1 /*- 2 * Copyright (c) 1980, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)route.c 8.3.1.1 (Berkeley) 2/23/95 30 * $FreeBSD$ 31 */ 32 /************************************************************************ 33 * Note: In this file a 'fib' is a "forwarding information base" * 34 * Which is the new name for an in kernel routing (next hop) table. * 35 ***********************************************************************/ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_route.h" 40 #include "opt_sctp.h" 41 #include "opt_mrouting.h" 42 #include "opt_mpath.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/socket.h> 49 #include <sys/sysctl.h> 50 #include <sys/syslog.h> 51 #include <sys/sysproto.h> 52 #include <sys/proc.h> 53 #include <sys/domain.h> 54 #include <sys/kernel.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <net/vnet.h> 61 #include <net/flowtable.h> 62 63 #ifdef RADIX_MPATH 64 #include <net/radix_mpath.h> 65 #endif 66 67 #include <netinet/in.h> 68 #include <netinet/ip_mroute.h> 69 70 #include <vm/uma.h> 71 72 #define RT_MAXFIBS UINT16_MAX 73 74 /* Kernel config default option. */ 75 #ifdef ROUTETABLES 76 #if ROUTETABLES <= 0 77 #error "ROUTETABLES defined too low" 78 #endif 79 #if ROUTETABLES > RT_MAXFIBS 80 #error "ROUTETABLES defined too big" 81 #endif 82 #define RT_NUMFIBS ROUTETABLES 83 #endif /* ROUTETABLES */ 84 /* Initialize to default if not otherwise set. */ 85 #ifndef RT_NUMFIBS 86 #define RT_NUMFIBS 1 87 #endif 88 89 #if defined(INET) || defined(INET6) 90 #ifdef SCTP 91 extern void sctp_addr_change(struct ifaddr *ifa, int cmd); 92 #endif /* SCTP */ 93 #endif 94 95 96 /* This is read-only.. */ 97 u_int rt_numfibs = RT_NUMFIBS; 98 SYSCTL_UINT(_net, OID_AUTO, fibs, CTLFLAG_RDTUN, &rt_numfibs, 0, ""); 99 100 /* 101 * By default add routes to all fibs for new interfaces. 102 * Once this is set to 0 then only allocate routes on interface 103 * changes for the FIB of the caller when adding a new set of addresses 104 * to an interface. XXX this is a shotgun aproach to a problem that needs 105 * a more fine grained solution.. that will come. 106 * XXX also has the problems getting the FIB from curthread which will not 107 * always work given the fib can be overridden and prefixes can be added 108 * from the network stack context. 109 */ 110 VNET_DEFINE(u_int, rt_add_addr_allfibs) = 1; 111 SYSCTL_UINT(_net, OID_AUTO, add_addr_allfibs, CTLFLAG_RWTUN | CTLFLAG_VNET, 112 &VNET_NAME(rt_add_addr_allfibs), 0, ""); 113 114 VNET_DEFINE(struct rtstat, rtstat); 115 #define V_rtstat VNET(rtstat) 116 117 VNET_DEFINE(struct radix_node_head *, rt_tables); 118 #define V_rt_tables VNET(rt_tables) 119 120 VNET_DEFINE(int, rttrash); /* routes not in table but not freed */ 121 #define V_rttrash VNET(rttrash) 122 123 124 /* 125 * Convert a 'struct radix_node *' to a 'struct rtentry *'. 126 * The operation can be done safely (in this code) because a 127 * 'struct rtentry' starts with two 'struct radix_node''s, the first 128 * one representing leaf nodes in the routing tree, which is 129 * what the code in radix.c passes us as a 'struct radix_node'. 130 * 131 * But because there are a lot of assumptions in this conversion, 132 * do not cast explicitly, but always use the macro below. 133 */ 134 #define RNTORT(p) ((struct rtentry *)(p)) 135 136 static VNET_DEFINE(uma_zone_t, rtzone); /* Routing table UMA zone. */ 137 #define V_rtzone VNET(rtzone) 138 139 static int rtrequest1_fib_change(struct radix_node_head *, struct rt_addrinfo *, 140 struct rtentry **, u_int); 141 static void rt_setmetrics(const struct rt_addrinfo *, struct rtentry *); 142 static int rt_ifdelroute(const struct rtentry *rt, void *arg); 143 static struct rtentry *rt_unlinkrte(struct radix_node_head *rnh, 144 struct rt_addrinfo *info, int *perror); 145 static void rt_notifydelete(struct rtentry *rt, struct rt_addrinfo *info); 146 #ifdef RADIX_MPATH 147 static struct radix_node *rt_mpath_unlink(struct radix_node_head *rnh, 148 struct rt_addrinfo *info, struct rtentry *rto, int *perror); 149 #endif 150 static int rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, 151 int flags); 152 153 struct if_mtuinfo 154 { 155 struct ifnet *ifp; 156 int mtu; 157 }; 158 159 static int if_updatemtu_cb(struct radix_node *, void *); 160 161 /* 162 * handler for net.my_fibnum 163 */ 164 static int 165 sysctl_my_fibnum(SYSCTL_HANDLER_ARGS) 166 { 167 int fibnum; 168 int error; 169 170 fibnum = curthread->td_proc->p_fibnum; 171 error = sysctl_handle_int(oidp, &fibnum, 0, req); 172 return (error); 173 } 174 175 SYSCTL_PROC(_net, OID_AUTO, my_fibnum, CTLTYPE_INT|CTLFLAG_RD, 176 NULL, 0, &sysctl_my_fibnum, "I", "default FIB of caller"); 177 178 static __inline struct radix_node_head ** 179 rt_tables_get_rnh_ptr(int table, int fam) 180 { 181 struct radix_node_head **rnh; 182 183 KASSERT(table >= 0 && table < rt_numfibs, ("%s: table out of bounds.", 184 __func__)); 185 KASSERT(fam >= 0 && fam < (AF_MAX+1), ("%s: fam out of bounds.", 186 __func__)); 187 188 /* rnh is [fib=0][af=0]. */ 189 rnh = (struct radix_node_head **)V_rt_tables; 190 /* Get the offset to the requested table and fam. */ 191 rnh += table * (AF_MAX+1) + fam; 192 193 return (rnh); 194 } 195 196 struct radix_node_head * 197 rt_tables_get_rnh(int table, int fam) 198 { 199 200 return (*rt_tables_get_rnh_ptr(table, fam)); 201 } 202 203 /* 204 * route initialization must occur before ip6_init2(), which happenas at 205 * SI_ORDER_MIDDLE. 206 */ 207 static void 208 route_init(void) 209 { 210 211 /* whack the tunable ints into line. */ 212 if (rt_numfibs > RT_MAXFIBS) 213 rt_numfibs = RT_MAXFIBS; 214 if (rt_numfibs == 0) 215 rt_numfibs = 1; 216 } 217 SYSINIT(route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, route_init, 0); 218 219 static int 220 rtentry_zinit(void *mem, int size, int how) 221 { 222 struct rtentry *rt = mem; 223 224 rt->rt_pksent = counter_u64_alloc(how); 225 if (rt->rt_pksent == NULL) 226 return (ENOMEM); 227 228 RT_LOCK_INIT(rt); 229 230 return (0); 231 } 232 233 static void 234 rtentry_zfini(void *mem, int size) 235 { 236 struct rtentry *rt = mem; 237 238 RT_LOCK_DESTROY(rt); 239 counter_u64_free(rt->rt_pksent); 240 } 241 242 static int 243 rtentry_ctor(void *mem, int size, void *arg, int how) 244 { 245 struct rtentry *rt = mem; 246 247 bzero(rt, offsetof(struct rtentry, rt_endzero)); 248 counter_u64_zero(rt->rt_pksent); 249 rt->rt_chain = NULL; 250 251 return (0); 252 } 253 254 static void 255 rtentry_dtor(void *mem, int size, void *arg) 256 { 257 struct rtentry *rt = mem; 258 259 RT_UNLOCK_COND(rt); 260 } 261 262 static void 263 vnet_route_init(const void *unused __unused) 264 { 265 struct domain *dom; 266 struct radix_node_head **rnh; 267 int table; 268 int fam; 269 270 V_rt_tables = malloc(rt_numfibs * (AF_MAX+1) * 271 sizeof(struct radix_node_head *), M_RTABLE, M_WAITOK|M_ZERO); 272 273 V_rtzone = uma_zcreate("rtentry", sizeof(struct rtentry), 274 rtentry_ctor, rtentry_dtor, 275 rtentry_zinit, rtentry_zfini, UMA_ALIGN_PTR, 0); 276 for (dom = domains; dom; dom = dom->dom_next) { 277 if (dom->dom_rtattach == NULL) 278 continue; 279 280 for (table = 0; table < rt_numfibs; table++) { 281 fam = dom->dom_family; 282 if (table != 0 && fam != AF_INET6 && fam != AF_INET) 283 break; 284 285 rnh = rt_tables_get_rnh_ptr(table, fam); 286 if (rnh == NULL) 287 panic("%s: rnh NULL", __func__); 288 dom->dom_rtattach((void **)rnh, 0); 289 } 290 } 291 } 292 VNET_SYSINIT(vnet_route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 293 vnet_route_init, 0); 294 295 #ifdef VIMAGE 296 static void 297 vnet_route_uninit(const void *unused __unused) 298 { 299 int table; 300 int fam; 301 struct domain *dom; 302 struct radix_node_head **rnh; 303 304 for (dom = domains; dom; dom = dom->dom_next) { 305 if (dom->dom_rtdetach == NULL) 306 continue; 307 308 for (table = 0; table < rt_numfibs; table++) { 309 fam = dom->dom_family; 310 311 if (table != 0 && fam != AF_INET6 && fam != AF_INET) 312 break; 313 314 rnh = rt_tables_get_rnh_ptr(table, fam); 315 if (rnh == NULL) 316 panic("%s: rnh NULL", __func__); 317 dom->dom_rtdetach((void **)rnh, 0); 318 } 319 } 320 321 free(V_rt_tables, M_RTABLE); 322 uma_zdestroy(V_rtzone); 323 } 324 VNET_SYSUNINIT(vnet_route_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, 325 vnet_route_uninit, 0); 326 #endif 327 328 #ifndef _SYS_SYSPROTO_H_ 329 struct setfib_args { 330 int fibnum; 331 }; 332 #endif 333 int 334 sys_setfib(struct thread *td, struct setfib_args *uap) 335 { 336 if (uap->fibnum < 0 || uap->fibnum >= rt_numfibs) 337 return EINVAL; 338 td->td_proc->p_fibnum = uap->fibnum; 339 return (0); 340 } 341 342 /* 343 * Packet routing routines. 344 */ 345 void 346 rtalloc(struct route *ro) 347 { 348 349 rtalloc_ign_fib(ro, 0UL, RT_DEFAULT_FIB); 350 } 351 352 void 353 rtalloc_fib(struct route *ro, u_int fibnum) 354 { 355 rtalloc_ign_fib(ro, 0UL, fibnum); 356 } 357 358 void 359 rtalloc_ign(struct route *ro, u_long ignore) 360 { 361 struct rtentry *rt; 362 363 if ((rt = ro->ro_rt) != NULL) { 364 if (rt->rt_ifp != NULL && rt->rt_flags & RTF_UP) 365 return; 366 RTFREE(rt); 367 ro->ro_rt = NULL; 368 } 369 ro->ro_rt = rtalloc1_fib(&ro->ro_dst, 1, ignore, RT_DEFAULT_FIB); 370 if (ro->ro_rt) 371 RT_UNLOCK(ro->ro_rt); 372 } 373 374 void 375 rtalloc_ign_fib(struct route *ro, u_long ignore, u_int fibnum) 376 { 377 struct rtentry *rt; 378 379 if ((rt = ro->ro_rt) != NULL) { 380 if (rt->rt_ifp != NULL && rt->rt_flags & RTF_UP) 381 return; 382 RTFREE(rt); 383 ro->ro_rt = NULL; 384 } 385 ro->ro_rt = rtalloc1_fib(&ro->ro_dst, 1, ignore, fibnum); 386 if (ro->ro_rt) 387 RT_UNLOCK(ro->ro_rt); 388 } 389 390 /* 391 * Look up the route that matches the address given 392 * Or, at least try.. Create a cloned route if needed. 393 * 394 * The returned route, if any, is locked. 395 */ 396 struct rtentry * 397 rtalloc1(struct sockaddr *dst, int report, u_long ignflags) 398 { 399 400 return (rtalloc1_fib(dst, report, ignflags, RT_DEFAULT_FIB)); 401 } 402 403 struct rtentry * 404 rtalloc1_fib(struct sockaddr *dst, int report, u_long ignflags, 405 u_int fibnum) 406 { 407 struct radix_node_head *rnh; 408 struct radix_node *rn; 409 struct rtentry *newrt; 410 struct rt_addrinfo info; 411 int err = 0, msgtype = RTM_MISS; 412 int needlock; 413 414 KASSERT((fibnum < rt_numfibs), ("rtalloc1_fib: bad fibnum")); 415 rnh = rt_tables_get_rnh(fibnum, dst->sa_family); 416 newrt = NULL; 417 if (rnh == NULL) 418 goto miss; 419 420 /* 421 * Look up the address in the table for that Address Family 422 */ 423 needlock = !(ignflags & RTF_RNH_LOCKED); 424 if (needlock) 425 RADIX_NODE_HEAD_RLOCK(rnh); 426 #ifdef INVARIANTS 427 else 428 RADIX_NODE_HEAD_LOCK_ASSERT(rnh); 429 #endif 430 rn = rnh->rnh_matchaddr(dst, rnh); 431 if (rn && ((rn->rn_flags & RNF_ROOT) == 0)) { 432 newrt = RNTORT(rn); 433 RT_LOCK(newrt); 434 RT_ADDREF(newrt); 435 if (needlock) 436 RADIX_NODE_HEAD_RUNLOCK(rnh); 437 goto done; 438 439 } else if (needlock) 440 RADIX_NODE_HEAD_RUNLOCK(rnh); 441 442 /* 443 * Either we hit the root or couldn't find any match, 444 * Which basically means 445 * "caint get there frm here" 446 */ 447 miss: 448 V_rtstat.rts_unreach++; 449 450 if (report) { 451 /* 452 * If required, report the failure to the supervising 453 * Authorities. 454 * For a delete, this is not an error. (report == 0) 455 */ 456 bzero(&info, sizeof(info)); 457 info.rti_info[RTAX_DST] = dst; 458 rt_missmsg_fib(msgtype, &info, 0, err, fibnum); 459 } 460 done: 461 if (newrt) 462 RT_LOCK_ASSERT(newrt); 463 return (newrt); 464 } 465 466 /* 467 * Remove a reference count from an rtentry. 468 * If the count gets low enough, take it out of the routing table 469 */ 470 void 471 rtfree(struct rtentry *rt) 472 { 473 struct radix_node_head *rnh; 474 475 KASSERT(rt != NULL,("%s: NULL rt", __func__)); 476 rnh = rt_tables_get_rnh(rt->rt_fibnum, rt_key(rt)->sa_family); 477 KASSERT(rnh != NULL,("%s: NULL rnh", __func__)); 478 479 RT_LOCK_ASSERT(rt); 480 481 /* 482 * The callers should use RTFREE_LOCKED() or RTFREE(), so 483 * we should come here exactly with the last reference. 484 */ 485 RT_REMREF(rt); 486 if (rt->rt_refcnt > 0) { 487 log(LOG_DEBUG, "%s: %p has %d refs\n", __func__, rt, rt->rt_refcnt); 488 goto done; 489 } 490 491 /* 492 * On last reference give the "close method" a chance 493 * to cleanup private state. This also permits (for 494 * IPv4 and IPv6) a chance to decide if the routing table 495 * entry should be purged immediately or at a later time. 496 * When an immediate purge is to happen the close routine 497 * typically calls rtexpunge which clears the RTF_UP flag 498 * on the entry so that the code below reclaims the storage. 499 */ 500 if (rt->rt_refcnt == 0 && rnh->rnh_close) 501 rnh->rnh_close((struct radix_node *)rt, rnh); 502 503 /* 504 * If we are no longer "up" (and ref == 0) 505 * then we can free the resources associated 506 * with the route. 507 */ 508 if ((rt->rt_flags & RTF_UP) == 0) { 509 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT)) 510 panic("rtfree 2"); 511 /* 512 * the rtentry must have been removed from the routing table 513 * so it is represented in rttrash.. remove that now. 514 */ 515 V_rttrash--; 516 #ifdef DIAGNOSTIC 517 if (rt->rt_refcnt < 0) { 518 printf("rtfree: %p not freed (neg refs)\n", rt); 519 goto done; 520 } 521 #endif 522 /* 523 * release references on items we hold them on.. 524 * e.g other routes and ifaddrs. 525 */ 526 if (rt->rt_ifa) 527 ifa_free(rt->rt_ifa); 528 /* 529 * The key is separatly alloc'd so free it (see rt_setgate()). 530 * This also frees the gateway, as they are always malloc'd 531 * together. 532 */ 533 R_Free(rt_key(rt)); 534 535 /* 536 * and the rtentry itself of course 537 */ 538 uma_zfree(V_rtzone, rt); 539 return; 540 } 541 done: 542 RT_UNLOCK(rt); 543 } 544 545 546 /* 547 * Force a routing table entry to the specified 548 * destination to go through the given gateway. 549 * Normally called as a result of a routing redirect 550 * message from the network layer. 551 */ 552 void 553 rtredirect(struct sockaddr *dst, 554 struct sockaddr *gateway, 555 struct sockaddr *netmask, 556 int flags, 557 struct sockaddr *src) 558 { 559 560 rtredirect_fib(dst, gateway, netmask, flags, src, RT_DEFAULT_FIB); 561 } 562 563 void 564 rtredirect_fib(struct sockaddr *dst, 565 struct sockaddr *gateway, 566 struct sockaddr *netmask, 567 int flags, 568 struct sockaddr *src, 569 u_int fibnum) 570 { 571 struct rtentry *rt; 572 int error = 0; 573 short *stat = NULL; 574 struct rt_addrinfo info; 575 struct ifaddr *ifa; 576 struct radix_node_head *rnh; 577 578 ifa = NULL; 579 rnh = rt_tables_get_rnh(fibnum, dst->sa_family); 580 if (rnh == NULL) { 581 error = EAFNOSUPPORT; 582 goto out; 583 } 584 585 /* verify the gateway is directly reachable */ 586 if ((ifa = ifa_ifwithnet(gateway, 0, fibnum)) == NULL) { 587 error = ENETUNREACH; 588 goto out; 589 } 590 rt = rtalloc1_fib(dst, 0, 0UL, fibnum); /* NB: rt is locked */ 591 /* 592 * If the redirect isn't from our current router for this dst, 593 * it's either old or wrong. If it redirects us to ourselves, 594 * we have a routing loop, perhaps as a result of an interface 595 * going down recently. 596 */ 597 if (!(flags & RTF_DONE) && rt) { 598 if (!sa_equal(src, rt->rt_gateway)) { 599 error = EINVAL; 600 goto done; 601 } 602 if (rt->rt_ifa != ifa && ifa->ifa_addr->sa_family != AF_LINK) { 603 error = EINVAL; 604 goto done; 605 } 606 } 607 if ((flags & RTF_GATEWAY) && ifa_ifwithaddr_check(gateway)) { 608 error = EHOSTUNREACH; 609 goto done; 610 } 611 /* 612 * Create a new entry if we just got back a wildcard entry 613 * or the lookup failed. This is necessary for hosts 614 * which use routing redirects generated by smart gateways 615 * to dynamically build the routing tables. 616 */ 617 if (rt == NULL || (rt_mask(rt) && rt_mask(rt)->sa_len < 2)) 618 goto create; 619 /* 620 * Don't listen to the redirect if it's 621 * for a route to an interface. 622 */ 623 if (rt->rt_flags & RTF_GATEWAY) { 624 if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) { 625 /* 626 * Changing from route to net => route to host. 627 * Create new route, rather than smashing route to net. 628 */ 629 create: 630 RTFREE(rt); 631 rt = NULL; 632 633 flags |= RTF_DYNAMIC; 634 bzero((caddr_t)&info, sizeof(info)); 635 info.rti_info[RTAX_DST] = dst; 636 info.rti_info[RTAX_GATEWAY] = gateway; 637 info.rti_info[RTAX_NETMASK] = netmask; 638 info.rti_ifa = ifa; 639 info.rti_flags = flags; 640 error = rtrequest1_fib(RTM_ADD, &info, &rt, fibnum); 641 if (rt != NULL) { 642 RT_LOCK(rt); 643 flags = rt->rt_flags; 644 } 645 646 stat = &V_rtstat.rts_dynamic; 647 } else { 648 649 /* 650 * Smash the current notion of the gateway to 651 * this destination. Should check about netmask!!! 652 */ 653 if ((flags & RTF_GATEWAY) == 0) 654 rt->rt_flags &= ~RTF_GATEWAY; 655 rt->rt_flags |= RTF_MODIFIED; 656 flags |= RTF_MODIFIED; 657 stat = &V_rtstat.rts_newgateway; 658 /* 659 * add the key and gateway (in one malloc'd chunk). 660 */ 661 RT_UNLOCK(rt); 662 RADIX_NODE_HEAD_LOCK(rnh); 663 RT_LOCK(rt); 664 rt_setgate(rt, rt_key(rt), gateway); 665 RADIX_NODE_HEAD_UNLOCK(rnh); 666 } 667 } else 668 error = EHOSTUNREACH; 669 done: 670 if (rt) 671 RTFREE_LOCKED(rt); 672 out: 673 if (error) 674 V_rtstat.rts_badredirect++; 675 else if (stat != NULL) 676 (*stat)++; 677 bzero((caddr_t)&info, sizeof(info)); 678 info.rti_info[RTAX_DST] = dst; 679 info.rti_info[RTAX_GATEWAY] = gateway; 680 info.rti_info[RTAX_NETMASK] = netmask; 681 info.rti_info[RTAX_AUTHOR] = src; 682 rt_missmsg_fib(RTM_REDIRECT, &info, flags, error, fibnum); 683 if (ifa != NULL) 684 ifa_free(ifa); 685 } 686 687 int 688 rtioctl(u_long req, caddr_t data) 689 { 690 691 return (rtioctl_fib(req, data, RT_DEFAULT_FIB)); 692 } 693 694 /* 695 * Routing table ioctl interface. 696 */ 697 int 698 rtioctl_fib(u_long req, caddr_t data, u_int fibnum) 699 { 700 701 /* 702 * If more ioctl commands are added here, make sure the proper 703 * super-user checks are being performed because it is possible for 704 * prison-root to make it this far if raw sockets have been enabled 705 * in jails. 706 */ 707 #ifdef INET 708 /* Multicast goop, grrr... */ 709 return mrt_ioctl ? mrt_ioctl(req, data, fibnum) : EOPNOTSUPP; 710 #else /* INET */ 711 return ENXIO; 712 #endif /* INET */ 713 } 714 715 struct ifaddr * 716 ifa_ifwithroute(int flags, const struct sockaddr *dst, struct sockaddr *gateway, 717 u_int fibnum) 718 { 719 struct ifaddr *ifa; 720 int not_found = 0; 721 722 if ((flags & RTF_GATEWAY) == 0) { 723 /* 724 * If we are adding a route to an interface, 725 * and the interface is a pt to pt link 726 * we should search for the destination 727 * as our clue to the interface. Otherwise 728 * we can use the local address. 729 */ 730 ifa = NULL; 731 if (flags & RTF_HOST) 732 ifa = ifa_ifwithdstaddr(dst, fibnum); 733 if (ifa == NULL) 734 ifa = ifa_ifwithaddr(gateway); 735 } else { 736 /* 737 * If we are adding a route to a remote net 738 * or host, the gateway may still be on the 739 * other end of a pt to pt link. 740 */ 741 ifa = ifa_ifwithdstaddr(gateway, fibnum); 742 } 743 if (ifa == NULL) 744 ifa = ifa_ifwithnet(gateway, 0, fibnum); 745 if (ifa == NULL) { 746 struct rtentry *rt = rtalloc1_fib(gateway, 0, 0, fibnum); 747 if (rt == NULL) 748 return (NULL); 749 /* 750 * dismiss a gateway that is reachable only 751 * through the default router 752 */ 753 switch (gateway->sa_family) { 754 case AF_INET: 755 if (satosin(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) 756 not_found = 1; 757 break; 758 case AF_INET6: 759 if (IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(rt))->sin6_addr)) 760 not_found = 1; 761 break; 762 default: 763 break; 764 } 765 if (!not_found && rt->rt_ifa != NULL) { 766 ifa = rt->rt_ifa; 767 ifa_ref(ifa); 768 } 769 RT_REMREF(rt); 770 RT_UNLOCK(rt); 771 if (not_found || ifa == NULL) 772 return (NULL); 773 } 774 if (ifa->ifa_addr->sa_family != dst->sa_family) { 775 struct ifaddr *oifa = ifa; 776 ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); 777 if (ifa == NULL) 778 ifa = oifa; 779 else 780 ifa_free(oifa); 781 } 782 return (ifa); 783 } 784 785 /* 786 * Do appropriate manipulations of a routing tree given 787 * all the bits of info needed 788 */ 789 int 790 rtrequest(int req, 791 struct sockaddr *dst, 792 struct sockaddr *gateway, 793 struct sockaddr *netmask, 794 int flags, 795 struct rtentry **ret_nrt) 796 { 797 798 return (rtrequest_fib(req, dst, gateway, netmask, flags, ret_nrt, 799 RT_DEFAULT_FIB)); 800 } 801 802 int 803 rtrequest_fib(int req, 804 struct sockaddr *dst, 805 struct sockaddr *gateway, 806 struct sockaddr *netmask, 807 int flags, 808 struct rtentry **ret_nrt, 809 u_int fibnum) 810 { 811 struct rt_addrinfo info; 812 813 if (dst->sa_len == 0) 814 return(EINVAL); 815 816 bzero((caddr_t)&info, sizeof(info)); 817 info.rti_flags = flags; 818 info.rti_info[RTAX_DST] = dst; 819 info.rti_info[RTAX_GATEWAY] = gateway; 820 info.rti_info[RTAX_NETMASK] = netmask; 821 return rtrequest1_fib(req, &info, ret_nrt, fibnum); 822 } 823 824 825 /* 826 * Copy most of @rt data into @info. 827 * 828 * If @flags contains NHR_COPY, copies dst,netmask and gw to the 829 * pointers specified by @info structure. Assume such pointers 830 * are zeroed sockaddr-like structures with sa_len field initialized 831 * to reflect size of the provided buffer. if no NHR_COPY is specified, 832 * point dst,netmask and gw @info fields to appropriate @rt values. 833 * 834 * if @flags contains NHR_REF, do refcouting on rt_ifp. 835 * 836 * Returns 0 on success. 837 */ 838 int 839 rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, int flags) 840 { 841 struct rt_metrics *rmx; 842 struct sockaddr *src, *dst; 843 int sa_len; 844 845 if (flags & NHR_COPY) { 846 /* Copy destination if dst is non-zero */ 847 src = rt_key(rt); 848 dst = info->rti_info[RTAX_DST]; 849 sa_len = src->sa_len; 850 if (dst != NULL) { 851 if (src->sa_len > dst->sa_len) 852 return (ENOMEM); 853 memcpy(dst, src, src->sa_len); 854 info->rti_addrs |= RTA_DST; 855 } 856 857 /* Copy mask if set && dst is non-zero */ 858 src = rt_mask(rt); 859 dst = info->rti_info[RTAX_NETMASK]; 860 if (src != NULL && dst != NULL) { 861 862 /* 863 * Radix stores different value in sa_len, 864 * assume rt_mask() to have the same length 865 * as rt_key() 866 */ 867 if (sa_len > dst->sa_len) 868 return (ENOMEM); 869 memcpy(dst, src, src->sa_len); 870 info->rti_addrs |= RTA_NETMASK; 871 } 872 873 /* Copy gateway is set && dst is non-zero */ 874 src = rt->rt_gateway; 875 dst = info->rti_info[RTAX_GATEWAY]; 876 if ((rt->rt_flags & RTF_GATEWAY) && src != NULL && dst != NULL){ 877 if (src->sa_len > dst->sa_len) 878 return (ENOMEM); 879 memcpy(dst, src, src->sa_len); 880 info->rti_addrs |= RTA_GATEWAY; 881 } 882 } else { 883 info->rti_info[RTAX_DST] = rt_key(rt); 884 info->rti_addrs |= RTA_DST; 885 if (rt_mask(rt) != NULL) { 886 info->rti_info[RTAX_NETMASK] = rt_mask(rt); 887 info->rti_addrs |= RTA_NETMASK; 888 } 889 if (rt->rt_flags & RTF_GATEWAY) { 890 info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; 891 info->rti_addrs |= RTA_GATEWAY; 892 } 893 } 894 895 rmx = info->rti_rmx; 896 if (rmx != NULL) { 897 info->rti_mflags |= RTV_MTU; 898 rmx->rmx_mtu = rt->rt_mtu; 899 } 900 901 info->rti_flags = rt->rt_flags; 902 info->rti_ifp = rt->rt_ifp; 903 info->rti_ifa = rt->rt_ifa; 904 905 if (flags & NHR_REF) { 906 /* Do 'traditional' refcouting */ 907 if_ref(info->rti_ifp); 908 } 909 910 return (0); 911 } 912 913 /* 914 * Lookups up route entry for @dst in RIB database for fib @fibnum. 915 * Exports entry data to @info using rt_exportinfo(). 916 * 917 * if @flags contains NHR_REF, refcouting is performed on rt_ifp. 918 * All references can be released later by calling rib_free_info() 919 * 920 * Returns 0 on success. 921 * Returns ENOENT for lookup failure, ENOMEM for export failure. 922 */ 923 int 924 rib_lookup_info(uint32_t fibnum, const struct sockaddr *dst, uint32_t flags, 925 uint32_t flowid, struct rt_addrinfo *info) 926 { 927 struct radix_node_head *rh; 928 struct radix_node *rn; 929 struct rtentry *rt; 930 int error; 931 932 KASSERT((fibnum < rt_numfibs), ("rib_lookup_rte: bad fibnum")); 933 rh = rt_tables_get_rnh(fibnum, dst->sa_family); 934 if (rh == NULL) 935 return (ENOENT); 936 937 RADIX_NODE_HEAD_RLOCK(rh); 938 rn = rh->rnh_matchaddr(__DECONST(void *, dst), rh); 939 if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) { 940 rt = RNTORT(rn); 941 /* Ensure route & ifp is UP */ 942 if (RT_LINK_IS_UP(rt->rt_ifp)) { 943 flags = (flags & NHR_REF) | NHR_COPY; 944 error = rt_exportinfo(rt, info, flags); 945 RADIX_NODE_HEAD_RUNLOCK(rh); 946 947 return (error); 948 } 949 } 950 RADIX_NODE_HEAD_RUNLOCK(rh); 951 952 return (ENOENT); 953 } 954 955 /* 956 * Releases all references acquired by rib_lookup_info() when 957 * called with NHR_REF flags. 958 */ 959 void 960 rib_free_info(struct rt_addrinfo *info) 961 { 962 963 if_rele(info->rti_ifp); 964 } 965 966 /* 967 * Iterates over all existing fibs in system calling 968 * @setwa_f function prior to traversing each fib. 969 * Calls @wa_f function for each element in current fib. 970 * If af is not AF_UNSPEC, iterates over fibs in particular 971 * address family. 972 */ 973 void 974 rt_foreach_fib_walk(int af, rt_setwarg_t *setwa_f, rt_walktree_f_t *wa_f, 975 void *arg) 976 { 977 struct radix_node_head *rnh; 978 uint32_t fibnum; 979 int i; 980 981 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { 982 /* Do we want some specific family? */ 983 if (af != AF_UNSPEC) { 984 rnh = rt_tables_get_rnh(fibnum, af); 985 if (rnh == NULL) 986 continue; 987 if (setwa_f != NULL) 988 setwa_f(rnh, fibnum, af, arg); 989 990 RADIX_NODE_HEAD_LOCK(rnh); 991 rnh->rnh_walktree(rnh, (walktree_f_t *)wa_f, arg); 992 RADIX_NODE_HEAD_UNLOCK(rnh); 993 continue; 994 } 995 996 for (i = 1; i <= AF_MAX; i++) { 997 rnh = rt_tables_get_rnh(fibnum, i); 998 if (rnh == NULL) 999 continue; 1000 if (setwa_f != NULL) 1001 setwa_f(rnh, fibnum, i, arg); 1002 1003 RADIX_NODE_HEAD_LOCK(rnh); 1004 rnh->rnh_walktree(rnh, (walktree_f_t *)wa_f, arg); 1005 RADIX_NODE_HEAD_UNLOCK(rnh); 1006 } 1007 } 1008 } 1009 1010 struct rt_delinfo 1011 { 1012 struct rt_addrinfo info; 1013 struct radix_node_head *rnh; 1014 struct rtentry *head; 1015 }; 1016 1017 /* 1018 * Conditionally unlinks @rn from radix tree based 1019 * on info data passed in @arg. 1020 */ 1021 static int 1022 rt_checkdelroute(struct radix_node *rn, void *arg) 1023 { 1024 struct rt_delinfo *di; 1025 struct rt_addrinfo *info; 1026 struct rtentry *rt; 1027 int error; 1028 1029 di = (struct rt_delinfo *)arg; 1030 rt = (struct rtentry *)rn; 1031 info = &di->info; 1032 error = 0; 1033 1034 info->rti_info[RTAX_DST] = rt_key(rt); 1035 info->rti_info[RTAX_NETMASK] = rt_mask(rt); 1036 info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1037 1038 rt = rt_unlinkrte(di->rnh, info, &error); 1039 if (rt == NULL) { 1040 /* Either not allowed or not matched. Skip entry */ 1041 return (0); 1042 } 1043 1044 /* Entry was unlinked. Add to the list and return */ 1045 rt->rt_chain = di->head; 1046 di->head = rt; 1047 1048 return (0); 1049 } 1050 1051 /* 1052 * Iterates over all existing fibs in system. 1053 * Deletes each element for which @filter_f function returned 1054 * non-zero value. 1055 * If @af is not AF_UNSPEC, iterates over fibs in particular 1056 * address family. 1057 */ 1058 void 1059 rt_foreach_fib_walk_del(int af, rt_filter_f_t *filter_f, void *arg) 1060 { 1061 struct radix_node_head *rnh; 1062 struct rt_delinfo di; 1063 struct rtentry *rt; 1064 uint32_t fibnum; 1065 int i, start, end; 1066 1067 bzero(&di, sizeof(di)); 1068 di.info.rti_filter = filter_f; 1069 di.info.rti_filterdata = arg; 1070 1071 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { 1072 /* Do we want some specific family? */ 1073 if (af != AF_UNSPEC) { 1074 start = af; 1075 end = af; 1076 } else { 1077 start = 1; 1078 end = AF_MAX; 1079 } 1080 1081 for (i = start; i <= end; i++) { 1082 rnh = rt_tables_get_rnh(fibnum, i); 1083 if (rnh == NULL) 1084 continue; 1085 di.rnh = rnh; 1086 1087 RADIX_NODE_HEAD_LOCK(rnh); 1088 rnh->rnh_walktree(rnh, rt_checkdelroute, &di); 1089 RADIX_NODE_HEAD_UNLOCK(rnh); 1090 1091 if (di.head == NULL) 1092 continue; 1093 1094 /* We might have something to reclaim */ 1095 while (di.head != NULL) { 1096 rt = di.head; 1097 di.head = rt->rt_chain; 1098 rt->rt_chain = NULL; 1099 1100 /* TODO std rt -> rt_addrinfo export */ 1101 di.info.rti_info[RTAX_DST] = rt_key(rt); 1102 di.info.rti_info[RTAX_NETMASK] = rt_mask(rt); 1103 1104 rt_notifydelete(rt, &di.info); 1105 RTFREE_LOCKED(rt); 1106 } 1107 1108 } 1109 } 1110 } 1111 1112 /* 1113 * Delete Routes for a Network Interface 1114 * 1115 * Called for each routing entry via the rnh->rnh_walktree() call above 1116 * to delete all route entries referencing a detaching network interface. 1117 * 1118 * Arguments: 1119 * rt pointer to rtentry 1120 * arg argument passed to rnh->rnh_walktree() - detaching interface 1121 * 1122 * Returns: 1123 * 0 successful 1124 * errno failed - reason indicated 1125 */ 1126 static int 1127 rt_ifdelroute(const struct rtentry *rt, void *arg) 1128 { 1129 struct ifnet *ifp = arg; 1130 1131 if (rt->rt_ifp != ifp) 1132 return (0); 1133 1134 /* 1135 * Protect (sorta) against walktree recursion problems 1136 * with cloned routes 1137 */ 1138 if ((rt->rt_flags & RTF_UP) == 0) 1139 return (0); 1140 1141 return (1); 1142 } 1143 1144 /* 1145 * Delete all remaining routes using this interface 1146 * Unfortuneatly the only way to do this is to slog through 1147 * the entire routing table looking for routes which point 1148 * to this interface...oh well... 1149 */ 1150 void 1151 rt_flushifroutes(struct ifnet *ifp) 1152 { 1153 1154 rt_foreach_fib_walk_del(AF_UNSPEC, rt_ifdelroute, ifp); 1155 } 1156 1157 /* 1158 * Conditionally unlinks rtentry matching data inside @info from @rnh. 1159 * Returns unlinked, locked and referenced @rtentry on success, 1160 * Returns NULL and sets @perror to: 1161 * ESRCH - if prefix was not found, 1162 * EADDRINUSE - if trying to delete PINNED route without appropriate flag. 1163 * ENOENT - if supplied filter function returned 0 (not matched). 1164 */ 1165 static struct rtentry * 1166 rt_unlinkrte(struct radix_node_head *rnh, struct rt_addrinfo *info, int *perror) 1167 { 1168 struct sockaddr *dst, *netmask; 1169 struct rtentry *rt; 1170 struct radix_node *rn; 1171 1172 dst = info->rti_info[RTAX_DST]; 1173 netmask = info->rti_info[RTAX_NETMASK]; 1174 1175 rt = (struct rtentry *)rnh->rnh_lookup(dst, netmask, rnh); 1176 if (rt == NULL) { 1177 *perror = ESRCH; 1178 return (NULL); 1179 } 1180 1181 if ((info->rti_flags & RTF_PINNED) == 0) { 1182 /* Check if target route can be deleted */ 1183 if (rt->rt_flags & RTF_PINNED) { 1184 *perror = EADDRINUSE; 1185 return (NULL); 1186 } 1187 } 1188 1189 if (info->rti_filter != NULL) { 1190 if (info->rti_filter(rt, info->rti_filterdata) == 0) { 1191 /* Not matched */ 1192 *perror = ENOENT; 1193 return (NULL); 1194 } 1195 1196 /* 1197 * Filter function requested rte deletion. 1198 * Ease the caller work by filling in remaining info 1199 * from that particular entry. 1200 */ 1201 info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1202 } 1203 1204 /* 1205 * Remove the item from the tree and return it. 1206 * Complain if it is not there and do no more processing. 1207 */ 1208 *perror = ESRCH; 1209 #ifdef RADIX_MPATH 1210 if (rn_mpath_capable(rnh)) 1211 rn = rt_mpath_unlink(rnh, info, rt, perror); 1212 else 1213 #endif 1214 rn = rnh->rnh_deladdr(dst, netmask, rnh); 1215 if (rn == NULL) 1216 return (NULL); 1217 1218 if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT)) 1219 panic ("rtrequest delete"); 1220 1221 rt = RNTORT(rn); 1222 RT_LOCK(rt); 1223 RT_ADDREF(rt); 1224 rt->rt_flags &= ~RTF_UP; 1225 1226 *perror = 0; 1227 1228 return (rt); 1229 } 1230 1231 static void 1232 rt_notifydelete(struct rtentry *rt, struct rt_addrinfo *info) 1233 { 1234 struct ifaddr *ifa; 1235 1236 /* 1237 * give the protocol a chance to keep things in sync. 1238 */ 1239 ifa = rt->rt_ifa; 1240 if (ifa != NULL && ifa->ifa_rtrequest != NULL) 1241 ifa->ifa_rtrequest(RTM_DELETE, rt, info); 1242 1243 /* 1244 * One more rtentry floating around that is not 1245 * linked to the routing table. rttrash will be decremented 1246 * when RTFREE(rt) is eventually called. 1247 */ 1248 V_rttrash++; 1249 } 1250 1251 1252 /* 1253 * These (questionable) definitions of apparent local variables apply 1254 * to the next two functions. XXXXXX!!! 1255 */ 1256 #define dst info->rti_info[RTAX_DST] 1257 #define gateway info->rti_info[RTAX_GATEWAY] 1258 #define netmask info->rti_info[RTAX_NETMASK] 1259 #define ifaaddr info->rti_info[RTAX_IFA] 1260 #define ifpaddr info->rti_info[RTAX_IFP] 1261 #define flags info->rti_flags 1262 1263 /* 1264 * Look up rt_addrinfo for a specific fib. Note that if rti_ifa is defined, 1265 * it will be referenced so the caller must free it. 1266 */ 1267 int 1268 rt_getifa_fib(struct rt_addrinfo *info, u_int fibnum) 1269 { 1270 struct ifaddr *ifa; 1271 int error = 0; 1272 1273 /* 1274 * ifp may be specified by sockaddr_dl 1275 * when protocol address is ambiguous. 1276 */ 1277 if (info->rti_ifp == NULL && ifpaddr != NULL && 1278 ifpaddr->sa_family == AF_LINK && 1279 (ifa = ifa_ifwithnet(ifpaddr, 0, fibnum)) != NULL) { 1280 info->rti_ifp = ifa->ifa_ifp; 1281 ifa_free(ifa); 1282 } 1283 if (info->rti_ifa == NULL && ifaaddr != NULL) 1284 info->rti_ifa = ifa_ifwithaddr(ifaaddr); 1285 if (info->rti_ifa == NULL) { 1286 struct sockaddr *sa; 1287 1288 sa = ifaaddr != NULL ? ifaaddr : 1289 (gateway != NULL ? gateway : dst); 1290 if (sa != NULL && info->rti_ifp != NULL) 1291 info->rti_ifa = ifaof_ifpforaddr(sa, info->rti_ifp); 1292 else if (dst != NULL && gateway != NULL) 1293 info->rti_ifa = ifa_ifwithroute(flags, dst, gateway, 1294 fibnum); 1295 else if (sa != NULL) 1296 info->rti_ifa = ifa_ifwithroute(flags, sa, sa, 1297 fibnum); 1298 } 1299 if ((ifa = info->rti_ifa) != NULL) { 1300 if (info->rti_ifp == NULL) 1301 info->rti_ifp = ifa->ifa_ifp; 1302 } else 1303 error = ENETUNREACH; 1304 return (error); 1305 } 1306 1307 static int 1308 if_updatemtu_cb(struct radix_node *rn, void *arg) 1309 { 1310 struct rtentry *rt; 1311 struct if_mtuinfo *ifmtu; 1312 1313 rt = (struct rtentry *)rn; 1314 ifmtu = (struct if_mtuinfo *)arg; 1315 1316 if (rt->rt_ifp != ifmtu->ifp) 1317 return (0); 1318 1319 if (rt->rt_mtu >= ifmtu->mtu) { 1320 /* We have to decrease mtu regardless of flags */ 1321 rt->rt_mtu = ifmtu->mtu; 1322 return (0); 1323 } 1324 1325 /* 1326 * New MTU is bigger. Check if are allowed to alter it 1327 */ 1328 if ((rt->rt_flags & (RTF_FIXEDMTU | RTF_GATEWAY | RTF_HOST)) != 0) { 1329 1330 /* 1331 * Skip routes with user-supplied MTU and 1332 * non-interface routes 1333 */ 1334 return (0); 1335 } 1336 1337 /* We are safe to update route MTU */ 1338 rt->rt_mtu = ifmtu->mtu; 1339 1340 return (0); 1341 } 1342 1343 void 1344 rt_updatemtu(struct ifnet *ifp) 1345 { 1346 struct if_mtuinfo ifmtu; 1347 struct radix_node_head *rnh; 1348 int i, j; 1349 1350 ifmtu.ifp = ifp; 1351 1352 /* 1353 * Try to update rt_mtu for all routes using this interface 1354 * Unfortunately the only way to do this is to traverse all 1355 * routing tables in all fibs/domains. 1356 */ 1357 for (i = 1; i <= AF_MAX; i++) { 1358 ifmtu.mtu = if_getmtu_family(ifp, i); 1359 for (j = 0; j < rt_numfibs; j++) { 1360 rnh = rt_tables_get_rnh(j, i); 1361 if (rnh == NULL) 1362 continue; 1363 RADIX_NODE_HEAD_LOCK(rnh); 1364 rnh->rnh_walktree(rnh, if_updatemtu_cb, &ifmtu); 1365 RADIX_NODE_HEAD_UNLOCK(rnh); 1366 } 1367 } 1368 } 1369 1370 1371 #if 0 1372 int p_sockaddr(char *buf, int buflen, struct sockaddr *s); 1373 int rt_print(char *buf, int buflen, struct rtentry *rt); 1374 1375 int 1376 p_sockaddr(char *buf, int buflen, struct sockaddr *s) 1377 { 1378 void *paddr = NULL; 1379 1380 switch (s->sa_family) { 1381 case AF_INET: 1382 paddr = &((struct sockaddr_in *)s)->sin_addr; 1383 break; 1384 case AF_INET6: 1385 paddr = &((struct sockaddr_in6 *)s)->sin6_addr; 1386 break; 1387 } 1388 1389 if (paddr == NULL) 1390 return (0); 1391 1392 if (inet_ntop(s->sa_family, paddr, buf, buflen) == NULL) 1393 return (0); 1394 1395 return (strlen(buf)); 1396 } 1397 1398 int 1399 rt_print(char *buf, int buflen, struct rtentry *rt) 1400 { 1401 struct sockaddr *addr, *mask; 1402 int i = 0; 1403 1404 addr = rt_key(rt); 1405 mask = rt_mask(rt); 1406 1407 i = p_sockaddr(buf, buflen, addr); 1408 if (!(rt->rt_flags & RTF_HOST)) { 1409 buf[i++] = '/'; 1410 i += p_sockaddr(buf + i, buflen - i, mask); 1411 } 1412 1413 if (rt->rt_flags & RTF_GATEWAY) { 1414 buf[i++] = '>'; 1415 i += p_sockaddr(buf + i, buflen - i, rt->rt_gateway); 1416 } 1417 1418 return (i); 1419 } 1420 #endif 1421 1422 #ifdef RADIX_MPATH 1423 /* 1424 * Deletes key for single-path routes, unlinks rtentry with 1425 * gateway specified in @info from multi-path routes. 1426 * 1427 * Returnes unlinked entry. In case of failure, returns NULL 1428 * and sets @perror to ESRCH. 1429 */ 1430 static struct radix_node * 1431 rt_mpath_unlink(struct radix_node_head *rnh, struct rt_addrinfo *info, 1432 struct rtentry *rto, int *perror) 1433 { 1434 /* 1435 * if we got multipath routes, we require users to specify 1436 * a matching RTAX_GATEWAY. 1437 */ 1438 struct rtentry *rt; // *rto = NULL; 1439 struct radix_node *rn; 1440 struct sockaddr *gw; 1441 1442 gw = info->rti_info[RTAX_GATEWAY]; 1443 rt = rt_mpath_matchgate(rto, gw); 1444 if (rt == NULL) { 1445 *perror = ESRCH; 1446 return (NULL); 1447 } 1448 1449 /* 1450 * this is the first entry in the chain 1451 */ 1452 if (rto == rt) { 1453 rn = rn_mpath_next((struct radix_node *)rt); 1454 /* 1455 * there is another entry, now it's active 1456 */ 1457 if (rn) { 1458 rto = RNTORT(rn); 1459 RT_LOCK(rto); 1460 rto->rt_flags |= RTF_UP; 1461 RT_UNLOCK(rto); 1462 } else if (rt->rt_flags & RTF_GATEWAY) { 1463 /* 1464 * For gateway routes, we need to 1465 * make sure that we we are deleting 1466 * the correct gateway. 1467 * rt_mpath_matchgate() does not 1468 * check the case when there is only 1469 * one route in the chain. 1470 */ 1471 if (gw && 1472 (rt->rt_gateway->sa_len != gw->sa_len || 1473 memcmp(rt->rt_gateway, gw, gw->sa_len))) { 1474 *perror = ESRCH; 1475 return (NULL); 1476 } 1477 } 1478 1479 /* 1480 * use the normal delete code to remove 1481 * the first entry 1482 */ 1483 rn = rnh->rnh_deladdr(dst, netmask, rnh); 1484 *perror = 0; 1485 return (rn); 1486 } 1487 1488 /* 1489 * if the entry is 2nd and on up 1490 */ 1491 if (rt_mpath_deldup(rto, rt) == 0) 1492 panic ("rtrequest1: rt_mpath_deldup"); 1493 *perror = 0; 1494 rn = (struct radix_node *)rt; 1495 return (rn); 1496 } 1497 #endif 1498 1499 #ifdef FLOWTABLE 1500 static struct rtentry * 1501 rt_flowtable_check_route(struct radix_node_head *rnh, struct rt_addrinfo *info) 1502 { 1503 #if defined(INET6) || defined(INET) 1504 struct radix_node *rn; 1505 #endif 1506 struct rtentry *rt0; 1507 1508 rt0 = NULL; 1509 /* "flow-table" only supports IPv6 and IPv4 at the moment. */ 1510 switch (dst->sa_family) { 1511 #ifdef INET6 1512 case AF_INET6: 1513 #endif 1514 #ifdef INET 1515 case AF_INET: 1516 #endif 1517 #if defined(INET6) || defined(INET) 1518 rn = rnh->rnh_matchaddr(dst, rnh); 1519 if (rn && ((rn->rn_flags & RNF_ROOT) == 0)) { 1520 struct sockaddr *mask; 1521 u_char *m, *n; 1522 int len; 1523 1524 /* 1525 * compare mask to see if the new route is 1526 * more specific than the existing one 1527 */ 1528 rt0 = RNTORT(rn); 1529 RT_LOCK(rt0); 1530 RT_ADDREF(rt0); 1531 RT_UNLOCK(rt0); 1532 /* 1533 * A host route is already present, so 1534 * leave the flow-table entries as is. 1535 */ 1536 if (rt0->rt_flags & RTF_HOST) { 1537 RTFREE(rt0); 1538 rt0 = NULL; 1539 } else if (!(flags & RTF_HOST) && netmask) { 1540 mask = rt_mask(rt0); 1541 len = mask->sa_len; 1542 m = (u_char *)mask; 1543 n = (u_char *)netmask; 1544 while (len-- > 0) { 1545 if (*n != *m) 1546 break; 1547 n++; 1548 m++; 1549 } 1550 if (len == 0 || (*n < *m)) { 1551 RTFREE(rt0); 1552 rt0 = NULL; 1553 } 1554 } 1555 } 1556 #endif/* INET6 || INET */ 1557 } 1558 1559 return (rt0); 1560 } 1561 #endif 1562 1563 int 1564 rtrequest1_fib(int req, struct rt_addrinfo *info, struct rtentry **ret_nrt, 1565 u_int fibnum) 1566 { 1567 int error = 0; 1568 struct rtentry *rt, *rt_old; 1569 #ifdef FLOWTABLE 1570 struct rtentry *rt0; 1571 #endif 1572 struct radix_node *rn; 1573 struct radix_node_head *rnh; 1574 struct ifaddr *ifa; 1575 struct sockaddr *ndst; 1576 struct sockaddr_storage mdst; 1577 1578 KASSERT((fibnum < rt_numfibs), ("rtrequest1_fib: bad fibnum")); 1579 KASSERT((flags & RTF_RNH_LOCKED) == 0, ("rtrequest1_fib: locked")); 1580 switch (dst->sa_family) { 1581 case AF_INET6: 1582 case AF_INET: 1583 /* We support multiple FIBs. */ 1584 break; 1585 default: 1586 fibnum = RT_DEFAULT_FIB; 1587 break; 1588 } 1589 1590 /* 1591 * Find the correct routing tree to use for this Address Family 1592 */ 1593 rnh = rt_tables_get_rnh(fibnum, dst->sa_family); 1594 if (rnh == NULL) 1595 return (EAFNOSUPPORT); 1596 1597 /* 1598 * If we are adding a host route then we don't want to put 1599 * a netmask in the tree, nor do we want to clone it. 1600 */ 1601 if (flags & RTF_HOST) 1602 netmask = NULL; 1603 1604 switch (req) { 1605 case RTM_DELETE: 1606 if (netmask) { 1607 rt_maskedcopy(dst, (struct sockaddr *)&mdst, netmask); 1608 dst = (struct sockaddr *)&mdst; 1609 } 1610 1611 RADIX_NODE_HEAD_LOCK(rnh); 1612 rt = rt_unlinkrte(rnh, info, &error); 1613 RADIX_NODE_HEAD_UNLOCK(rnh); 1614 if (error != 0) 1615 return (error); 1616 1617 rt_notifydelete(rt, info); 1618 1619 /* 1620 * If the caller wants it, then it can have it, 1621 * but it's up to it to free the rtentry as we won't be 1622 * doing it. 1623 */ 1624 if (ret_nrt) { 1625 *ret_nrt = rt; 1626 RT_UNLOCK(rt); 1627 } else 1628 RTFREE_LOCKED(rt); 1629 break; 1630 case RTM_RESOLVE: 1631 /* 1632 * resolve was only used for route cloning 1633 * here for compat 1634 */ 1635 break; 1636 case RTM_ADD: 1637 if ((flags & RTF_GATEWAY) && !gateway) 1638 return (EINVAL); 1639 if (dst && gateway && (dst->sa_family != gateway->sa_family) && 1640 (gateway->sa_family != AF_UNSPEC) && (gateway->sa_family != AF_LINK)) 1641 return (EINVAL); 1642 1643 if (info->rti_ifa == NULL) { 1644 error = rt_getifa_fib(info, fibnum); 1645 if (error) 1646 return (error); 1647 } else 1648 ifa_ref(info->rti_ifa); 1649 ifa = info->rti_ifa; 1650 rt = uma_zalloc(V_rtzone, M_NOWAIT); 1651 if (rt == NULL) { 1652 ifa_free(ifa); 1653 return (ENOBUFS); 1654 } 1655 rt->rt_flags = RTF_UP | flags; 1656 rt->rt_fibnum = fibnum; 1657 /* 1658 * Add the gateway. Possibly re-malloc-ing the storage for it. 1659 */ 1660 if ((error = rt_setgate(rt, dst, gateway)) != 0) { 1661 ifa_free(ifa); 1662 uma_zfree(V_rtzone, rt); 1663 return (error); 1664 } 1665 1666 /* 1667 * point to the (possibly newly malloc'd) dest address. 1668 */ 1669 ndst = (struct sockaddr *)rt_key(rt); 1670 1671 /* 1672 * make sure it contains the value we want (masked if needed). 1673 */ 1674 if (netmask) { 1675 rt_maskedcopy(dst, ndst, netmask); 1676 } else 1677 bcopy(dst, ndst, dst->sa_len); 1678 1679 /* 1680 * We use the ifa reference returned by rt_getifa_fib(). 1681 * This moved from below so that rnh->rnh_addaddr() can 1682 * examine the ifa and ifa->ifa_ifp if it so desires. 1683 */ 1684 rt->rt_ifa = ifa; 1685 rt->rt_ifp = ifa->ifa_ifp; 1686 rt->rt_weight = 1; 1687 1688 rt_setmetrics(info, rt); 1689 1690 RADIX_NODE_HEAD_LOCK(rnh); 1691 RT_LOCK(rt); 1692 #ifdef RADIX_MPATH 1693 /* do not permit exactly the same dst/mask/gw pair */ 1694 if (rn_mpath_capable(rnh) && 1695 rt_mpath_conflict(rnh, rt, netmask)) { 1696 RADIX_NODE_HEAD_UNLOCK(rnh); 1697 1698 ifa_free(rt->rt_ifa); 1699 R_Free(rt_key(rt)); 1700 uma_zfree(V_rtzone, rt); 1701 return (EEXIST); 1702 } 1703 #endif 1704 1705 #ifdef FLOWTABLE 1706 rt0 = rt_flowtable_check_route(rnh, info); 1707 #endif /* FLOWTABLE */ 1708 1709 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */ 1710 rn = rnh->rnh_addaddr(ndst, netmask, rnh, rt->rt_nodes); 1711 1712 rt_old = NULL; 1713 if (rn == NULL && (info->rti_flags & RTF_PINNED) != 0) { 1714 1715 /* 1716 * Force removal and re-try addition 1717 * TODO: better multipath&pinned support 1718 */ 1719 struct sockaddr *info_dst = info->rti_info[RTAX_DST]; 1720 info->rti_info[RTAX_DST] = ndst; 1721 /* Do not delete existing PINNED(interface) routes */ 1722 info->rti_flags &= ~RTF_PINNED; 1723 rt_old = rt_unlinkrte(rnh, info, &error); 1724 info->rti_flags |= RTF_PINNED; 1725 info->rti_info[RTAX_DST] = info_dst; 1726 if (rt_old != NULL) 1727 rn = rnh->rnh_addaddr(ndst, netmask, rnh, 1728 rt->rt_nodes); 1729 } 1730 RADIX_NODE_HEAD_UNLOCK(rnh); 1731 1732 if (rt_old != NULL) 1733 RT_UNLOCK(rt_old); 1734 1735 /* 1736 * If it still failed to go into the tree, 1737 * then un-make it (this should be a function) 1738 */ 1739 if (rn == NULL) { 1740 ifa_free(rt->rt_ifa); 1741 R_Free(rt_key(rt)); 1742 uma_zfree(V_rtzone, rt); 1743 #ifdef FLOWTABLE 1744 if (rt0 != NULL) 1745 RTFREE(rt0); 1746 #endif 1747 return (EEXIST); 1748 } 1749 #ifdef FLOWTABLE 1750 else if (rt0 != NULL) { 1751 flowtable_route_flush(dst->sa_family, rt0); 1752 RTFREE(rt0); 1753 } 1754 #endif 1755 1756 if (rt_old != NULL) { 1757 rt_notifydelete(rt_old, info); 1758 RTFREE(rt_old); 1759 } 1760 1761 /* 1762 * If this protocol has something to add to this then 1763 * allow it to do that as well. 1764 */ 1765 if (ifa->ifa_rtrequest) 1766 ifa->ifa_rtrequest(req, rt, info); 1767 1768 /* 1769 * actually return a resultant rtentry and 1770 * give the caller a single reference. 1771 */ 1772 if (ret_nrt) { 1773 *ret_nrt = rt; 1774 RT_ADDREF(rt); 1775 } 1776 RT_UNLOCK(rt); 1777 break; 1778 case RTM_CHANGE: 1779 RADIX_NODE_HEAD_LOCK(rnh); 1780 error = rtrequest1_fib_change(rnh, info, ret_nrt, fibnum); 1781 RADIX_NODE_HEAD_UNLOCK(rnh); 1782 break; 1783 default: 1784 error = EOPNOTSUPP; 1785 } 1786 1787 return (error); 1788 } 1789 1790 #undef dst 1791 #undef gateway 1792 #undef netmask 1793 #undef ifaaddr 1794 #undef ifpaddr 1795 #undef flags 1796 1797 static int 1798 rtrequest1_fib_change(struct radix_node_head *rnh, struct rt_addrinfo *info, 1799 struct rtentry **ret_nrt, u_int fibnum) 1800 { 1801 struct rtentry *rt = NULL; 1802 int error = 0; 1803 int free_ifa = 0; 1804 int family, mtu; 1805 struct if_mtuinfo ifmtu; 1806 1807 rt = (struct rtentry *)rnh->rnh_lookup(info->rti_info[RTAX_DST], 1808 info->rti_info[RTAX_NETMASK], rnh); 1809 1810 if (rt == NULL) 1811 return (ESRCH); 1812 1813 #ifdef RADIX_MPATH 1814 /* 1815 * If we got multipath routes, 1816 * we require users to specify a matching RTAX_GATEWAY. 1817 */ 1818 if (rn_mpath_capable(rnh)) { 1819 rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]); 1820 if (rt == NULL) 1821 return (ESRCH); 1822 } 1823 #endif 1824 1825 RT_LOCK(rt); 1826 1827 rt_setmetrics(info, rt); 1828 1829 /* 1830 * New gateway could require new ifaddr, ifp; 1831 * flags may also be different; ifp may be specified 1832 * by ll sockaddr when protocol address is ambiguous 1833 */ 1834 if (((rt->rt_flags & RTF_GATEWAY) && 1835 info->rti_info[RTAX_GATEWAY] != NULL) || 1836 info->rti_info[RTAX_IFP] != NULL || 1837 (info->rti_info[RTAX_IFA] != NULL && 1838 !sa_equal(info->rti_info[RTAX_IFA], rt->rt_ifa->ifa_addr))) { 1839 1840 error = rt_getifa_fib(info, fibnum); 1841 if (info->rti_ifa != NULL) 1842 free_ifa = 1; 1843 1844 if (error != 0) 1845 goto bad; 1846 } 1847 1848 /* Check if outgoing interface has changed */ 1849 if (info->rti_ifa != NULL && info->rti_ifa != rt->rt_ifa && 1850 rt->rt_ifa != NULL && rt->rt_ifa->ifa_rtrequest != NULL) { 1851 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, info); 1852 ifa_free(rt->rt_ifa); 1853 } 1854 /* Update gateway address */ 1855 if (info->rti_info[RTAX_GATEWAY] != NULL) { 1856 error = rt_setgate(rt, rt_key(rt), info->rti_info[RTAX_GATEWAY]); 1857 if (error != 0) 1858 goto bad; 1859 1860 rt->rt_flags &= ~RTF_GATEWAY; 1861 rt->rt_flags |= (RTF_GATEWAY & info->rti_flags); 1862 } 1863 1864 if (info->rti_ifa != NULL && info->rti_ifa != rt->rt_ifa) { 1865 ifa_ref(info->rti_ifa); 1866 rt->rt_ifa = info->rti_ifa; 1867 rt->rt_ifp = info->rti_ifp; 1868 } 1869 /* Allow some flags to be toggled on change. */ 1870 rt->rt_flags &= ~RTF_FMASK; 1871 rt->rt_flags |= info->rti_flags & RTF_FMASK; 1872 1873 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest != NULL) 1874 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, info); 1875 1876 /* Alter route MTU if necessary */ 1877 if (rt->rt_ifp != NULL) { 1878 family = info->rti_info[RTAX_DST]->sa_family; 1879 mtu = if_getmtu_family(rt->rt_ifp, family); 1880 /* Set default MTU */ 1881 if (rt->rt_mtu == 0) 1882 rt->rt_mtu = mtu; 1883 if (rt->rt_mtu != mtu) { 1884 /* Check if we really need to update */ 1885 ifmtu.ifp = rt->rt_ifp; 1886 ifmtu.mtu = mtu; 1887 if_updatemtu_cb(rt->rt_nodes, &ifmtu); 1888 } 1889 } 1890 1891 if (ret_nrt) { 1892 *ret_nrt = rt; 1893 RT_ADDREF(rt); 1894 } 1895 bad: 1896 RT_UNLOCK(rt); 1897 if (free_ifa != 0) 1898 ifa_free(info->rti_ifa); 1899 return (error); 1900 } 1901 1902 static void 1903 rt_setmetrics(const struct rt_addrinfo *info, struct rtentry *rt) 1904 { 1905 1906 if (info->rti_mflags & RTV_MTU) { 1907 if (info->rti_rmx->rmx_mtu != 0) { 1908 1909 /* 1910 * MTU was explicitly provided by user. 1911 * Keep it. 1912 */ 1913 rt->rt_flags |= RTF_FIXEDMTU; 1914 } else { 1915 1916 /* 1917 * User explicitly sets MTU to 0. 1918 * Assume rollback to default. 1919 */ 1920 rt->rt_flags &= ~RTF_FIXEDMTU; 1921 } 1922 rt->rt_mtu = info->rti_rmx->rmx_mtu; 1923 } 1924 if (info->rti_mflags & RTV_WEIGHT) 1925 rt->rt_weight = info->rti_rmx->rmx_weight; 1926 /* Kernel -> userland timebase conversion. */ 1927 if (info->rti_mflags & RTV_EXPIRE) 1928 rt->rt_expire = info->rti_rmx->rmx_expire ? 1929 info->rti_rmx->rmx_expire - time_second + time_uptime : 0; 1930 } 1931 1932 int 1933 rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate) 1934 { 1935 /* XXX dst may be overwritten, can we move this to below */ 1936 int dlen = SA_SIZE(dst), glen = SA_SIZE(gate); 1937 1938 /* 1939 * Prepare to store the gateway in rt->rt_gateway. 1940 * Both dst and gateway are stored one after the other in the same 1941 * malloc'd chunk. If we have room, we can reuse the old buffer, 1942 * rt_gateway already points to the right place. 1943 * Otherwise, malloc a new block and update the 'dst' address. 1944 */ 1945 if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway)) { 1946 caddr_t new; 1947 1948 R_Malloc(new, caddr_t, dlen + glen); 1949 if (new == NULL) 1950 return ENOBUFS; 1951 /* 1952 * XXX note, we copy from *dst and not *rt_key(rt) because 1953 * rt_setgate() can be called to initialize a newly 1954 * allocated route entry, in which case rt_key(rt) == NULL 1955 * (and also rt->rt_gateway == NULL). 1956 * Free()/free() handle a NULL argument just fine. 1957 */ 1958 bcopy(dst, new, dlen); 1959 R_Free(rt_key(rt)); /* free old block, if any */ 1960 rt_key(rt) = (struct sockaddr *)new; 1961 rt->rt_gateway = (struct sockaddr *)(new + dlen); 1962 } 1963 1964 /* 1965 * Copy the new gateway value into the memory chunk. 1966 */ 1967 bcopy(gate, rt->rt_gateway, glen); 1968 1969 return (0); 1970 } 1971 1972 void 1973 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst, struct sockaddr *netmask) 1974 { 1975 u_char *cp1 = (u_char *)src; 1976 u_char *cp2 = (u_char *)dst; 1977 u_char *cp3 = (u_char *)netmask; 1978 u_char *cplim = cp2 + *cp3; 1979 u_char *cplim2 = cp2 + *cp1; 1980 1981 *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */ 1982 cp3 += 2; 1983 if (cplim > cplim2) 1984 cplim = cplim2; 1985 while (cp2 < cplim) 1986 *cp2++ = *cp1++ & *cp3++; 1987 if (cp2 < cplim2) 1988 bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2)); 1989 } 1990 1991 /* 1992 * Set up a routing table entry, normally 1993 * for an interface. 1994 */ 1995 #define _SOCKADDR_TMPSIZE 128 /* Not too big.. kernel stack size is limited */ 1996 static inline int 1997 rtinit1(struct ifaddr *ifa, int cmd, int flags, int fibnum) 1998 { 1999 struct sockaddr *dst; 2000 struct sockaddr *netmask; 2001 struct rtentry *rt = NULL; 2002 struct rt_addrinfo info; 2003 int error = 0; 2004 int startfib, endfib; 2005 char tempbuf[_SOCKADDR_TMPSIZE]; 2006 int didwork = 0; 2007 int a_failure = 0; 2008 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 2009 struct radix_node_head *rnh; 2010 2011 if (flags & RTF_HOST) { 2012 dst = ifa->ifa_dstaddr; 2013 netmask = NULL; 2014 } else { 2015 dst = ifa->ifa_addr; 2016 netmask = ifa->ifa_netmask; 2017 } 2018 if (dst->sa_len == 0) 2019 return(EINVAL); 2020 switch (dst->sa_family) { 2021 case AF_INET6: 2022 case AF_INET: 2023 /* We support multiple FIBs. */ 2024 break; 2025 default: 2026 fibnum = RT_DEFAULT_FIB; 2027 break; 2028 } 2029 if (fibnum == RT_ALL_FIBS) { 2030 if (V_rt_add_addr_allfibs == 0 && cmd == (int)RTM_ADD) 2031 startfib = endfib = ifa->ifa_ifp->if_fib; 2032 else { 2033 startfib = 0; 2034 endfib = rt_numfibs - 1; 2035 } 2036 } else { 2037 KASSERT((fibnum < rt_numfibs), ("rtinit1: bad fibnum")); 2038 startfib = fibnum; 2039 endfib = fibnum; 2040 } 2041 2042 /* 2043 * If it's a delete, check that if it exists, 2044 * it's on the correct interface or we might scrub 2045 * a route to another ifa which would 2046 * be confusing at best and possibly worse. 2047 */ 2048 if (cmd == RTM_DELETE) { 2049 /* 2050 * It's a delete, so it should already exist.. 2051 * If it's a net, mask off the host bits 2052 * (Assuming we have a mask) 2053 * XXX this is kinda inet specific.. 2054 */ 2055 if (netmask != NULL) { 2056 rt_maskedcopy(dst, (struct sockaddr *)tempbuf, netmask); 2057 dst = (struct sockaddr *)tempbuf; 2058 } 2059 } 2060 /* 2061 * Now go through all the requested tables (fibs) and do the 2062 * requested action. Realistically, this will either be fib 0 2063 * for protocols that don't do multiple tables or all the 2064 * tables for those that do. 2065 */ 2066 for ( fibnum = startfib; fibnum <= endfib; fibnum++) { 2067 if (cmd == RTM_DELETE) { 2068 struct radix_node *rn; 2069 /* 2070 * Look up an rtentry that is in the routing tree and 2071 * contains the correct info. 2072 */ 2073 rnh = rt_tables_get_rnh(fibnum, dst->sa_family); 2074 if (rnh == NULL) 2075 /* this table doesn't exist but others might */ 2076 continue; 2077 RADIX_NODE_HEAD_RLOCK(rnh); 2078 rn = rnh->rnh_lookup(dst, netmask, rnh); 2079 #ifdef RADIX_MPATH 2080 if (rn_mpath_capable(rnh)) { 2081 2082 if (rn == NULL) 2083 error = ESRCH; 2084 else { 2085 rt = RNTORT(rn); 2086 /* 2087 * for interface route the 2088 * rt->rt_gateway is sockaddr_intf 2089 * for cloning ARP entries, so 2090 * rt_mpath_matchgate must use the 2091 * interface address 2092 */ 2093 rt = rt_mpath_matchgate(rt, 2094 ifa->ifa_addr); 2095 if (rt == NULL) 2096 error = ESRCH; 2097 } 2098 } 2099 #endif 2100 error = (rn == NULL || 2101 (rn->rn_flags & RNF_ROOT) || 2102 RNTORT(rn)->rt_ifa != ifa); 2103 RADIX_NODE_HEAD_RUNLOCK(rnh); 2104 if (error) { 2105 /* this is only an error if bad on ALL tables */ 2106 continue; 2107 } 2108 } 2109 /* 2110 * Do the actual request 2111 */ 2112 bzero((caddr_t)&info, sizeof(info)); 2113 info.rti_ifa = ifa; 2114 info.rti_flags = flags | 2115 (ifa->ifa_flags & ~IFA_RTSELF) | RTF_PINNED; 2116 info.rti_info[RTAX_DST] = dst; 2117 /* 2118 * doing this for compatibility reasons 2119 */ 2120 if (cmd == RTM_ADD) 2121 info.rti_info[RTAX_GATEWAY] = 2122 (struct sockaddr *)&null_sdl; 2123 else 2124 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 2125 info.rti_info[RTAX_NETMASK] = netmask; 2126 error = rtrequest1_fib(cmd, &info, &rt, fibnum); 2127 2128 if (error == 0 && rt != NULL) { 2129 /* 2130 * notify any listening routing agents of the change 2131 */ 2132 RT_LOCK(rt); 2133 #ifdef RADIX_MPATH 2134 /* 2135 * in case address alias finds the first address 2136 * e.g. ifconfig bge0 192.0.2.246/24 2137 * e.g. ifconfig bge0 192.0.2.247/24 2138 * the address set in the route is 192.0.2.246 2139 * so we need to replace it with 192.0.2.247 2140 */ 2141 if (memcmp(rt->rt_ifa->ifa_addr, 2142 ifa->ifa_addr, ifa->ifa_addr->sa_len)) { 2143 ifa_free(rt->rt_ifa); 2144 ifa_ref(ifa); 2145 rt->rt_ifp = ifa->ifa_ifp; 2146 rt->rt_ifa = ifa; 2147 } 2148 #endif 2149 /* 2150 * doing this for compatibility reasons 2151 */ 2152 if (cmd == RTM_ADD) { 2153 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = 2154 rt->rt_ifp->if_type; 2155 ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = 2156 rt->rt_ifp->if_index; 2157 } 2158 RT_ADDREF(rt); 2159 RT_UNLOCK(rt); 2160 rt_newaddrmsg_fib(cmd, ifa, error, rt, fibnum); 2161 RT_LOCK(rt); 2162 RT_REMREF(rt); 2163 if (cmd == RTM_DELETE) { 2164 /* 2165 * If we are deleting, and we found an entry, 2166 * then it's been removed from the tree.. 2167 * now throw it away. 2168 */ 2169 RTFREE_LOCKED(rt); 2170 } else { 2171 if (cmd == RTM_ADD) { 2172 /* 2173 * We just wanted to add it.. 2174 * we don't actually need a reference. 2175 */ 2176 RT_REMREF(rt); 2177 } 2178 RT_UNLOCK(rt); 2179 } 2180 didwork = 1; 2181 } 2182 if (error) 2183 a_failure = error; 2184 } 2185 if (cmd == RTM_DELETE) { 2186 if (didwork) { 2187 error = 0; 2188 } else { 2189 /* we only give an error if it wasn't in any table */ 2190 error = ((flags & RTF_HOST) ? 2191 EHOSTUNREACH : ENETUNREACH); 2192 } 2193 } else { 2194 if (a_failure) { 2195 /* return an error if any of them failed */ 2196 error = a_failure; 2197 } 2198 } 2199 return (error); 2200 } 2201 2202 /* 2203 * Set up a routing table entry, normally 2204 * for an interface. 2205 */ 2206 int 2207 rtinit(struct ifaddr *ifa, int cmd, int flags) 2208 { 2209 struct sockaddr *dst; 2210 int fib = RT_DEFAULT_FIB; 2211 2212 if (flags & RTF_HOST) { 2213 dst = ifa->ifa_dstaddr; 2214 } else { 2215 dst = ifa->ifa_addr; 2216 } 2217 2218 switch (dst->sa_family) { 2219 case AF_INET6: 2220 case AF_INET: 2221 /* We do support multiple FIBs. */ 2222 fib = RT_ALL_FIBS; 2223 break; 2224 } 2225 return (rtinit1(ifa, cmd, flags, fib)); 2226 } 2227 2228 /* 2229 * Announce interface address arrival/withdraw 2230 * Returns 0 on success. 2231 */ 2232 int 2233 rt_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) 2234 { 2235 2236 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 2237 ("unexpected cmd %d", cmd)); 2238 2239 KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), 2240 ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); 2241 2242 #if defined(INET) || defined(INET6) 2243 #ifdef SCTP 2244 /* 2245 * notify the SCTP stack 2246 * this will only get called when an address is added/deleted 2247 * XXX pass the ifaddr struct instead if ifa->ifa_addr... 2248 */ 2249 sctp_addr_change(ifa, cmd); 2250 #endif /* SCTP */ 2251 #endif 2252 return (rtsock_addrmsg(cmd, ifa, fibnum)); 2253 } 2254 2255 /* 2256 * Announce route addition/removal. 2257 * Users of this function MUST validate input data BEFORE calling. 2258 * However we have to be able to handle invalid data: 2259 * if some userland app sends us "invalid" route message (invalid mask, 2260 * no dst, wrong address families, etc...) we need to pass it back 2261 * to app (and any other rtsock consumers) with rtm_errno field set to 2262 * non-zero value. 2263 * Returns 0 on success. 2264 */ 2265 int 2266 rt_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, 2267 int fibnum) 2268 { 2269 2270 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 2271 ("unexpected cmd %d", cmd)); 2272 2273 KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), 2274 ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); 2275 2276 KASSERT(rt_key(rt) != NULL, (":%s: rt_key must be supplied", __func__)); 2277 2278 return (rtsock_routemsg(cmd, ifp, error, rt, fibnum)); 2279 } 2280 2281 void 2282 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 2283 { 2284 2285 rt_newaddrmsg_fib(cmd, ifa, error, rt, RT_ALL_FIBS); 2286 } 2287 2288 /* 2289 * This is called to generate messages from the routing socket 2290 * indicating a network interface has had addresses associated with it. 2291 */ 2292 void 2293 rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, 2294 int fibnum) 2295 { 2296 2297 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, 2298 ("unexpected cmd %u", cmd)); 2299 KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), 2300 ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); 2301 2302 if (cmd == RTM_ADD) { 2303 rt_addrmsg(cmd, ifa, fibnum); 2304 if (rt != NULL) 2305 rt_routemsg(cmd, ifa->ifa_ifp, error, rt, fibnum); 2306 } else { 2307 if (rt != NULL) 2308 rt_routemsg(cmd, ifa->ifa_ifp, error, rt, fibnum); 2309 rt_addrmsg(cmd, ifa, fibnum); 2310 } 2311 } 2312 2313