1 /*- 2 * Copyright (c) 1980, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)route.c 8.3.1.1 (Berkeley) 2/23/95 30 * $FreeBSD$ 31 */ 32 /************************************************************************ 33 * Note: In this file a 'fib' is a "forwarding information base" * 34 * Which is the new name for an in kernel routing (next hop) table. * 35 ***********************************************************************/ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_route.h" 40 #include "opt_sctp.h" 41 #include "opt_mrouting.h" 42 #include "opt_mpath.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/socket.h> 49 #include <sys/sysctl.h> 50 #include <sys/syslog.h> 51 #include <sys/sysproto.h> 52 #include <sys/proc.h> 53 #include <sys/domain.h> 54 #include <sys/kernel.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/vnet.h> 61 #include <net/flowtable.h> 62 63 #ifdef RADIX_MPATH 64 #include <net/radix_mpath.h> 65 #endif 66 67 #include <netinet/in.h> 68 #include <netinet/ip_mroute.h> 69 70 #include <vm/uma.h> 71 72 #define RT_MAXFIBS UINT16_MAX 73 74 /* Kernel config default option. */ 75 #ifdef ROUTETABLES 76 #if ROUTETABLES <= 0 77 #error "ROUTETABLES defined too low" 78 #endif 79 #if ROUTETABLES > RT_MAXFIBS 80 #error "ROUTETABLES defined too big" 81 #endif 82 #define RT_NUMFIBS ROUTETABLES 83 #endif /* ROUTETABLES */ 84 /* Initialize to default if not otherwise set. */ 85 #ifndef RT_NUMFIBS 86 #define RT_NUMFIBS 1 87 #endif 88 89 #if defined(INET) || defined(INET6) 90 #ifdef SCTP 91 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 92 #endif /* SCTP */ 93 #endif 94 95 96 /* This is read-only.. */ 97 u_int rt_numfibs = RT_NUMFIBS; 98 SYSCTL_UINT(_net, OID_AUTO, fibs, CTLFLAG_RDTUN, &rt_numfibs, 0, ""); 99 100 /* 101 * By default add routes to all fibs for new interfaces. 102 * Once this is set to 0 then only allocate routes on interface 103 * changes for the FIB of the caller when adding a new set of addresses 104 * to an interface. XXX this is a shotgun aproach to a problem that needs 105 * a more fine grained solution.. that will come. 106 * XXX also has the problems getting the FIB from curthread which will not 107 * always work given the fib can be overridden and prefixes can be added 108 * from the network stack context. 109 */ 110 VNET_DEFINE(u_int, rt_add_addr_allfibs) = 1; 111 SYSCTL_UINT(_net, OID_AUTO, add_addr_allfibs, CTLFLAG_RWTUN | CTLFLAG_VNET, 112 &VNET_NAME(rt_add_addr_allfibs), 0, ""); 113 114 VNET_DEFINE(struct rtstat, rtstat); 115 #define V_rtstat VNET(rtstat) 116 117 VNET_DEFINE(struct radix_node_head *, rt_tables); 118 #define V_rt_tables VNET(rt_tables) 119 120 VNET_DEFINE(int, rttrash); /* routes not in table but not freed */ 121 #define V_rttrash VNET(rttrash) 122 123 124 /* 125 * Convert a 'struct radix_node *' to a 'struct rtentry *'. 126 * The operation can be done safely (in this code) because a 127 * 'struct rtentry' starts with two 'struct radix_node''s, the first 128 * one representing leaf nodes in the routing tree, which is 129 * what the code in radix.c passes us as a 'struct radix_node'. 130 * 131 * But because there are a lot of assumptions in this conversion, 132 * do not cast explicitly, but always use the macro below. 133 */ 134 #define RNTORT(p) ((struct rtentry *)(p)) 135 136 static VNET_DEFINE(uma_zone_t, rtzone); /* Routing table UMA zone. */ 137 #define V_rtzone VNET(rtzone) 138 139 static int rtrequest1_fib_change(struct radix_node_head *, struct rt_addrinfo *, 140 struct rtentry **, u_int); 141 static void rt_setmetrics(const struct rt_addrinfo *, struct rtentry *); 142 static int rt_ifdelroute(const struct rtentry *rt, void *arg); 143 static struct rtentry *rt_unlinkrte(struct radix_node_head *rnh, 144 struct rt_addrinfo *info, int *perror); 145 static void rt_notifydelete(struct rtentry *rt, struct rt_addrinfo *info); 146 #ifdef RADIX_MPATH 147 static struct radix_node *rt_mpath_unlink(struct radix_node_head *rnh, 148 struct rt_addrinfo *info, struct rtentry *rto, int *perror); 149 #endif 150 static int rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, 151 int flags); 152 153 struct if_mtuinfo 154 { 155 struct ifnet *ifp; 156 int mtu; 157 }; 158 159 static int if_updatemtu_cb(struct radix_node *, void *); 160 161 /* 162 * handler for net.my_fibnum 163 */ 164 static int 165 sysctl_my_fibnum(SYSCTL_HANDLER_ARGS) 166 { 167 int fibnum; 168 int error; 169 170 fibnum = curthread->td_proc->p_fibnum; 171 error = sysctl_handle_int(oidp, &fibnum, 0, req); 172 return (error); 173 } 174 175 SYSCTL_PROC(_net, OID_AUTO, my_fibnum, CTLTYPE_INT|CTLFLAG_RD, 176 NULL, 0, &sysctl_my_fibnum, "I", "default FIB of caller"); 177 178 static __inline struct radix_node_head ** 179 rt_tables_get_rnh_ptr(int table, int fam) 180 { 181 struct radix_node_head **rnh; 182 183 KASSERT(table >= 0 && table < rt_numfibs, ("%s: table out of bounds.", 184 __func__)); 185 KASSERT(fam >= 0 && fam < (AF_MAX+1), ("%s: fam out of bounds.", 186 __func__)); 187 188 /* rnh is [fib=0][af=0]. */ 189 rnh = (struct radix_node_head **)V_rt_tables; 190 /* Get the offset to the requested table and fam. */ 191 rnh += table * (AF_MAX+1) + fam; 192 193 return (rnh); 194 } 195 196 struct radix_node_head * 197 rt_tables_get_rnh(int table, int fam) 198 { 199 200 return (*rt_tables_get_rnh_ptr(table, fam)); 201 } 202 203 /* 204 * route initialization must occur before ip6_init2(), which happenas at 205 * SI_ORDER_MIDDLE. 206 */ 207 static void 208 route_init(void) 209 { 210 211 /* whack the tunable ints into line. */ 212 if (rt_numfibs > RT_MAXFIBS) 213 rt_numfibs = RT_MAXFIBS; 214 if (rt_numfibs == 0) 215 rt_numfibs = 1; 216 } 217 SYSINIT(route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, route_init, 0); 218 219 static int 220 rtentry_zinit(void *mem, int size, int how) 221 { 222 struct rtentry *rt = mem; 223 224 rt->rt_pksent = counter_u64_alloc(how); 225 if (rt->rt_pksent == NULL) 226 return (ENOMEM); 227 228 RT_LOCK_INIT(rt); 229 230 return (0); 231 } 232 233 static void 234 rtentry_zfini(void *mem, int size) 235 { 236 struct rtentry *rt = mem; 237 238 RT_LOCK_DESTROY(rt); 239 counter_u64_free(rt->rt_pksent); 240 } 241 242 static int 243 rtentry_ctor(void *mem, int size, void *arg, int how) 244 { 245 struct rtentry *rt = mem; 246 247 bzero(rt, offsetof(struct rtentry, rt_endzero)); 248 counter_u64_zero(rt->rt_pksent); 249 rt->rt_chain = NULL; 250 251 return (0); 252 } 253 254 static void 255 rtentry_dtor(void *mem, int size, void *arg) 256 { 257 struct rtentry *rt = mem; 258 259 RT_UNLOCK_COND(rt); 260 } 261 262 static void 263 vnet_route_init(const void *unused __unused) 264 { 265 struct domain *dom; 266 struct radix_node_head **rnh; 267 int table; 268 int fam; 269 270 V_rt_tables = malloc(rt_numfibs * (AF_MAX+1) * 271 sizeof(struct radix_node_head *), M_RTABLE, M_WAITOK|M_ZERO); 272 273 V_rtzone = uma_zcreate("rtentry", sizeof(struct rtentry), 274 rtentry_ctor, rtentry_dtor, 275 rtentry_zinit, rtentry_zfini, UMA_ALIGN_PTR, 0); 276 for (dom = domains; dom; dom = dom->dom_next) { 277 if (dom->dom_rtattach == NULL) 278 continue; 279 280 for (table = 0; table < rt_numfibs; table++) { 281 fam = dom->dom_family; 282 if (table != 0 && fam != AF_INET6 && fam != AF_INET) 283 break; 284 285 rnh = rt_tables_get_rnh_ptr(table, fam); 286 if (rnh == NULL) 287 panic("%s: rnh NULL", __func__); 288 dom->dom_rtattach((void **)rnh, 0); 289 } 290 } 291 } 292 VNET_SYSINIT(vnet_route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 293 vnet_route_init, 0); 294 295 #ifdef VIMAGE 296 static void 297 vnet_route_uninit(const void *unused __unused) 298 { 299 int table; 300 int fam; 301 struct domain *dom; 302 struct radix_node_head **rnh; 303 304 for (dom = domains; dom; dom = dom->dom_next) { 305 if (dom->dom_rtdetach == NULL) 306 continue; 307 308 for (table = 0; table < rt_numfibs; table++) { 309 fam = dom->dom_family; 310 311 if (table != 0 && fam != AF_INET6 && fam != AF_INET) 312 break; 313 314 rnh = rt_tables_get_rnh_ptr(table, fam); 315 if (rnh == NULL) 316 panic("%s: rnh NULL", __func__); 317 dom->dom_rtdetach((void **)rnh, 0); 318 } 319 } 320 321 free(V_rt_tables, M_RTABLE); 322 uma_zdestroy(V_rtzone); 323 } 324 VNET_SYSUNINIT(vnet_route_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 325 vnet_route_uninit, 0); 326 #endif 327 328 #ifndef _SYS_SYSPROTO_H_ 329 struct setfib_args { 330 int fibnum; 331 }; 332 #endif 333 int 334 sys_setfib(struct thread *td, struct setfib_args *uap) 335 { 336 if (uap->fibnum < 0 || uap->fibnum >= rt_numfibs) 337 return EINVAL; 338 td->td_proc->p_fibnum = uap->fibnum; 339 return (0); 340 } 341 342 /* 343 * Packet routing routines. 344 */ 345 void 346 rtalloc_ign_fib(struct route *ro, u_long ignore, u_int fibnum) 347 { 348 struct rtentry *rt; 349 350 if ((rt = ro->ro_rt) != NULL) { 351 if (rt->rt_ifp != NULL && rt->rt_flags & RTF_UP) 352 return; 353 RTFREE(rt); 354 ro->ro_rt = NULL; 355 } 356 ro->ro_rt = rtalloc1_fib(&ro->ro_dst, 1, ignore, fibnum); 357 if (ro->ro_rt) 358 RT_UNLOCK(ro->ro_rt); 359 } 360 361 /* 362 * Look up the route that matches the address given 363 * Or, at least try.. Create a cloned route if needed. 364 * 365 * The returned route, if any, is locked. 366 */ 367 struct rtentry * 368 rtalloc1(struct sockaddr *dst, int report, u_long ignflags) 369 { 370 371 return (rtalloc1_fib(dst, report, ignflags, RT_DEFAULT_FIB)); 372 } 373 374 struct rtentry * 375 rtalloc1_fib(struct sockaddr *dst, int report, u_long ignflags, 376 u_int fibnum) 377 { 378 struct radix_node_head *rnh; 379 struct radix_node *rn; 380 struct rtentry *newrt; 381 struct rt_addrinfo info; 382 int err = 0, msgtype = RTM_MISS; 383 384 KASSERT((fibnum < rt_numfibs), ("rtalloc1_fib: bad fibnum")); 385 rnh = rt_tables_get_rnh(fibnum, dst->sa_family); 386 newrt = NULL; 387 if (rnh == NULL) 388 goto miss; 389 390 /* 391 * Look up the address in the table for that Address Family 392 */ 393 RADIX_NODE_HEAD_RLOCK(rnh); 394 rn = rnh->rnh_matchaddr(dst, rnh); 395 if (rn && ((rn->rn_flags & RNF_ROOT) == 0)) { 396 newrt = RNTORT(rn); 397 RT_LOCK(newrt); 398 RT_ADDREF(newrt); 399 RADIX_NODE_HEAD_RUNLOCK(rnh); 400 return (newrt); 401 402 } else 403 RADIX_NODE_HEAD_RUNLOCK(rnh); 404 405 /* 406 * Either we hit the root or couldn't find any match, 407 * Which basically means 408 * "caint get there frm here" 409 */ 410 miss: 411 V_rtstat.rts_unreach++; 412 413 if (report) { 414 /* 415 * If required, report the failure to the supervising 416 * Authorities. 417 * For a delete, this is not an error. (report == 0) 418 */ 419 bzero(&info, sizeof(info)); 420 info.rti_info[RTAX_DST] = dst; 421 rt_missmsg_fib(msgtype, &info, 0, err, fibnum); 422 } 423 return (newrt); 424 } 425 426 /* 427 * Remove a reference count from an rtentry. 428 * If the count gets low enough, take it out of the routing table 429 */ 430 void 431 rtfree(struct rtentry *rt) 432 { 433 struct radix_node_head *rnh; 434 435 KASSERT(rt != NULL,("%s: NULL rt", __func__)); 436 rnh = rt_tables_get_rnh(rt->rt_fibnum, rt_key(rt)->sa_family); 437 KASSERT(rnh != NULL,("%s: NULL rnh", __func__)); 438 439 RT_LOCK_ASSERT(rt); 440 441 /* 442 * The callers should use RTFREE_LOCKED() or RTFREE(), so 443 * we should come here exactly with the last reference. 444 */ 445 RT_REMREF(rt); 446 if (rt->rt_refcnt > 0) { 447 log(LOG_DEBUG, "%s: %p has %d refs\n", __func__, rt, rt->rt_refcnt); 448 goto done; 449 } 450 451 /* 452 * On last reference give the "close method" a chance 453 * to cleanup private state. This also permits (for 454 * IPv4 and IPv6) a chance to decide if the routing table 455 * entry should be purged immediately or at a later time. 456 * When an immediate purge is to happen the close routine 457 * typically calls rtexpunge which clears the RTF_UP flag 458 * on the entry so that the code below reclaims the storage. 459 */ 460 if (rt->rt_refcnt == 0 && rnh->rnh_close) 461 rnh->rnh_close((struct radix_node *)rt, rnh); 462 463 /* 464 * If we are no longer "up" (and ref == 0) 465 * then we can free the resources associated 466 * with the route. 467 */ 468 if ((rt->rt_flags & RTF_UP) == 0) { 469 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT)) 470 panic("rtfree 2"); 471 /* 472 * the rtentry must have been removed from the routing table 473 * so it is represented in rttrash.. remove that now. 474 */ 475 V_rttrash--; 476 #ifdef DIAGNOSTIC 477 if (rt->rt_refcnt < 0) { 478 printf("rtfree: %p not freed (neg refs)\n", rt); 479 goto done; 480 } 481 #endif 482 /* 483 * release references on items we hold them on.. 484 * e.g other routes and ifaddrs. 485 */ 486 if (rt->rt_ifa) 487 ifa_free(rt->rt_ifa); 488 /* 489 * The key is separatly alloc'd so free it (see rt_setgate()). 490 * This also frees the gateway, as they are always malloc'd 491 * together. 492 */ 493 R_Free(rt_key(rt)); 494 495 /* 496 * and the rtentry itself of course 497 */ 498 uma_zfree(V_rtzone, rt); 499 return; 500 } 501 done: 502 RT_UNLOCK(rt); 503 } 504 505 506 /* 507 * Force a routing table entry to the specified 508 * destination to go through the given gateway. 509 * Normally called as a result of a routing redirect 510 * message from the network layer. 511 */ 512 void 513 rtredirect_fib(struct sockaddr *dst, 514 struct sockaddr *gateway, 515 struct sockaddr *netmask, 516 int flags, 517 struct sockaddr *src, 518 u_int fibnum) 519 { 520 struct rtentry *rt; 521 int error = 0; 522 short *stat = NULL; 523 struct rt_addrinfo info; 524 struct ifaddr *ifa; 525 struct radix_node_head *rnh; 526 527 ifa = NULL; 528 rnh = rt_tables_get_rnh(fibnum, dst->sa_family); 529 if (rnh == NULL) { 530 error = EAFNOSUPPORT; 531 goto out; 532 } 533 534 /* verify the gateway is directly reachable */ 535 if ((ifa = ifa_ifwithnet(gateway, 0, fibnum)) == NULL) { 536 error = ENETUNREACH; 537 goto out; 538 } 539 rt = rtalloc1_fib(dst, 0, 0UL, fibnum); /* NB: rt is locked */ 540 /* 541 * If the redirect isn't from our current router for this dst, 542 * it's either old or wrong. If it redirects us to ourselves, 543 * we have a routing loop, perhaps as a result of an interface 544 * going down recently. 545 */ 546 if (!(flags & RTF_DONE) && rt) { 547 if (!sa_equal(src, rt->rt_gateway)) { 548 error = EINVAL; 549 goto done; 550 } 551 if (rt->rt_ifa != ifa && ifa->ifa_addr->sa_family != AF_LINK) { 552 error = EINVAL; 553 goto done; 554 } 555 } 556 if ((flags & RTF_GATEWAY) && ifa_ifwithaddr_check(gateway)) { 557 error = EHOSTUNREACH; 558 goto done; 559 } 560 /* 561 * Create a new entry if we just got back a wildcard entry 562 * or the lookup failed. This is necessary for hosts 563 * which use routing redirects generated by smart gateways 564 * to dynamically build the routing tables. 565 */ 566 if (rt == NULL || (rt_mask(rt) && rt_mask(rt)->sa_len < 2)) 567 goto create; 568 /* 569 * Don't listen to the redirect if it's 570 * for a route to an interface. 571 */ 572 if (rt->rt_flags & RTF_GATEWAY) { 573 if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) { 574 /* 575 * Changing from route to net => route to host. 576 * Create new route, rather than smashing route to net. 577 */ 578 create: 579 if (rt != NULL) 580 RTFREE_LOCKED(rt); 581 582 flags |= RTF_DYNAMIC; 583 bzero((caddr_t)&info, sizeof(info)); 584 info.rti_info[RTAX_DST] = dst; 585 info.rti_info[RTAX_GATEWAY] = gateway; 586 info.rti_info[RTAX_NETMASK] = netmask; 587 info.rti_ifa = ifa; 588 info.rti_flags = flags; 589 error = rtrequest1_fib(RTM_ADD, &info, &rt, fibnum); 590 if (rt != NULL) { 591 RT_LOCK(rt); 592 flags = rt->rt_flags; 593 } 594 595 stat = &V_rtstat.rts_dynamic; 596 } else { 597 598 /* 599 * Smash the current notion of the gateway to 600 * this destination. Should check about netmask!!! 601 */ 602 if ((flags & RTF_GATEWAY) == 0) 603 rt->rt_flags &= ~RTF_GATEWAY; 604 rt->rt_flags |= RTF_MODIFIED; 605 flags |= RTF_MODIFIED; 606 stat = &V_rtstat.rts_newgateway; 607 /* 608 * add the key and gateway (in one malloc'd chunk). 609 */ 610 RT_UNLOCK(rt); 611 RADIX_NODE_HEAD_LOCK(rnh); 612 RT_LOCK(rt); 613 rt_setgate(rt, rt_key(rt), gateway); 614 RADIX_NODE_HEAD_UNLOCK(rnh); 615 } 616 } else 617 error = EHOSTUNREACH; 618 done: 619 if (rt) 620 RTFREE_LOCKED(rt); 621 out: 622 if (error) 623 V_rtstat.rts_badredirect++; 624 else if (stat != NULL) 625 (*stat)++; 626 bzero((caddr_t)&info, sizeof(info)); 627 info.rti_info[RTAX_DST] = dst; 628 info.rti_info[RTAX_GATEWAY] = gateway; 629 info.rti_info[RTAX_NETMASK] = netmask; 630 info.rti_info[RTAX_AUTHOR] = src; 631 rt_missmsg_fib(RTM_REDIRECT, &info, flags, error, fibnum); 632 if (ifa != NULL) 633 ifa_free(ifa); 634 } 635 636 /* 637 * Routing table ioctl interface. 638 */ 639 int 640 rtioctl_fib(u_long req, caddr_t data, u_int fibnum) 641 { 642 643 /* 644 * If more ioctl commands are added here, make sure the proper 645 * super-user checks are being performed because it is possible for 646 * prison-root to make it this far if raw sockets have been enabled 647 * in jails. 648 */ 649 #ifdef INET 650 /* Multicast goop, grrr... */ 651 return mrt_ioctl ? mrt_ioctl(req, data, fibnum) : EOPNOTSUPP; 652 #else /* INET */ 653 return ENXIO; 654 #endif /* INET */ 655 } 656 657 struct ifaddr * 658 ifa_ifwithroute(int flags, const struct sockaddr *dst, struct sockaddr *gateway, 659 u_int fibnum) 660 { 661 struct ifaddr *ifa; 662 int not_found = 0; 663 664 if ((flags & RTF_GATEWAY) == 0) { 665 /* 666 * If we are adding a route to an interface, 667 * and the interface is a pt to pt link 668 * we should search for the destination 669 * as our clue to the interface. Otherwise 670 * we can use the local address. 671 */ 672 ifa = NULL; 673 if (flags & RTF_HOST) 674 ifa = ifa_ifwithdstaddr(dst, fibnum); 675 if (ifa == NULL) 676 ifa = ifa_ifwithaddr(gateway); 677 } else { 678 /* 679 * If we are adding a route to a remote net 680 * or host, the gateway may still be on the 681 * other end of a pt to pt link. 682 */ 683 ifa = ifa_ifwithdstaddr(gateway, fibnum); 684 } 685 if (ifa == NULL) 686 ifa = ifa_ifwithnet(gateway, 0, fibnum); 687 if (ifa == NULL) { 688 struct rtentry *rt = rtalloc1_fib(gateway, 0, 0, fibnum); 689 if (rt == NULL) 690 return (NULL); 691 /* 692 * dismiss a gateway that is reachable only 693 * through the default router 694 */ 695 switch (gateway->sa_family) { 696 case AF_INET: 697 if (satosin(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) 698 not_found = 1; 699 break; 700 case AF_INET6: 701 if (IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(rt))->sin6_addr)) 702 not_found = 1; 703 break; 704 default: 705 break; 706 } 707 if (!not_found && rt->rt_ifa != NULL) { 708 ifa = rt->rt_ifa; 709 ifa_ref(ifa); 710 } 711 RT_REMREF(rt); 712 RT_UNLOCK(rt); 713 if (not_found || ifa == NULL) 714 return (NULL); 715 } 716 if (ifa->ifa_addr->sa_family != dst->sa_family) { 717 struct ifaddr *oifa = ifa; 718 ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); 719 if (ifa == NULL) 720 ifa = oifa; 721 else 722 ifa_free(oifa); 723 } 724 return (ifa); 725 } 726 727 /* 728 * Do appropriate manipulations of a routing tree given 729 * all the bits of info needed 730 */ 731 int 732 rtrequest_fib(int req, 733 struct sockaddr *dst, 734 struct sockaddr *gateway, 735 struct sockaddr *netmask, 736 int flags, 737 struct rtentry **ret_nrt, 738 u_int fibnum) 739 { 740 struct rt_addrinfo info; 741 742 if (dst->sa_len == 0) 743 return(EINVAL); 744 745 bzero((caddr_t)&info, sizeof(info)); 746 info.rti_flags = flags; 747 info.rti_info[RTAX_DST] = dst; 748 info.rti_info[RTAX_GATEWAY] = gateway; 749 info.rti_info[RTAX_NETMASK] = netmask; 750 return rtrequest1_fib(req, &info, ret_nrt, fibnum); 751 } 752 753 754 /* 755 * Copy most of @rt data into @info. 756 * 757 * If @flags contains NHR_COPY, copies dst,netmask and gw to the 758 * pointers specified by @info structure. Assume such pointers 759 * are zeroed sockaddr-like structures with sa_len field initialized 760 * to reflect size of the provided buffer. if no NHR_COPY is specified, 761 * point dst,netmask and gw @info fields to appropriate @rt values. 762 * 763 * if @flags contains NHR_REF, do refcouting on rt_ifp. 764 * 765 * Returns 0 on success. 766 */ 767 int 768 rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, int flags) 769 { 770 struct rt_metrics *rmx; 771 struct sockaddr *src, *dst; 772 int sa_len; 773 774 if (flags & NHR_COPY) { 775 /* Copy destination if dst is non-zero */ 776 src = rt_key(rt); 777 dst = info->rti_info[RTAX_DST]; 778 sa_len = src->sa_len; 779 if (dst != NULL) { 780 if (src->sa_len > dst->sa_len) 781 return (ENOMEM); 782 memcpy(dst, src, src->sa_len); 783 info->rti_addrs |= RTA_DST; 784 } 785 786 /* Copy mask if set && dst is non-zero */ 787 src = rt_mask(rt); 788 dst = info->rti_info[RTAX_NETMASK]; 789 if (src != NULL && dst != NULL) { 790 791 /* 792 * Radix stores different value in sa_len, 793 * assume rt_mask() to have the same length 794 * as rt_key() 795 */ 796 if (sa_len > dst->sa_len) 797 return (ENOMEM); 798 memcpy(dst, src, src->sa_len); 799 info->rti_addrs |= RTA_NETMASK; 800 } 801 802 /* Copy gateway is set && dst is non-zero */ 803 src = rt->rt_gateway; 804 dst = info->rti_info[RTAX_GATEWAY]; 805 if ((rt->rt_flags & RTF_GATEWAY) && src != NULL && dst != NULL){ 806 if (src->sa_len > dst->sa_len) 807 return (ENOMEM); 808 memcpy(dst, src, src->sa_len); 809 info->rti_addrs |= RTA_GATEWAY; 810 } 811 } else { 812 info->rti_info[RTAX_DST] = rt_key(rt); 813 info->rti_addrs |= RTA_DST; 814 if (rt_mask(rt) != NULL) { 815 info->rti_info[RTAX_NETMASK] = rt_mask(rt); 816 info->rti_addrs |= RTA_NETMASK; 817 } 818 if (rt->rt_flags & RTF_GATEWAY) { 819 info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; 820 info->rti_addrs |= RTA_GATEWAY; 821 } 822 } 823 824 rmx = info->rti_rmx; 825 if (rmx != NULL) { 826 info->rti_mflags |= RTV_MTU; 827 rmx->rmx_mtu = rt->rt_mtu; 828 } 829 830 info->rti_flags = rt->rt_flags; 831 info->rti_ifp = rt->rt_ifp; 832 info->rti_ifa = rt->rt_ifa; 833 834 if (flags & NHR_REF) { 835 /* Do 'traditional' refcouting */ 836 if_ref(info->rti_ifp); 837 } 838 839 return (0); 840 } 841 842 /* 843 * Lookups up route entry for @dst in RIB database for fib @fibnum. 844 * Exports entry data to @info using rt_exportinfo(). 845 * 846 * if @flags contains NHR_REF, refcouting is performed on rt_ifp. 847 * All references can be released later by calling rib_free_info() 848 * 849 * Returns 0 on success. 850 * Returns ENOENT for lookup failure, ENOMEM for export failure. 851 */ 852 int 853 rib_lookup_info(uint32_t fibnum, const struct sockaddr *dst, uint32_t flags, 854 uint32_t flowid, struct rt_addrinfo *info) 855 { 856 struct radix_node_head *rh; 857 struct radix_node *rn; 858 struct rtentry *rt; 859 int error; 860 861 KASSERT((fibnum < rt_numfibs), ("rib_lookup_rte: bad fibnum")); 862 rh = rt_tables_get_rnh(fibnum, dst->sa_family); 863 if (rh == NULL) 864 return (ENOENT); 865 866 RADIX_NODE_HEAD_RLOCK(rh); 867 rn = rh->rnh_matchaddr(__DECONST(void *, dst), rh); 868 if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) { 869 rt = RNTORT(rn); 870 /* Ensure route & ifp is UP */ 871 if (RT_LINK_IS_UP(rt->rt_ifp)) { 872 flags = (flags & NHR_REF) | NHR_COPY; 873 error = rt_exportinfo(rt, info, flags); 874 RADIX_NODE_HEAD_RUNLOCK(rh); 875 876 return (error); 877 } 878 } 879 RADIX_NODE_HEAD_RUNLOCK(rh); 880 881 return (ENOENT); 882 } 883 884 /* 885 * Releases all references acquired by rib_lookup_info() when 886 * called with NHR_REF flags. 887 */ 888 void 889 rib_free_info(struct rt_addrinfo *info) 890 { 891 892 if_rele(info->rti_ifp); 893 } 894 895 /* 896 * Iterates over all existing fibs in system calling 897 * @setwa_f function prior to traversing each fib. 898 * Calls @wa_f function for each element in current fib. 899 * If af is not AF_UNSPEC, iterates over fibs in particular 900 * address family. 901 */ 902 void 903 rt_foreach_fib_walk(int af, rt_setwarg_t *setwa_f, rt_walktree_f_t *wa_f, 904 void *arg) 905 { 906 struct radix_node_head *rnh; 907 uint32_t fibnum; 908 int i; 909 910 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { 911 /* Do we want some specific family? */ 912 if (af != AF_UNSPEC) { 913 rnh = rt_tables_get_rnh(fibnum, af); 914 if (rnh == NULL) 915 continue; 916 if (setwa_f != NULL) 917 setwa_f(rnh, fibnum, af, arg); 918 919 RADIX_NODE_HEAD_LOCK(rnh); 920 rnh->rnh_walktree(rnh, (walktree_f_t *)wa_f, arg); 921 RADIX_NODE_HEAD_UNLOCK(rnh); 922 continue; 923 } 924 925 for (i = 1; i <= AF_MAX; i++) { 926 rnh = rt_tables_get_rnh(fibnum, i); 927 if (rnh == NULL) 928 continue; 929 if (setwa_f != NULL) 930 setwa_f(rnh, fibnum, i, arg); 931 932 RADIX_NODE_HEAD_LOCK(rnh); 933 rnh->rnh_walktree(rnh, (walktree_f_t *)wa_f, arg); 934 RADIX_NODE_HEAD_UNLOCK(rnh); 935 } 936 } 937 } 938 939 struct rt_delinfo 940 { 941 struct rt_addrinfo info; 942 struct radix_node_head *rnh; 943 struct rtentry *head; 944 }; 945 946 /* 947 * Conditionally unlinks @rn from radix tree based 948 * on info data passed in @arg. 949 */ 950 static int 951 rt_checkdelroute(struct radix_node *rn, void *arg) 952 { 953 struct rt_delinfo *di; 954 struct rt_addrinfo *info; 955 struct rtentry *rt; 956 int error; 957 958 di = (struct rt_delinfo *)arg; 959 rt = (struct rtentry *)rn; 960 info = &di->info; 961 error = 0; 962 963 info->rti_info[RTAX_DST] = rt_key(rt); 964 info->rti_info[RTAX_NETMASK] = rt_mask(rt); 965 info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; 966 967 rt = rt_unlinkrte(di->rnh, info, &error); 968 if (rt == NULL) { 969 /* Either not allowed or not matched. Skip entry */ 970 return (0); 971 } 972 973 /* Entry was unlinked. Add to the list and return */ 974 rt->rt_chain = di->head; 975 di->head = rt; 976 977 return (0); 978 } 979 980 /* 981 * Iterates over all existing fibs in system. 982 * Deletes each element for which @filter_f function returned 983 * non-zero value. 984 * If @af is not AF_UNSPEC, iterates over fibs in particular 985 * address family. 986 */ 987 void 988 rt_foreach_fib_walk_del(int af, rt_filter_f_t *filter_f, void *arg) 989 { 990 struct radix_node_head *rnh; 991 struct rt_delinfo di; 992 struct rtentry *rt; 993 uint32_t fibnum; 994 int i, start, end; 995 996 bzero(&di, sizeof(di)); 997 di.info.rti_filter = filter_f; 998 di.info.rti_filterdata = arg; 999 1000 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { 1001 /* Do we want some specific family? */ 1002 if (af != AF_UNSPEC) { 1003 start = af; 1004 end = af; 1005 } else { 1006 start = 1; 1007 end = AF_MAX; 1008 } 1009 1010 for (i = start; i <= end; i++) { 1011 rnh = rt_tables_get_rnh(fibnum, i); 1012 if (rnh == NULL) 1013 continue; 1014 di.rnh = rnh; 1015 1016 RADIX_NODE_HEAD_LOCK(rnh); 1017 rnh->rnh_walktree(rnh, rt_checkdelroute, &di); 1018 RADIX_NODE_HEAD_UNLOCK(rnh); 1019 1020 if (di.head == NULL) 1021 continue; 1022 1023 /* We might have something to reclaim */ 1024 while (di.head != NULL) { 1025 rt = di.head; 1026 di.head = rt->rt_chain; 1027 rt->rt_chain = NULL; 1028 1029 /* TODO std rt -> rt_addrinfo export */ 1030 di.info.rti_info[RTAX_DST] = rt_key(rt); 1031 di.info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1032 1033 rt_notifydelete(rt, &di.info); 1034 RTFREE_LOCKED(rt); 1035 } 1036 1037 } 1038 } 1039 } 1040 1041 /* 1042 * Delete Routes for a Network Interface 1043 * 1044 * Called for each routing entry via the rnh->rnh_walktree() call above 1045 * to delete all route entries referencing a detaching network interface. 1046 * 1047 * Arguments: 1048 * rt pointer to rtentry 1049 * arg argument passed to rnh->rnh_walktree() - detaching interface 1050 * 1051 * Returns: 1052 * 0 successful 1053 * errno failed - reason indicated 1054 */ 1055 static int 1056 rt_ifdelroute(const struct rtentry *rt, void *arg) 1057 { 1058 struct ifnet *ifp = arg; 1059 1060 if (rt->rt_ifp != ifp) 1061 return (0); 1062 1063 /* 1064 * Protect (sorta) against walktree recursion problems 1065 * with cloned routes 1066 */ 1067 if ((rt->rt_flags & RTF_UP) == 0) 1068 return (0); 1069 1070 return (1); 1071 } 1072 1073 /* 1074 * Delete all remaining routes using this interface 1075 * Unfortuneatly the only way to do this is to slog through 1076 * the entire routing table looking for routes which point 1077 * to this interface...oh well... 1078 */ 1079 void 1080 rt_flushifroutes(struct ifnet *ifp) 1081 { 1082 1083 rt_foreach_fib_walk_del(AF_UNSPEC, rt_ifdelroute, ifp); 1084 } 1085 1086 /* 1087 * Conditionally unlinks rtentry matching data inside @info from @rnh. 1088 * Returns unlinked, locked and referenced @rtentry on success, 1089 * Returns NULL and sets @perror to: 1090 * ESRCH - if prefix was not found, 1091 * EADDRINUSE - if trying to delete PINNED route without appropriate flag. 1092 * ENOENT - if supplied filter function returned 0 (not matched). 1093 */ 1094 static struct rtentry * 1095 rt_unlinkrte(struct radix_node_head *rnh, struct rt_addrinfo *info, int *perror) 1096 { 1097 struct sockaddr *dst, *netmask; 1098 struct rtentry *rt; 1099 struct radix_node *rn; 1100 1101 dst = info->rti_info[RTAX_DST]; 1102 netmask = info->rti_info[RTAX_NETMASK]; 1103 1104 rt = (struct rtentry *)rnh->rnh_lookup(dst, netmask, rnh); 1105 if (rt == NULL) { 1106 *perror = ESRCH; 1107 return (NULL); 1108 } 1109 1110 if ((info->rti_flags & RTF_PINNED) == 0) { 1111 /* Check if target route can be deleted */ 1112 if (rt->rt_flags & RTF_PINNED) { 1113 *perror = EADDRINUSE; 1114 return (NULL); 1115 } 1116 } 1117 1118 if (info->rti_filter != NULL) { 1119 if (info->rti_filter(rt, info->rti_filterdata) == 0) { 1120 /* Not matched */ 1121 *perror = ENOENT; 1122 return (NULL); 1123 } 1124 1125 /* 1126 * Filter function requested rte deletion. 1127 * Ease the caller work by filling in remaining info 1128 * from that particular entry. 1129 */ 1130 info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1131 } 1132 1133 /* 1134 * Remove the item from the tree and return it. 1135 * Complain if it is not there and do no more processing. 1136 */ 1137 *perror = ESRCH; 1138 #ifdef RADIX_MPATH 1139 if (rn_mpath_capable(rnh)) 1140 rn = rt_mpath_unlink(rnh, info, rt, perror); 1141 else 1142 #endif 1143 rn = rnh->rnh_deladdr(dst, netmask, rnh); 1144 if (rn == NULL) 1145 return (NULL); 1146 1147 if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT)) 1148 panic ("rtrequest delete"); 1149 1150 rt = RNTORT(rn); 1151 RT_LOCK(rt); 1152 RT_ADDREF(rt); 1153 rt->rt_flags &= ~RTF_UP; 1154 1155 *perror = 0; 1156 1157 return (rt); 1158 } 1159 1160 static void 1161 rt_notifydelete(struct rtentry *rt, struct rt_addrinfo *info) 1162 { 1163 struct ifaddr *ifa; 1164 1165 /* 1166 * give the protocol a chance to keep things in sync. 1167 */ 1168 ifa = rt->rt_ifa; 1169 if (ifa != NULL && ifa->ifa_rtrequest != NULL) 1170 ifa->ifa_rtrequest(RTM_DELETE, rt, info); 1171 1172 /* 1173 * One more rtentry floating around that is not 1174 * linked to the routing table. rttrash will be decremented 1175 * when RTFREE(rt) is eventually called. 1176 */ 1177 V_rttrash++; 1178 } 1179 1180 1181 /* 1182 * These (questionable) definitions of apparent local variables apply 1183 * to the next two functions. XXXXXX!!! 1184 */ 1185 #define dst info->rti_info[RTAX_DST] 1186 #define gateway info->rti_info[RTAX_GATEWAY] 1187 #define netmask info->rti_info[RTAX_NETMASK] 1188 #define ifaaddr info->rti_info[RTAX_IFA] 1189 #define ifpaddr info->rti_info[RTAX_IFP] 1190 #define flags info->rti_flags 1191 1192 /* 1193 * Look up rt_addrinfo for a specific fib. Note that if rti_ifa is defined, 1194 * it will be referenced so the caller must free it. 1195 */ 1196 int 1197 rt_getifa_fib(struct rt_addrinfo *info, u_int fibnum) 1198 { 1199 struct ifaddr *ifa; 1200 int error = 0; 1201 1202 /* 1203 * ifp may be specified by sockaddr_dl 1204 * when protocol address is ambiguous. 1205 */ 1206 if (info->rti_ifp == NULL && ifpaddr != NULL && 1207 ifpaddr->sa_family == AF_LINK && 1208 (ifa = ifa_ifwithnet(ifpaddr, 0, fibnum)) != NULL) { 1209 info->rti_ifp = ifa->ifa_ifp; 1210 ifa_free(ifa); 1211 } 1212 if (info->rti_ifa == NULL && ifaaddr != NULL) 1213 info->rti_ifa = ifa_ifwithaddr(ifaaddr); 1214 if (info->rti_ifa == NULL) { 1215 struct sockaddr *sa; 1216 1217 sa = ifaaddr != NULL ? ifaaddr : 1218 (gateway != NULL ? gateway : dst); 1219 if (sa != NULL && info->rti_ifp != NULL) 1220 info->rti_ifa = ifaof_ifpforaddr(sa, info->rti_ifp); 1221 else if (dst != NULL && gateway != NULL) 1222 info->rti_ifa = ifa_ifwithroute(flags, dst, gateway, 1223 fibnum); 1224 else if (sa != NULL) 1225 info->rti_ifa = ifa_ifwithroute(flags, sa, sa, 1226 fibnum); 1227 } 1228 if ((ifa = info->rti_ifa) != NULL) { 1229 if (info->rti_ifp == NULL) 1230 info->rti_ifp = ifa->ifa_ifp; 1231 } else 1232 error = ENETUNREACH; 1233 return (error); 1234 } 1235 1236 static int 1237 if_updatemtu_cb(struct radix_node *rn, void *arg) 1238 { 1239 struct rtentry *rt; 1240 struct if_mtuinfo *ifmtu; 1241 1242 rt = (struct rtentry *)rn; 1243 ifmtu = (struct if_mtuinfo *)arg; 1244 1245 if (rt->rt_ifp != ifmtu->ifp) 1246 return (0); 1247 1248 if (rt->rt_mtu >= ifmtu->mtu) { 1249 /* We have to decrease mtu regardless of flags */ 1250 rt->rt_mtu = ifmtu->mtu; 1251 return (0); 1252 } 1253 1254 /* 1255 * New MTU is bigger. Check if are allowed to alter it 1256 */ 1257 if ((rt->rt_flags & (RTF_FIXEDMTU | RTF_GATEWAY | RTF_HOST)) != 0) { 1258 1259 /* 1260 * Skip routes with user-supplied MTU and 1261 * non-interface routes 1262 */ 1263 return (0); 1264 } 1265 1266 /* We are safe to update route MTU */ 1267 rt->rt_mtu = ifmtu->mtu; 1268 1269 return (0); 1270 } 1271 1272 void 1273 rt_updatemtu(struct ifnet *ifp) 1274 { 1275 struct if_mtuinfo ifmtu; 1276 struct radix_node_head *rnh; 1277 int i, j; 1278 1279 ifmtu.ifp = ifp; 1280 1281 /* 1282 * Try to update rt_mtu for all routes using this interface 1283 * Unfortunately the only way to do this is to traverse all 1284 * routing tables in all fibs/domains. 1285 */ 1286 for (i = 1; i <= AF_MAX; i++) { 1287 ifmtu.mtu = if_getmtu_family(ifp, i); 1288 for (j = 0; j < rt_numfibs; j++) { 1289 rnh = rt_tables_get_rnh(j, i); 1290 if (rnh == NULL) 1291 continue; 1292 RADIX_NODE_HEAD_LOCK(rnh); 1293 rnh->rnh_walktree(rnh, if_updatemtu_cb, &ifmtu); 1294 RADIX_NODE_HEAD_UNLOCK(rnh); 1295 } 1296 } 1297 } 1298 1299 1300 #if 0 1301 int p_sockaddr(char *buf, int buflen, struct sockaddr *s); 1302 int rt_print(char *buf, int buflen, struct rtentry *rt); 1303 1304 int 1305 p_sockaddr(char *buf, int buflen, struct sockaddr *s) 1306 { 1307 void *paddr = NULL; 1308 1309 switch (s->sa_family) { 1310 case AF_INET: 1311 paddr = &((struct sockaddr_in *)s)->sin_addr; 1312 break; 1313 case AF_INET6: 1314 paddr = &((struct sockaddr_in6 *)s)->sin6_addr; 1315 break; 1316 } 1317 1318 if (paddr == NULL) 1319 return (0); 1320 1321 if (inet_ntop(s->sa_family, paddr, buf, buflen) == NULL) 1322 return (0); 1323 1324 return (strlen(buf)); 1325 } 1326 1327 int 1328 rt_print(char *buf, int buflen, struct rtentry *rt) 1329 { 1330 struct sockaddr *addr, *mask; 1331 int i = 0; 1332 1333 addr = rt_key(rt); 1334 mask = rt_mask(rt); 1335 1336 i = p_sockaddr(buf, buflen, addr); 1337 if (!(rt->rt_flags & RTF_HOST)) { 1338 buf[i++] = '/'; 1339 i += p_sockaddr(buf + i, buflen - i, mask); 1340 } 1341 1342 if (rt->rt_flags & RTF_GATEWAY) { 1343 buf[i++] = '>'; 1344 i += p_sockaddr(buf + i, buflen - i, rt->rt_gateway); 1345 } 1346 1347 return (i); 1348 } 1349 #endif 1350 1351 #ifdef RADIX_MPATH 1352 /* 1353 * Deletes key for single-path routes, unlinks rtentry with 1354 * gateway specified in @info from multi-path routes. 1355 * 1356 * Returnes unlinked entry. In case of failure, returns NULL 1357 * and sets @perror to ESRCH. 1358 */ 1359 static struct radix_node * 1360 rt_mpath_unlink(struct radix_node_head *rnh, struct rt_addrinfo *info, 1361 struct rtentry *rto, int *perror) 1362 { 1363 /* 1364 * if we got multipath routes, we require users to specify 1365 * a matching RTAX_GATEWAY. 1366 */ 1367 struct rtentry *rt; // *rto = NULL; 1368 struct radix_node *rn; 1369 struct sockaddr *gw; 1370 1371 gw = info->rti_info[RTAX_GATEWAY]; 1372 rt = rt_mpath_matchgate(rto, gw); 1373 if (rt == NULL) { 1374 *perror = ESRCH; 1375 return (NULL); 1376 } 1377 1378 /* 1379 * this is the first entry in the chain 1380 */ 1381 if (rto == rt) { 1382 rn = rn_mpath_next((struct radix_node *)rt); 1383 /* 1384 * there is another entry, now it's active 1385 */ 1386 if (rn) { 1387 rto = RNTORT(rn); 1388 RT_LOCK(rto); 1389 rto->rt_flags |= RTF_UP; 1390 RT_UNLOCK(rto); 1391 } else if (rt->rt_flags & RTF_GATEWAY) { 1392 /* 1393 * For gateway routes, we need to 1394 * make sure that we we are deleting 1395 * the correct gateway. 1396 * rt_mpath_matchgate() does not 1397 * check the case when there is only 1398 * one route in the chain. 1399 */ 1400 if (gw && 1401 (rt->rt_gateway->sa_len != gw->sa_len || 1402 memcmp(rt->rt_gateway, gw, gw->sa_len))) { 1403 *perror = ESRCH; 1404 return (NULL); 1405 } 1406 } 1407 1408 /* 1409 * use the normal delete code to remove 1410 * the first entry 1411 */ 1412 rn = rnh->rnh_deladdr(dst, netmask, rnh); 1413 *perror = 0; 1414 return (rn); 1415 } 1416 1417 /* 1418 * if the entry is 2nd and on up 1419 */ 1420 if (rt_mpath_deldup(rto, rt) == 0) 1421 panic ("rtrequest1: rt_mpath_deldup"); 1422 *perror = 0; 1423 rn = (struct radix_node *)rt; 1424 return (rn); 1425 } 1426 #endif 1427 1428 #ifdef FLOWTABLE 1429 static struct rtentry * 1430 rt_flowtable_check_route(struct radix_node_head *rnh, struct rt_addrinfo *info) 1431 { 1432 #if defined(INET6) || defined(INET) 1433 struct radix_node *rn; 1434 #endif 1435 struct rtentry *rt0; 1436 1437 rt0 = NULL; 1438 /* "flow-table" only supports IPv6 and IPv4 at the moment. */ 1439 switch (dst->sa_family) { 1440 #ifdef INET6 1441 case AF_INET6: 1442 #endif 1443 #ifdef INET 1444 case AF_INET: 1445 #endif 1446 #if defined(INET6) || defined(INET) 1447 rn = rnh->rnh_matchaddr(dst, rnh); 1448 if (rn && ((rn->rn_flags & RNF_ROOT) == 0)) { 1449 struct sockaddr *mask; 1450 u_char *m, *n; 1451 int len; 1452 1453 /* 1454 * compare mask to see if the new route is 1455 * more specific than the existing one 1456 */ 1457 rt0 = RNTORT(rn); 1458 RT_LOCK(rt0); 1459 RT_ADDREF(rt0); 1460 RT_UNLOCK(rt0); 1461 /* 1462 * A host route is already present, so 1463 * leave the flow-table entries as is. 1464 */ 1465 if (rt0->rt_flags & RTF_HOST) { 1466 RTFREE(rt0); 1467 rt0 = NULL; 1468 } else if (!(flags & RTF_HOST) && netmask) { 1469 mask = rt_mask(rt0); 1470 len = mask->sa_len; 1471 m = (u_char *)mask; 1472 n = (u_char *)netmask; 1473 while (len-- > 0) { 1474 if (*n != *m) 1475 break; 1476 n++; 1477 m++; 1478 } 1479 if (len == 0 || (*n < *m)) { 1480 RTFREE(rt0); 1481 rt0 = NULL; 1482 } 1483 } 1484 } 1485 #endif/* INET6 || INET */ 1486 } 1487 1488 return (rt0); 1489 } 1490 #endif 1491 1492 int 1493 rtrequest1_fib(int req, struct rt_addrinfo *info, struct rtentry **ret_nrt, 1494 u_int fibnum) 1495 { 1496 int error = 0; 1497 struct rtentry *rt, *rt_old; 1498 #ifdef FLOWTABLE 1499 struct rtentry *rt0; 1500 #endif 1501 struct radix_node *rn; 1502 struct radix_node_head *rnh; 1503 struct ifaddr *ifa; 1504 struct sockaddr *ndst; 1505 struct sockaddr_storage mdst; 1506 1507 KASSERT((fibnum < rt_numfibs), ("rtrequest1_fib: bad fibnum")); 1508 KASSERT((flags & RTF_RNH_LOCKED) == 0, ("rtrequest1_fib: locked")); 1509 switch (dst->sa_family) { 1510 case AF_INET6: 1511 case AF_INET: 1512 /* We support multiple FIBs. */ 1513 break; 1514 default: 1515 fibnum = RT_DEFAULT_FIB; 1516 break; 1517 } 1518 1519 /* 1520 * Find the correct routing tree to use for this Address Family 1521 */ 1522 rnh = rt_tables_get_rnh(fibnum, dst->sa_family); 1523 if (rnh == NULL) 1524 return (EAFNOSUPPORT); 1525 1526 /* 1527 * If we are adding a host route then we don't want to put 1528 * a netmask in the tree, nor do we want to clone it. 1529 */ 1530 if (flags & RTF_HOST) 1531 netmask = NULL; 1532 1533 switch (req) { 1534 case RTM_DELETE: 1535 if (netmask) { 1536 rt_maskedcopy(dst, (struct sockaddr *)&mdst, netmask); 1537 dst = (struct sockaddr *)&mdst; 1538 } 1539 1540 RADIX_NODE_HEAD_LOCK(rnh); 1541 rt = rt_unlinkrte(rnh, info, &error); 1542 RADIX_NODE_HEAD_UNLOCK(rnh); 1543 if (error != 0) 1544 return (error); 1545 1546 rt_notifydelete(rt, info); 1547 1548 /* 1549 * If the caller wants it, then it can have it, 1550 * but it's up to it to free the rtentry as we won't be 1551 * doing it. 1552 */ 1553 if (ret_nrt) { 1554 *ret_nrt = rt; 1555 RT_UNLOCK(rt); 1556 } else 1557 RTFREE_LOCKED(rt); 1558 break; 1559 case RTM_RESOLVE: 1560 /* 1561 * resolve was only used for route cloning 1562 * here for compat 1563 */ 1564 break; 1565 case RTM_ADD: 1566 if ((flags & RTF_GATEWAY) && !gateway) 1567 return (EINVAL); 1568 if (dst && gateway && (dst->sa_family != gateway->sa_family) && 1569 (gateway->sa_family != AF_UNSPEC) && (gateway->sa_family != AF_LINK)) 1570 return (EINVAL); 1571 1572 if (info->rti_ifa == NULL) { 1573 error = rt_getifa_fib(info, fibnum); 1574 if (error) 1575 return (error); 1576 } else 1577 ifa_ref(info->rti_ifa); 1578 ifa = info->rti_ifa; 1579 rt = uma_zalloc(V_rtzone, M_NOWAIT); 1580 if (rt == NULL) { 1581 ifa_free(ifa); 1582 return (ENOBUFS); 1583 } 1584 rt->rt_flags = RTF_UP | flags; 1585 rt->rt_fibnum = fibnum; 1586 /* 1587 * Add the gateway. Possibly re-malloc-ing the storage for it. 1588 */ 1589 if ((error = rt_setgate(rt, dst, gateway)) != 0) { 1590 ifa_free(ifa); 1591 uma_zfree(V_rtzone, rt); 1592 return (error); 1593 } 1594 1595 /* 1596 * point to the (possibly newly malloc'd) dest address. 1597 */ 1598 ndst = (struct sockaddr *)rt_key(rt); 1599 1600 /* 1601 * make sure it contains the value we want (masked if needed). 1602 */ 1603 if (netmask) { 1604 rt_maskedcopy(dst, ndst, netmask); 1605 } else 1606 bcopy(dst, ndst, dst->sa_len); 1607 1608 /* 1609 * We use the ifa reference returned by rt_getifa_fib(). 1610 * This moved from below so that rnh->rnh_addaddr() can 1611 * examine the ifa and ifa->ifa_ifp if it so desires. 1612 */ 1613 rt->rt_ifa = ifa; 1614 rt->rt_ifp = ifa->ifa_ifp; 1615 rt->rt_weight = 1; 1616 1617 rt_setmetrics(info, rt); 1618 1619 RADIX_NODE_HEAD_LOCK(rnh); 1620 RT_LOCK(rt); 1621 #ifdef RADIX_MPATH 1622 /* do not permit exactly the same dst/mask/gw pair */ 1623 if (rn_mpath_capable(rnh) && 1624 rt_mpath_conflict(rnh, rt, netmask)) { 1625 RADIX_NODE_HEAD_UNLOCK(rnh); 1626 1627 ifa_free(rt->rt_ifa); 1628 R_Free(rt_key(rt)); 1629 uma_zfree(V_rtzone, rt); 1630 return (EEXIST); 1631 } 1632 #endif 1633 1634 #ifdef FLOWTABLE 1635 rt0 = rt_flowtable_check_route(rnh, info); 1636 #endif /* FLOWTABLE */ 1637 1638 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */ 1639 rn = rnh->rnh_addaddr(ndst, netmask, rnh, rt->rt_nodes); 1640 1641 rt_old = NULL; 1642 if (rn == NULL && (info->rti_flags & RTF_PINNED) != 0) { 1643 1644 /* 1645 * Force removal and re-try addition 1646 * TODO: better multipath&pinned support 1647 */ 1648 struct sockaddr *info_dst = info->rti_info[RTAX_DST]; 1649 info->rti_info[RTAX_DST] = ndst; 1650 /* Do not delete existing PINNED(interface) routes */ 1651 info->rti_flags &= ~RTF_PINNED; 1652 rt_old = rt_unlinkrte(rnh, info, &error); 1653 info->rti_flags |= RTF_PINNED; 1654 info->rti_info[RTAX_DST] = info_dst; 1655 if (rt_old != NULL) 1656 rn = rnh->rnh_addaddr(ndst, netmask, rnh, 1657 rt->rt_nodes); 1658 } 1659 RADIX_NODE_HEAD_UNLOCK(rnh); 1660 1661 if (rt_old != NULL) 1662 RT_UNLOCK(rt_old); 1663 1664 /* 1665 * If it still failed to go into the tree, 1666 * then un-make it (this should be a function) 1667 */ 1668 if (rn == NULL) { 1669 ifa_free(rt->rt_ifa); 1670 R_Free(rt_key(rt)); 1671 uma_zfree(V_rtzone, rt); 1672 #ifdef FLOWTABLE 1673 if (rt0 != NULL) 1674 RTFREE(rt0); 1675 #endif 1676 return (EEXIST); 1677 } 1678 #ifdef FLOWTABLE 1679 else if (rt0 != NULL) { 1680 flowtable_route_flush(dst->sa_family, rt0); 1681 RTFREE(rt0); 1682 } 1683 #endif 1684 1685 if (rt_old != NULL) { 1686 rt_notifydelete(rt_old, info); 1687 RTFREE(rt_old); 1688 } 1689 1690 /* 1691 * If this protocol has something to add to this then 1692 * allow it to do that as well. 1693 */ 1694 if (ifa->ifa_rtrequest) 1695 ifa->ifa_rtrequest(req, rt, info); 1696 1697 /* 1698 * actually return a resultant rtentry and 1699 * give the caller a single reference. 1700 */ 1701 if (ret_nrt) { 1702 *ret_nrt = rt; 1703 RT_ADDREF(rt); 1704 } 1705 RT_UNLOCK(rt); 1706 break; 1707 case RTM_CHANGE: 1708 RADIX_NODE_HEAD_LOCK(rnh); 1709 error = rtrequest1_fib_change(rnh, info, ret_nrt, fibnum); 1710 RADIX_NODE_HEAD_UNLOCK(rnh); 1711 break; 1712 default: 1713 error = EOPNOTSUPP; 1714 } 1715 1716 return (error); 1717 } 1718 1719 #undef dst 1720 #undef gateway 1721 #undef netmask 1722 #undef ifaaddr 1723 #undef ifpaddr 1724 #undef flags 1725 1726 static int 1727 rtrequest1_fib_change(struct radix_node_head *rnh, struct rt_addrinfo *info, 1728 struct rtentry **ret_nrt, u_int fibnum) 1729 { 1730 struct rtentry *rt = NULL; 1731 int error = 0; 1732 int free_ifa = 0; 1733 int family, mtu; 1734 struct if_mtuinfo ifmtu; 1735 1736 rt = (struct rtentry *)rnh->rnh_lookup(info->rti_info[RTAX_DST], 1737 info->rti_info[RTAX_NETMASK], rnh); 1738 1739 if (rt == NULL) 1740 return (ESRCH); 1741 1742 #ifdef RADIX_MPATH 1743 /* 1744 * If we got multipath routes, 1745 * we require users to specify a matching RTAX_GATEWAY. 1746 */ 1747 if (rn_mpath_capable(rnh)) { 1748 rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]); 1749 if (rt == NULL) 1750 return (ESRCH); 1751 } 1752 #endif 1753 1754 RT_LOCK(rt); 1755 1756 rt_setmetrics(info, rt); 1757 1758 /* 1759 * New gateway could require new ifaddr, ifp; 1760 * flags may also be different; ifp may be specified 1761 * by ll sockaddr when protocol address is ambiguous 1762 */ 1763 if (((rt->rt_flags & RTF_GATEWAY) && 1764 info->rti_info[RTAX_GATEWAY] != NULL) || 1765 info->rti_info[RTAX_IFP] != NULL || 1766 (info->rti_info[RTAX_IFA] != NULL && 1767 !sa_equal(info->rti_info[RTAX_IFA], rt->rt_ifa->ifa_addr))) { 1768 1769 error = rt_getifa_fib(info, fibnum); 1770 if (info->rti_ifa != NULL) 1771 free_ifa = 1; 1772 1773 if (error != 0) 1774 goto bad; 1775 } 1776 1777 /* Check if outgoing interface has changed */ 1778 if (info->rti_ifa != NULL && info->rti_ifa != rt->rt_ifa && 1779 rt->rt_ifa != NULL && rt->rt_ifa->ifa_rtrequest != NULL) { 1780 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, info); 1781 ifa_free(rt->rt_ifa); 1782 } 1783 /* Update gateway address */ 1784 if (info->rti_info[RTAX_GATEWAY] != NULL) { 1785 error = rt_setgate(rt, rt_key(rt), info->rti_info[RTAX_GATEWAY]); 1786 if (error != 0) 1787 goto bad; 1788 1789 rt->rt_flags &= ~RTF_GATEWAY; 1790 rt->rt_flags |= (RTF_GATEWAY & info->rti_flags); 1791 } 1792 1793 if (info->rti_ifa != NULL && info->rti_ifa != rt->rt_ifa) { 1794 ifa_ref(info->rti_ifa); 1795 rt->rt_ifa = info->rti_ifa; 1796 rt->rt_ifp = info->rti_ifp; 1797 } 1798 /* Allow some flags to be toggled on change. */ 1799 rt->rt_flags &= ~RTF_FMASK; 1800 rt->rt_flags |= info->rti_flags & RTF_FMASK; 1801 1802 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest != NULL) 1803 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, info); 1804 1805 /* Alter route MTU if necessary */ 1806 if (rt->rt_ifp != NULL) { 1807 family = info->rti_info[RTAX_DST]->sa_family; 1808 mtu = if_getmtu_family(rt->rt_ifp, family); 1809 /* Set default MTU */ 1810 if (rt->rt_mtu == 0) 1811 rt->rt_mtu = mtu; 1812 if (rt->rt_mtu != mtu) { 1813 /* Check if we really need to update */ 1814 ifmtu.ifp = rt->rt_ifp; 1815 ifmtu.mtu = mtu; 1816 if_updatemtu_cb(rt->rt_nodes, &ifmtu); 1817 } 1818 } 1819 1820 if (ret_nrt) { 1821 *ret_nrt = rt; 1822 RT_ADDREF(rt); 1823 } 1824 bad: 1825 RT_UNLOCK(rt); 1826 if (free_ifa != 0) 1827 ifa_free(info->rti_ifa); 1828 return (error); 1829 } 1830 1831 static void 1832 rt_setmetrics(const struct rt_addrinfo *info, struct rtentry *rt) 1833 { 1834 1835 if (info->rti_mflags & RTV_MTU) { 1836 if (info->rti_rmx->rmx_mtu != 0) { 1837 1838 /* 1839 * MTU was explicitly provided by user. 1840 * Keep it. 1841 */ 1842 rt->rt_flags |= RTF_FIXEDMTU; 1843 } else { 1844 1845 /* 1846 * User explicitly sets MTU to 0. 1847 * Assume rollback to default. 1848 */ 1849 rt->rt_flags &= ~RTF_FIXEDMTU; 1850 } 1851 rt->rt_mtu = info->rti_rmx->rmx_mtu; 1852 } 1853 if (info->rti_mflags & RTV_WEIGHT) 1854 rt->rt_weight = info->rti_rmx->rmx_weight; 1855 /* Kernel -> userland timebase conversion. */ 1856 if (info->rti_mflags & RTV_EXPIRE) 1857 rt->rt_expire = info->rti_rmx->rmx_expire ? 1858 info->rti_rmx->rmx_expire - time_second + time_uptime : 0; 1859 } 1860 1861 int 1862 rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate) 1863 { 1864 /* XXX dst may be overwritten, can we move this to below */ 1865 int dlen = SA_SIZE(dst), glen = SA_SIZE(gate); 1866 1867 /* 1868 * Prepare to store the gateway in rt->rt_gateway. 1869 * Both dst and gateway are stored one after the other in the same 1870 * malloc'd chunk. If we have room, we can reuse the old buffer, 1871 * rt_gateway already points to the right place. 1872 * Otherwise, malloc a new block and update the 'dst' address. 1873 */ 1874 if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway)) { 1875 caddr_t new; 1876 1877 R_Malloc(new, caddr_t, dlen + glen); 1878 if (new == NULL) 1879 return ENOBUFS; 1880 /* 1881 * XXX note, we copy from *dst and not *rt_key(rt) because 1882 * rt_setgate() can be called to initialize a newly 1883 * allocated route entry, in which case rt_key(rt) == NULL 1884 * (and also rt->rt_gateway == NULL). 1885 * Free()/free() handle a NULL argument just fine. 1886 */ 1887 bcopy(dst, new, dlen); 1888 R_Free(rt_key(rt)); /* free old block, if any */ 1889 rt_key(rt) = (struct sockaddr *)new; 1890 rt->rt_gateway = (struct sockaddr *)(new + dlen); 1891 } 1892 1893 /* 1894 * Copy the new gateway value into the memory chunk. 1895 */ 1896 bcopy(gate, rt->rt_gateway, glen); 1897 1898 return (0); 1899 } 1900 1901 void 1902 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst, struct sockaddr *netmask) 1903 { 1904 u_char *cp1 = (u_char *)src; 1905 u_char *cp2 = (u_char *)dst; 1906 u_char *cp3 = (u_char *)netmask; 1907 u_char *cplim = cp2 + *cp3; 1908 u_char *cplim2 = cp2 + *cp1; 1909 1910 *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */ 1911 cp3 += 2; 1912 if (cplim > cplim2) 1913 cplim = cplim2; 1914 while (cp2 < cplim) 1915 *cp2++ = *cp1++ & *cp3++; 1916 if (cp2 < cplim2) 1917 bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2)); 1918 } 1919 1920 /* 1921 * Set up a routing table entry, normally 1922 * for an interface. 1923 */ 1924 #define _SOCKADDR_TMPSIZE 128 /* Not too big.. kernel stack size is limited */ 1925 static inline int 1926 rtinit1(struct ifaddr *ifa, int cmd, int flags, int fibnum) 1927 { 1928 struct sockaddr *dst; 1929 struct sockaddr *netmask; 1930 struct rtentry *rt = NULL; 1931 struct rt_addrinfo info; 1932 int error = 0; 1933 int startfib, endfib; 1934 char tempbuf[_SOCKADDR_TMPSIZE]; 1935 int didwork = 0; 1936 int a_failure = 0; 1937 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1938 struct radix_node_head *rnh; 1939 1940 if (flags & RTF_HOST) { 1941 dst = ifa->ifa_dstaddr; 1942 netmask = NULL; 1943 } else { 1944 dst = ifa->ifa_addr; 1945 netmask = ifa->ifa_netmask; 1946 } 1947 if (dst->sa_len == 0) 1948 return(EINVAL); 1949 switch (dst->sa_family) { 1950 case AF_INET6: 1951 case AF_INET: 1952 /* We support multiple FIBs. */ 1953 break; 1954 default: 1955 fibnum = RT_DEFAULT_FIB; 1956 break; 1957 } 1958 if (fibnum == RT_ALL_FIBS) { 1959 if (V_rt_add_addr_allfibs == 0 && cmd == (int)RTM_ADD) 1960 startfib = endfib = ifa->ifa_ifp->if_fib; 1961 else { 1962 startfib = 0; 1963 endfib = rt_numfibs - 1; 1964 } 1965 } else { 1966 KASSERT((fibnum < rt_numfibs), ("rtinit1: bad fibnum")); 1967 startfib = fibnum; 1968 endfib = fibnum; 1969 } 1970 1971 /* 1972 * If it's a delete, check that if it exists, 1973 * it's on the correct interface or we might scrub 1974 * a route to another ifa which would 1975 * be confusing at best and possibly worse. 1976 */ 1977 if (cmd == RTM_DELETE) { 1978 /* 1979 * It's a delete, so it should already exist.. 1980 * If it's a net, mask off the host bits 1981 * (Assuming we have a mask) 1982 * XXX this is kinda inet specific.. 1983 */ 1984 if (netmask != NULL) { 1985 rt_maskedcopy(dst, (struct sockaddr *)tempbuf, netmask); 1986 dst = (struct sockaddr *)tempbuf; 1987 } 1988 } 1989 /* 1990 * Now go through all the requested tables (fibs) and do the 1991 * requested action. Realistically, this will either be fib 0 1992 * for protocols that don't do multiple tables or all the 1993 * tables for those that do. 1994 */ 1995 for ( fibnum = startfib; fibnum <= endfib; fibnum++) { 1996 if (cmd == RTM_DELETE) { 1997 struct radix_node *rn; 1998 /* 1999 * Look up an rtentry that is in the routing tree and 2000 * contains the correct info. 2001 */ 2002 rnh = rt_tables_get_rnh(fibnum, dst->sa_family); 2003 if (rnh == NULL) 2004 /* this table doesn't exist but others might */ 2005 continue; 2006 RADIX_NODE_HEAD_RLOCK(rnh); 2007 rn = rnh->rnh_lookup(dst, netmask, rnh); 2008 #ifdef RADIX_MPATH 2009 if (rn_mpath_capable(rnh)) { 2010 2011 if (rn == NULL) 2012 error = ESRCH; 2013 else { 2014 rt = RNTORT(rn); 2015 /* 2016 * for interface route the 2017 * rt->rt_gateway is sockaddr_intf 2018 * for cloning ARP entries, so 2019 * rt_mpath_matchgate must use the 2020 * interface address 2021 */ 2022 rt = rt_mpath_matchgate(rt, 2023 ifa->ifa_addr); 2024 if (rt == NULL) 2025 error = ESRCH; 2026 } 2027 } 2028 #endif 2029 error = (rn == NULL || 2030 (rn->rn_flags & RNF_ROOT) || 2031 RNTORT(rn)->rt_ifa != ifa); 2032 RADIX_NODE_HEAD_RUNLOCK(rnh); 2033 if (error) { 2034 /* this is only an error if bad on ALL tables */ 2035 continue; 2036 } 2037 } 2038 /* 2039 * Do the actual request 2040 */ 2041 bzero((caddr_t)&info, sizeof(info)); 2042 info.rti_ifa = ifa; 2043 info.rti_flags = flags | 2044 (ifa->ifa_flags & ~IFA_RTSELF) | RTF_PINNED; 2045 info.rti_info[RTAX_DST] = dst; 2046 /* 2047 * doing this for compatibility reasons 2048 */ 2049 if (cmd == RTM_ADD) 2050 info.rti_info[RTAX_GATEWAY] = 2051 (struct sockaddr *)&null_sdl; 2052 else 2053 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 2054 info.rti_info[RTAX_NETMASK] = netmask; 2055 error = rtrequest1_fib(cmd, &info, &rt, fibnum); 2056 2057 if (error == 0 && rt != NULL) { 2058 /* 2059 * notify any listening routing agents of the change 2060 */ 2061 RT_LOCK(rt); 2062 #ifdef RADIX_MPATH 2063 /* 2064 * in case address alias finds the first address 2065 * e.g. ifconfig bge0 192.0.2.246/24 2066 * e.g. ifconfig bge0 192.0.2.247/24 2067 * the address set in the route is 192.0.2.246 2068 * so we need to replace it with 192.0.2.247 2069 */ 2070 if (memcmp(rt->rt_ifa->ifa_addr, 2071 ifa->ifa_addr, ifa->ifa_addr->sa_len)) { 2072 ifa_free(rt->rt_ifa); 2073 ifa_ref(ifa); 2074 rt->rt_ifp = ifa->ifa_ifp; 2075 rt->rt_ifa = ifa; 2076 } 2077 #endif 2078 /* 2079 * doing this for compatibility reasons 2080 */ 2081 if (cmd == RTM_ADD) { 2082 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 2083 rt->rt_ifp->if_type; 2084 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 2085 rt->rt_ifp->if_index; 2086 } 2087 RT_ADDREF(rt); 2088 RT_UNLOCK(rt); 2089 rt_newaddrmsg_fib(cmd, ifa, error, rt, fibnum); 2090 RT_LOCK(rt); 2091 RT_REMREF(rt); 2092 if (cmd == RTM_DELETE) { 2093 /* 2094 * If we are deleting, and we found an entry, 2095 * then it's been removed from the tree.. 2096 * now throw it away. 2097 */ 2098 RTFREE_LOCKED(rt); 2099 } else { 2100 if (cmd == RTM_ADD) { 2101 /* 2102 * We just wanted to add it.. 2103 * we don't actually need a reference. 2104 */ 2105 RT_REMREF(rt); 2106 } 2107 RT_UNLOCK(rt); 2108 } 2109 didwork = 1; 2110 } 2111 if (error) 2112 a_failure = error; 2113 } 2114 if (cmd == RTM_DELETE) { 2115 if (didwork) { 2116 error = 0; 2117 } else { 2118 /* we only give an error if it wasn't in any table */ 2119 error = ((flags & RTF_HOST) ? 2120 EHOSTUNREACH : ENETUNREACH); 2121 } 2122 } else { 2123 if (a_failure) { 2124 /* return an error if any of them failed */ 2125 error = a_failure; 2126 } 2127 } 2128 return (error); 2129 } 2130 2131 /* 2132 * Set up a routing table entry, normally 2133 * for an interface. 2134 */ 2135 int 2136 rtinit(struct ifaddr *ifa, int cmd, int flags) 2137 { 2138 struct sockaddr *dst; 2139 int fib = RT_DEFAULT_FIB; 2140 2141 if (flags & RTF_HOST) { 2142 dst = ifa->ifa_dstaddr; 2143 } else { 2144 dst = ifa->ifa_addr; 2145 } 2146 2147 switch (dst->sa_family) { 2148 case AF_INET6: 2149 case AF_INET: 2150 /* We do support multiple FIBs. */ 2151 fib = RT_ALL_FIBS; 2152 break; 2153 } 2154 return (rtinit1(ifa, cmd, flags, fib)); 2155 } 2156 2157 /* 2158 * Announce interface address arrival/withdraw 2159 * Returns 0 on success. 2160 */ 2161 int 2162 rt_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 2163 { 2164 2165 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 2166 ("unexpected cmd %d", cmd)); 2167 2168 KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), 2169 ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); 2170 2171 #if defined(INET) || defined(INET6) 2172 #ifdef SCTP 2173 /* 2174 * notify the SCTP stack 2175 * this will only get called when an address is added/deleted 2176 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 2177 */ 2178 sctp_addr_change(ifa, cmd); 2179 #endif /* SCTP */ 2180 #endif 2181 return (rtsock_addrmsg(cmd, ifa, fibnum)); 2182 } 2183 2184 /* 2185 * Announce route addition/removal. 2186 * Users of this function MUST validate input data BEFORE calling. 2187 * However we have to be able to handle invalid data: 2188 * if some userland app sends us "invalid" route message (invalid mask, 2189 * no dst, wrong address families, etc...) we need to pass it back 2190 * to app (and any other rtsock consumers) with rtm_errno field set to 2191 * non-zero value. 2192 * Returns 0 on success. 2193 */ 2194 int 2195 rt_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 2196 int fibnum) 2197 { 2198 2199 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 2200 ("unexpected cmd %d", cmd)); 2201 2202 KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), 2203 ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); 2204 2205 KASSERT(rt_key(rt) != NULL, (":%s: rt_key must be supplied", __func__)); 2206 2207 return (rtsock_routemsg(cmd, ifp, error, rt, fibnum)); 2208 } 2209 2210 void 2211 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 2212 { 2213 2214 rt_newaddrmsg_fib(cmd, ifa, error, rt, RT_ALL_FIBS); 2215 } 2216 2217 /* 2218 * This is called to generate messages from the routing socket 2219 * indicating a network interface has had addresses associated with it. 2220 */ 2221 void 2222 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, 2223 int fibnum) 2224 { 2225 2226 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 2227 ("unexpected cmd %u", cmd)); 2228 KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), 2229 ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); 2230 2231 if (cmd == RTM_ADD) { 2232 rt_addrmsg(cmd, ifa, fibnum); 2233 if (rt != NULL) 2234 rt_routemsg(cmd, ifa->ifa_ifp, error, rt, fibnum); 2235 } else { 2236 if (rt != NULL) 2237 rt_routemsg(cmd, ifa->ifa_ifp, error, rt, fibnum); 2238 rt_addrmsg(cmd, ifa, fibnum); 2239 } 2240 } 2241 2242