1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2020 Alexander V. Chernikov 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_route.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/lock.h> 37 #include <sys/rwlock.h> 38 #include <sys/malloc.h> 39 #include <sys/socket.h> 40 #include <sys/sysctl.h> 41 #include <sys/kernel.h> 42 #include <sys/epoch.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_private.h> 47 #include <net/if_dl.h> 48 #include <net/route.h> 49 #include <net/route/route_ctl.h> 50 #include <net/route/route_var.h> 51 #include <net/route/nhop_utils.h> 52 #include <net/route/nhop.h> 53 #include <net/route/nhop_var.h> 54 #include <net/vnet.h> 55 56 #define DEBUG_MOD_NAME nhop_ctl 57 #define DEBUG_MAX_LEVEL LOG_DEBUG 58 #include <net/route/route_debug.h> 59 _DECLARE_DEBUG(LOG_INFO); 60 61 /* 62 * This file contains core functionality for the nexthop ("nhop") route subsystem. 63 * The business logic needed to create nexhop objects is implemented here. 64 * 65 * Nexthops in the original sense are the objects containing all the necessary 66 * information to forward the packet to the selected destination. 67 * In particular, nexthop is defined by a combination of 68 * ifp, ifa, aifp, mtu, gw addr(if set), nh_type, nh_upper_family, mask of rt_flags and 69 * NHF_DEFAULT 70 * 71 * Additionally, each nexthop gets assigned its unique index (nexthop index). 72 * It serves two purposes: first one is to ease the ability of userland programs to 73 * reference nexthops by their index. The second one allows lookup algorithms to 74 * to store index instead of pointer (2 bytes vs 8) as a lookup result. 75 * All nexthops are stored in the resizable hash table. 76 * 77 * Basically, this file revolves around supporting 3 functions: 78 * 1) nhop_create_from_info / nhop_create_from_nhop, which contains all 79 * business logic on filling the nexthop fields based on the provided request. 80 * 2) nhop_get(), which gets a usable referenced nexthops. 81 * 82 * Conventions: 83 * 1) non-exported functions start with verb 84 * 2) exported function starts with the subsystem prefix: "nhop" 85 */ 86 87 static int dump_nhop_entry(struct rib_head *rh, struct nhop_object *nh, struct sysctl_req *w); 88 89 static int finalize_nhop(struct nh_control *ctl, struct nhop_object *nh, bool link); 90 static struct ifnet *get_aifp(const struct nhop_object *nh); 91 static void fill_sdl_from_ifp(struct sockaddr_dl_short *sdl, const struct ifnet *ifp); 92 93 static void destroy_nhop_epoch(epoch_context_t ctx); 94 static void destroy_nhop(struct nhop_object *nh); 95 96 _Static_assert(__offsetof(struct nhop_object, nh_ifp) == 32, 97 "nhop_object: wrong nh_ifp offset"); 98 _Static_assert(sizeof(struct nhop_object) <= 128, 99 "nhop_object: size exceeds 128 bytes"); 100 101 static uma_zone_t nhops_zone; /* Global zone for each and every nexthop */ 102 103 #define NHOP_OBJECT_ALIGNED_SIZE roundup2(sizeof(struct nhop_object), \ 104 2 * CACHE_LINE_SIZE) 105 #define NHOP_PRIV_ALIGNED_SIZE roundup2(sizeof(struct nhop_priv), \ 106 2 * CACHE_LINE_SIZE) 107 void 108 nhops_init(void) 109 { 110 111 nhops_zone = uma_zcreate("routing nhops", 112 NHOP_OBJECT_ALIGNED_SIZE + NHOP_PRIV_ALIGNED_SIZE, 113 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 114 } 115 116 /* 117 * Fetches the interface of source address used by the route. 118 * In all cases except interface-address-route it would be the 119 * same as the transmit interfaces. 120 * However, for the interface address this function will return 121 * this interface ifp instead of loopback. This is needed to support 122 * link-local IPv6 loopback communications. 123 * 124 * Returns found ifp. 125 */ 126 static struct ifnet * 127 get_aifp(const struct nhop_object *nh) 128 { 129 struct ifnet *aifp = NULL; 130 131 /* 132 * Adjust the "outgoing" interface. If we're going to loop 133 * the packet back to ourselves, the ifp would be the loopback 134 * interface. However, we'd rather know the interface associated 135 * to the destination address (which should probably be one of 136 * our own addresses). 137 */ 138 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) && 139 nh->gw_sa.sa_family == AF_LINK) { 140 aifp = ifnet_byindex(nh->gwl_sa.sdl_index); 141 if (aifp == NULL) { 142 FIB_NH_LOG(LOG_WARNING, nh, "unable to get aifp for %s index %d", 143 if_name(nh->nh_ifp), nh->gwl_sa.sdl_index); 144 } 145 } 146 147 if (aifp == NULL) 148 aifp = nh->nh_ifp; 149 150 return (aifp); 151 } 152 153 int 154 cmp_priv(const struct nhop_priv *_one, const struct nhop_priv *_two) 155 { 156 157 if (memcmp(_one->nh, _two->nh, NHOP_END_CMP) != 0) 158 return (0); 159 160 if (memcmp(_one, _two, NH_PRIV_END_CMP) != 0) 161 return (0); 162 163 return (1); 164 } 165 166 /* 167 * Conditionally sets @nh mtu data based on the @info data. 168 */ 169 static void 170 set_nhop_mtu_from_info(struct nhop_object *nh, const struct rt_addrinfo *info) 171 { 172 if (info->rti_mflags & RTV_MTU) 173 nhop_set_mtu(nh, info->rti_rmx->rmx_mtu, true); 174 } 175 176 /* 177 * Fills in shorted link-level sockadd version suitable to be stored inside the 178 * nexthop gateway buffer. 179 */ 180 static void 181 fill_sdl_from_ifp(struct sockaddr_dl_short *sdl, const struct ifnet *ifp) 182 { 183 184 bzero(sdl, sizeof(struct sockaddr_dl_short)); 185 sdl->sdl_family = AF_LINK; 186 sdl->sdl_len = sizeof(struct sockaddr_dl_short); 187 sdl->sdl_index = ifp->if_index; 188 sdl->sdl_type = ifp->if_type; 189 } 190 191 static int 192 set_nhop_gw_from_info(struct nhop_object *nh, struct rt_addrinfo *info) 193 { 194 struct sockaddr *gw; 195 196 gw = info->rti_info[RTAX_GATEWAY]; 197 MPASS(gw != NULL); 198 bool is_gw = info->rti_flags & RTF_GATEWAY; 199 200 if ((gw->sa_family == AF_LINK) && !is_gw) { 201 202 /* 203 * Interface route with interface specified by the interface 204 * index in sockadd_dl structure. It is used in the IPv6 loopback 205 * output code, where we need to preserve the original interface 206 * to maintain proper scoping. 207 * Despite the fact that nexthop code stores original interface 208 * in the separate field (nh_aifp, see below), write AF_LINK 209 * compatible sa with shorter total length. 210 */ 211 struct sockaddr_dl *sdl = (struct sockaddr_dl *)gw; 212 struct ifnet *ifp = ifnet_byindex(sdl->sdl_index); 213 if (ifp == NULL) { 214 FIB_NH_LOG(LOG_DEBUG, nh, "error: invalid ifindex %d", 215 sdl->sdl_index); 216 return (EINVAL); 217 } 218 nhop_set_direct_gw(nh, ifp); 219 } else { 220 221 /* 222 * Multiple options here: 223 * 224 * 1) RTF_GATEWAY with IPv4/IPv6 gateway data 225 * 2) Interface route with IPv4/IPv6 address of the 226 * matching interface. Some routing daemons do that 227 * instead of specifying ifindex in AF_LINK. 228 * 229 * In both cases, save the original nexthop to make the callers 230 * happy. 231 */ 232 if (!nhop_set_gw(nh, gw, is_gw)) 233 return (EINVAL); 234 } 235 return (0); 236 } 237 238 static void 239 set_nhop_expire_from_info(struct nhop_object *nh, const struct rt_addrinfo *info) 240 { 241 uint32_t nh_expire = 0; 242 243 /* Kernel -> userland timebase conversion. */ 244 if ((info->rti_mflags & RTV_EXPIRE) && (info->rti_rmx->rmx_expire > 0)) 245 nh_expire = info->rti_rmx->rmx_expire - time_second + time_uptime; 246 nhop_set_expire(nh, nh_expire); 247 } 248 249 /* 250 * Creates a new nexthop based on the information in @info. 251 * 252 * Returns: 253 * 0 on success, filling @nh_ret with the desired nexthop object ptr 254 * errno otherwise 255 */ 256 int 257 nhop_create_from_info(struct rib_head *rnh, struct rt_addrinfo *info, 258 struct nhop_object **nh_ret) 259 { 260 int error; 261 262 NET_EPOCH_ASSERT(); 263 264 MPASS(info->rti_ifa != NULL); 265 MPASS(info->rti_ifp != NULL); 266 267 if (info->rti_info[RTAX_GATEWAY] == NULL) { 268 FIB_RH_LOG(LOG_DEBUG, rnh, "error: empty gateway"); 269 return (EINVAL); 270 } 271 272 struct nhop_object *nh = nhop_alloc(rnh->rib_fibnum, rnh->rib_family); 273 if (nh == NULL) 274 return (ENOMEM); 275 276 if ((error = set_nhop_gw_from_info(nh, info)) != 0) { 277 nhop_free(nh); 278 return (error); 279 } 280 nhop_set_transmit_ifp(nh, info->rti_ifp); 281 282 nhop_set_blackhole(nh, info->rti_flags & (RTF_BLACKHOLE | RTF_REJECT)); 283 284 error = rnh->rnh_set_nh_pfxflags(rnh->rib_fibnum, info->rti_info[RTAX_DST], 285 info->rti_info[RTAX_NETMASK], nh); 286 287 nhop_set_redirect(nh, info->rti_flags & RTF_DYNAMIC); 288 nhop_set_pinned(nh, info->rti_flags & RTF_PINNED); 289 set_nhop_expire_from_info(nh, info); 290 nhop_set_rtflags(nh, info->rti_flags); 291 292 set_nhop_mtu_from_info(nh, info); 293 nhop_set_src(nh, info->rti_ifa); 294 295 /* 296 * The remaining fields are either set from nh_preadd hook 297 * or are computed from the provided data 298 */ 299 *nh_ret = nhop_get_nhop(nh, &error); 300 301 return (error); 302 } 303 304 /* 305 * Gets linked nhop using the provided @nh nexhop data. 306 * If linked nhop is found, returns it, freeing the provided one. 307 * If there is no such nexthop, attaches the remaining data to the 308 * provided nexthop and links it. 309 * 310 * Returns 0 on success, storing referenced nexthop in @pnh. 311 * Otherwise, errno is returned. 312 */ 313 struct nhop_object * 314 nhop_get_nhop(struct nhop_object *nh, int *perror) 315 { 316 struct rib_head *rnh = nhop_get_rh(nh); 317 318 if (__predict_false(rnh == NULL)) { 319 *perror = EAFNOSUPPORT; 320 nhop_free(nh); 321 return (NULL); 322 } 323 324 return (nhop_get_nhop_internal(rnh, nh, perror)); 325 } 326 327 struct nhop_object * 328 nhop_get_nhop_internal(struct rib_head *rnh, struct nhop_object *nh, int *perror) 329 { 330 struct nhop_priv *tmp_priv; 331 int error; 332 333 nh->nh_aifp = get_aifp(nh); 334 335 /* Give the protocols chance to augment nexthop properties */ 336 error = rnh->rnh_augment_nh(rnh->rib_fibnum, nh); 337 if (error != 0) { 338 nhop_free(nh); 339 *perror = error; 340 return (NULL); 341 } 342 343 tmp_priv = find_nhop(rnh->nh_control, nh->nh_priv); 344 if (tmp_priv != NULL) { 345 nhop_free(nh); 346 *perror = 0; 347 return (tmp_priv->nh); 348 } 349 350 /* 351 * Existing nexthop not found, need to create new one. 352 * Note: multiple simultaneous requests 353 * can result in multiple equal nexhops existing in the 354 * nexthop table. This is not a not a problem until the 355 * relative number of such nexthops is significant, which 356 * is extremely unlikely. 357 */ 358 *perror = finalize_nhop(rnh->nh_control, nh, true); 359 return (*perror == 0 ? nh : NULL); 360 } 361 362 /* 363 * Gets referenced but unlinked nhop. 364 * Alocates/references the remaining bits of the nexthop data, so 365 * it can be safely linked later or used as a clone source. 366 * 367 * Returns 0 on success. 368 */ 369 int 370 nhop_get_unlinked(struct nhop_object *nh) 371 { 372 struct rib_head *rnh = nhop_get_rh(nh); 373 374 if (__predict_false(rnh == NULL)) { 375 nhop_free(nh); 376 return (EAFNOSUPPORT); 377 } 378 379 nh->nh_aifp = get_aifp(nh); 380 381 return (finalize_nhop(rnh->nh_control, nh, false)); 382 } 383 384 385 /* 386 * Update @nh with data supplied in @info. 387 * This is a helper function to support route changes. 388 * 389 * It limits the changes that can be done to the route to the following: 390 * 1) all combination of gateway changes 391 * 2) route flags (FLAG[123],STATIC) 392 * 3) route MTU 393 * 394 * Returns: 395 * 0 on success, errno otherwise 396 */ 397 static int 398 alter_nhop_from_info(struct nhop_object *nh, struct rt_addrinfo *info) 399 { 400 struct sockaddr *info_gw; 401 int error; 402 403 /* Update MTU if set in the request*/ 404 set_nhop_mtu_from_info(nh, info); 405 406 /* Only RTF_FLAG[123] and RTF_STATIC */ 407 uint32_t rt_flags = nhop_get_rtflags(nh) & ~RT_CHANGE_RTFLAGS_MASK; 408 rt_flags |= info->rti_flags & RT_CHANGE_RTFLAGS_MASK; 409 nhop_set_rtflags(nh, rt_flags); 410 411 /* Consider gateway change */ 412 info_gw = info->rti_info[RTAX_GATEWAY]; 413 if (info_gw != NULL) { 414 error = set_nhop_gw_from_info(nh, info); 415 if (error != 0) 416 return (error); 417 } 418 419 if (info->rti_ifa != NULL) 420 nhop_set_src(nh, info->rti_ifa); 421 if (info->rti_ifp != NULL) 422 nhop_set_transmit_ifp(nh, info->rti_ifp); 423 424 return (0); 425 } 426 427 /* 428 * Creates new nexthop based on @nh_orig and augmentation data from @info. 429 * Helper function used in the route changes, please see 430 * alter_nhop_from_info() comments for more details. 431 * 432 * Returns: 433 * 0 on success, filling @nh_ret with the desired nexthop object 434 * errno otherwise 435 */ 436 int 437 nhop_create_from_nhop(struct rib_head *rnh, const struct nhop_object *nh_orig, 438 struct rt_addrinfo *info, struct nhop_object **pnh) 439 { 440 struct nhop_object *nh; 441 int error; 442 443 NET_EPOCH_ASSERT(); 444 445 nh = nhop_alloc(rnh->rib_fibnum, rnh->rib_family); 446 if (nh == NULL) 447 return (ENOMEM); 448 449 nhop_copy(nh, nh_orig); 450 451 error = alter_nhop_from_info(nh, info); 452 if (error != 0) { 453 nhop_free(nh); 454 return (error); 455 } 456 457 *pnh = nhop_get_nhop(nh, &error); 458 459 return (error); 460 } 461 462 static bool 463 reference_nhop_deps(struct nhop_object *nh) 464 { 465 if (!ifa_try_ref(nh->nh_ifa)) 466 return (false); 467 nh->nh_aifp = get_aifp(nh); 468 if (!if_try_ref(nh->nh_aifp)) { 469 ifa_free(nh->nh_ifa); 470 return (false); 471 } 472 FIB_NH_LOG(LOG_DEBUG2, nh, "nh_aifp: %s nh_ifp %s", 473 if_name(nh->nh_aifp), if_name(nh->nh_ifp)); 474 if (!if_try_ref(nh->nh_ifp)) { 475 ifa_free(nh->nh_ifa); 476 if_rele(nh->nh_aifp); 477 return (false); 478 } 479 480 return (true); 481 } 482 483 /* 484 * Alocates/references the remaining bits of nexthop data and links 485 * it to the hash table. 486 * Returns 0 if successful, 487 * errno otherwise. @nh_priv is freed in case of error. 488 */ 489 static int 490 finalize_nhop(struct nh_control *ctl, struct nhop_object *nh, bool link) 491 { 492 493 /* Allocate per-cpu packet counter */ 494 nh->nh_pksent = counter_u64_alloc(M_NOWAIT); 495 if (nh->nh_pksent == NULL) { 496 nhop_free(nh); 497 RTSTAT_INC(rts_nh_alloc_failure); 498 FIB_NH_LOG(LOG_WARNING, nh, "counter_u64_alloc() failed"); 499 return (ENOMEM); 500 } 501 502 if (!reference_nhop_deps(nh)) { 503 counter_u64_free(nh->nh_pksent); 504 nhop_free(nh); 505 RTSTAT_INC(rts_nh_alloc_failure); 506 FIB_NH_LOG(LOG_WARNING, nh, "interface reference failed"); 507 return (EAGAIN); 508 } 509 510 /* Save vnet to ease destruction */ 511 nh->nh_priv->nh_vnet = curvnet; 512 513 /* Please see nhop_free() comments on the initial value */ 514 refcount_init(&nh->nh_priv->nh_linked, 2); 515 516 MPASS(nh->nh_priv->nh_fibnum == ctl->ctl_rh->rib_fibnum); 517 518 if (!link) { 519 refcount_release(&nh->nh_priv->nh_linked); 520 NHOPS_WLOCK(ctl); 521 nh->nh_priv->nh_finalized = 1; 522 NHOPS_WUNLOCK(ctl); 523 } else if (link_nhop(ctl, nh->nh_priv) == 0) { 524 /* 525 * Adding nexthop to the datastructures 526 * failed. Call destructor w/o waiting for 527 * the epoch end, as nexthop is not used 528 * and return. 529 */ 530 char nhbuf[NHOP_PRINT_BUFSIZE]; 531 FIB_NH_LOG(LOG_WARNING, nh, "failed to link %s", 532 nhop_print_buf(nh, nhbuf, sizeof(nhbuf))); 533 destroy_nhop(nh); 534 535 return (ENOBUFS); 536 } 537 538 IF_DEBUG_LEVEL(LOG_DEBUG) { 539 char nhbuf[NHOP_PRINT_BUFSIZE] __unused; 540 FIB_NH_LOG(LOG_DEBUG, nh, "finalized: %s", 541 nhop_print_buf(nh, nhbuf, sizeof(nhbuf))); 542 } 543 544 return (0); 545 } 546 547 static void 548 destroy_nhop(struct nhop_object *nh) 549 { 550 if_rele(nh->nh_ifp); 551 if_rele(nh->nh_aifp); 552 ifa_free(nh->nh_ifa); 553 counter_u64_free(nh->nh_pksent); 554 555 uma_zfree(nhops_zone, nh); 556 } 557 558 /* 559 * Epoch callback indicating nhop is safe to destroy 560 */ 561 static void 562 destroy_nhop_epoch(epoch_context_t ctx) 563 { 564 struct nhop_priv *nh_priv; 565 566 nh_priv = __containerof(ctx, struct nhop_priv, nh_epoch_ctx); 567 568 destroy_nhop(nh_priv->nh); 569 } 570 571 void 572 nhop_ref_object(struct nhop_object *nh) 573 { 574 u_int old __diagused; 575 576 old = refcount_acquire(&nh->nh_priv->nh_refcnt); 577 KASSERT(old > 0, ("%s: nhop object %p has 0 refs", __func__, nh)); 578 } 579 580 int 581 nhop_try_ref_object(struct nhop_object *nh) 582 { 583 584 return (refcount_acquire_if_not_zero(&nh->nh_priv->nh_refcnt)); 585 } 586 587 void 588 nhop_free(struct nhop_object *nh) 589 { 590 struct nh_control *ctl; 591 struct nhop_priv *nh_priv = nh->nh_priv; 592 struct epoch_tracker et; 593 594 if (!refcount_release(&nh_priv->nh_refcnt)) 595 return; 596 597 /* allows to use nhop_free() during nhop init */ 598 if (__predict_false(nh_priv->nh_finalized == 0)) { 599 uma_zfree(nhops_zone, nh); 600 return; 601 } 602 603 IF_DEBUG_LEVEL(LOG_DEBUG) { 604 char nhbuf[NHOP_PRINT_BUFSIZE] __unused; 605 FIB_NH_LOG(LOG_DEBUG, nh, "deleting %s", 606 nhop_print_buf(nh, nhbuf, sizeof(nhbuf))); 607 } 608 609 /* 610 * There are only 2 places, where nh_linked can be decreased: 611 * rib destroy (nhops_destroy_rib) and this function. 612 * nh_link can never be increased. 613 * 614 * Hence, use initial value of 2 to make use of 615 * refcount_release_if_not_last(). 616 * 617 * There can be two scenarious when calling this function: 618 * 619 * 1) nh_linked value is 2. This means that either 620 * nhops_destroy_rib() has not been called OR it is running, 621 * but we are guaranteed that nh_control won't be freed in 622 * this epoch. Hence, nexthop can be safely unlinked. 623 * 624 * 2) nh_linked value is 1. In that case, nhops_destroy_rib() 625 * has been called and nhop unlink can be skipped. 626 */ 627 628 NET_EPOCH_ENTER(et); 629 if (refcount_release_if_not_last(&nh_priv->nh_linked)) { 630 ctl = nh_priv->nh_control; 631 if (unlink_nhop(ctl, nh_priv) == NULL) { 632 /* Do not try to reclaim */ 633 char nhbuf[NHOP_PRINT_BUFSIZE]; 634 FIB_NH_LOG(LOG_WARNING, nh, "failed to unlink %s", 635 nhop_print_buf(nh, nhbuf, sizeof(nhbuf))); 636 NET_EPOCH_EXIT(et); 637 return; 638 } 639 } 640 NET_EPOCH_EXIT(et); 641 642 NET_EPOCH_CALL(destroy_nhop_epoch, &nh_priv->nh_epoch_ctx); 643 } 644 645 void 646 nhop_ref_any(struct nhop_object *nh) 647 { 648 #ifdef ROUTE_MPATH 649 if (!NH_IS_NHGRP(nh)) 650 nhop_ref_object(nh); 651 else 652 nhgrp_ref_object((struct nhgrp_object *)nh); 653 #else 654 nhop_ref_object(nh); 655 #endif 656 } 657 658 void 659 nhop_free_any(struct nhop_object *nh) 660 { 661 662 #ifdef ROUTE_MPATH 663 if (!NH_IS_NHGRP(nh)) 664 nhop_free(nh); 665 else 666 nhgrp_free((struct nhgrp_object *)nh); 667 #else 668 nhop_free(nh); 669 #endif 670 } 671 672 /* Nhop-related methods */ 673 674 /* 675 * Allocates an empty unlinked nhop object. 676 * Returns object pointer or NULL on failure 677 */ 678 struct nhop_object * 679 nhop_alloc(uint32_t fibnum, int family) 680 { 681 struct nhop_object *nh; 682 struct nhop_priv *nh_priv; 683 684 nh = (struct nhop_object *)uma_zalloc(nhops_zone, M_NOWAIT | M_ZERO); 685 if (__predict_false(nh == NULL)) 686 return (NULL); 687 688 nh_priv = (struct nhop_priv *)((char *)nh + NHOP_OBJECT_ALIGNED_SIZE); 689 nh->nh_priv = nh_priv; 690 nh_priv->nh = nh; 691 692 nh_priv->nh_upper_family = family; 693 nh_priv->nh_fibnum = fibnum; 694 695 /* Setup refcount early to allow nhop_free() to work */ 696 refcount_init(&nh_priv->nh_refcnt, 1); 697 698 return (nh); 699 } 700 701 void 702 nhop_copy(struct nhop_object *nh, const struct nhop_object *nh_orig) 703 { 704 struct nhop_priv *nh_priv = nh->nh_priv; 705 706 nh->nh_flags = nh_orig->nh_flags; 707 nh->nh_mtu = nh_orig->nh_mtu; 708 memcpy(&nh->gw_sa, &nh_orig->gw_sa, nh_orig->gw_sa.sa_len); 709 nh->nh_ifp = nh_orig->nh_ifp; 710 nh->nh_ifa = nh_orig->nh_ifa; 711 nh->nh_aifp = nh_orig->nh_aifp; 712 713 nh_priv->nh_upper_family = nh_orig->nh_priv->nh_upper_family; 714 nh_priv->nh_neigh_family = nh_orig->nh_priv->nh_neigh_family; 715 nh_priv->nh_type = nh_orig->nh_priv->nh_type; 716 nh_priv->rt_flags = nh_orig->nh_priv->rt_flags; 717 nh_priv->nh_fibnum = nh_orig->nh_priv->nh_fibnum; 718 nh_priv->nh_origin = nh_orig->nh_priv->nh_origin; 719 } 720 721 void 722 nhop_set_direct_gw(struct nhop_object *nh, struct ifnet *ifp) 723 { 724 nh->nh_flags &= ~NHF_GATEWAY; 725 nh->nh_priv->rt_flags &= ~RTF_GATEWAY; 726 nh->nh_priv->nh_neigh_family = nh->nh_priv->nh_upper_family; 727 728 fill_sdl_from_ifp(&nh->gwl_sa, ifp); 729 memset(&nh->gw_buf[nh->gw_sa.sa_len], 0, sizeof(nh->gw_buf) - nh->gw_sa.sa_len); 730 } 731 732 bool 733 nhop_check_gateway(int upper_family, int neigh_family) 734 { 735 if (upper_family == neigh_family) 736 return (true); 737 else if (neigh_family == AF_UNSPEC || neigh_family == AF_LINK) 738 return (true); 739 #if defined(INET) && defined(INET6) 740 else if (upper_family == AF_INET && neigh_family == AF_INET6 && 741 rib_can_4o6_nhop()) 742 return (true); 743 #endif 744 else 745 return (false); 746 } 747 748 /* 749 * Sets gateway for the nexthop. 750 * It can be "normal" gateway with is_gw set or a special form of 751 * adding interface route, refering to it by specifying local interface 752 * address. In that case is_gw is set to false. 753 */ 754 bool 755 nhop_set_gw(struct nhop_object *nh, const struct sockaddr *gw, bool is_gw) 756 { 757 if (gw->sa_len > sizeof(nh->gw_buf)) { 758 FIB_NH_LOG(LOG_DEBUG, nh, "nhop SA size too big: AF %d len %u", 759 gw->sa_family, gw->sa_len); 760 return (false); 761 } 762 763 if (!nhop_check_gateway(nh->nh_priv->nh_upper_family, gw->sa_family)) { 764 FIB_NH_LOG(LOG_DEBUG, nh, 765 "error: invalid dst/gateway family combination (%d, %d)", 766 nh->nh_priv->nh_upper_family, gw->sa_family); 767 return (false); 768 } 769 770 memcpy(&nh->gw_sa, gw, gw->sa_len); 771 memset(&nh->gw_buf[gw->sa_len], 0, sizeof(nh->gw_buf) - gw->sa_len); 772 773 if (is_gw) { 774 nh->nh_flags |= NHF_GATEWAY; 775 nh->nh_priv->rt_flags |= RTF_GATEWAY; 776 nh->nh_priv->nh_neigh_family = gw->sa_family; 777 } else { 778 nh->nh_flags &= ~NHF_GATEWAY; 779 nh->nh_priv->rt_flags &= ~RTF_GATEWAY; 780 nh->nh_priv->nh_neigh_family = nh->nh_priv->nh_upper_family; 781 } 782 783 return (true); 784 } 785 786 bool 787 nhop_set_upper_family(struct nhop_object *nh, int family) 788 { 789 if (!nhop_check_gateway(nh->nh_priv->nh_upper_family, family)) { 790 FIB_NH_LOG(LOG_DEBUG, nh, 791 "error: invalid upper/neigh family combination (%d, %d)", 792 nh->nh_priv->nh_upper_family, family); 793 return (false); 794 } 795 796 nh->nh_priv->nh_upper_family = family; 797 return (true); 798 } 799 800 void 801 nhop_set_broadcast(struct nhop_object *nh, bool is_broadcast) 802 { 803 if (is_broadcast) { 804 nh->nh_flags |= NHF_BROADCAST; 805 nh->nh_priv->rt_flags |= RTF_BROADCAST; 806 } else { 807 nh->nh_flags &= ~NHF_BROADCAST; 808 nh->nh_priv->rt_flags &= ~RTF_BROADCAST; 809 } 810 } 811 812 void 813 nhop_set_blackhole(struct nhop_object *nh, int blackhole_rt_flag) 814 { 815 nh->nh_flags &= ~(NHF_BLACKHOLE | NHF_REJECT); 816 nh->nh_priv->rt_flags &= ~(RTF_BLACKHOLE | RTF_REJECT); 817 switch (blackhole_rt_flag) { 818 case RTF_BLACKHOLE: 819 nh->nh_flags |= NHF_BLACKHOLE; 820 nh->nh_priv->rt_flags |= RTF_BLACKHOLE; 821 break; 822 case RTF_REJECT: 823 nh->nh_flags |= NHF_REJECT; 824 nh->nh_priv->rt_flags |= RTF_REJECT; 825 break; 826 default: 827 /* Not a blackhole nexthop */ 828 return; 829 } 830 831 nh->nh_ifp = V_loif; 832 nh->nh_flags &= ~NHF_GATEWAY; 833 nh->nh_priv->rt_flags &= ~RTF_GATEWAY; 834 nh->nh_priv->nh_neigh_family = nh->nh_priv->nh_upper_family; 835 836 bzero(&nh->gw_sa, sizeof(nh->gw_sa)); 837 838 switch (nh->nh_priv->nh_upper_family) { 839 #ifdef INET 840 case AF_INET: 841 nh->gw4_sa.sin_family = AF_INET; 842 nh->gw4_sa.sin_len = sizeof(struct sockaddr_in); 843 nh->gw4_sa.sin_addr.s_addr = htonl(INADDR_LOOPBACK); 844 break; 845 #endif 846 #ifdef INET6 847 case AF_INET6: 848 nh->gw6_sa.sin6_family = AF_INET6; 849 nh->gw6_sa.sin6_len = sizeof(struct sockaddr_in6); 850 nh->gw6_sa.sin6_addr = in6addr_loopback; 851 break; 852 #endif 853 } 854 } 855 856 void 857 nhop_set_redirect(struct nhop_object *nh, bool is_redirect) 858 { 859 if (is_redirect) { 860 nh->nh_priv->rt_flags |= RTF_DYNAMIC; 861 nh->nh_flags |= NHF_REDIRECT; 862 } else { 863 nh->nh_priv->rt_flags &= ~RTF_DYNAMIC; 864 nh->nh_flags &= ~NHF_REDIRECT; 865 } 866 } 867 868 void 869 nhop_set_pinned(struct nhop_object *nh, bool is_pinned) 870 { 871 if (is_pinned) 872 nh->nh_priv->rt_flags |= RTF_PINNED; 873 else 874 nh->nh_priv->rt_flags &= ~RTF_PINNED; 875 } 876 877 uint32_t 878 nhop_get_idx(const struct nhop_object *nh) 879 { 880 881 return (nh->nh_priv->nh_idx); 882 } 883 884 uint32_t 885 nhop_get_uidx(const struct nhop_object *nh) 886 { 887 return (nh->nh_priv->nh_uidx); 888 } 889 890 void 891 nhop_set_uidx(struct nhop_object *nh, uint32_t uidx) 892 { 893 nh->nh_priv->nh_uidx = uidx; 894 } 895 896 enum nhop_type 897 nhop_get_type(const struct nhop_object *nh) 898 { 899 900 return (nh->nh_priv->nh_type); 901 } 902 903 void 904 nhop_set_type(struct nhop_object *nh, enum nhop_type nh_type) 905 { 906 907 nh->nh_priv->nh_type = nh_type; 908 } 909 910 int 911 nhop_get_rtflags(const struct nhop_object *nh) 912 { 913 914 return (nh->nh_priv->rt_flags); 915 } 916 917 /* 918 * Sets generic rtflags that are not covered by other functions. 919 */ 920 void 921 nhop_set_rtflags(struct nhop_object *nh, int rt_flags) 922 { 923 nh->nh_priv->rt_flags &= ~RT_SET_RTFLAGS_MASK; 924 nh->nh_priv->rt_flags |= (rt_flags & RT_SET_RTFLAGS_MASK); 925 } 926 927 /* 928 * Sets flags that are specific to the prefix (NHF_HOST or NHF_DEFAULT). 929 */ 930 void 931 nhop_set_pxtype_flag(struct nhop_object *nh, int nh_flag) 932 { 933 if (nh_flag == NHF_HOST) { 934 nh->nh_flags |= NHF_HOST; 935 nh->nh_flags &= ~NHF_DEFAULT; 936 nh->nh_priv->rt_flags |= RTF_HOST; 937 } else if (nh_flag == NHF_DEFAULT) { 938 nh->nh_flags |= NHF_DEFAULT; 939 nh->nh_flags &= ~NHF_HOST; 940 nh->nh_priv->rt_flags &= ~RTF_HOST; 941 } else { 942 nh->nh_flags &= ~(NHF_HOST | NHF_DEFAULT); 943 nh->nh_priv->rt_flags &= ~RTF_HOST; 944 } 945 } 946 947 /* 948 * Sets nhop MTU. Sets RTF_FIXEDMTU if mtu is explicitly 949 * specified by userland. 950 */ 951 void 952 nhop_set_mtu(struct nhop_object *nh, uint32_t mtu, bool from_user) 953 { 954 if (from_user) { 955 if (mtu != 0) 956 nh->nh_priv->rt_flags |= RTF_FIXEDMTU; 957 else 958 nh->nh_priv->rt_flags &= ~RTF_FIXEDMTU; 959 } 960 nh->nh_mtu = mtu; 961 } 962 963 void 964 nhop_set_src(struct nhop_object *nh, struct ifaddr *ifa) 965 { 966 nh->nh_ifa = ifa; 967 } 968 969 void 970 nhop_set_transmit_ifp(struct nhop_object *nh, struct ifnet *ifp) 971 { 972 nh->nh_ifp = ifp; 973 } 974 975 976 struct vnet * 977 nhop_get_vnet(const struct nhop_object *nh) 978 { 979 980 return (nh->nh_priv->nh_vnet); 981 } 982 983 struct nhop_object * 984 nhop_select_func(struct nhop_object *nh, uint32_t flowid) 985 { 986 987 return (nhop_select(nh, flowid)); 988 } 989 990 /* 991 * Returns address family of the traffic uses the nexthop. 992 */ 993 int 994 nhop_get_upper_family(const struct nhop_object *nh) 995 { 996 return (nh->nh_priv->nh_upper_family); 997 } 998 999 /* 1000 * Returns address family of the LLE or gateway that is used 1001 * to forward the traffic to. 1002 */ 1003 int 1004 nhop_get_neigh_family(const struct nhop_object *nh) 1005 { 1006 return (nh->nh_priv->nh_neigh_family); 1007 } 1008 1009 uint32_t 1010 nhop_get_fibnum(const struct nhop_object *nh) 1011 { 1012 return (nh->nh_priv->nh_fibnum); 1013 } 1014 1015 void 1016 nhop_set_fibnum(struct nhop_object *nh, uint32_t fibnum) 1017 { 1018 nh->nh_priv->nh_fibnum = fibnum; 1019 } 1020 1021 uint32_t 1022 nhop_get_expire(const struct nhop_object *nh) 1023 { 1024 return (nh->nh_priv->nh_expire); 1025 } 1026 1027 void 1028 nhop_set_expire(struct nhop_object *nh, uint32_t expire) 1029 { 1030 MPASS(!NH_IS_LINKED(nh)); 1031 nh->nh_priv->nh_expire = expire; 1032 } 1033 1034 struct rib_head * 1035 nhop_get_rh(const struct nhop_object *nh) 1036 { 1037 uint32_t fibnum = nhop_get_fibnum(nh); 1038 int family = nhop_get_neigh_family(nh); 1039 1040 return (rt_tables_get_rnh(fibnum, family)); 1041 } 1042 1043 uint8_t 1044 nhop_get_origin(const struct nhop_object *nh) 1045 { 1046 return (nh->nh_priv->nh_origin); 1047 } 1048 1049 void 1050 nhop_set_origin(struct nhop_object *nh, uint8_t origin) 1051 { 1052 nh->nh_priv->nh_origin = origin; 1053 } 1054 1055 void 1056 nhops_update_ifmtu(struct rib_head *rh, struct ifnet *ifp, uint32_t mtu) 1057 { 1058 struct nh_control *ctl; 1059 struct nhop_priv *nh_priv; 1060 struct nhop_object *nh; 1061 1062 ctl = rh->nh_control; 1063 1064 NHOPS_WLOCK(ctl); 1065 CHT_SLIST_FOREACH(&ctl->nh_head, nhops, nh_priv) { 1066 nh = nh_priv->nh; 1067 if (nh->nh_ifp == ifp) { 1068 if ((nh_priv->rt_flags & RTF_FIXEDMTU) == 0 || 1069 nh->nh_mtu > mtu) { 1070 /* Update MTU directly */ 1071 nh->nh_mtu = mtu; 1072 } 1073 } 1074 } CHT_SLIST_FOREACH_END; 1075 NHOPS_WUNLOCK(ctl); 1076 1077 } 1078 1079 struct nhop_object * 1080 nhops_iter_start(struct nhop_iter *iter) 1081 { 1082 if (iter->rh == NULL) 1083 iter->rh = rt_tables_get_rnh_safe(iter->fibnum, iter->family); 1084 if (iter->rh != NULL) { 1085 struct nh_control *ctl = iter->rh->nh_control; 1086 1087 NHOPS_RLOCK(ctl); 1088 1089 iter->_i = 0; 1090 iter->_next = CHT_FIRST(&ctl->nh_head, iter->_i); 1091 1092 return (nhops_iter_next(iter)); 1093 } else 1094 return (NULL); 1095 } 1096 1097 struct nhop_object * 1098 nhops_iter_next(struct nhop_iter *iter) 1099 { 1100 struct nhop_priv *nh_priv = iter->_next; 1101 1102 if (nh_priv != NULL) { 1103 iter->_next = nh_priv->nh_next; 1104 return (nh_priv->nh); 1105 } 1106 1107 struct nh_control *ctl = iter->rh->nh_control; 1108 while (++iter->_i < ctl->nh_head.hash_size) { 1109 nh_priv = CHT_FIRST(&ctl->nh_head, iter->_i); 1110 if (nh_priv != NULL) { 1111 iter->_next = nh_priv->nh_next; 1112 return (nh_priv->nh); 1113 } 1114 } 1115 1116 return (NULL); 1117 } 1118 1119 void 1120 nhops_iter_stop(struct nhop_iter *iter) 1121 { 1122 if (iter->rh != NULL) { 1123 struct nh_control *ctl = iter->rh->nh_control; 1124 1125 NHOPS_RUNLOCK(ctl); 1126 } 1127 } 1128 1129 /* 1130 * Prints nexthop @nh data in the provided @buf. 1131 * Example: nh#33/inet/em0/192.168.0.1 1132 */ 1133 char * 1134 nhop_print_buf(const struct nhop_object *nh, char *buf, size_t bufsize) 1135 { 1136 #if defined(INET) || defined(INET6) 1137 char abuf[INET6_ADDRSTRLEN]; 1138 #endif 1139 struct nhop_priv *nh_priv = nh->nh_priv; 1140 const char *upper_str = rib_print_family(nh->nh_priv->nh_upper_family); 1141 1142 switch (nh->gw_sa.sa_family) { 1143 #ifdef INET 1144 case AF_INET: 1145 inet_ntop(AF_INET, &nh->gw4_sa.sin_addr, abuf, sizeof(abuf)); 1146 snprintf(buf, bufsize, "nh#%d/%s/%s/%s", nh_priv->nh_idx, upper_str, 1147 if_name(nh->nh_ifp), abuf); 1148 break; 1149 #endif 1150 #ifdef INET6 1151 case AF_INET6: 1152 inet_ntop(AF_INET6, &nh->gw6_sa.sin6_addr, abuf, sizeof(abuf)); 1153 snprintf(buf, bufsize, "nh#%d/%s/%s/%s", nh_priv->nh_idx, upper_str, 1154 if_name(nh->nh_ifp), abuf); 1155 break; 1156 #endif 1157 case AF_LINK: 1158 snprintf(buf, bufsize, "nh#%d/%s/%s/resolve", nh_priv->nh_idx, upper_str, 1159 if_name(nh->nh_ifp)); 1160 break; 1161 default: 1162 snprintf(buf, bufsize, "nh#%d/%s/%s/????", nh_priv->nh_idx, upper_str, 1163 if_name(nh->nh_ifp)); 1164 break; 1165 } 1166 1167 return (buf); 1168 } 1169 1170 char * 1171 nhop_print_buf_any(const struct nhop_object *nh, char *buf, size_t bufsize) 1172 { 1173 #ifdef ROUTE_MPATH 1174 if (NH_IS_NHGRP(nh)) 1175 return (nhgrp_print_buf((const struct nhgrp_object *)nh, buf, bufsize)); 1176 else 1177 #endif 1178 return (nhop_print_buf(nh, buf, bufsize)); 1179 } 1180 1181 /* 1182 * Dumps a single entry to sysctl buffer. 1183 * 1184 * Layout: 1185 * rt_msghdr - generic RTM header to allow users to skip non-understood messages 1186 * nhop_external - nexhop description structure (with length) 1187 * nhop_addrs - structure encapsulating GW/SRC sockaddrs 1188 */ 1189 static int 1190 dump_nhop_entry(struct rib_head *rh, struct nhop_object *nh, struct sysctl_req *w) 1191 { 1192 struct { 1193 struct rt_msghdr rtm; 1194 struct nhop_external nhe; 1195 struct nhop_addrs na; 1196 } arpc; 1197 struct nhop_external *pnhe; 1198 struct sockaddr *gw_sa, *src_sa; 1199 struct sockaddr_storage ss; 1200 size_t addrs_len; 1201 int error; 1202 1203 memset(&arpc, 0, sizeof(arpc)); 1204 1205 arpc.rtm.rtm_msglen = sizeof(arpc); 1206 arpc.rtm.rtm_version = RTM_VERSION; 1207 arpc.rtm.rtm_type = RTM_GET; 1208 //arpc.rtm.rtm_flags = RTF_UP; 1209 arpc.rtm.rtm_flags = nh->nh_priv->rt_flags; 1210 1211 /* nhop_external */ 1212 pnhe = &arpc.nhe; 1213 pnhe->nh_len = sizeof(struct nhop_external); 1214 pnhe->nh_idx = nh->nh_priv->nh_idx; 1215 pnhe->nh_fib = rh->rib_fibnum; 1216 pnhe->ifindex = nh->nh_ifp->if_index; 1217 pnhe->aifindex = nh->nh_aifp->if_index; 1218 pnhe->nh_family = nh->nh_priv->nh_upper_family; 1219 pnhe->nh_type = nh->nh_priv->nh_type; 1220 pnhe->nh_mtu = nh->nh_mtu; 1221 pnhe->nh_flags = nh->nh_flags; 1222 1223 memcpy(pnhe->nh_prepend, nh->nh_prepend, sizeof(nh->nh_prepend)); 1224 pnhe->prepend_len = nh->nh_prepend_len; 1225 pnhe->nh_refcount = nh->nh_priv->nh_refcnt; 1226 pnhe->nh_pksent = counter_u64_fetch(nh->nh_pksent); 1227 1228 /* sockaddr container */ 1229 addrs_len = sizeof(struct nhop_addrs); 1230 arpc.na.gw_sa_off = addrs_len; 1231 gw_sa = (struct sockaddr *)&nh->gw4_sa; 1232 addrs_len += gw_sa->sa_len; 1233 1234 src_sa = nh->nh_ifa->ifa_addr; 1235 if (src_sa->sa_family == AF_LINK) { 1236 /* Shorten structure */ 1237 memset(&ss, 0, sizeof(struct sockaddr_storage)); 1238 fill_sdl_from_ifp((struct sockaddr_dl_short *)&ss, 1239 nh->nh_ifa->ifa_ifp); 1240 src_sa = (struct sockaddr *)&ss; 1241 } 1242 arpc.na.src_sa_off = addrs_len; 1243 addrs_len += src_sa->sa_len; 1244 1245 /* Write total container length */ 1246 arpc.na.na_len = addrs_len; 1247 1248 arpc.rtm.rtm_msglen += arpc.na.na_len - sizeof(struct nhop_addrs); 1249 1250 error = SYSCTL_OUT(w, &arpc, sizeof(arpc)); 1251 if (error == 0) 1252 error = SYSCTL_OUT(w, gw_sa, gw_sa->sa_len); 1253 if (error == 0) 1254 error = SYSCTL_OUT(w, src_sa, src_sa->sa_len); 1255 1256 return (error); 1257 } 1258 1259 uint32_t 1260 nhops_get_count(struct rib_head *rh) 1261 { 1262 struct nh_control *ctl; 1263 uint32_t count; 1264 1265 ctl = rh->nh_control; 1266 1267 NHOPS_RLOCK(ctl); 1268 count = ctl->nh_head.items_count; 1269 NHOPS_RUNLOCK(ctl); 1270 1271 return (count); 1272 } 1273 1274 int 1275 nhops_dump_sysctl(struct rib_head *rh, struct sysctl_req *w) 1276 { 1277 struct nh_control *ctl; 1278 struct nhop_priv *nh_priv; 1279 int error; 1280 1281 ctl = rh->nh_control; 1282 1283 NHOPS_RLOCK(ctl); 1284 FIB_RH_LOG(LOG_DEBUG, rh, "dump %u items", ctl->nh_head.items_count); 1285 CHT_SLIST_FOREACH(&ctl->nh_head, nhops, nh_priv) { 1286 error = dump_nhop_entry(rh, nh_priv->nh, w); 1287 if (error != 0) { 1288 NHOPS_RUNLOCK(ctl); 1289 return (error); 1290 } 1291 } CHT_SLIST_FOREACH_END; 1292 NHOPS_RUNLOCK(ctl); 1293 1294 return (0); 1295 } 1296