xref: /freebsd/sys/net/radix.c (revision ecf4106237505fa9459ae871793b754334989c17)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Routines to build and maintain radix trees for routing lookups.
34  */
35 #include <sys/param.h>
36 #ifdef	_KERNEL
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/rmlock.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/syslog.h>
43 #include <net/radix.h>
44 #else /* !_KERNEL */
45 #include <stdio.h>
46 #include <strings.h>
47 #include <stdlib.h>
48 #define log(x, arg...)	fprintf(stderr, ## arg)
49 #define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
50 #define min(a, b) ((a) < (b) ? (a) : (b) )
51 #include <net/radix.h>
52 #endif /* !_KERNEL */
53 
54 static struct radix_node
55 	 *rn_insert(void *, struct radix_head *, int *,
56 	     struct radix_node [2]),
57 	 *rn_newpair(void *, int, struct radix_node[2]),
58 	 *rn_search(const void *, struct radix_node *),
59 	 *rn_search_m(const void *, struct radix_node *, void *);
60 static struct radix_node *rn_addmask(const void *, struct radix_mask_head *, int,int);
61 
62 static void rn_detachhead_internal(struct radix_head *);
63 
64 #define	RADIX_MAX_KEY_LEN	32
65 
66 static char rn_zeros[RADIX_MAX_KEY_LEN];
67 static char rn_ones[RADIX_MAX_KEY_LEN] = {
68 	-1, -1, -1, -1, -1, -1, -1, -1,
69 	-1, -1, -1, -1, -1, -1, -1, -1,
70 	-1, -1, -1, -1, -1, -1, -1, -1,
71 	-1, -1, -1, -1, -1, -1, -1, -1,
72 };
73 
74 static int	rn_lexobetter(const void *m_arg, const void *n_arg);
75 static struct radix_mask *
76 		rn_new_radix_mask(struct radix_node *tt,
77 		    struct radix_mask *next);
78 static int	rn_satisfies_leaf(const char *trial, struct radix_node *leaf,
79 		    int skip);
80 
81 /*
82  * The data structure for the keys is a radix tree with one way
83  * branching removed.  The index rn_bit at an internal node n represents a bit
84  * position to be tested.  The tree is arranged so that all descendants
85  * of a node n have keys whose bits all agree up to position rn_bit - 1.
86  * (We say the index of n is rn_bit.)
87  *
88  * There is at least one descendant which has a one bit at position rn_bit,
89  * and at least one with a zero there.
90  *
91  * A route is determined by a pair of key and mask.  We require that the
92  * bit-wise logical and of the key and mask to be the key.
93  * We define the index of a route to associated with the mask to be
94  * the first bit number in the mask where 0 occurs (with bit number 0
95  * representing the highest order bit).
96  *
97  * We say a mask is normal if every bit is 0, past the index of the mask.
98  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
99  * and m is a normal mask, then the route applies to every descendant of n.
100  * If the index(m) < rn_bit, this implies the trailing last few bits of k
101  * before bit b are all 0, (and hence consequently true of every descendant
102  * of n), so the route applies to all descendants of the node as well.
103  *
104  * Similar logic shows that a non-normal mask m such that
105  * index(m) <= index(n) could potentially apply to many children of n.
106  * Thus, for each non-host route, we attach its mask to a list at an internal
107  * node as high in the tree as we can go.
108  *
109  * The present version of the code makes use of normal routes in short-
110  * circuiting an explict mask and compare operation when testing whether
111  * a key satisfies a normal route, and also in remembering the unique leaf
112  * that governs a subtree.
113  */
114 
115 /*
116  * Most of the functions in this code assume that the key/mask arguments
117  * are sockaddr-like structures, where the first byte is an u_char
118  * indicating the size of the entire structure.
119  *
120  * To make the assumption more explicit, we use the LEN() macro to access
121  * this field. It is safe to pass an expression with side effects
122  * to LEN() as the argument is evaluated only once.
123  * We cast the result to int as this is the dominant usage.
124  */
125 #define LEN(x) ( (int) (*(const u_char *)(x)) )
126 
127 /*
128  * XXX THIS NEEDS TO BE FIXED
129  * In the code, pointers to keys and masks are passed as either
130  * 'void *' (because callers use to pass pointers of various kinds), or
131  * 'caddr_t' (which is fine for pointer arithmetics, but not very
132  * clean when you dereference it to access data). Furthermore, caddr_t
133  * is really 'char *', while the natural type to operate on keys and
134  * masks would be 'u_char'. This mismatch require a lot of casts and
135  * intermediate variables to adapt types that clutter the code.
136  */
137 
138 /*
139  * Search a node in the tree matching the key.
140  */
141 static struct radix_node *
142 rn_search(const void *v_arg, struct radix_node *head)
143 {
144 	struct radix_node *x;
145 	c_caddr_t v;
146 
147 	for (x = head, v = v_arg; x->rn_bit >= 0;) {
148 		if (x->rn_bmask & v[x->rn_offset])
149 			x = x->rn_right;
150 		else
151 			x = x->rn_left;
152 	}
153 	return (x);
154 }
155 
156 /*
157  * Same as above, but with an additional mask.
158  * XXX note this function is used only once.
159  */
160 static struct radix_node *
161 rn_search_m(const void *v_arg, struct radix_node *head, void *m_arg)
162 {
163 	struct radix_node *x;
164 	c_caddr_t v = v_arg, m = m_arg;
165 
166 	for (x = head; x->rn_bit >= 0;) {
167 		if ((x->rn_bmask & m[x->rn_offset]) &&
168 		    (x->rn_bmask & v[x->rn_offset]))
169 			x = x->rn_right;
170 		else
171 			x = x->rn_left;
172 	}
173 	return (x);
174 }
175 
176 int
177 rn_refines(const void *m_arg, const void *n_arg)
178 {
179 	c_caddr_t m = m_arg, n = n_arg;
180 	c_caddr_t lim, lim2 = lim = n + LEN(n);
181 	int longer = LEN(n++) - LEN(m++);
182 	int masks_are_equal = 1;
183 
184 	if (longer > 0)
185 		lim -= longer;
186 	while (n < lim) {
187 		if (*n & ~(*m))
188 			return (0);
189 		if (*n++ != *m++)
190 			masks_are_equal = 0;
191 	}
192 	while (n < lim2)
193 		if (*n++)
194 			return (0);
195 	if (masks_are_equal && (longer < 0))
196 		for (lim2 = m - longer; m < lim2; )
197 			if (*m++)
198 				return (1);
199 	return (!masks_are_equal);
200 }
201 
202 /*
203  * Search for exact match in given @head.
204  * Assume host bits are cleared in @v_arg if @m_arg is not NULL
205  * Note that prefixes with /32 or /128 masks are treated differently
206  * from host routes.
207  */
208 struct radix_node *
209 rn_lookup(const void *v_arg, const void *m_arg, struct radix_head *head)
210 {
211 	struct radix_node *x;
212 	caddr_t netmask;
213 
214 	if (m_arg != NULL) {
215 		/*
216 		 * Most common case: search exact prefix/mask
217 		 */
218 		x = rn_addmask(m_arg, head->rnh_masks, 1,
219 		    head->rnh_treetop->rn_offset);
220 		if (x == NULL)
221 			return (NULL);
222 		netmask = x->rn_key;
223 
224 		x = rn_match(v_arg, head);
225 
226 		while (x != NULL && x->rn_mask != netmask)
227 			x = x->rn_dupedkey;
228 
229 		return (x);
230 	}
231 
232 	/*
233 	 * Search for host address.
234 	 */
235 	if ((x = rn_match(v_arg, head)) == NULL)
236 		return (NULL);
237 
238 	/* Check if found key is the same */
239 	if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
240 		return (NULL);
241 
242 	/* Check if this is not host route */
243 	if (x->rn_mask != NULL)
244 		return (NULL);
245 
246 	return (x);
247 }
248 
249 static int
250 rn_satisfies_leaf(const char *trial, struct radix_node *leaf, int skip)
251 {
252 	const char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
253 	const char *cplim;
254 	int length = min(LEN(cp), LEN(cp2));
255 
256 	if (cp3 == NULL)
257 		cp3 = rn_ones;
258 	else
259 		length = min(length, LEN(cp3));
260 	cplim = cp + length; cp3 += skip; cp2 += skip;
261 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
262 		if ((*cp ^ *cp2) & *cp3)
263 			return (0);
264 	return (1);
265 }
266 
267 /*
268  * Search for longest-prefix match in given @head
269  */
270 struct radix_node *
271 rn_match(const void *v_arg, struct radix_head *head)
272 {
273 	c_caddr_t v = v_arg;
274 	struct radix_node *t = head->rnh_treetop, *x;
275 	c_caddr_t cp = v, cp2;
276 	c_caddr_t cplim;
277 	struct radix_node *saved_t, *top = t;
278 	int off = t->rn_offset, vlen = LEN(cp), matched_off;
279 	int test, b, rn_bit;
280 
281 	/*
282 	 * Open code rn_search(v, top) to avoid overhead of extra
283 	 * subroutine call.
284 	 */
285 	for (; t->rn_bit >= 0; ) {
286 		if (t->rn_bmask & cp[t->rn_offset])
287 			t = t->rn_right;
288 		else
289 			t = t->rn_left;
290 	}
291 	/*
292 	 * See if we match exactly as a host destination
293 	 * or at least learn how many bits match, for normal mask finesse.
294 	 *
295 	 * It doesn't hurt us to limit how many bytes to check
296 	 * to the length of the mask, since if it matches we had a genuine
297 	 * match and the leaf we have is the most specific one anyway;
298 	 * if it didn't match with a shorter length it would fail
299 	 * with a long one.  This wins big for class B&C netmasks which
300 	 * are probably the most common case...
301 	 */
302 	if (t->rn_mask)
303 		vlen = *(u_char *)t->rn_mask;
304 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
305 	for (; cp < cplim; cp++, cp2++)
306 		if (*cp != *cp2)
307 			goto on1;
308 	/*
309 	 * This extra grot is in case we are explicitly asked
310 	 * to look up the default.  Ugh!
311 	 *
312 	 * Never return the root node itself, it seems to cause a
313 	 * lot of confusion.
314 	 */
315 	if (t->rn_flags & RNF_ROOT)
316 		t = t->rn_dupedkey;
317 	return (t);
318 on1:
319 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
320 	for (b = 7; (test >>= 1) > 0;)
321 		b--;
322 	matched_off = cp - v;
323 	b += matched_off << 3;
324 	rn_bit = -1 - b;
325 	/*
326 	 * If there is a host route in a duped-key chain, it will be first.
327 	 */
328 	if ((saved_t = t)->rn_mask == 0)
329 		t = t->rn_dupedkey;
330 	for (; t; t = t->rn_dupedkey)
331 		/*
332 		 * Even if we don't match exactly as a host,
333 		 * we may match if the leaf we wound up at is
334 		 * a route to a net.
335 		 */
336 		if (t->rn_flags & RNF_NORMAL) {
337 			if (rn_bit <= t->rn_bit)
338 				return (t);
339 		} else if (rn_satisfies_leaf(v, t, matched_off))
340 				return (t);
341 	t = saved_t;
342 	/* start searching up the tree */
343 	do {
344 		struct radix_mask *m;
345 		t = t->rn_parent;
346 		m = t->rn_mklist;
347 		/*
348 		 * If non-contiguous masks ever become important
349 		 * we can restore the masking and open coding of
350 		 * the search and satisfaction test and put the
351 		 * calculation of "off" back before the "do".
352 		 */
353 		while (m) {
354 			if (m->rm_flags & RNF_NORMAL) {
355 				if (rn_bit <= m->rm_bit)
356 					return (m->rm_leaf);
357 			} else {
358 				off = min(t->rn_offset, matched_off);
359 				x = rn_search_m(v, t, m->rm_mask);
360 				while (x && x->rn_mask != m->rm_mask)
361 					x = x->rn_dupedkey;
362 				if (x && rn_satisfies_leaf(v, x, off))
363 					return (x);
364 			}
365 			m = m->rm_mklist;
366 		}
367 	} while (t != top);
368 	return (0);
369 }
370 
371 /*
372  * Returns the next (wider) prefix for the key defined by @rn
373  *  if exists.
374  */
375 struct radix_node *
376 rn_nextprefix(struct radix_node *rn)
377 {
378 	for (rn = rn->rn_dupedkey; rn != NULL; rn = rn->rn_dupedkey) {
379 		if (!(rn->rn_flags & RNF_ROOT))
380 			return (rn);
381 	}
382 	return (NULL);
383 }
384 
385 #ifdef RN_DEBUG
386 int	rn_nodenum;
387 struct	radix_node *rn_clist;
388 int	rn_saveinfo;
389 int	rn_debug =  1;
390 #endif
391 
392 /*
393  * Whenever we add a new leaf to the tree, we also add a parent node,
394  * so we allocate them as an array of two elements: the first one must be
395  * the leaf (see RNTORT() in route.c), the second one is the parent.
396  * This routine initializes the relevant fields of the nodes, so that
397  * the leaf is the left child of the parent node, and both nodes have
398  * (almost) all all fields filled as appropriate.
399  * (XXX some fields are left unset, see the '#if 0' section).
400  * The function returns a pointer to the parent node.
401  */
402 
403 static struct radix_node *
404 rn_newpair(void *v, int b, struct radix_node nodes[2])
405 {
406 	struct radix_node *tt = nodes, *t = tt + 1;
407 	t->rn_bit = b;
408 	t->rn_bmask = 0x80 >> (b & 7);
409 	t->rn_left = tt;
410 	t->rn_offset = b >> 3;
411 
412 #if 0  /* XXX perhaps we should fill these fields as well. */
413 	t->rn_parent = t->rn_right = NULL;
414 
415 	tt->rn_mask = NULL;
416 	tt->rn_dupedkey = NULL;
417 	tt->rn_bmask = 0;
418 #endif
419 	tt->rn_bit = -1;
420 	tt->rn_key = (caddr_t)v;
421 	tt->rn_parent = t;
422 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
423 	tt->rn_mklist = t->rn_mklist = 0;
424 #ifdef RN_DEBUG
425 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
426 	tt->rn_twin = t;
427 	tt->rn_ybro = rn_clist;
428 	rn_clist = tt;
429 #endif
430 	return (t);
431 }
432 
433 static struct radix_node *
434 rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
435     struct radix_node nodes[2])
436 {
437 	caddr_t v = v_arg;
438 	struct radix_node *top = head->rnh_treetop;
439 	int head_off = top->rn_offset, vlen = LEN(v);
440 	struct radix_node *t = rn_search(v_arg, top);
441 	caddr_t cp = v + head_off;
442 	unsigned b;
443 	struct radix_node *p, *tt, *x;
444     	/*
445 	 * Find first bit at which v and t->rn_key differ
446 	 */
447 	caddr_t cp2 = t->rn_key + head_off;
448 	int cmp_res;
449 	caddr_t cplim = v + vlen;
450 
451 	while (cp < cplim)
452 		if (*cp2++ != *cp++)
453 			goto on1;
454 	*dupentry = 1;
455 	return (t);
456 on1:
457 	*dupentry = 0;
458 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
459 	for (b = (cp - v) << 3; cmp_res; b--)
460 		cmp_res >>= 1;
461 
462 	x = top;
463 	cp = v;
464 	do {
465 		p = x;
466 		if (cp[x->rn_offset] & x->rn_bmask)
467 			x = x->rn_right;
468 		else
469 			x = x->rn_left;
470 	} while (b > (unsigned) x->rn_bit);
471 				/* x->rn_bit < b && x->rn_bit >= 0 */
472 #ifdef RN_DEBUG
473 	if (rn_debug)
474 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
475 #endif
476 	t = rn_newpair(v_arg, b, nodes);
477 	tt = t->rn_left;
478 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
479 		p->rn_left = t;
480 	else
481 		p->rn_right = t;
482 	x->rn_parent = t;
483 	t->rn_parent = p; /* frees x, p as temp vars below */
484 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
485 		t->rn_right = x;
486 	} else {
487 		t->rn_right = tt;
488 		t->rn_left = x;
489 	}
490 #ifdef RN_DEBUG
491 	if (rn_debug)
492 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
493 #endif
494 	return (tt);
495 }
496 
497 static struct radix_node *
498 rn_addmask(const void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
499 {
500 	const unsigned char *netmask = n_arg;
501 	const unsigned char *c, *clim;
502 	unsigned char *cp;
503 	struct radix_node *x;
504 	int b = 0, mlen, j;
505 	int maskduplicated, isnormal;
506 	struct radix_node *saved_x;
507 	unsigned char addmask_key[RADIX_MAX_KEY_LEN];
508 
509 	if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
510 		mlen = RADIX_MAX_KEY_LEN;
511 	if (skip == 0)
512 		skip = 1;
513 	if (mlen <= skip)
514 		return (maskhead->mask_nodes);
515 
516 	bzero(addmask_key, RADIX_MAX_KEY_LEN);
517 	if (skip > 1)
518 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
519 	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
520 	/*
521 	 * Trim trailing zeroes.
522 	 */
523 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
524 		cp--;
525 	mlen = cp - addmask_key;
526 	if (mlen <= skip)
527 		return (maskhead->mask_nodes);
528 	*addmask_key = mlen;
529 	x = rn_search(addmask_key, maskhead->head.rnh_treetop);
530 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
531 		x = NULL;
532 	if (x || search)
533 		return (x);
534 	R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
535 	if ((saved_x = x) == NULL)
536 		return (0);
537 	netmask = cp = (unsigned char *)(x + 2);
538 	bcopy(addmask_key, cp, mlen);
539 	x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
540 	if (maskduplicated) {
541 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
542 		R_Free(saved_x);
543 		return (x);
544 	}
545 	/*
546 	 * Calculate index of mask, and check for normalcy.
547 	 * First find the first byte with a 0 bit, then if there are
548 	 * more bits left (remember we already trimmed the trailing 0's),
549 	 * the bits should be contiguous, otherwise we have got
550 	 * a non-contiguous mask.
551 	 */
552 #define	CONTIG(_c)	(((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
553 	clim = netmask + mlen;
554 	isnormal = 1;
555 	for (c = netmask + skip; (c < clim) && *(const u_char *)c == 0xff;)
556 		c++;
557 	if (c != clim) {
558 		for (j = 0x80; (j & *c) != 0; j >>= 1)
559 			b++;
560 		if (!CONTIG(*c) || c != (clim - 1))
561 			isnormal = 0;
562 	}
563 	b += (c - netmask) << 3;
564 	x->rn_bit = -1 - b;
565 	if (isnormal)
566 		x->rn_flags |= RNF_NORMAL;
567 	return (x);
568 }
569 
570 static int	/* XXX: arbitrary ordering for non-contiguous masks */
571 rn_lexobetter(const void *m_arg, const void *n_arg)
572 {
573 	const u_char *mp = m_arg, *np = n_arg, *lim;
574 
575 	if (LEN(mp) > LEN(np))
576 		return (1);  /* not really, but need to check longer one first */
577 	if (LEN(mp) == LEN(np))
578 		for (lim = mp + LEN(mp); mp < lim;)
579 			if (*mp++ > *np++)
580 				return (1);
581 	return (0);
582 }
583 
584 static struct radix_mask *
585 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
586 {
587 	struct radix_mask *m;
588 
589 	R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
590 	if (m == NULL) {
591 		log(LOG_ERR, "Failed to allocate route mask\n");
592 		return (0);
593 	}
594 	bzero(m, sizeof(*m));
595 	m->rm_bit = tt->rn_bit;
596 	m->rm_flags = tt->rn_flags;
597 	if (tt->rn_flags & RNF_NORMAL)
598 		m->rm_leaf = tt;
599 	else
600 		m->rm_mask = tt->rn_mask;
601 	m->rm_mklist = next;
602 	tt->rn_mklist = m;
603 	return (m);
604 }
605 
606 struct radix_node *
607 rn_addroute(void *v_arg, const void *n_arg, struct radix_head *head,
608     struct radix_node treenodes[2])
609 {
610 	caddr_t v = (caddr_t)v_arg, netmask = NULL;
611 	struct radix_node *t, *x = NULL, *tt;
612 	struct radix_node *saved_tt, *top = head->rnh_treetop;
613 	short b = 0, b_leaf = 0;
614 	int keyduplicated;
615 	caddr_t mmask;
616 	struct radix_mask *m, **mp;
617 
618 	/*
619 	 * In dealing with non-contiguous masks, there may be
620 	 * many different routes which have the same mask.
621 	 * We will find it useful to have a unique pointer to
622 	 * the mask to speed avoiding duplicate references at
623 	 * nodes and possibly save time in calculating indices.
624 	 */
625 	if (n_arg)  {
626 		x = rn_addmask(n_arg, head->rnh_masks, 0, top->rn_offset);
627 		if (x == NULL)
628 			return (0);
629 		b_leaf = x->rn_bit;
630 		b = -1 - x->rn_bit;
631 		netmask = x->rn_key;
632 	}
633 	/*
634 	 * Deal with duplicated keys: attach node to previous instance
635 	 */
636 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
637 	if (keyduplicated) {
638 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
639 			if (tt->rn_mask == netmask)
640 				return (0);
641 			if (netmask == 0 ||
642 			    (tt->rn_mask &&
643 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
644 			      || rn_refines(netmask, tt->rn_mask)
645 			      || rn_lexobetter(netmask, tt->rn_mask))))
646 				break;
647 		}
648 		/*
649 		 * If the mask is not duplicated, we wouldn't
650 		 * find it among possible duplicate key entries
651 		 * anyway, so the above test doesn't hurt.
652 		 *
653 		 * We sort the masks for a duplicated key the same way as
654 		 * in a masklist -- most specific to least specific.
655 		 * This may require the unfortunate nuisance of relocating
656 		 * the head of the list.
657 		 *
658 		 * We also reverse, or doubly link the list through the
659 		 * parent pointer.
660 		 */
661 		if (tt == saved_tt) {
662 			struct	radix_node *xx = x;
663 			/* link in at head of list */
664 			(tt = treenodes)->rn_dupedkey = t;
665 			tt->rn_flags = t->rn_flags;
666 			tt->rn_parent = x = t->rn_parent;
667 			t->rn_parent = tt;	 		/* parent */
668 			if (x->rn_left == t)
669 				x->rn_left = tt;
670 			else
671 				x->rn_right = tt;
672 			saved_tt = tt; x = xx;
673 		} else {
674 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
675 			t->rn_dupedkey = tt;
676 			tt->rn_parent = t;			/* parent */
677 			if (tt->rn_dupedkey)			/* parent */
678 				tt->rn_dupedkey->rn_parent = tt; /* parent */
679 		}
680 #ifdef RN_DEBUG
681 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
682 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
683 #endif
684 		tt->rn_key = (caddr_t) v;
685 		tt->rn_bit = -1;
686 		tt->rn_flags = RNF_ACTIVE;
687 	}
688 	/*
689 	 * Put mask in tree.
690 	 */
691 	if (netmask) {
692 		tt->rn_mask = netmask;
693 		tt->rn_bit = x->rn_bit;
694 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
695 	}
696 	t = saved_tt->rn_parent;
697 	if (keyduplicated)
698 		goto on2;
699 	b_leaf = -1 - t->rn_bit;
700 	if (t->rn_right == saved_tt)
701 		x = t->rn_left;
702 	else
703 		x = t->rn_right;
704 	/* Promote general routes from below */
705 	if (x->rn_bit < 0) {
706 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
707 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
708 			*mp = m = rn_new_radix_mask(x, 0);
709 			if (m)
710 				mp = &m->rm_mklist;
711 		}
712 	} else if (x->rn_mklist) {
713 		/*
714 		 * Skip over masks whose index is > that of new node
715 		 */
716 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
717 			if (m->rm_bit >= b_leaf)
718 				break;
719 		t->rn_mklist = m; *mp = NULL;
720 	}
721 on2:
722 	/* Add new route to highest possible ancestor's list */
723 	if ((netmask == 0) || (b > t->rn_bit ))
724 		return (tt); /* can't lift at all */
725 	b_leaf = tt->rn_bit;
726 	do {
727 		x = t;
728 		t = t->rn_parent;
729 	} while (b <= t->rn_bit && x != top);
730 	/*
731 	 * Search through routes associated with node to
732 	 * insert new route according to index.
733 	 * Need same criteria as when sorting dupedkeys to avoid
734 	 * double loop on deletion.
735 	 */
736 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
737 		if (m->rm_bit < b_leaf)
738 			continue;
739 		if (m->rm_bit > b_leaf)
740 			break;
741 		if (m->rm_flags & RNF_NORMAL) {
742 			mmask = m->rm_leaf->rn_mask;
743 			if (tt->rn_flags & RNF_NORMAL) {
744 			    log(LOG_ERR,
745 			        "Non-unique normal route, mask not entered\n");
746 				return (tt);
747 			}
748 		} else
749 			mmask = m->rm_mask;
750 		if (mmask == netmask) {
751 			m->rm_refs++;
752 			tt->rn_mklist = m;
753 			return (tt);
754 		}
755 		if (rn_refines(netmask, mmask)
756 		    || rn_lexobetter(netmask, mmask))
757 			break;
758 	}
759 	*mp = rn_new_radix_mask(tt, *mp);
760 	return (tt);
761 }
762 
763 struct radix_node *
764 rn_delete(const void *v_arg, const void *netmask_arg, struct radix_head *head)
765 {
766 	struct radix_node *t, *p, *x, *tt;
767 	struct radix_mask *m, *saved_m, **mp;
768 	struct radix_node *dupedkey, *saved_tt, *top;
769 	c_caddr_t v;
770 	c_caddr_t netmask;
771 	int b, head_off, vlen;
772 
773 	v = v_arg;
774 	netmask = netmask_arg;
775 	x = head->rnh_treetop;
776 	tt = rn_search(v, x);
777 	head_off = x->rn_offset;
778 	vlen =  LEN(v);
779 	saved_tt = tt;
780 	top = x;
781 	if (tt == NULL ||
782 	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
783 		return (0);
784 	/*
785 	 * Delete our route from mask lists.
786 	 */
787 	if (netmask) {
788 		x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
789 		if (x == NULL)
790 			return (0);
791 		netmask = x->rn_key;
792 		while (tt->rn_mask != netmask)
793 			if ((tt = tt->rn_dupedkey) == NULL)
794 				return (0);
795 	}
796 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
797 		goto on1;
798 	if (tt->rn_flags & RNF_NORMAL) {
799 		if (m->rm_leaf != tt || m->rm_refs > 0) {
800 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
801 			return (0);  /* dangling ref could cause disaster */
802 		}
803 	} else {
804 		if (m->rm_mask != tt->rn_mask) {
805 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
806 			goto on1;
807 		}
808 		if (--m->rm_refs >= 0)
809 			goto on1;
810 	}
811 	b = -1 - tt->rn_bit;
812 	t = saved_tt->rn_parent;
813 	if (b > t->rn_bit)
814 		goto on1; /* Wasn't lifted at all */
815 	do {
816 		x = t;
817 		t = t->rn_parent;
818 	} while (b <= t->rn_bit && x != top);
819 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
820 		if (m == saved_m) {
821 			*mp = m->rm_mklist;
822 			R_Free(m);
823 			break;
824 		}
825 	if (m == NULL) {
826 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
827 		if (tt->rn_flags & RNF_NORMAL)
828 			return (0); /* Dangling ref to us */
829 	}
830 on1:
831 	/*
832 	 * Eliminate us from tree
833 	 */
834 	if (tt->rn_flags & RNF_ROOT)
835 		return (0);
836 #ifdef RN_DEBUG
837 	/* Get us out of the creation list */
838 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
839 	if (t) t->rn_ybro = tt->rn_ybro;
840 #endif
841 	t = tt->rn_parent;
842 	dupedkey = saved_tt->rn_dupedkey;
843 	if (dupedkey) {
844 		/*
845 		 * Here, tt is the deletion target and
846 		 * saved_tt is the head of the dupekey chain.
847 		 */
848 		if (tt == saved_tt) {
849 			/* remove from head of chain */
850 			x = dupedkey; x->rn_parent = t;
851 			if (t->rn_left == tt)
852 				t->rn_left = x;
853 			else
854 				t->rn_right = x;
855 		} else {
856 			/* find node in front of tt on the chain */
857 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
858 				p = p->rn_dupedkey;
859 			if (p) {
860 				p->rn_dupedkey = tt->rn_dupedkey;
861 				if (tt->rn_dupedkey)		/* parent */
862 					tt->rn_dupedkey->rn_parent = p;
863 								/* parent */
864 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
865 		}
866 		t = tt + 1;
867 		if  (t->rn_flags & RNF_ACTIVE) {
868 #ifndef RN_DEBUG
869 			*++x = *t;
870 			p = t->rn_parent;
871 #else
872 			b = t->rn_info;
873 			*++x = *t;
874 			t->rn_info = b;
875 			p = t->rn_parent;
876 #endif
877 			if (p->rn_left == t)
878 				p->rn_left = x;
879 			else
880 				p->rn_right = x;
881 			x->rn_left->rn_parent = x;
882 			x->rn_right->rn_parent = x;
883 		}
884 		goto out;
885 	}
886 	if (t->rn_left == tt)
887 		x = t->rn_right;
888 	else
889 		x = t->rn_left;
890 	p = t->rn_parent;
891 	if (p->rn_right == t)
892 		p->rn_right = x;
893 	else
894 		p->rn_left = x;
895 	x->rn_parent = p;
896 	/*
897 	 * Demote routes attached to us.
898 	 */
899 	if (t->rn_mklist) {
900 		if (x->rn_bit >= 0) {
901 			for (mp = &x->rn_mklist; (m = *mp);)
902 				mp = &m->rm_mklist;
903 			*mp = t->rn_mklist;
904 		} else {
905 			/* If there are any key,mask pairs in a sibling
906 			   duped-key chain, some subset will appear sorted
907 			   in the same order attached to our mklist */
908 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
909 				if (m == x->rn_mklist) {
910 					struct radix_mask *mm = m->rm_mklist;
911 					x->rn_mklist = 0;
912 					if (--(m->rm_refs) < 0)
913 						R_Free(m);
914 					m = mm;
915 				}
916 			if (m)
917 				log(LOG_ERR,
918 				    "rn_delete: Orphaned Mask %p at %p\n",
919 				    m, x);
920 		}
921 	}
922 	/*
923 	 * We may be holding an active internal node in the tree.
924 	 */
925 	x = tt + 1;
926 	if (t != x) {
927 #ifndef RN_DEBUG
928 		*t = *x;
929 #else
930 		b = t->rn_info;
931 		*t = *x;
932 		t->rn_info = b;
933 #endif
934 		t->rn_left->rn_parent = t;
935 		t->rn_right->rn_parent = t;
936 		p = x->rn_parent;
937 		if (p->rn_left == x)
938 			p->rn_left = t;
939 		else
940 			p->rn_right = t;
941 	}
942 out:
943 	tt->rn_flags &= ~RNF_ACTIVE;
944 	tt[1].rn_flags &= ~RNF_ACTIVE;
945 	return (tt);
946 }
947 
948 /*
949  * This is the same as rn_walktree() except for the parameters and the
950  * exit.
951  */
952 int
953 rn_walktree_from(struct radix_head *h, void *a, void *m,
954     walktree_f_t *f, void *w)
955 {
956 	int error;
957 	struct radix_node *base, *next;
958 	u_char *xa = (u_char *)a;
959 	u_char *xm = (u_char *)m;
960 	struct radix_node *rn, *last = NULL; /* shut up gcc */
961 	int stopping = 0;
962 	int lastb;
963 
964 	KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
965 
966 	/*
967 	 * rn_search_m is sort-of-open-coded here. We cannot use the
968 	 * function because we need to keep track of the last node seen.
969 	 */
970 	/* printf("about to search\n"); */
971 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
972 		last = rn;
973 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
974 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
975 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
976 			break;
977 		}
978 		if (rn->rn_bmask & xa[rn->rn_offset]) {
979 			rn = rn->rn_right;
980 		} else {
981 			rn = rn->rn_left;
982 		}
983 	}
984 	/* printf("done searching\n"); */
985 
986 	/*
987 	 * Two cases: either we stepped off the end of our mask,
988 	 * in which case last == rn, or we reached a leaf, in which
989 	 * case we want to start from the leaf.
990 	 */
991 	if (rn->rn_bit >= 0)
992 		rn = last;
993 	lastb = last->rn_bit;
994 
995 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
996 
997 	/*
998 	 * This gets complicated because we may delete the node
999 	 * while applying the function f to it, so we need to calculate
1000 	 * the successor node in advance.
1001 	 */
1002 	while (rn->rn_bit >= 0)
1003 		rn = rn->rn_left;
1004 
1005 	while (!stopping) {
1006 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
1007 		base = rn;
1008 		/* If at right child go back up, otherwise, go right */
1009 		while (rn->rn_parent->rn_right == rn
1010 		       && !(rn->rn_flags & RNF_ROOT)) {
1011 			rn = rn->rn_parent;
1012 
1013 			/* if went up beyond last, stop */
1014 			if (rn->rn_bit <= lastb) {
1015 				stopping = 1;
1016 				/* printf("up too far\n"); */
1017 				/*
1018 				 * XXX we should jump to the 'Process leaves'
1019 				 * part, because the values of 'rn' and 'next'
1020 				 * we compute will not be used. Not a big deal
1021 				 * because this loop will terminate, but it is
1022 				 * inefficient and hard to understand!
1023 				 */
1024 			}
1025 		}
1026 
1027 		/*
1028 		 * At the top of the tree, no need to traverse the right
1029 		 * half, prevent the traversal of the entire tree in the
1030 		 * case of default route.
1031 		 */
1032 		if (rn->rn_parent->rn_flags & RNF_ROOT)
1033 			stopping = 1;
1034 
1035 		/* Find the next *leaf* since next node might vanish, too */
1036 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1037 			rn = rn->rn_left;
1038 		next = rn;
1039 		/* Process leaves */
1040 		while ((rn = base) != NULL) {
1041 			base = rn->rn_dupedkey;
1042 			/* printf("leaf %p\n", rn); */
1043 			if (!(rn->rn_flags & RNF_ROOT)
1044 			    && (error = (*f)(rn, w)))
1045 				return (error);
1046 		}
1047 		rn = next;
1048 
1049 		if (rn->rn_flags & RNF_ROOT) {
1050 			/* printf("root, stopping"); */
1051 			stopping = 1;
1052 		}
1053 	}
1054 	return (0);
1055 }
1056 
1057 int
1058 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
1059 {
1060 	int error;
1061 	struct radix_node *base, *next;
1062 	struct radix_node *rn = h->rnh_treetop;
1063 	/*
1064 	 * This gets complicated because we may delete the node
1065 	 * while applying the function f to it, so we need to calculate
1066 	 * the successor node in advance.
1067 	 */
1068 
1069 	/* First time through node, go left */
1070 	while (rn->rn_bit >= 0)
1071 		rn = rn->rn_left;
1072 	for (;;) {
1073 		base = rn;
1074 		/* If at right child go back up, otherwise, go right */
1075 		while (rn->rn_parent->rn_right == rn
1076 		       && (rn->rn_flags & RNF_ROOT) == 0)
1077 			rn = rn->rn_parent;
1078 		/* Find the next *leaf* since next node might vanish, too */
1079 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1080 			rn = rn->rn_left;
1081 		next = rn;
1082 		/* Process leaves */
1083 		while ((rn = base)) {
1084 			base = rn->rn_dupedkey;
1085 			if (!(rn->rn_flags & RNF_ROOT)
1086 			    && (error = (*f)(rn, w)))
1087 				return (error);
1088 		}
1089 		rn = next;
1090 		if (rn->rn_flags & RNF_ROOT)
1091 			return (0);
1092 	}
1093 	/* NOTREACHED */
1094 }
1095 
1096 /*
1097  * Initialize an empty tree. This has 3 nodes, which are passed
1098  * via base_nodes (in the order <left,root,right>) and are
1099  * marked RNF_ROOT so they cannot be freed.
1100  * The leaves have all-zero and all-one keys, with significant
1101  * bits starting at 'off'.
1102  */
1103 void
1104 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
1105 {
1106 	struct radix_node *t, *tt, *ttt;
1107 
1108 	t = rn_newpair(rn_zeros, off, base_nodes);
1109 	ttt = base_nodes + 2;
1110 	t->rn_right = ttt;
1111 	t->rn_parent = t;
1112 	tt = t->rn_left;	/* ... which in turn is base_nodes */
1113 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1114 	tt->rn_bit = -1 - off;
1115 	*ttt = *tt;
1116 	ttt->rn_key = rn_ones;
1117 
1118 	rh->rnh_treetop = t;
1119 }
1120 
1121 static void
1122 rn_detachhead_internal(struct radix_head *head)
1123 {
1124 
1125 	KASSERT((head != NULL),
1126 	    ("%s: head already freed", __func__));
1127 
1128 	/* Free <left,root,right> nodes. */
1129 	R_Free(head);
1130 }
1131 
1132 /* Functions used by 'struct radix_node_head' users */
1133 
1134 int
1135 rn_inithead(void **head, int off)
1136 {
1137 	struct radix_node_head *rnh;
1138 	struct radix_mask_head *rmh;
1139 
1140 	rnh = *head;
1141 	rmh = NULL;
1142 
1143 	if (*head != NULL)
1144 		return (1);
1145 
1146 	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1147 	R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
1148 	if (rnh == NULL || rmh == NULL) {
1149 		if (rnh != NULL)
1150 			R_Free(rnh);
1151 		if (rmh != NULL)
1152 			R_Free(rmh);
1153 		return (0);
1154 	}
1155 
1156 	/* Init trees */
1157 	rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
1158 	rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
1159 	*head = rnh;
1160 	rnh->rh.rnh_masks = rmh;
1161 
1162 	/* Finally, set base callbacks */
1163 	rnh->rnh_addaddr = rn_addroute;
1164 	rnh->rnh_deladdr = rn_delete;
1165 	rnh->rnh_matchaddr = rn_match;
1166 	rnh->rnh_lookup = rn_lookup;
1167 	rnh->rnh_walktree = rn_walktree;
1168 	rnh->rnh_walktree_from = rn_walktree_from;
1169 
1170 	return (1);
1171 }
1172 
1173 static int
1174 rn_freeentry(struct radix_node *rn, void *arg)
1175 {
1176 	struct radix_head * const rnh = arg;
1177 	struct radix_node *x;
1178 
1179 	x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
1180 	if (x != NULL)
1181 		R_Free(x);
1182 	return (0);
1183 }
1184 
1185 int
1186 rn_detachhead(void **head)
1187 {
1188 	struct radix_node_head *rnh;
1189 
1190 	KASSERT((head != NULL && *head != NULL),
1191 	    ("%s: head already freed", __func__));
1192 
1193 	rnh = (struct radix_node_head *)(*head);
1194 
1195 	rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
1196 	rn_detachhead_internal(&rnh->rh.rnh_masks->head);
1197 	rn_detachhead_internal(&rnh->rh);
1198 
1199 	*head = NULL;
1200 
1201 	return (1);
1202 }
1203