { 1455 .sdl_family = AF_LINK, 1456 .sdl_len = sizeof(struct sockaddr_dl_short), 1457 .sdl_index = gw_sdl->sdl_index, 1458 }; 1459 *((struct sockaddr_dl_short *)sa) = sdl; 1460 info->rti_info[RTAX_GATEWAY] = sa; 1461 break; 1462 } 1463 } 1464 1465 return (0); 1466 } 1467 #endif 1468 1469 static void 1470 remove_netmask(struct rt_addrinfo *info) 1471 { 1472 info->rti_info[RTAX_NETMASK] = NULL; 1473 info->rti_flags |= RTF_HOST; 1474 info->rti_addrs &= ~RTA_NETMASK; 1475 } 1476 1477 #ifdef INET 1478 static int 1479 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) 1480 { 1481 struct sockaddr_in *dst_sa, *mask_sa; 1482 const int sa_len = sizeof(struct sockaddr_in); 1483 struct in_addr dst, mask; 1484 1485 /* Check & fixup dst/netmask combination first */ 1486 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; 1487 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; 1488 1489 /* Ensure reads do not go beyound the buffer size */ 1490 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) { 1491 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d", 1492 dst_sa->sin_len); 1493 return (EINVAL); 1494 } 1495 1496 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { 1497 /* 1498 * Some older routing software encode mask length into the 1499 * sin_len, thus resulting in "truncated" sockaddr. 1500 */ 1501 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); 1502 if (len >= 0) { 1503 mask.s_addr = 0; 1504 if (len > sizeof(struct in_addr)) 1505 len = sizeof(struct in_addr); 1506 memcpy(&mask, &mask_sa->sin_addr, len); 1507 } else { 1508 RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d", 1509 mask_sa->sin_len); 1510 return (EINVAL); 1511 } 1512 } else 1513 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; 1514 1515 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); 1516 1517 /* Construct new "clean" dst/mask sockaddresses */ 1518 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1519 return (ENOBUFS); 1520 fill_sockaddr_inet(dst_sa, dst); 1521 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; 1522 1523 if (mask.s_addr != INADDR_BROADCAST) { 1524 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1525 return (ENOBUFS); 1526 fill_sockaddr_inet(mask_sa, mask); 1527 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; 1528 info->rti_flags &= ~RTF_HOST; 1529 } else 1530 remove_netmask(info); 1531 1532 /* Check gateway */ 1533 if (info->rti_info[RTAX_GATEWAY] != NULL) 1534 return (cleanup_xaddrs_gateway(info, lb)); 1535 1536 return (0); 1537 } 1538 #endif 1539 1540 #ifdef INET6 1541 static int 1542 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) 1543 { 1544 struct sockaddr *sa; 1545 struct sockaddr_in6 *dst_sa, *mask_sa; 1546 struct in6_addr mask, *dst; 1547 const int sa_len = sizeof(struct sockaddr_in6); 1548 1549 /* Check & fixup dst/netmask combination first */ 1550 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; 1551 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; 1552 1553 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1554 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d", 1555 dst_sa->sin6_len); 1556 return (EINVAL); 1557 } 1558 1559 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { 1560 /* 1561 * Some older routing software encode mask length into the 1562 * sin6_len, thus resulting in "truncated" sockaddr. 1563 */ 1564 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); 1565 if (len >= 0) { 1566 bzero(&mask, sizeof(mask)); 1567 if (len > sizeof(struct in6_addr)) 1568 len = sizeof(struct in6_addr); 1569 memcpy(&mask, &mask_sa->sin6_addr, len); 1570 } else { 1571 RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d", 1572 mask_sa->sin6_len); 1573 return (EINVAL); 1574 } 1575 } else 1576 mask = mask_sa ? mask_sa->sin6_addr : in6mask128; 1577 1578 dst = &dst_sa->sin6_addr; 1579 IN6_MASK_ADDR(dst, &mask); 1580 1581 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1582 return (ENOBUFS); 1583 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); 1584 info->rti_info[RTAX_DST] = sa; 1585 1586 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { 1587 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) 1588 return (ENOBUFS); 1589 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); 1590 info->rti_info[RTAX_NETMASK] = sa; 1591 info->rti_flags &= ~RTF_HOST; 1592 } else 1593 remove_netmask(info); 1594 1595 /* Check gateway */ 1596 if (info->rti_info[RTAX_GATEWAY] != NULL) 1597 return (cleanup_xaddrs_gateway(info, lb)); 1598 1599 return (0); 1600 } 1601 #endif 1602 1603 static int 1604 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) 1605 { 1606 int error = EAFNOSUPPORT; 1607 1608 if (info->rti_info[RTAX_DST] == NULL) { 1609 RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set"); 1610 return (EINVAL); 1611 } 1612 1613 if (info->rti_flags & RTF_LLDATA) { 1614 /* 1615 * arp(8)/ndp(8) sends RTA_NETMASK for the associated 1616 * prefix along with the actual address in RTA_DST. 1617 * Remove netmask to avoid unnecessary address masking. 1618 */ 1619 remove_netmask(info); 1620 } 1621 1622 switch (info->rti_info[RTAX_DST]->sa_family) { 1623 #ifdef INET 1624 case AF_INET: 1625 error = cleanup_xaddrs_inet(info, lb); 1626 break; 1627 #endif 1628 #ifdef INET6 1629 case AF_INET6: 1630 error = cleanup_xaddrs_inet6(info, lb); 1631 break; 1632 #endif 1633 } 1634 1635 return (error); 1636 } 1637 1638 /* 1639 * Fill in @dmask with valid netmask leaving original @smask 1640 * intact. Mostly used with radix netmasks. 1641 */ 1642 struct sockaddr * 1643 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, 1644 struct sockaddr_storage *dmask) 1645 { 1646 if (dst == NULL || smask == NULL) 1647 return (NULL); 1648 1649 memset(dmask, 0, dst->sa_len); 1650 memcpy(dmask, smask, smask->sa_len); 1651 dmask->ss_len = dst->sa_len; 1652 dmask->ss_family = dst->sa_family; 1653 1654 return ((struct sockaddr *)dmask); 1655 } 1656 1657 /* 1658 * Writes information related to @rtinfo object to newly-allocated mbuf. 1659 * Assumes MCLBYTES is enough to construct any message. 1660 * Used for OS notifications of vaious events (if/ifa announces,etc) 1661 * 1662 * Returns allocated mbuf or NULL on failure. 1663 */ 1664 static struct mbuf * 1665 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) 1666 { 1667 struct sockaddr_storage ss; 1668 struct rt_msghdr *rtm; 1669 struct mbuf *m; 1670 int i; 1671 struct sockaddr *sa; 1672 #ifdef INET6 1673 struct sockaddr_in6 *sin6; 1674 #endif 1675 int len, dlen; 1676 1677 switch (type) { 1678 case RTM_DELADDR: 1679 case RTM_NEWADDR: 1680 len = sizeof(struct ifa_msghdr); 1681 break; 1682 1683 case RTM_DELMADDR: 1684 case RTM_NEWMADDR: 1685 len = sizeof(struct ifma_msghdr); 1686 break; 1687 1688 case RTM_IFINFO: 1689 len = sizeof(struct if_msghdr); 1690 break; 1691 1692 case RTM_IFANNOUNCE: 1693 case RTM_IEEE80211: 1694 len = sizeof(struct if_announcemsghdr); 1695 break; 1696 1697 default: 1698 len = sizeof(struct rt_msghdr); 1699 } 1700 1701 /* XXXGL: can we use MJUMPAGESIZE cluster here? */ 1702 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); 1703 if (len > MHLEN) 1704 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1705 else 1706 m = m_gethdr(M_NOWAIT, MT_DATA); 1707 if (m == NULL) 1708 return (m); 1709 1710 m->m_pkthdr.len = m->m_len = len; 1711 rtm = mtod(m, struct rt_msghdr *); 1712 bzero((caddr_t)rtm, len); 1713 for (i = 0; i < RTAX_MAX; i++) { 1714 if ((sa = rtinfo->rti_info[i]) == NULL) 1715 continue; 1716 rtinfo->rti_addrs |= (1 << i); 1717 1718 dlen = SA_SIZE(sa); 1719 KASSERT(dlen <= sizeof(ss), 1720 ("%s: sockaddr size overflow", __func__)); 1721 bzero(&ss, sizeof(ss)); 1722 bcopy(sa, &ss, sa->sa_len); 1723 sa = (struct sockaddr *)&ss; 1724 #ifdef INET6 1725 if (sa->sa_family == AF_INET6) { 1726 sin6 = (struct sockaddr_in6 *)sa; 1727 (void)sa6_recoverscope(sin6); 1728 } 1729 #endif 1730 m_copyback(m, len, dlen, (caddr_t)sa); 1731 len += dlen; 1732 } 1733 if (m->m_pkthdr.len != len) { 1734 m_freem(m); 1735 return (NULL); 1736 } 1737 rtm->rtm_msglen = len; 1738 rtm->rtm_version = RTM_VERSION; 1739 rtm->rtm_type = type; 1740 return (m); 1741 } 1742 1743 /* 1744 * Writes information related to @rtinfo object to preallocated buffer. 1745 * Stores needed size in @plen. If @w is NULL, calculates size without 1746 * writing. 1747 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. 1748 * 1749 * Returns 0 on success. 1750 * 1751 */ 1752 static int 1753 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) 1754 { 1755 struct sockaddr_storage ss; 1756 int len, buflen = 0, dlen, i; 1757 caddr_t cp = NULL; 1758 struct rt_msghdr *rtm = NULL; 1759 #ifdef INET6 1760 struct sockaddr_in6 *sin6; 1761 #endif 1762 #ifdef COMPAT_FREEBSD32 1763 bool compat32 = false; 1764 #endif 1765 1766 switch (type) { 1767 case RTM_DELADDR: 1768 case RTM_NEWADDR: 1769 if (w != NULL && w->w_op == NET_RT_IFLISTL) { 1770 #ifdef COMPAT_FREEBSD32 1771 if (w->w_req->flags & SCTL_MASK32) { 1772 len = sizeof(struct ifa_msghdrl32); 1773 compat32 = true; 1774 } else 1775 #endif 1776 len = sizeof(struct ifa_msghdrl); 1777 } else 1778 len = sizeof(struct ifa_msghdr); 1779 break; 1780 1781 case RTM_IFINFO: 1782 #ifdef COMPAT_FREEBSD32 1783 if (w != NULL && w->w_req->flags & SCTL_MASK32) { 1784 if (w->w_op == NET_RT_IFLISTL) 1785 len = sizeof(struct if_msghdrl32); 1786 else 1787 len = sizeof(struct if_msghdr32); 1788 compat32 = true; 1789 break; 1790 } 1791 #endif 1792 if (w != NULL && w->w_op == NET_RT_IFLISTL) 1793 len = sizeof(struct if_msghdrl); 1794 else 1795 len = sizeof(struct if_msghdr); 1796 break; 1797 1798 case RTM_NEWMADDR: 1799 len = sizeof(struct ifma_msghdr); 1800 break; 1801 1802 default: 1803 len = sizeof(struct rt_msghdr); 1804 } 1805 1806 if (w != NULL) { 1807 rtm = (struct rt_msghdr *)w->w_tmem; 1808 buflen = w->w_tmemsize - len; 1809 cp = (caddr_t)w->w_tmem + len; 1810 } 1811 1812 rtinfo->rti_addrs = 0; 1813 for (i = 0; i < RTAX_MAX; i++) { 1814 struct sockaddr *sa; 1815 1816 if ((sa = rtinfo->rti_info[i]) == NULL) 1817 continue; 1818 rtinfo->rti_addrs |= (1 << i); 1819 #ifdef COMPAT_FREEBSD32 1820 if (compat32) 1821 dlen = SA_SIZE32(sa); 1822 else 1823 #endif 1824 dlen = SA_SIZE(sa); 1825 if (cp != NULL && buflen >= dlen) { 1826 KASSERT(dlen <= sizeof(ss), 1827 ("%s: sockaddr size overflow", __func__)); 1828 bzero(&ss, sizeof(ss)); 1829 bcopy(sa, &ss, sa->sa_len); 1830 sa = (struct sockaddr *)&ss; 1831 #ifdef INET6 1832 if (sa->sa_family == AF_INET6) { 1833 sin6 = (struct sockaddr_in6 *)sa; 1834 (void)sa6_recoverscope(sin6); 1835 } 1836 #endif 1837 bcopy((caddr_t)sa, cp, (unsigned)dlen); 1838 cp += dlen; 1839 buflen -= dlen; 1840 } else if (cp != NULL) { 1841 /* 1842 * Buffer too small. Count needed size 1843 * and return with error. 1844 */ 1845 cp = NULL; 1846 } 1847 1848 len += dlen; 1849 } 1850 1851 if (cp != NULL) { 1852 dlen = ALIGN(len) - len; 1853 if (buflen < dlen) 1854 cp = NULL; 1855 else { 1856 bzero(cp, dlen); 1857 cp += dlen; 1858 buflen -= dlen; 1859 } 1860 } 1861 len = ALIGN(len); 1862 1863 if (cp != NULL) { 1864 /* fill header iff buffer is large enough */ 1865 rtm->rtm_version = RTM_VERSION; 1866 rtm->rtm_type = type; 1867 rtm->rtm_msglen = len; 1868 } 1869 1870 *plen = len; 1871 1872 if (w != NULL && cp == NULL) 1873 return (ENOBUFS); 1874 1875 return (0); 1876 } 1877 1878 /* 1879 * This routine is called to generate a message from the routing 1880 * socket indicating that a redirect has occurred, a routing lookup 1881 * has failed, or that a protocol has detected timeouts to a particular 1882 * destination. 1883 */ 1884 void 1885 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, 1886 int fibnum) 1887 { 1888 struct rt_msghdr *rtm; 1889 struct mbuf *m; 1890 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1891 1892 if (V_route_cb.any_count == 0) 1893 return; 1894 m = rtsock_msg_mbuf(type, rtinfo); 1895 if (m == NULL) 1896 return; 1897 1898 if (fibnum != RT_ALL_FIBS) { 1899 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 1900 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 1901 M_SETFIB(m, fibnum); 1902 m->m_flags |= RTS_FILTER_FIB; 1903 } 1904 1905 rtm = mtod(m, struct rt_msghdr *); 1906 rtm->rtm_flags = RTF_DONE | flags; 1907 rtm->rtm_errno = error; 1908 rtm->rtm_addrs = rtinfo->rti_addrs; 1909 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1910 } 1911 1912 void 1913 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 1914 { 1915 1916 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); 1917 } 1918 1919 /* 1920 * This routine is called to generate a message from the routing 1921 * socket indicating that the status of a network interface has changed. 1922 */ 1923 static void 1924 rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask __unused) 1925 { 1926 struct if_msghdr *ifm; 1927 struct mbuf *m; 1928 struct rt_addrinfo info; 1929 1930 if (V_route_cb.any_count == 0) 1931 return; 1932 bzero((caddr_t)&info, sizeof(info)); 1933 m = rtsock_msg_mbuf(RTM_IFINFO, &info); 1934 if (m == NULL) 1935 return; 1936 ifm = mtod(m, struct if_msghdr *); 1937 ifm->ifm_index = ifp->if_index; 1938 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 1939 if_data_copy(ifp, &ifm->ifm_data); 1940 ifm->ifm_addrs = 0; 1941 rt_dispatch(m, AF_UNSPEC); 1942 } 1943 1944 /* 1945 * Announce interface address arrival/withdraw. 1946 * Please do not call directly, use rt_addrmsg(). 1947 * Assume input data to be valid. 1948 * Returns 0 on success. 1949 */ 1950 int 1951 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 1952 { 1953 struct rt_addrinfo info; 1954 struct sockaddr *sa; 1955 int ncmd; 1956 struct mbuf *m; 1957 struct ifa_msghdr *ifam; 1958 struct ifnet *ifp = ifa->ifa_ifp; 1959 struct sockaddr_storage ss; 1960 1961 if (V_route_cb.any_count == 0) 1962 return (0); 1963 1964 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 1965 1966 bzero((caddr_t)&info, sizeof(info)); 1967 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 1968 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 1969 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 1970 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); 1971 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1972 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) 1973 return (ENOBUFS); 1974 ifam = mtod(m, struct ifa_msghdr *); 1975 ifam->ifam_index = ifp->if_index; 1976 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 1977 ifam->ifam_flags = ifa->ifa_flags; 1978 ifam->ifam_addrs = info.rti_addrs; 1979 1980 if (fibnum != RT_ALL_FIBS) { 1981 M_SETFIB(m, fibnum); 1982 m->m_flags |= RTS_FILTER_FIB; 1983 } 1984 1985 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 1986 1987 return (0); 1988 } 1989 1990 /* 1991 * Announce route addition/removal to rtsock based on @rt data. 1992 * Callers are advives to use rt_routemsg() instead of using this 1993 * function directly. 1994 * Assume @rt data is consistent. 1995 * 1996 * Returns 0 on success. 1997 */ 1998 int 1999 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, 2000 int fibnum) 2001 { 2002 union sockaddr_union dst, mask; 2003 struct rt_addrinfo info; 2004 2005 if (V_route_cb.any_count == 0) 2006 return (0); 2007 2008 int family = rt_get_family(rt); 2009 init_sockaddrs_family(family, &dst.sa, &mask.sa); 2010 export_rtaddrs(rt, &dst.sa, &mask.sa); 2011 2012 bzero((caddr_t)&info, sizeof(info)); 2013 info.rti_info[RTAX_DST] = &dst.sa; 2014 info.rti_info[RTAX_NETMASK] = &mask.sa; 2015 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2016 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); 2017 info.rti_ifp = nh->nh_ifp; 2018 2019 return (rtsock_routemsg_info(cmd, &info, fibnum)); 2020 } 2021 2022 int 2023 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) 2024 { 2025 struct rt_msghdr *rtm; 2026 struct sockaddr *sa; 2027 struct mbuf *m; 2028 2029 if (V_route_cb.any_count == 0) 2030 return (0); 2031 2032 if (info->rti_flags & RTF_HOST) 2033 info->rti_info[RTAX_NETMASK] = NULL; 2034 2035 m = rtsock_msg_mbuf(cmd, info); 2036 if (m == NULL) 2037 return (ENOBUFS); 2038 2039 if (fibnum != RT_ALL_FIBS) { 2040 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " 2041 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); 2042 M_SETFIB(m, fibnum); 2043 m->m_flags |= RTS_FILTER_FIB; 2044 } 2045 2046 rtm = mtod(m, struct rt_msghdr *); 2047 rtm->rtm_addrs = info->rti_addrs; 2048 if (info->rti_ifp != NULL) 2049 rtm->rtm_index = info->rti_ifp->if_index; 2050 /* Add RTF_DONE to indicate command 'completion' required by API */ 2051 info->rti_flags |= RTF_DONE; 2052 /* Reported routes has to be up */ 2053 if (cmd == RTM_ADD || cmd == RTM_CHANGE) 2054 info->rti_flags |= RTF_UP; 2055 rtm->rtm_flags = info->rti_flags; 2056 2057 sa = info->rti_info[RTAX_DST]; 2058 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); 2059 2060 return (0); 2061 } 2062 2063 /* 2064 * This is the analogue to the rt_newaddrmsg which performs the same 2065 * function but for multicast group memberhips. This is easier since 2066 * there is no route state to worry about. 2067 */ 2068 void 2069 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) 2070 { 2071 struct rt_addrinfo info; 2072 struct mbuf *m = NULL; 2073 struct ifnet *ifp = ifma->ifma_ifp; 2074 struct ifma_msghdr *ifmam; 2075 2076 if (V_route_cb.any_count == 0) 2077 return; 2078 2079 bzero((caddr_t)&info, sizeof(info)); 2080 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2081 if (ifp && ifp->if_addr) 2082 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; 2083 else 2084 info.rti_info[RTAX_IFP] = NULL; 2085 /* 2086 * If a link-layer address is present, present it as a ``gateway'' 2087 * (similarly to how ARP entries, e.g., are presented). 2088 */ 2089 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; 2090 m = rtsock_msg_mbuf(cmd, &info); 2091 if (m == NULL) 2092 return; 2093 ifmam = mtod(m, struct ifma_msghdr *); 2094 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", 2095 __func__)); 2096 ifmam->ifmam_index = ifp->if_index; 2097 ifmam->ifmam_addrs = info.rti_addrs; 2098 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); 2099 } 2100 2101 static struct mbuf * 2102 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 2103 struct rt_addrinfo *info) 2104 { 2105 struct if_announcemsghdr *ifan; 2106 struct mbuf *m; 2107 2108 if (V_route_cb.any_count == 0) 2109 return NULL; 2110 bzero((caddr_t)info, sizeof(*info)); 2111 m = rtsock_msg_mbuf(type, info); 2112 if (m != NULL) { 2113 ifan = mtod(m, struct if_announcemsghdr *); 2114 ifan->ifan_index = ifp->if_index; 2115 strlcpy(ifan->ifan_name, ifp->if_xname, 2116 sizeof(ifan->ifan_name)); 2117 ifan->ifan_what = what; 2118 } 2119 return m; 2120 } 2121 2122 /* 2123 * This is called to generate routing socket messages indicating 2124 * IEEE80211 wireless events. 2125 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 2126 */ 2127 void 2128 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 2129 { 2130 struct mbuf *m; 2131 struct rt_addrinfo info; 2132 2133 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 2134 if (m != NULL) { 2135 /* 2136 * Append the ieee80211 data. Try to stick it in the 2137 * mbuf containing the ifannounce msg; otherwise allocate 2138 * a new mbuf and append. 2139 * 2140 * NB: we assume m is a single mbuf. 2141 */ 2142 if (data_len > M_TRAILINGSPACE(m)) { 2143 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 2144 if (n == NULL) { 2145 m_freem(m); 2146 return; 2147 } 2148 bcopy(data, mtod(n, void *), data_len); 2149 n->m_len = data_len; 2150 m->m_next = n; 2151 } else if (data_len > 0) { 2152 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); 2153 m->m_len += data_len; 2154 } 2155 if (m->m_flags & M_PKTHDR) 2156 m->m_pkthdr.len += data_len; 2157 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 2158 rt_dispatch(m, AF_UNSPEC); 2159 } 2160 } 2161 2162 /* 2163 * This is called to generate routing socket messages indicating 2164 * network interface arrival and departure. 2165 */ 2166 static void 2167 rt_ifannouncemsg(struct ifnet *ifp, int what) 2168 { 2169 struct mbuf *m; 2170 struct rt_addrinfo info; 2171 2172 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 2173 if (m != NULL) 2174 rt_dispatch(m, AF_UNSPEC); 2175 } 2176 2177 static void 2178 rt_dispatch(struct mbuf *m, sa_family_t saf) 2179 { 2180 2181 M_ASSERTPKTHDR(m); 2182 2183 m->m_rtsock_family = saf; 2184 if (V_loif) 2185 m->m_pkthdr.rcvif = V_loif; 2186 else { 2187 m_freem(m); 2188 return; 2189 } 2190 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ 2191 } 2192 2193 /* 2194 * This is used in dumping the kernel table via sysctl(). 2195 */ 2196 static int 2197 sysctl_dumpentry(struct rtentry *rt, void *vw) 2198 { 2199 struct walkarg *w = vw; 2200 struct nhop_object *nh; 2201 2202 NET_EPOCH_ASSERT(); 2203 2204 if (!rt_is_exportable(rt, w->w_req->td->td_ucred)) 2205 return (0); 2206 2207 export_rtaddrs(rt, w->dst, w->mask); 2208 nh = rt_get_raw_nhop(rt); 2209 #ifdef ROUTE_MPATH 2210 if (NH_IS_NHGRP(nh)) { 2211 const struct weightened_nhop *wn; 2212 uint32_t num_nhops; 2213 int error; 2214 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); 2215 for (int i = 0; i < num_nhops; i++) { 2216 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); 2217 if (error != 0) 2218 return (error); 2219 } 2220 } else 2221 #endif 2222 sysctl_dumpnhop(rt, nh, rt->rt_weight, w); 2223 2224 return (0); 2225 } 2226 2227 2228 static int 2229 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, 2230 struct walkarg *w) 2231 { 2232 struct rt_addrinfo info; 2233 int error = 0, size; 2234 uint32_t rtflags; 2235 2236 rtflags = nhop_get_rtflags(nh); 2237 2238 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) 2239 return (0); 2240 2241 bzero((caddr_t)&info, sizeof(info)); 2242 info.rti_info[RTAX_DST] = w->dst; 2243 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; 2244 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; 2245 info.rti_info[RTAX_GENMASK] = 0; 2246 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { 2247 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; 2248 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; 2249 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) 2250 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; 2251 } 2252 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) 2253 return (error); 2254 if (w->w_req && w->w_tmem) { 2255 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 2256 2257 bzero(&rtm->rtm_index, 2258 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); 2259 2260 /* 2261 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) 2262 * and RTF_UP (if entry is linked, which is always true here). 2263 * Given that, use nhop rtflags & add RTF_UP. 2264 */ 2265 rtm->rtm_flags = rtflags | RTF_UP; 2266 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) 2267 rtm->rtm_flags = RTF_GATEWAY | 2268 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); 2269 rt_getmetrics(rt, nh, &rtm->rtm_rmx); 2270 rtm->rtm_rmx.rmx_weight = weight; 2271 rtm->rtm_index = nh->nh_ifp->if_index; 2272 rtm->rtm_addrs = info.rti_addrs; 2273 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); 2274 return (error); 2275 } 2276 return (error); 2277 } 2278 2279 static int 2280 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, 2281 struct rt_addrinfo *info, struct walkarg *w, int len) 2282 { 2283 struct if_msghdrl *ifm; 2284 struct if_data *ifd; 2285 2286 ifm = (struct if_msghdrl *)w->w_tmem; 2287 2288 #ifdef COMPAT_FREEBSD32 2289 if (w->w_req->flags & SCTL_MASK32) { 2290 struct if_msghdrl32 *ifm32; 2291 2292 ifm32 = (struct if_msghdrl32 *)ifm; 2293 ifm32->ifm_addrs = info->rti_addrs; 2294 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2295 ifm32->ifm_index = ifp->if_index; 2296 ifm32->_ifm_spare1 = 0; 2297 ifm32->ifm_len = sizeof(*ifm32); 2298 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); 2299 ifm32->_ifm_spare2 = 0; 2300 ifd = &ifm32->ifm_data; 2301 } else 2302 #endif 2303 { 2304 ifm->ifm_addrs = info->rti_addrs; 2305 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2306 ifm->ifm_index = ifp->if_index; 2307 ifm->_ifm_spare1 = 0; 2308 ifm->ifm_len = sizeof(*ifm); 2309 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); 2310 ifm->_ifm_spare2 = 0; 2311 ifd = &ifm->ifm_data; 2312 } 2313 2314 memcpy(ifd, src_ifd, sizeof(*ifd)); 2315 2316 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2317 } 2318 2319 static int 2320 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, 2321 struct rt_addrinfo *info, struct walkarg *w, int len) 2322 { 2323 struct if_msghdr *ifm; 2324 struct if_data *ifd; 2325 2326 ifm = (struct if_msghdr *)w->w_tmem; 2327 2328 #ifdef COMPAT_FREEBSD32 2329 if (w->w_req->flags & SCTL_MASK32) { 2330 struct if_msghdr32 *ifm32; 2331 2332 ifm32 = (struct if_msghdr32 *)ifm; 2333 ifm32->ifm_addrs = info->rti_addrs; 2334 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2335 ifm32->ifm_index = ifp->if_index; 2336 ifm32->_ifm_spare1 = 0; 2337 ifd = &ifm32->ifm_data; 2338 } else 2339 #endif 2340 { 2341 ifm->ifm_addrs = info->rti_addrs; 2342 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; 2343 ifm->ifm_index = ifp->if_index; 2344 ifm->_ifm_spare1 = 0; 2345 ifd = &ifm->ifm_data; 2346 } 2347 2348 memcpy(ifd, src_ifd, sizeof(*ifd)); 2349 2350 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); 2351 } 2352 2353 static int 2354 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, 2355 struct walkarg *w, int len) 2356 { 2357 struct ifa_msghdrl *ifam; 2358 struct if_data *ifd; 2359 2360 ifam = (struct ifa_msghdrl *)w->w_tmem; 2361 2362 #ifdef COMPAT_FREEBSD32 2363 if (w->w_req->flags & SCTL_MASK32) { 2364 struct ifa_msghdrl32 *ifam32; 2365 2366 ifam32 = (struct ifa_msghdrl32 *)ifam; 2367 ifam32->ifam_addrs = info->rti_addrs; 2368 ifam32->ifam_flags = ifa->ifa_flags; 2369 ifam32->ifam_index = ifa->ifa_ifp->if_index; 2370 ifam32->_ifam_spare1 = 0; 2371 ifam32->ifam_len = sizeof(*ifam32); 2372 ifam32->ifam_data_off = 2373 offsetof(struct ifa_msghdrl32, ifam_data); 2374 ifam32->ifam_metric = ifa->ifa_ifp->if_metric; 2375 ifd = &ifam32->ifam_data; 2376 } else 2377 #endif 2378 { 2379 ifam->ifam_addrs = info->rti_addrs; 2380 ifam->ifam_flags = ifa->ifa_flags; 2381 ifam->ifam_index = ifa->ifa_ifp->if_index; 2382 ifam->_ifam_spare1 = 0; 2383 ifam->ifam_len = sizeof(*ifam); 2384 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); 2385 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2386 ifd = &ifam->ifam_data; 2387 } 2388 2389 bzero(ifd, sizeof(*ifd)); 2390 ifd->ifi_datalen = sizeof(struct if_data); 2391 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); 2392 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); 2393 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); 2394 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); 2395 2396 /* Fixup if_data carp(4) vhid. */ 2397 if (carp_get_vhid_p != NULL) 2398 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); 2399 2400 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2401 } 2402 2403 static int 2404 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, 2405 struct walkarg *w, int len) 2406 { 2407 struct ifa_msghdr *ifam; 2408 2409 ifam = (struct ifa_msghdr *)w->w_tmem; 2410 ifam->ifam_addrs = info->rti_addrs; 2411 ifam->ifam_flags = ifa->ifa_flags; 2412 ifam->ifam_index = ifa->ifa_ifp->if_index; 2413 ifam->_ifam_spare1 = 0; 2414 ifam->ifam_metric = ifa->ifa_ifp->if_metric; 2415 2416 return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); 2417 } 2418 2419 static int 2420 sysctl_iflist(int af, struct walkarg *w) 2421 { 2422 struct ifnet *ifp; 2423 struct ifaddr *ifa; 2424 struct if_data ifd; 2425 struct rt_addrinfo info; 2426 int len, error = 0; 2427 struct sockaddr_storage ss; 2428 2429 bzero((caddr_t)&info, sizeof(info)); 2430 bzero(&ifd, sizeof(ifd)); 2431 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2432 if (w->w_arg && w->w_arg != ifp->if_index) 2433 continue; 2434 if_data_copy(ifp, &ifd); 2435 ifa = ifp->if_addr; 2436 info.rti_info[RTAX_IFP] = ifa->ifa_addr; 2437 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); 2438 if (error != 0) 2439 goto done; 2440 info.rti_info[RTAX_IFP] = NULL; 2441 if (w->w_req && w->w_tmem) { 2442 if (w->w_op == NET_RT_IFLISTL) 2443 error = sysctl_iflist_ifml(ifp, &ifd, &info, w, 2444 len); 2445 else 2446 error = sysctl_iflist_ifm(ifp, &ifd, &info, w, 2447 len); 2448 if (error) 2449 goto done; 2450 } 2451 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { 2452 if (af && af != ifa->ifa_addr->sa_family) 2453 continue; 2454 if (prison_if(w->w_req->td->td_ucred, 2455 ifa->ifa_addr) != 0) 2456 continue; 2457 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2458 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( 2459 ifa->ifa_addr, ifa->ifa_netmask, &ss); 2460 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2461 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); 2462 if (error != 0) 2463 goto done; 2464 if (w->w_req && w->w_tmem) { 2465 if (w->w_op == NET_RT_IFLISTL) 2466 error = sysctl_iflist_ifaml(ifa, &info, 2467 w, len); 2468 else 2469 error = sysctl_iflist_ifam(ifa, &info, 2470 w, len); 2471 if (error) 2472 goto done; 2473 } 2474 } 2475 info.rti_info[RTAX_IFA] = NULL; 2476 info.rti_info[RTAX_NETMASK] = NULL; 2477 info.rti_info[RTAX_BRD] = NULL; 2478 } 2479 done: 2480 return (error); 2481 } 2482 2483 static int 2484 sysctl_ifmalist(int af, struct walkarg *w) 2485 { 2486 struct rt_addrinfo info; 2487 struct ifaddr *ifa; 2488 struct ifmultiaddr *ifma; 2489 struct ifnet *ifp; 2490 int error, len; 2491 2492 NET_EPOCH_ASSERT(); 2493 2494 error = 0; 2495 bzero((caddr_t)&info, sizeof(info)); 2496 2497 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2498 if (w->w_arg && w->w_arg != ifp->if_index) 2499 continue; 2500 ifa = ifp->if_addr; 2501 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; 2502 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2503 if (af && af != ifma->ifma_addr->sa_family) 2504 continue; 2505 if (prison_if(w->w_req->td->td_ucred, 2506 ifma->ifma_addr) != 0) 2507 continue; 2508 info.rti_info[RTAX_IFA] = ifma->ifma_addr; 2509 info.rti_info[RTAX_GATEWAY] = 2510 (ifma->ifma_addr->sa_family != AF_LINK) ? 2511 ifma->ifma_lladdr : NULL; 2512 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); 2513 if (error != 0) 2514 break; 2515 if (w->w_req && w->w_tmem) { 2516 struct ifma_msghdr *ifmam; 2517 2518 ifmam = (struct ifma_msghdr *)w->w_tmem; 2519 ifmam->ifmam_index = ifma->ifma_ifp->if_index; 2520 ifmam->ifmam_flags = 0; 2521 ifmam->ifmam_addrs = info.rti_addrs; 2522 ifmam->_ifmam_spare1 = 0; 2523 error = SYSCTL_OUT(w->w_req, w->w_tmem, len); 2524 if (error != 0) 2525 break; 2526 } 2527 } 2528 if (error != 0) 2529 break; 2530 } 2531 return (error); 2532 } 2533 2534 static void 2535 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) 2536 { 2537 union sockaddr_union sa_dst, sa_mask; 2538 2539 w->family = family; 2540 w->dst = (struct sockaddr *)&sa_dst; 2541 w->mask = (struct sockaddr *)&sa_mask; 2542 2543 init_sockaddrs_family(family, w->dst, w->mask); 2544 2545 rib_walk(fibnum, family, false, sysctl_dumpentry, w); 2546 } 2547 2548 static int 2549 sysctl_rtsock(SYSCTL_HANDLER_ARGS) 2550 { 2551 struct epoch_tracker et; 2552 int *name = (int *)arg1; 2553 u_int namelen = arg2; 2554 struct rib_head *rnh = NULL; /* silence compiler. */ 2555 int i, lim, error = EINVAL; 2556 int fib = 0; 2557 u_char af; 2558 struct walkarg w; 2559 2560 if (namelen < 3) 2561 return (EINVAL); 2562 2563 name++; 2564 namelen--; 2565 if (req->newptr) 2566 return (EPERM); 2567 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { 2568 if (namelen == 3) 2569 fib = req->td->td_proc->p_fibnum; 2570 else if (namelen == 4) 2571 fib = (name[3] == RT_ALL_FIBS) ? 2572 req->td->td_proc->p_fibnum : name[3]; 2573 else 2574 return ((namelen < 3) ? EISDIR : ENOTDIR); 2575 if (fib < 0 || fib >= rt_numfibs) 2576 return (EINVAL); 2577 } else if (namelen != 3) 2578 return ((namelen < 3) ? EISDIR : ENOTDIR); 2579 af = name[0]; 2580 if (af > AF_MAX) 2581 return (EINVAL); 2582 bzero(&w, sizeof(w)); 2583 w.w_op = name[1]; 2584 w.w_arg = name[2]; 2585 w.w_req = req; 2586 2587 error = sysctl_wire_old_buffer(req, 0); 2588 if (error) 2589 return (error); 2590 2591 /* 2592 * Allocate reply buffer in advance. 2593 * All rtsock messages has maximum length of u_short. 2594 */ 2595 w.w_tmemsize = 65536; 2596 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); 2597 2598 NET_EPOCH_ENTER(et); 2599 switch (w.w_op) { 2600 case NET_RT_DUMP: 2601 case NET_RT_FLAGS: 2602 if (af == 0) { /* dump all tables */ 2603 i = 1; 2604 lim = AF_MAX; 2605 } else /* dump only one table */ 2606 i = lim = af; 2607 2608 /* 2609 * take care of llinfo entries, the caller must 2610 * specify an AF 2611 */ 2612 if (w.w_op == NET_RT_FLAGS && 2613 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { 2614 if (af != 0) 2615 error = lltable_sysctl_dumparp(af, w.w_req); 2616 else 2617 error = EINVAL; 2618 break; 2619 } 2620 /* 2621 * take care of routing entries 2622 */ 2623 for (error = 0; error == 0 && i <= lim; i++) { 2624 rnh = rt_tables_get_rnh(fib, i); 2625 if (rnh != NULL) { 2626 rtable_sysctl_dump(fib, i, &w); 2627 } else if (af != 0) 2628 error = EAFNOSUPPORT; 2629 } 2630 break; 2631 case NET_RT_NHOP: 2632 case NET_RT_NHGRP: 2633 /* Allow dumping one specific af/fib at a time */ 2634 if (namelen < 4) { 2635 error = EINVAL; 2636 break; 2637 } 2638 fib = name[3]; 2639 if (fib < 0 || fib > rt_numfibs) { 2640 error = EINVAL; 2641 break; 2642 } 2643 rnh = rt_tables_get_rnh(fib, af); 2644 if (rnh == NULL) { 2645 error = EAFNOSUPPORT; 2646 break; 2647 } 2648 if (w.w_op == NET_RT_NHOP) 2649 error = nhops_dump_sysctl(rnh, w.w_req); 2650 else 2651 #ifdef ROUTE_MPATH 2652 error = nhgrp_dump_sysctl(rnh, w.w_req); 2653 #else 2654 error = ENOTSUP; 2655 #endif 2656 break; 2657 case NET_RT_IFLIST: 2658 case NET_RT_IFLISTL: 2659 error = sysctl_iflist(af, &w); 2660 break; 2661 2662 case NET_RT_IFMALIST: 2663 error = sysctl_ifmalist(af, &w); 2664 break; 2665 } 2666 NET_EPOCH_EXIT(et); 2667 2668 free(w.w_tmem, M_TEMP); 2669 return (error); 2670 } 2671 2672 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, 2673 sysctl_rtsock, "Return route tables and interface/address lists"); 2674 2675 /* 2676 * Definitions of protocols supported in the ROUTE domain. 2677 */ 2678 2679 static struct domain routedomain; /* or at least forward */ 2680 2681 static struct protosw routesw = { 2682 .pr_type = SOCK_RAW, 2683 .pr_flags = PR_ATOMIC|PR_ADDR, 2684 .pr_abort = rts_close, 2685 .pr_attach = rts_attach, 2686 .pr_detach = rts_detach, 2687 .pr_send = rts_send, 2688 .pr_shutdown = rts_shutdown, 2689 .pr_disconnect = rts_disconnect, 2690 .pr_close = rts_close, 2691 }; 2692 2693 static struct domain routedomain = { 2694 .dom_family = PF_ROUTE, 2695 .dom_name = "route", 2696 .dom_nprotosw = 1, 2697 .dom_protosw = { &routesw }, 2698 }; 2699 2700 DOMAIN_SET(route); 2701