1 /*- 2 * Copyright (c) 1988, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)radix.c 8.5 (Berkeley) 5/19/95 30 * $FreeBSD$ 31 */ 32 33 /* 34 * Routines to build and maintain radix trees for routing lookups. 35 */ 36 #ifndef _RADIX_H_ 37 #include <sys/param.h> 38 #ifdef _KERNEL 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/domain.h> 44 #else 45 #include <stdlib.h> 46 #endif 47 #include <sys/syslog.h> 48 #include <net/radix.h> 49 #endif 50 51 #include "opt_mpath.h" 52 53 #ifdef RADIX_MPATH 54 #include <net/radix_mpath.h> 55 #endif 56 57 58 static int rn_walktree_from(struct radix_node_head *h, void *a, void *m, 59 walktree_f_t *f, void *w); 60 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); 61 static struct radix_node 62 *rn_insert(void *, struct radix_node_head *, int *, 63 struct radix_node [2]), 64 *rn_newpair(void *, int, struct radix_node[2]), 65 *rn_search(void *, struct radix_node *), 66 *rn_search_m(void *, struct radix_node *, void *); 67 68 static int max_keylen; 69 static struct radix_mask *rn_mkfreelist; 70 static struct radix_node_head *mask_rnhead; 71 /* 72 * Work area -- the following point to 3 buffers of size max_keylen, 73 * allocated in this order in a block of memory malloc'ed by rn_init. 74 */ 75 static char *rn_zeros, *rn_ones, *addmask_key; 76 77 #define MKGet(m) { \ 78 if (rn_mkfreelist) { \ 79 m = rn_mkfreelist; \ 80 rn_mkfreelist = (m)->rm_mklist; \ 81 } else \ 82 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); } 83 84 #define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);} 85 86 #define rn_masktop (mask_rnhead->rnh_treetop) 87 88 static int rn_lexobetter(void *m_arg, void *n_arg); 89 static struct radix_mask * 90 rn_new_radix_mask(struct radix_node *tt, 91 struct radix_mask *next); 92 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, 93 int skip); 94 95 /* 96 * The data structure for the keys is a radix tree with one way 97 * branching removed. The index rn_bit at an internal node n represents a bit 98 * position to be tested. The tree is arranged so that all descendants 99 * of a node n have keys whose bits all agree up to position rn_bit - 1. 100 * (We say the index of n is rn_bit.) 101 * 102 * There is at least one descendant which has a one bit at position rn_bit, 103 * and at least one with a zero there. 104 * 105 * A route is determined by a pair of key and mask. We require that the 106 * bit-wise logical and of the key and mask to be the key. 107 * We define the index of a route to associated with the mask to be 108 * the first bit number in the mask where 0 occurs (with bit number 0 109 * representing the highest order bit). 110 * 111 * We say a mask is normal if every bit is 0, past the index of the mask. 112 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 113 * and m is a normal mask, then the route applies to every descendant of n. 114 * If the index(m) < rn_bit, this implies the trailing last few bits of k 115 * before bit b are all 0, (and hence consequently true of every descendant 116 * of n), so the route applies to all descendants of the node as well. 117 * 118 * Similar logic shows that a non-normal mask m such that 119 * index(m) <= index(n) could potentially apply to many children of n. 120 * Thus, for each non-host route, we attach its mask to a list at an internal 121 * node as high in the tree as we can go. 122 * 123 * The present version of the code makes use of normal routes in short- 124 * circuiting an explict mask and compare operation when testing whether 125 * a key satisfies a normal route, and also in remembering the unique leaf 126 * that governs a subtree. 127 */ 128 129 /* 130 * Most of the functions in this code assume that the key/mask arguments 131 * are sockaddr-like structures, where the first byte is an u_char 132 * indicating the size of the entire structure. 133 * 134 * To make the assumption more explicit, we use the LEN() macro to access 135 * this field. It is safe to pass an expression with side effects 136 * to LEN() as the argument is evaluated only once. 137 */ 138 #define LEN(x) (*(const u_char *)(x)) 139 140 /* 141 * XXX THIS NEEDS TO BE FIXED 142 * In the code, pointers to keys and masks are passed as either 143 * 'void *' (because callers use to pass pointers of various kinds), or 144 * 'caddr_t' (which is fine for pointer arithmetics, but not very 145 * clean when you dereference it to access data). Furthermore, caddr_t 146 * is really 'char *', while the natural type to operate on keys and 147 * masks would be 'u_char'. This mismatch require a lot of casts and 148 * intermediate variables to adapt types that clutter the code. 149 */ 150 151 /* 152 * Search a node in the tree matching the key. 153 */ 154 static struct radix_node * 155 rn_search(v_arg, head) 156 void *v_arg; 157 struct radix_node *head; 158 { 159 register struct radix_node *x; 160 register caddr_t v; 161 162 for (x = head, v = v_arg; x->rn_bit >= 0;) { 163 if (x->rn_bmask & v[x->rn_offset]) 164 x = x->rn_right; 165 else 166 x = x->rn_left; 167 } 168 return (x); 169 } 170 171 /* 172 * Same as above, but with an additional mask. 173 * XXX note this function is used only once. 174 */ 175 static struct radix_node * 176 rn_search_m(v_arg, head, m_arg) 177 struct radix_node *head; 178 void *v_arg, *m_arg; 179 { 180 register struct radix_node *x; 181 register caddr_t v = v_arg, m = m_arg; 182 183 for (x = head; x->rn_bit >= 0;) { 184 if ((x->rn_bmask & m[x->rn_offset]) && 185 (x->rn_bmask & v[x->rn_offset])) 186 x = x->rn_right; 187 else 188 x = x->rn_left; 189 } 190 return x; 191 } 192 193 int 194 rn_refines(m_arg, n_arg) 195 void *m_arg, *n_arg; 196 { 197 register caddr_t m = m_arg, n = n_arg; 198 register caddr_t lim, lim2 = lim = n + LEN(n); 199 int longer = LEN(n++) - (int)LEN(m++); 200 int masks_are_equal = 1; 201 202 if (longer > 0) 203 lim -= longer; 204 while (n < lim) { 205 if (*n & ~(*m)) 206 return 0; 207 if (*n++ != *m++) 208 masks_are_equal = 0; 209 } 210 while (n < lim2) 211 if (*n++) 212 return 0; 213 if (masks_are_equal && (longer < 0)) 214 for (lim2 = m - longer; m < lim2; ) 215 if (*m++) 216 return 1; 217 return (!masks_are_equal); 218 } 219 220 struct radix_node * 221 rn_lookup(v_arg, m_arg, head) 222 void *v_arg, *m_arg; 223 struct radix_node_head *head; 224 { 225 register struct radix_node *x; 226 caddr_t netmask = 0; 227 228 if (m_arg) { 229 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset); 230 if (x == 0) 231 return (0); 232 netmask = x->rn_key; 233 } 234 x = rn_match(v_arg, head); 235 if (x && netmask) { 236 while (x && x->rn_mask != netmask) 237 x = x->rn_dupedkey; 238 } 239 return x; 240 } 241 242 static int 243 rn_satisfies_leaf(trial, leaf, skip) 244 char *trial; 245 register struct radix_node *leaf; 246 int skip; 247 { 248 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 249 char *cplim; 250 int length = min(LEN(cp), LEN(cp2)); 251 252 if (cp3 == 0) 253 cp3 = rn_ones; 254 else 255 length = min(length, *(u_char *)cp3); 256 cplim = cp + length; cp3 += skip; cp2 += skip; 257 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 258 if ((*cp ^ *cp2) & *cp3) 259 return 0; 260 return 1; 261 } 262 263 struct radix_node * 264 rn_match(v_arg, head) 265 void *v_arg; 266 struct radix_node_head *head; 267 { 268 caddr_t v = v_arg; 269 register struct radix_node *t = head->rnh_treetop, *x; 270 register caddr_t cp = v, cp2; 271 caddr_t cplim; 272 struct radix_node *saved_t, *top = t; 273 int off = t->rn_offset, vlen = LEN(cp), matched_off; 274 register int test, b, rn_bit; 275 276 /* 277 * Open code rn_search(v, top) to avoid overhead of extra 278 * subroutine call. 279 */ 280 for (; t->rn_bit >= 0; ) { 281 if (t->rn_bmask & cp[t->rn_offset]) 282 t = t->rn_right; 283 else 284 t = t->rn_left; 285 } 286 /* 287 * See if we match exactly as a host destination 288 * or at least learn how many bits match, for normal mask finesse. 289 * 290 * It doesn't hurt us to limit how many bytes to check 291 * to the length of the mask, since if it matches we had a genuine 292 * match and the leaf we have is the most specific one anyway; 293 * if it didn't match with a shorter length it would fail 294 * with a long one. This wins big for class B&C netmasks which 295 * are probably the most common case... 296 */ 297 if (t->rn_mask) 298 vlen = *(u_char *)t->rn_mask; 299 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 300 for (; cp < cplim; cp++, cp2++) 301 if (*cp != *cp2) 302 goto on1; 303 /* 304 * This extra grot is in case we are explicitly asked 305 * to look up the default. Ugh! 306 * 307 * Never return the root node itself, it seems to cause a 308 * lot of confusion. 309 */ 310 if (t->rn_flags & RNF_ROOT) 311 t = t->rn_dupedkey; 312 return t; 313 on1: 314 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 315 for (b = 7; (test >>= 1) > 0;) 316 b--; 317 matched_off = cp - v; 318 b += matched_off << 3; 319 rn_bit = -1 - b; 320 /* 321 * If there is a host route in a duped-key chain, it will be first. 322 */ 323 if ((saved_t = t)->rn_mask == 0) 324 t = t->rn_dupedkey; 325 for (; t; t = t->rn_dupedkey) 326 /* 327 * Even if we don't match exactly as a host, 328 * we may match if the leaf we wound up at is 329 * a route to a net. 330 */ 331 if (t->rn_flags & RNF_NORMAL) { 332 if (rn_bit <= t->rn_bit) 333 return t; 334 } else if (rn_satisfies_leaf(v, t, matched_off)) 335 return t; 336 t = saved_t; 337 /* start searching up the tree */ 338 do { 339 register struct radix_mask *m; 340 t = t->rn_parent; 341 m = t->rn_mklist; 342 /* 343 * If non-contiguous masks ever become important 344 * we can restore the masking and open coding of 345 * the search and satisfaction test and put the 346 * calculation of "off" back before the "do". 347 */ 348 while (m) { 349 if (m->rm_flags & RNF_NORMAL) { 350 if (rn_bit <= m->rm_bit) 351 return (m->rm_leaf); 352 } else { 353 off = min(t->rn_offset, matched_off); 354 x = rn_search_m(v, t, m->rm_mask); 355 while (x && x->rn_mask != m->rm_mask) 356 x = x->rn_dupedkey; 357 if (x && rn_satisfies_leaf(v, x, off)) 358 return x; 359 } 360 m = m->rm_mklist; 361 } 362 } while (t != top); 363 return 0; 364 } 365 366 #ifdef RN_DEBUG 367 int rn_nodenum; 368 struct radix_node *rn_clist; 369 int rn_saveinfo; 370 int rn_debug = 1; 371 #endif 372 373 /* 374 * Whenever we add a new leaf to the tree, we also add a parent node, 375 * so we allocate them as an array of two elements: the first one must be 376 * the leaf (see RNTORT() in route.c), the second one is the parent. 377 * This routine initializes the relevant fields of the nodes, so that 378 * the leaf is the left child of the parent node, and both nodes have 379 * (almost) all all fields filled as appropriate. 380 * (XXX some fields are left unset, see the '#if 0' section). 381 * The function returns a pointer to the parent node. 382 */ 383 384 static struct radix_node * 385 rn_newpair(v, b, nodes) 386 void *v; 387 int b; 388 struct radix_node nodes[2]; 389 { 390 register struct radix_node *tt = nodes, *t = tt + 1; 391 t->rn_bit = b; 392 t->rn_bmask = 0x80 >> (b & 7); 393 t->rn_left = tt; 394 t->rn_offset = b >> 3; 395 396 #if 0 /* XXX perhaps we should fill these fields as well. */ 397 t->rn_parent = t->rn_right = NULL; 398 399 tt->rn_mask = NULL; 400 tt->rn_dupedkey = NULL; 401 tt->rn_bmask = 0; 402 #endif 403 tt->rn_bit = -1; 404 tt->rn_key = (caddr_t)v; 405 tt->rn_parent = t; 406 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 407 tt->rn_mklist = t->rn_mklist = 0; 408 #ifdef RN_DEBUG 409 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 410 tt->rn_twin = t; 411 tt->rn_ybro = rn_clist; 412 rn_clist = tt; 413 #endif 414 return t; 415 } 416 417 static struct radix_node * 418 rn_insert(v_arg, head, dupentry, nodes) 419 void *v_arg; 420 struct radix_node_head *head; 421 int *dupentry; 422 struct radix_node nodes[2]; 423 { 424 caddr_t v = v_arg; 425 struct radix_node *top = head->rnh_treetop; 426 int head_off = top->rn_offset, vlen = (int)LEN(v); 427 register struct radix_node *t = rn_search(v_arg, top); 428 register caddr_t cp = v + head_off; 429 register int b; 430 struct radix_node *tt; 431 /* 432 * Find first bit at which v and t->rn_key differ 433 */ 434 { 435 register caddr_t cp2 = t->rn_key + head_off; 436 register int cmp_res; 437 caddr_t cplim = v + vlen; 438 439 while (cp < cplim) 440 if (*cp2++ != *cp++) 441 goto on1; 442 *dupentry = 1; 443 return t; 444 on1: 445 *dupentry = 0; 446 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 447 for (b = (cp - v) << 3; cmp_res; b--) 448 cmp_res >>= 1; 449 } 450 { 451 register struct radix_node *p, *x = top; 452 cp = v; 453 do { 454 p = x; 455 if (cp[x->rn_offset] & x->rn_bmask) 456 x = x->rn_right; 457 else 458 x = x->rn_left; 459 } while (b > (unsigned) x->rn_bit); 460 /* x->rn_bit < b && x->rn_bit >= 0 */ 461 #ifdef RN_DEBUG 462 if (rn_debug) 463 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 464 #endif 465 t = rn_newpair(v_arg, b, nodes); 466 tt = t->rn_left; 467 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 468 p->rn_left = t; 469 else 470 p->rn_right = t; 471 x->rn_parent = t; 472 t->rn_parent = p; /* frees x, p as temp vars below */ 473 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 474 t->rn_right = x; 475 } else { 476 t->rn_right = tt; 477 t->rn_left = x; 478 } 479 #ifdef RN_DEBUG 480 if (rn_debug) 481 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 482 #endif 483 } 484 return (tt); 485 } 486 487 struct radix_node * 488 rn_addmask(n_arg, search, skip) 489 int search, skip; 490 void *n_arg; 491 { 492 caddr_t netmask = (caddr_t)n_arg; 493 register struct radix_node *x; 494 register caddr_t cp, cplim; 495 register int b = 0, mlen, j; 496 int maskduplicated, m0, isnormal; 497 struct radix_node *saved_x; 498 static int last_zeroed = 0; 499 500 if ((mlen = LEN(netmask)) > max_keylen) 501 mlen = max_keylen; 502 if (skip == 0) 503 skip = 1; 504 if (mlen <= skip) 505 return (mask_rnhead->rnh_nodes); 506 if (skip > 1) 507 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 508 if ((m0 = mlen) > skip) 509 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 510 /* 511 * Trim trailing zeroes. 512 */ 513 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 514 cp--; 515 mlen = cp - addmask_key; 516 if (mlen <= skip) { 517 if (m0 >= last_zeroed) 518 last_zeroed = mlen; 519 return (mask_rnhead->rnh_nodes); 520 } 521 if (m0 < last_zeroed) 522 bzero(addmask_key + m0, last_zeroed - m0); 523 *addmask_key = last_zeroed = mlen; 524 x = rn_search(addmask_key, rn_masktop); 525 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 526 x = 0; 527 if (x || search) 528 return (x); 529 R_Zalloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); 530 if ((saved_x = x) == 0) 531 return (0); 532 netmask = cp = (caddr_t)(x + 2); 533 bcopy(addmask_key, cp, mlen); 534 x = rn_insert(cp, mask_rnhead, &maskduplicated, x); 535 if (maskduplicated) { 536 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 537 Free(saved_x); 538 return (x); 539 } 540 /* 541 * Calculate index of mask, and check for normalcy. 542 * First find the first byte with a 0 bit, then if there are 543 * more bits left (remember we already trimmed the trailing 0's), 544 * the pattern must be one of those in normal_chars[], or we have 545 * a non-contiguous mask. 546 */ 547 cplim = netmask + mlen; 548 isnormal = 1; 549 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) 550 cp++; 551 if (cp != cplim) { 552 static char normal_chars[] = { 553 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 554 555 for (j = 0x80; (j & *cp) != 0; j >>= 1) 556 b++; 557 if (*cp != normal_chars[b] || cp != (cplim - 1)) 558 isnormal = 0; 559 } 560 b += (cp - netmask) << 3; 561 x->rn_bit = -1 - b; 562 if (isnormal) 563 x->rn_flags |= RNF_NORMAL; 564 return (x); 565 } 566 567 static int /* XXX: arbitrary ordering for non-contiguous masks */ 568 rn_lexobetter(m_arg, n_arg) 569 void *m_arg, *n_arg; 570 { 571 register u_char *mp = m_arg, *np = n_arg, *lim; 572 573 if (LEN(mp) > LEN(np)) 574 return 1; /* not really, but need to check longer one first */ 575 if (LEN(mp) == LEN(np)) 576 for (lim = mp + LEN(mp); mp < lim;) 577 if (*mp++ > *np++) 578 return 1; 579 return 0; 580 } 581 582 static struct radix_mask * 583 rn_new_radix_mask(tt, next) 584 register struct radix_node *tt; 585 register struct radix_mask *next; 586 { 587 register struct radix_mask *m; 588 589 MKGet(m); 590 if (m == 0) { 591 log(LOG_ERR, "Mask for route not entered\n"); 592 return (0); 593 } 594 bzero(m, sizeof *m); 595 m->rm_bit = tt->rn_bit; 596 m->rm_flags = tt->rn_flags; 597 if (tt->rn_flags & RNF_NORMAL) 598 m->rm_leaf = tt; 599 else 600 m->rm_mask = tt->rn_mask; 601 m->rm_mklist = next; 602 tt->rn_mklist = m; 603 return m; 604 } 605 606 struct radix_node * 607 rn_addroute(v_arg, n_arg, head, treenodes) 608 void *v_arg, *n_arg; 609 struct radix_node_head *head; 610 struct radix_node treenodes[2]; 611 { 612 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 613 register struct radix_node *t, *x = 0, *tt; 614 struct radix_node *saved_tt, *top = head->rnh_treetop; 615 short b = 0, b_leaf = 0; 616 int keyduplicated; 617 caddr_t mmask; 618 struct radix_mask *m, **mp; 619 620 /* 621 * In dealing with non-contiguous masks, there may be 622 * many different routes which have the same mask. 623 * We will find it useful to have a unique pointer to 624 * the mask to speed avoiding duplicate references at 625 * nodes and possibly save time in calculating indices. 626 */ 627 if (netmask) { 628 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) 629 return (0); 630 b_leaf = x->rn_bit; 631 b = -1 - x->rn_bit; 632 netmask = x->rn_key; 633 } 634 /* 635 * Deal with duplicated keys: attach node to previous instance 636 */ 637 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 638 if (keyduplicated) { 639 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 640 #ifdef RADIX_MPATH 641 /* permit multipath, if enabled for the family */ 642 if (rn_mpath_capable(head) && netmask == tt->rn_mask) { 643 /* 644 * go down to the end of multipaths, so that 645 * new entry goes into the end of rn_dupedkey 646 * chain. 647 */ 648 do { 649 t = tt; 650 tt = tt->rn_dupedkey; 651 } while (tt && t->rn_mask == tt->rn_mask); 652 break; 653 } 654 #endif 655 if (tt->rn_mask == netmask) 656 return (0); 657 if (netmask == 0 || 658 (tt->rn_mask && 659 ((b_leaf < tt->rn_bit) /* index(netmask) > node */ 660 || rn_refines(netmask, tt->rn_mask) 661 || rn_lexobetter(netmask, tt->rn_mask)))) 662 break; 663 } 664 /* 665 * If the mask is not duplicated, we wouldn't 666 * find it among possible duplicate key entries 667 * anyway, so the above test doesn't hurt. 668 * 669 * We sort the masks for a duplicated key the same way as 670 * in a masklist -- most specific to least specific. 671 * This may require the unfortunate nuisance of relocating 672 * the head of the list. 673 * 674 * We also reverse, or doubly link the list through the 675 * parent pointer. 676 */ 677 if (tt == saved_tt) { 678 struct radix_node *xx = x; 679 /* link in at head of list */ 680 (tt = treenodes)->rn_dupedkey = t; 681 tt->rn_flags = t->rn_flags; 682 tt->rn_parent = x = t->rn_parent; 683 t->rn_parent = tt; /* parent */ 684 if (x->rn_left == t) 685 x->rn_left = tt; 686 else 687 x->rn_right = tt; 688 saved_tt = tt; x = xx; 689 } else { 690 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 691 t->rn_dupedkey = tt; 692 tt->rn_parent = t; /* parent */ 693 if (tt->rn_dupedkey) /* parent */ 694 tt->rn_dupedkey->rn_parent = tt; /* parent */ 695 } 696 #ifdef RN_DEBUG 697 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 698 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 699 #endif 700 tt->rn_key = (caddr_t) v; 701 tt->rn_bit = -1; 702 tt->rn_flags = RNF_ACTIVE; 703 } 704 /* 705 * Put mask in tree. 706 */ 707 if (netmask) { 708 tt->rn_mask = netmask; 709 tt->rn_bit = x->rn_bit; 710 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 711 } 712 t = saved_tt->rn_parent; 713 if (keyduplicated) 714 goto on2; 715 b_leaf = -1 - t->rn_bit; 716 if (t->rn_right == saved_tt) 717 x = t->rn_left; 718 else 719 x = t->rn_right; 720 /* Promote general routes from below */ 721 if (x->rn_bit < 0) { 722 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 723 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 724 *mp = m = rn_new_radix_mask(x, 0); 725 if (m) 726 mp = &m->rm_mklist; 727 } 728 } else if (x->rn_mklist) { 729 /* 730 * Skip over masks whose index is > that of new node 731 */ 732 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 733 if (m->rm_bit >= b_leaf) 734 break; 735 t->rn_mklist = m; *mp = 0; 736 } 737 on2: 738 /* Add new route to highest possible ancestor's list */ 739 if ((netmask == 0) || (b > t->rn_bit )) 740 return tt; /* can't lift at all */ 741 b_leaf = tt->rn_bit; 742 do { 743 x = t; 744 t = t->rn_parent; 745 } while (b <= t->rn_bit && x != top); 746 /* 747 * Search through routes associated with node to 748 * insert new route according to index. 749 * Need same criteria as when sorting dupedkeys to avoid 750 * double loop on deletion. 751 */ 752 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 753 if (m->rm_bit < b_leaf) 754 continue; 755 if (m->rm_bit > b_leaf) 756 break; 757 if (m->rm_flags & RNF_NORMAL) { 758 mmask = m->rm_leaf->rn_mask; 759 if (tt->rn_flags & RNF_NORMAL) { 760 log(LOG_ERR, 761 "Non-unique normal route, mask not entered\n"); 762 return tt; 763 } 764 } else 765 mmask = m->rm_mask; 766 if (mmask == netmask) { 767 m->rm_refs++; 768 tt->rn_mklist = m; 769 return tt; 770 } 771 if (rn_refines(netmask, mmask) 772 || rn_lexobetter(netmask, mmask)) 773 break; 774 } 775 *mp = rn_new_radix_mask(tt, *mp); 776 return tt; 777 } 778 779 struct radix_node * 780 rn_delete(v_arg, netmask_arg, head) 781 void *v_arg, *netmask_arg; 782 struct radix_node_head *head; 783 { 784 register struct radix_node *t, *p, *x, *tt; 785 struct radix_mask *m, *saved_m, **mp; 786 struct radix_node *dupedkey, *saved_tt, *top; 787 caddr_t v, netmask; 788 int b, head_off, vlen; 789 790 v = v_arg; 791 netmask = netmask_arg; 792 x = head->rnh_treetop; 793 tt = rn_search(v, x); 794 head_off = x->rn_offset; 795 vlen = LEN(v); 796 saved_tt = tt; 797 top = x; 798 if (tt == 0 || 799 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 800 return (0); 801 /* 802 * Delete our route from mask lists. 803 */ 804 if (netmask) { 805 if ((x = rn_addmask(netmask, 1, head_off)) == 0) 806 return (0); 807 netmask = x->rn_key; 808 while (tt->rn_mask != netmask) 809 if ((tt = tt->rn_dupedkey) == 0) 810 return (0); 811 } 812 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) 813 goto on1; 814 if (tt->rn_flags & RNF_NORMAL) { 815 if (m->rm_leaf != tt || m->rm_refs > 0) { 816 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 817 return 0; /* dangling ref could cause disaster */ 818 } 819 } else { 820 if (m->rm_mask != tt->rn_mask) { 821 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 822 goto on1; 823 } 824 if (--m->rm_refs >= 0) 825 goto on1; 826 } 827 b = -1 - tt->rn_bit; 828 t = saved_tt->rn_parent; 829 if (b > t->rn_bit) 830 goto on1; /* Wasn't lifted at all */ 831 do { 832 x = t; 833 t = t->rn_parent; 834 } while (b <= t->rn_bit && x != top); 835 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 836 if (m == saved_m) { 837 *mp = m->rm_mklist; 838 MKFree(m); 839 break; 840 } 841 if (m == 0) { 842 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 843 if (tt->rn_flags & RNF_NORMAL) 844 return (0); /* Dangling ref to us */ 845 } 846 on1: 847 /* 848 * Eliminate us from tree 849 */ 850 if (tt->rn_flags & RNF_ROOT) 851 return (0); 852 #ifdef RN_DEBUG 853 /* Get us out of the creation list */ 854 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 855 if (t) t->rn_ybro = tt->rn_ybro; 856 #endif 857 t = tt->rn_parent; 858 dupedkey = saved_tt->rn_dupedkey; 859 if (dupedkey) { 860 /* 861 * Here, tt is the deletion target and 862 * saved_tt is the head of the dupekey chain. 863 */ 864 if (tt == saved_tt) { 865 /* remove from head of chain */ 866 x = dupedkey; x->rn_parent = t; 867 if (t->rn_left == tt) 868 t->rn_left = x; 869 else 870 t->rn_right = x; 871 } else { 872 /* find node in front of tt on the chain */ 873 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 874 p = p->rn_dupedkey; 875 if (p) { 876 p->rn_dupedkey = tt->rn_dupedkey; 877 if (tt->rn_dupedkey) /* parent */ 878 tt->rn_dupedkey->rn_parent = p; 879 /* parent */ 880 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 881 } 882 t = tt + 1; 883 if (t->rn_flags & RNF_ACTIVE) { 884 #ifndef RN_DEBUG 885 *++x = *t; 886 p = t->rn_parent; 887 #else 888 b = t->rn_info; 889 *++x = *t; 890 t->rn_info = b; 891 p = t->rn_parent; 892 #endif 893 if (p->rn_left == t) 894 p->rn_left = x; 895 else 896 p->rn_right = x; 897 x->rn_left->rn_parent = x; 898 x->rn_right->rn_parent = x; 899 } 900 goto out; 901 } 902 if (t->rn_left == tt) 903 x = t->rn_right; 904 else 905 x = t->rn_left; 906 p = t->rn_parent; 907 if (p->rn_right == t) 908 p->rn_right = x; 909 else 910 p->rn_left = x; 911 x->rn_parent = p; 912 /* 913 * Demote routes attached to us. 914 */ 915 if (t->rn_mklist) { 916 if (x->rn_bit >= 0) { 917 for (mp = &x->rn_mklist; (m = *mp);) 918 mp = &m->rm_mklist; 919 *mp = t->rn_mklist; 920 } else { 921 /* If there are any key,mask pairs in a sibling 922 duped-key chain, some subset will appear sorted 923 in the same order attached to our mklist */ 924 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 925 if (m == x->rn_mklist) { 926 struct radix_mask *mm = m->rm_mklist; 927 x->rn_mklist = 0; 928 if (--(m->rm_refs) < 0) 929 MKFree(m); 930 m = mm; 931 } 932 if (m) 933 log(LOG_ERR, 934 "rn_delete: Orphaned Mask %p at %p\n", 935 (void *)m, (void *)x); 936 } 937 } 938 /* 939 * We may be holding an active internal node in the tree. 940 */ 941 x = tt + 1; 942 if (t != x) { 943 #ifndef RN_DEBUG 944 *t = *x; 945 #else 946 b = t->rn_info; 947 *t = *x; 948 t->rn_info = b; 949 #endif 950 t->rn_left->rn_parent = t; 951 t->rn_right->rn_parent = t; 952 p = x->rn_parent; 953 if (p->rn_left == x) 954 p->rn_left = t; 955 else 956 p->rn_right = t; 957 } 958 out: 959 tt->rn_flags &= ~RNF_ACTIVE; 960 tt[1].rn_flags &= ~RNF_ACTIVE; 961 return (tt); 962 } 963 964 /* 965 * This is the same as rn_walktree() except for the parameters and the 966 * exit. 967 */ 968 static int 969 rn_walktree_from(h, a, m, f, w) 970 struct radix_node_head *h; 971 void *a, *m; 972 walktree_f_t *f; 973 void *w; 974 { 975 int error; 976 struct radix_node *base, *next; 977 u_char *xa = (u_char *)a; 978 u_char *xm = (u_char *)m; 979 register struct radix_node *rn, *last = 0 /* shut up gcc */; 980 int stopping = 0; 981 int lastb; 982 983 /* 984 * rn_search_m is sort-of-open-coded here. We cannot use the 985 * function because we need to keep track of the last node seen. 986 */ 987 /* printf("about to search\n"); */ 988 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { 989 last = rn; 990 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", 991 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ 992 if (!(rn->rn_bmask & xm[rn->rn_offset])) { 993 break; 994 } 995 if (rn->rn_bmask & xa[rn->rn_offset]) { 996 rn = rn->rn_right; 997 } else { 998 rn = rn->rn_left; 999 } 1000 } 1001 /* printf("done searching\n"); */ 1002 1003 /* 1004 * Two cases: either we stepped off the end of our mask, 1005 * in which case last == rn, or we reached a leaf, in which 1006 * case we want to start from the last node we looked at. 1007 * Either way, last is the node we want to start from. 1008 */ 1009 rn = last; 1010 lastb = rn->rn_bit; 1011 1012 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 1013 1014 /* 1015 * This gets complicated because we may delete the node 1016 * while applying the function f to it, so we need to calculate 1017 * the successor node in advance. 1018 */ 1019 while (rn->rn_bit >= 0) 1020 rn = rn->rn_left; 1021 1022 while (!stopping) { 1023 /* printf("node %p (%d)\n", rn, rn->rn_bit); */ 1024 base = rn; 1025 /* If at right child go back up, otherwise, go right */ 1026 while (rn->rn_parent->rn_right == rn 1027 && !(rn->rn_flags & RNF_ROOT)) { 1028 rn = rn->rn_parent; 1029 1030 /* if went up beyond last, stop */ 1031 if (rn->rn_bit <= lastb) { 1032 stopping = 1; 1033 /* printf("up too far\n"); */ 1034 /* 1035 * XXX we should jump to the 'Process leaves' 1036 * part, because the values of 'rn' and 'next' 1037 * we compute will not be used. Not a big deal 1038 * because this loop will terminate, but it is 1039 * inefficient and hard to understand! 1040 */ 1041 } 1042 } 1043 1044 /* 1045 * At the top of the tree, no need to traverse the right 1046 * half, prevent the traversal of the entire tree in the 1047 * case of default route. 1048 */ 1049 if (rn->rn_parent->rn_flags & RNF_ROOT) 1050 stopping = 1; 1051 1052 /* Find the next *leaf* since next node might vanish, too */ 1053 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1054 rn = rn->rn_left; 1055 next = rn; 1056 /* Process leaves */ 1057 while ((rn = base) != 0) { 1058 base = rn->rn_dupedkey; 1059 /* printf("leaf %p\n", rn); */ 1060 if (!(rn->rn_flags & RNF_ROOT) 1061 && (error = (*f)(rn, w))) 1062 return (error); 1063 } 1064 rn = next; 1065 1066 if (rn->rn_flags & RNF_ROOT) { 1067 /* printf("root, stopping"); */ 1068 stopping = 1; 1069 } 1070 1071 } 1072 return 0; 1073 } 1074 1075 static int 1076 rn_walktree(h, f, w) 1077 struct radix_node_head *h; 1078 walktree_f_t *f; 1079 void *w; 1080 { 1081 int error; 1082 struct radix_node *base, *next; 1083 register struct radix_node *rn = h->rnh_treetop; 1084 /* 1085 * This gets complicated because we may delete the node 1086 * while applying the function f to it, so we need to calculate 1087 * the successor node in advance. 1088 */ 1089 /* First time through node, go left */ 1090 while (rn->rn_bit >= 0) 1091 rn = rn->rn_left; 1092 for (;;) { 1093 base = rn; 1094 /* If at right child go back up, otherwise, go right */ 1095 while (rn->rn_parent->rn_right == rn 1096 && (rn->rn_flags & RNF_ROOT) == 0) 1097 rn = rn->rn_parent; 1098 /* Find the next *leaf* since next node might vanish, too */ 1099 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1100 rn = rn->rn_left; 1101 next = rn; 1102 /* Process leaves */ 1103 while ((rn = base)) { 1104 base = rn->rn_dupedkey; 1105 if (!(rn->rn_flags & RNF_ROOT) 1106 && (error = (*f)(rn, w))) 1107 return (error); 1108 } 1109 rn = next; 1110 if (rn->rn_flags & RNF_ROOT) 1111 return (0); 1112 } 1113 /* NOTREACHED */ 1114 } 1115 1116 /* 1117 * Allocate and initialize an empty tree. This has 3 nodes, which are 1118 * part of the radix_node_head (in the order <left,root,right>) and are 1119 * marked RNF_ROOT so they cannot be freed. 1120 * The leaves have all-zero and all-one keys, with significant 1121 * bits starting at 'off'. 1122 * Return 1 on success, 0 on error. 1123 */ 1124 int 1125 rn_inithead(head, off) 1126 void **head; 1127 int off; 1128 { 1129 register struct radix_node_head *rnh; 1130 register struct radix_node *t, *tt, *ttt; 1131 if (*head) 1132 return (1); 1133 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1134 if (rnh == 0) 1135 return (0); 1136 #ifdef _KERNEL 1137 RADIX_NODE_HEAD_LOCK_INIT(rnh); 1138 #endif 1139 *head = rnh; 1140 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); 1141 ttt = rnh->rnh_nodes + 2; 1142 t->rn_right = ttt; 1143 t->rn_parent = t; 1144 tt = t->rn_left; /* ... which in turn is rnh->rnh_nodes */ 1145 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1146 tt->rn_bit = -1 - off; 1147 *ttt = *tt; 1148 ttt->rn_key = rn_ones; 1149 rnh->rnh_addaddr = rn_addroute; 1150 rnh->rnh_deladdr = rn_delete; 1151 rnh->rnh_matchaddr = rn_match; 1152 rnh->rnh_lookup = rn_lookup; 1153 rnh->rnh_walktree = rn_walktree; 1154 rnh->rnh_walktree_from = rn_walktree_from; 1155 rnh->rnh_treetop = t; 1156 return (1); 1157 } 1158 1159 void 1160 rn_init() 1161 { 1162 char *cp, *cplim; 1163 #ifdef _KERNEL 1164 struct domain *dom; 1165 1166 for (dom = domains; dom; dom = dom->dom_next) 1167 if (dom->dom_maxrtkey > max_keylen) 1168 max_keylen = dom->dom_maxrtkey; 1169 #endif 1170 if (max_keylen == 0) { 1171 log(LOG_ERR, 1172 "rn_init: radix functions require max_keylen be set\n"); 1173 return; 1174 } 1175 R_Malloc(rn_zeros, char *, 3 * max_keylen); 1176 if (rn_zeros == NULL) 1177 panic("rn_init"); 1178 bzero(rn_zeros, 3 * max_keylen); 1179 rn_ones = cp = rn_zeros + max_keylen; 1180 addmask_key = cplim = rn_ones + max_keylen; 1181 while (cp < cplim) 1182 *cp++ = -1; 1183 if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0) 1184 panic("rn_init 2"); 1185 } 1186