1 /* 2 * Copyright (c) 1988, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)radix.c 8.4 (Berkeley) 11/2/94 34 * $Id: radix.c,v 1.8 1995/04/28 23:01:34 pst Exp $ 35 */ 36 37 /* 38 * Routines to build and maintain radix trees for routing lookups. 39 */ 40 #ifndef _RADIX_H_ 41 #include <sys/param.h> 42 #ifdef KERNEL 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #define M_DONTWAIT M_NOWAIT 46 #include <sys/domain.h> 47 #else 48 #include <stdlib.h> 49 #endif 50 #include <sys/syslog.h> 51 #include <net/radix.h> 52 #endif 53 54 int max_keylen; 55 struct radix_mask *rn_mkfreelist; 56 struct radix_node_head *mask_rnhead; 57 static char *addmask_key; 58 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; 59 static char *rn_zeros, *rn_ones; 60 61 #define rn_masktop (mask_rnhead->rnh_treetop) 62 #undef Bcmp 63 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l)) 64 /* 65 * The data structure for the keys is a radix tree with one way 66 * branching removed. The index rn_b at an internal node n represents a bit 67 * position to be tested. The tree is arranged so that all descendants 68 * of a node n have keys whose bits all agree up to position rn_b - 1. 69 * (We say the index of n is rn_b.) 70 * 71 * There is at least one descendant which has a one bit at position rn_b, 72 * and at least one with a zero there. 73 * 74 * A route is determined by a pair of key and mask. We require that the 75 * bit-wise logical and of the key and mask to be the key. 76 * We define the index of a route to associated with the mask to be 77 * the first bit number in the mask where 0 occurs (with bit number 0 78 * representing the highest order bit). 79 * 80 * We say a mask is normal if every bit is 0, past the index of the mask. 81 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, 82 * and m is a normal mask, then the route applies to every descendant of n. 83 * If the index(m) < rn_b, this implies the trailing last few bits of k 84 * before bit b are all 0, (and hence consequently true of every descendant 85 * of n), so the route applies to all descendants of the node as well. 86 * 87 * Similar logic shows that a non-normal mask m such that 88 * index(m) <= index(n) could potentially apply to many children of n. 89 * Thus, for each non-host route, we attach its mask to a list at an internal 90 * node as high in the tree as we can go. 91 * 92 * The present version of the code makes use of normal routes in short- 93 * circuiting an explict mask and compare operation when testing whether 94 * a key satisfies a normal route, and also in remembering the unique leaf 95 * that governs a subtree. 96 */ 97 98 struct radix_node * 99 rn_search(v_arg, head) 100 void *v_arg; 101 struct radix_node *head; 102 { 103 register struct radix_node *x; 104 register caddr_t v; 105 106 for (x = head, v = v_arg; x->rn_b >= 0;) { 107 if (x->rn_bmask & v[x->rn_off]) 108 x = x->rn_r; 109 else 110 x = x->rn_l; 111 } 112 return (x); 113 }; 114 115 struct radix_node * 116 rn_search_m(v_arg, head, m_arg) 117 struct radix_node *head; 118 void *v_arg, *m_arg; 119 { 120 register struct radix_node *x; 121 register caddr_t v = v_arg, m = m_arg; 122 123 for (x = head; x->rn_b >= 0;) { 124 if ((x->rn_bmask & m[x->rn_off]) && 125 (x->rn_bmask & v[x->rn_off])) 126 x = x->rn_r; 127 else 128 x = x->rn_l; 129 } 130 return x; 131 }; 132 133 int 134 rn_refines(m_arg, n_arg) 135 void *m_arg, *n_arg; 136 { 137 register caddr_t m = m_arg, n = n_arg; 138 register caddr_t lim, lim2 = lim = n + *(u_char *)n; 139 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++); 140 int masks_are_equal = 1; 141 142 if (longer > 0) 143 lim -= longer; 144 while (n < lim) { 145 if (*n & ~(*m)) 146 return 0; 147 if (*n++ != *m++) 148 masks_are_equal = 0; 149 } 150 while (n < lim2) 151 if (*n++) 152 return 0; 153 if (masks_are_equal && (longer < 0)) 154 for (lim2 = m - longer; m < lim2; ) 155 if (*m++) 156 return 1; 157 return (!masks_are_equal); 158 } 159 160 struct radix_node * 161 rn_lookup(v_arg, m_arg, head) 162 void *v_arg, *m_arg; 163 struct radix_node_head *head; 164 { 165 register struct radix_node *x; 166 caddr_t netmask = 0; 167 168 if (m_arg) { 169 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0) 170 return (0); 171 netmask = x->rn_key; 172 } 173 x = rn_match(v_arg, head); 174 if (x && netmask) { 175 while (x && x->rn_mask != netmask) 176 x = x->rn_dupedkey; 177 } 178 return x; 179 } 180 181 static int 182 rn_satsifies_leaf(trial, leaf, skip) 183 char *trial; 184 register struct radix_node *leaf; 185 int skip; 186 { 187 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 188 char *cplim; 189 int length = min(*(u_char *)cp, *(u_char *)cp2); 190 191 if (cp3 == 0) 192 cp3 = rn_ones; 193 else 194 length = min(length, *(u_char *)cp3); 195 cplim = cp + length; cp3 += skip; cp2 += skip; 196 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 197 if ((*cp ^ *cp2) & *cp3) 198 return 0; 199 return 1; 200 } 201 202 struct radix_node * 203 rn_match(v_arg, head) 204 void *v_arg; 205 struct radix_node_head *head; 206 { 207 caddr_t v = v_arg; 208 register struct radix_node *t = head->rnh_treetop, *x; 209 register caddr_t cp = v, cp2; 210 caddr_t cplim; 211 struct radix_node *saved_t, *top = t; 212 int off = t->rn_off, vlen = *(u_char *)cp, matched_off; 213 register int test, b, rn_b; 214 215 /* 216 * Open code rn_search(v, top) to avoid overhead of extra 217 * subroutine call. 218 */ 219 for (; t->rn_b >= 0; ) { 220 if (t->rn_bmask & cp[t->rn_off]) 221 t = t->rn_r; 222 else 223 t = t->rn_l; 224 } 225 /* 226 * See if we match exactly as a host destination 227 * or at least learn how many bits match, for normal mask finesse. 228 * 229 * It doesn't hurt us to limit how many bytes to check 230 * to the length of the mask, since if it matches we had a genuine 231 * match and the leaf we have is the most specific one anyway; 232 * if it didn't match with a shorter length it would fail 233 * with a long one. This wins big for class B&C netmasks which 234 * are probably the most common case... 235 */ 236 if (t->rn_mask) 237 vlen = *(u_char *)t->rn_mask; 238 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 239 for (; cp < cplim; cp++, cp2++) 240 if (*cp != *cp2) 241 goto on1; 242 /* 243 * This extra grot is in case we are explicitly asked 244 * to look up the default. Ugh! 245 */ 246 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey) 247 t = t->rn_dupedkey; 248 return t; 249 on1: 250 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 251 for (b = 7; (test >>= 1) > 0;) 252 b--; 253 matched_off = cp - v; 254 b += matched_off << 3; 255 rn_b = -1 - b; 256 /* 257 * If there is a host route in a duped-key chain, it will be first. 258 */ 259 if ((saved_t = t)->rn_mask == 0) 260 t = t->rn_dupedkey; 261 for (; t; t = t->rn_dupedkey) 262 /* 263 * Even if we don't match exactly as a host, 264 * we may match if the leaf we wound up at is 265 * a route to a net. 266 */ 267 if (t->rn_flags & RNF_NORMAL) { 268 if (rn_b <= t->rn_b) 269 return t; 270 } else if (rn_satsifies_leaf(v, t, matched_off)) 271 return t; 272 t = saved_t; 273 /* start searching up the tree */ 274 do { 275 register struct radix_mask *m; 276 t = t->rn_p; 277 m = t->rn_mklist; 278 if (m) { 279 /* 280 * If non-contiguous masks ever become important 281 * we can restore the masking and open coding of 282 * the search and satisfaction test and put the 283 * calculation of "off" back before the "do". 284 */ 285 do { 286 if (m->rm_flags & RNF_NORMAL) { 287 if (rn_b <= m->rm_b) 288 return (m->rm_leaf); 289 } else { 290 off = min(t->rn_off, matched_off); 291 x = rn_search_m(v, t, m->rm_mask); 292 while (x && x->rn_mask != m->rm_mask) 293 x = x->rn_dupedkey; 294 if (x && rn_satsifies_leaf(v, x, off)) 295 return x; 296 } 297 m = m->rm_mklist; 298 } while (m); 299 } 300 } while (t != top); 301 return 0; 302 }; 303 304 #ifdef RN_DEBUG 305 int rn_nodenum; 306 struct radix_node *rn_clist; 307 int rn_saveinfo; 308 int rn_debug = 1; 309 #endif 310 311 struct radix_node * 312 rn_newpair(v, b, nodes) 313 void *v; 314 int b; 315 struct radix_node nodes[2]; 316 { 317 register struct radix_node *tt = nodes, *t = tt + 1; 318 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7); 319 t->rn_l = tt; t->rn_off = b >> 3; 320 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t; 321 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 322 #ifdef RN_DEBUG 323 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 324 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 325 #endif 326 return t; 327 } 328 329 struct radix_node * 330 rn_insert(v_arg, head, dupentry, nodes) 331 void *v_arg; 332 struct radix_node_head *head; 333 int *dupentry; 334 struct radix_node nodes[2]; 335 { 336 caddr_t v = v_arg; 337 struct radix_node *top = head->rnh_treetop; 338 int head_off = top->rn_off, vlen = (int)*((u_char *)v); 339 register struct radix_node *t = rn_search(v_arg, top); 340 register caddr_t cp = v + head_off; 341 register int b; 342 struct radix_node *tt; 343 /* 344 * Find first bit at which v and t->rn_key differ 345 */ 346 { 347 register caddr_t cp2 = t->rn_key + head_off; 348 register int cmp_res; 349 caddr_t cplim = v + vlen; 350 351 while (cp < cplim) 352 if (*cp2++ != *cp++) 353 goto on1; 354 *dupentry = 1; 355 return t; 356 on1: 357 *dupentry = 0; 358 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 359 for (b = (cp - v) << 3; cmp_res; b--) 360 cmp_res >>= 1; 361 } 362 { 363 register struct radix_node *p, *x = top; 364 cp = v; 365 do { 366 p = x; 367 if (cp[x->rn_off] & x->rn_bmask) 368 x = x->rn_r; 369 else x = x->rn_l; 370 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */ 371 #ifdef RN_DEBUG 372 if (rn_debug) 373 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 374 #endif 375 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l; 376 if ((cp[p->rn_off] & p->rn_bmask) == 0) 377 p->rn_l = t; 378 else 379 p->rn_r = t; 380 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */ 381 if ((cp[t->rn_off] & t->rn_bmask) == 0) { 382 t->rn_r = x; 383 } else { 384 t->rn_r = tt; t->rn_l = x; 385 } 386 #ifdef RN_DEBUG 387 if (rn_debug) 388 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 389 #endif 390 } 391 return (tt); 392 } 393 394 struct radix_node * 395 rn_addmask(n_arg, search, skip) 396 int search, skip; 397 void *n_arg; 398 { 399 caddr_t netmask = (caddr_t)n_arg; 400 register struct radix_node *x; 401 register caddr_t cp, cplim; 402 register int b = 0, mlen, j; 403 int maskduplicated, m0, isnormal; 404 struct radix_node *saved_x; 405 static int last_zeroed = 0; 406 407 if ((mlen = *(u_char *)netmask) > max_keylen) 408 mlen = max_keylen; 409 if (skip == 0) 410 skip = 1; 411 if (mlen <= skip) 412 return (mask_rnhead->rnh_nodes); 413 if (skip > 1) 414 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 415 if ((m0 = mlen) > skip) 416 Bcopy(netmask + skip, addmask_key + skip, mlen - skip); 417 /* 418 * Trim trailing zeroes. 419 */ 420 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 421 cp--; 422 mlen = cp - addmask_key; 423 if (mlen <= skip) { 424 if (m0 >= last_zeroed) 425 last_zeroed = mlen; 426 return (mask_rnhead->rnh_nodes); 427 } 428 if (m0 < last_zeroed) 429 Bzero(addmask_key + m0, last_zeroed - m0); 430 *addmask_key = last_zeroed = mlen; 431 x = rn_search(addmask_key, rn_masktop); 432 if (Bcmp(addmask_key, x->rn_key, mlen) != 0) 433 x = 0; 434 if (x || search) 435 return (x); 436 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); 437 if ((saved_x = x) == 0) 438 return (0); 439 Bzero(x, max_keylen + 2 * sizeof (*x)); 440 netmask = cp = (caddr_t)(x + 2); 441 Bcopy(addmask_key, cp, mlen); 442 x = rn_insert(cp, mask_rnhead, &maskduplicated, x); 443 if (maskduplicated) { 444 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 445 Free(saved_x); 446 return (x); 447 } 448 /* 449 * Calculate index of mask, and check for normalcy. 450 */ 451 cplim = netmask + mlen; isnormal = 1; 452 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) 453 cp++; 454 if (cp != cplim) { 455 for (j = 0x80; (j & *cp) != 0; j >>= 1) 456 b++; 457 if (*cp != normal_chars[b] || cp != (cplim - 1)) 458 isnormal = 0; 459 } 460 b += (cp - netmask) << 3; 461 x->rn_b = -1 - b; 462 if (isnormal) 463 x->rn_flags |= RNF_NORMAL; 464 return (x); 465 } 466 467 static int /* XXX: arbitrary ordering for non-contiguous masks */ 468 rn_lexobetter(m_arg, n_arg) 469 void *m_arg, *n_arg; 470 { 471 register u_char *mp = m_arg, *np = n_arg, *lim; 472 473 if (*mp > *np) 474 return 1; /* not really, but need to check longer one first */ 475 if (*mp == *np) 476 for (lim = mp + *mp; mp < lim;) 477 if (*mp++ > *np++) 478 return 1; 479 return 0; 480 } 481 482 static struct radix_mask * 483 rn_new_radix_mask(tt, next) 484 register struct radix_node *tt; 485 register struct radix_mask *next; 486 { 487 register struct radix_mask *m; 488 489 MKGet(m); 490 if (m == 0) { 491 log(LOG_ERR, "Mask for route not entered\n"); 492 return (0); 493 } 494 Bzero(m, sizeof *m); 495 m->rm_b = tt->rn_b; 496 m->rm_flags = tt->rn_flags; 497 if (tt->rn_flags & RNF_NORMAL) 498 m->rm_leaf = tt; 499 else 500 m->rm_mask = tt->rn_mask; 501 m->rm_mklist = next; 502 tt->rn_mklist = m; 503 return m; 504 } 505 506 struct radix_node * 507 rn_addroute(v_arg, n_arg, head, treenodes) 508 void *v_arg, *n_arg; 509 struct radix_node_head *head; 510 struct radix_node treenodes[2]; 511 { 512 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 513 register struct radix_node *t, *x = 0, *tt; 514 struct radix_node *saved_tt, *top = head->rnh_treetop; 515 short b = 0, b_leaf = 0; 516 int keyduplicated; 517 caddr_t mmask; 518 struct radix_mask *m, **mp; 519 520 /* 521 * In dealing with non-contiguous masks, there may be 522 * many different routes which have the same mask. 523 * We will find it useful to have a unique pointer to 524 * the mask to speed avoiding duplicate references at 525 * nodes and possibly save time in calculating indices. 526 */ 527 if (netmask) { 528 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0) 529 return (0); 530 b_leaf = x->rn_b; 531 b = -1 - x->rn_b; 532 netmask = x->rn_key; 533 } 534 /* 535 * Deal with duplicated keys: attach node to previous instance 536 */ 537 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 538 if (keyduplicated) { 539 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 540 if (tt->rn_mask == netmask) 541 return (0); 542 if (netmask == 0 || 543 (tt->rn_mask && 544 ((b_leaf < tt->rn_b) || /* index(netmask) > node */ 545 rn_refines(netmask, tt->rn_mask) || 546 rn_lexobetter(netmask, tt->rn_mask)))) 547 break; 548 } 549 /* 550 * If the mask is not duplicated, we wouldn't 551 * find it among possible duplicate key entries 552 * anyway, so the above test doesn't hurt. 553 * 554 * We sort the masks for a duplicated key the same way as 555 * in a masklist -- most specific to least specific. 556 * This may require the unfortunate nuisance of relocating 557 * the head of the list. 558 */ 559 if (tt == saved_tt) { 560 struct radix_node *xx = x; 561 /* link in at head of list */ 562 (tt = treenodes)->rn_dupedkey = t; 563 tt->rn_flags = t->rn_flags; 564 tt->rn_p = x = t->rn_p; 565 t->rn_p = tt; /* parent */ 566 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt; 567 saved_tt = tt; x = xx; 568 } else { 569 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 570 t->rn_dupedkey = tt; 571 tt->rn_p = t; /* parent */ 572 if (tt->rn_dupedkey) /* parent */ 573 tt->rn_dupedkey->rn_p = tt; /* parent */ 574 } 575 #ifdef RN_DEBUG 576 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 577 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 578 #endif 579 tt->rn_key = (caddr_t) v; 580 tt->rn_b = -1; 581 tt->rn_flags = RNF_ACTIVE; 582 } 583 /* 584 * Put mask in tree. 585 */ 586 if (netmask) { 587 tt->rn_mask = netmask; 588 tt->rn_b = x->rn_b; 589 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 590 } 591 t = saved_tt->rn_p; 592 if (keyduplicated) 593 goto on2; 594 b_leaf = -1 - t->rn_b; 595 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r; 596 /* Promote general routes from below */ 597 if (x->rn_b < 0) { 598 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 599 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) { 600 *mp = m = rn_new_radix_mask(x, 0); 601 if (m) 602 mp = &m->rm_mklist; 603 } 604 } else if (x->rn_mklist) { 605 /* 606 * Skip over masks whose index is > that of new node 607 */ 608 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 609 if (m->rm_b >= b_leaf) 610 break; 611 t->rn_mklist = m; *mp = 0; 612 } 613 on2: 614 /* Add new route to highest possible ancestor's list */ 615 if ((netmask == 0) || (b > t->rn_b )) 616 return tt; /* can't lift at all */ 617 b_leaf = tt->rn_b; 618 do { 619 x = t; 620 t = t->rn_p; 621 } while (b <= t->rn_b && x != top); 622 /* 623 * Search through routes associated with node to 624 * insert new route according to index. 625 * Need same criteria as when sorting dupedkeys to avoid 626 * double loop on deletion. 627 */ 628 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 629 if (m->rm_b < b_leaf) 630 continue; 631 if (m->rm_b > b_leaf) 632 break; 633 if (m->rm_flags & RNF_NORMAL) { 634 mmask = m->rm_leaf->rn_mask; 635 if (tt->rn_flags & RNF_NORMAL) { 636 log(LOG_ERR, 637 "Non-unique normal route, mask not entered"); 638 return tt; 639 } 640 } else 641 mmask = m->rm_mask; 642 if (mmask == netmask) { 643 m->rm_refs++; 644 tt->rn_mklist = m; 645 return tt; 646 } 647 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) 648 break; 649 } 650 *mp = rn_new_radix_mask(tt, *mp); 651 return tt; 652 } 653 654 struct radix_node * 655 rn_delete(v_arg, netmask_arg, head) 656 void *v_arg, *netmask_arg; 657 struct radix_node_head *head; 658 { 659 register struct radix_node *t, *p, *x, *tt; 660 struct radix_mask *m, *saved_m, **mp; 661 struct radix_node *dupedkey, *saved_tt, *top; 662 caddr_t v, netmask; 663 int b, head_off, vlen; 664 665 v = v_arg; 666 netmask = netmask_arg; 667 x = head->rnh_treetop; 668 tt = rn_search(v, x); 669 head_off = x->rn_off; 670 vlen = *(u_char *)v; 671 saved_tt = tt; 672 top = x; 673 if (tt == 0 || 674 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 675 return (0); 676 /* 677 * Delete our route from mask lists. 678 */ 679 if (netmask) { 680 if ((x = rn_addmask(netmask, 1, head_off)) == 0) 681 return (0); 682 netmask = x->rn_key; 683 while (tt->rn_mask != netmask) 684 if ((tt = tt->rn_dupedkey) == 0) 685 return (0); 686 } 687 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) 688 goto on1; 689 if (tt->rn_flags & RNF_NORMAL) { 690 if (m->rm_leaf != tt || m->rm_refs > 0) { 691 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 692 return 0; /* dangling ref could cause disaster */ 693 } 694 } else { 695 if (m->rm_mask != tt->rn_mask) { 696 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 697 goto on1; 698 } 699 if (--m->rm_refs >= 0) 700 goto on1; 701 } 702 b = -1 - tt->rn_b; 703 t = saved_tt->rn_p; 704 if (b > t->rn_b) 705 goto on1; /* Wasn't lifted at all */ 706 do { 707 x = t; 708 t = t->rn_p; 709 } while (b <= t->rn_b && x != top); 710 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 711 if (m == saved_m) { 712 *mp = m->rm_mklist; 713 MKFree(m); 714 break; 715 } 716 if (m == 0) { 717 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 718 if (tt->rn_flags & RNF_NORMAL) 719 return (0); /* Dangling ref to us */ 720 } 721 on1: 722 /* 723 * Eliminate us from tree 724 */ 725 if (tt->rn_flags & RNF_ROOT) 726 return (0); 727 #ifdef RN_DEBUG 728 /* Get us out of the creation list */ 729 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 730 if (t) t->rn_ybro = tt->rn_ybro; 731 #endif 732 t = tt->rn_p; 733 dupedkey = saved_tt->rn_dupedkey; 734 if (dupedkey) { 735 /* 736 * at this point, tt is the deletion target and saved_tt 737 * is the head of the dupekey chain 738 */ 739 if (tt == saved_tt) { 740 /* remove from head of chain */ 741 x = dupedkey; x->rn_p = t; 742 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x; 743 } else { 744 /* find node in front of tt on the chain */ 745 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 746 p = p->rn_dupedkey; 747 if (p) { 748 p->rn_dupedkey = tt->rn_dupedkey; 749 if (tt->rn_dupedkey) /* parent */ 750 tt->rn_dupedkey->rn_p = p; /* parent */ 751 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 752 } 753 t = tt + 1; 754 if (t->rn_flags & RNF_ACTIVE) { 755 #ifndef RN_DEBUG 756 *++x = *t; p = t->rn_p; 757 #else 758 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p; 759 #endif 760 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x; 761 x->rn_l->rn_p = x; x->rn_r->rn_p = x; 762 } 763 goto out; 764 } 765 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l; 766 p = t->rn_p; 767 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x; 768 x->rn_p = p; 769 /* 770 * Demote routes attached to us. 771 */ 772 if (t->rn_mklist) { 773 if (x->rn_b >= 0) { 774 for (mp = &x->rn_mklist; (m = *mp);) 775 mp = &m->rm_mklist; 776 *mp = t->rn_mklist; 777 } else { 778 /* If there are any key,mask pairs in a sibling 779 duped-key chain, some subset will appear sorted 780 in the same order attached to our mklist */ 781 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 782 if (m == x->rn_mklist) { 783 struct radix_mask *mm = m->rm_mklist; 784 x->rn_mklist = 0; 785 if (--(m->rm_refs) < 0) 786 MKFree(m); 787 m = mm; 788 } 789 if (m) 790 log(LOG_ERR, "%s %p at %x\n", 791 "rn_delete: Orphaned Mask", m, x); 792 } 793 } 794 /* 795 * We may be holding an active internal node in the tree. 796 */ 797 x = tt + 1; 798 if (t != x) { 799 #ifndef RN_DEBUG 800 *t = *x; 801 #else 802 b = t->rn_info; *t = *x; t->rn_info = b; 803 #endif 804 t->rn_l->rn_p = t; t->rn_r->rn_p = t; 805 p = x->rn_p; 806 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t; 807 } 808 out: 809 tt->rn_flags &= ~RNF_ACTIVE; 810 tt[1].rn_flags &= ~RNF_ACTIVE; 811 return (tt); 812 } 813 814 /* 815 * This is the same as rn_walktree() except for the parameters and the 816 * exit. 817 */ 818 int 819 rn_walktree_from(h, a, m, f, w) 820 struct radix_node_head *h; 821 void *a, *m; 822 register int (*f)(); 823 void *w; 824 { 825 int error; 826 struct radix_node *base, *next; 827 u_char *xa = (u_char *)a; 828 u_char *xm = (u_char *)m; 829 register struct radix_node *rn, *last = 0 /* shut up gcc */; 830 int stopping = 0; 831 int lastb; 832 833 /* 834 * rn_search_m is sort-of-open-coded here. 835 */ 836 /* printf("about to search\n"); */ 837 for (rn = h->rnh_treetop; rn->rn_b >= 0; ) { 838 last = rn; 839 /* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n", 840 rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */ 841 if (!(rn->rn_bmask & xm[rn->rn_off])) { 842 break; 843 } 844 if (rn->rn_bmask & xa[rn->rn_off]) { 845 rn = rn->rn_r; 846 } else { 847 rn = rn->rn_l; 848 } 849 } 850 /* printf("done searching\n"); */ 851 852 /* 853 * Two cases: either we stepped off the end of our mask, 854 * in which case last == rn, or we reached a leaf, in which 855 * case we want to start from the last node we looked at. 856 * Either way, last is the node we want to start from. 857 */ 858 rn = last; 859 lastb = rn->rn_b; 860 861 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 862 863 /* 864 * This gets complicated because we may delete the node 865 * while applying the function f to it, so we need to calculate 866 * the successor node in advance. 867 */ 868 while (rn->rn_b >= 0) 869 rn = rn->rn_l; 870 871 while (!stopping) { 872 /* printf("node %p (%d)\n", rn, rn->rn_b); */ 873 base = rn; 874 /* If at right child go back up, otherwise, go right */ 875 while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) { 876 rn = rn->rn_p; 877 878 /* if went up beyond last, stop */ 879 if (rn->rn_b < lastb) { 880 stopping = 1; 881 /* printf("up too far\n"); */ 882 } 883 } 884 885 /* Find the next *leaf* since next node might vanish, too */ 886 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) 887 rn = rn->rn_l; 888 next = rn; 889 /* Process leaves */ 890 while ((rn = base) != 0) { 891 base = rn->rn_dupedkey; 892 /* printf("leaf %p\n", rn); */ 893 if (!(rn->rn_flags & RNF_ROOT) 894 && (error = (*f)(rn, w))) 895 return (error); 896 } 897 rn = next; 898 899 if (rn->rn_flags & RNF_ROOT) { 900 /* printf("root, stopping"); */ 901 stopping = 1; 902 } 903 904 } 905 return 0; 906 } 907 908 int 909 rn_walktree(h, f, w) 910 struct radix_node_head *h; 911 register int (*f)(); 912 void *w; 913 { 914 int error; 915 struct radix_node *base, *next; 916 register struct radix_node *rn = h->rnh_treetop; 917 /* 918 * This gets complicated because we may delete the node 919 * while applying the function f to it, so we need to calculate 920 * the successor node in advance. 921 */ 922 /* First time through node, go left */ 923 while (rn->rn_b >= 0) 924 rn = rn->rn_l; 925 for (;;) { 926 base = rn; 927 /* If at right child go back up, otherwise, go right */ 928 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) 929 rn = rn->rn_p; 930 /* Find the next *leaf* since next node might vanish, too */ 931 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) 932 rn = rn->rn_l; 933 next = rn; 934 /* Process leaves */ 935 while ((rn = base)) { 936 base = rn->rn_dupedkey; 937 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) 938 return (error); 939 } 940 rn = next; 941 if (rn->rn_flags & RNF_ROOT) 942 return (0); 943 } 944 /* NOTREACHED */ 945 } 946 947 int 948 rn_inithead(head, off) 949 void **head; 950 int off; 951 { 952 register struct radix_node_head *rnh; 953 register struct radix_node *t, *tt, *ttt; 954 if (*head) 955 return (1); 956 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh)); 957 if (rnh == 0) 958 return (0); 959 Bzero(rnh, sizeof (*rnh)); 960 *head = rnh; 961 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); 962 ttt = rnh->rnh_nodes + 2; 963 t->rn_r = ttt; 964 t->rn_p = t; 965 tt = t->rn_l; 966 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 967 tt->rn_b = -1 - off; 968 *ttt = *tt; 969 ttt->rn_key = rn_ones; 970 rnh->rnh_addaddr = rn_addroute; 971 rnh->rnh_deladdr = rn_delete; 972 rnh->rnh_matchaddr = rn_match; 973 rnh->rnh_lookup = rn_lookup; 974 rnh->rnh_walktree = rn_walktree; 975 rnh->rnh_walktree_from = rn_walktree_from; 976 rnh->rnh_treetop = t; 977 return (1); 978 } 979 980 void 981 rn_init() 982 { 983 char *cp, *cplim; 984 #ifdef KERNEL 985 struct domain *dom; 986 987 for (dom = domains; dom; dom = dom->dom_next) 988 if (dom->dom_maxrtkey > max_keylen) 989 max_keylen = dom->dom_maxrtkey; 990 #endif 991 if (max_keylen == 0) { 992 log(LOG_ERR, 993 "rn_init: radix functions require max_keylen be set\n"); 994 return; 995 } 996 R_Malloc(rn_zeros, char *, 3 * max_keylen); 997 if (rn_zeros == NULL) 998 panic("rn_init"); 999 Bzero(rn_zeros, 3 * max_keylen); 1000 rn_ones = cp = rn_zeros + max_keylen; 1001 addmask_key = cplim = rn_ones + max_keylen; 1002 while (cp < cplim) 1003 *cp++ = -1; 1004 if (rn_inithead((void **)&mask_rnhead, 0) == 0) 1005 panic("rn_init 2"); 1006 } 1007