xref: /freebsd/sys/net/radix.c (revision d82e286489da73321a47e329d98a98817b0438b6)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34  *	$Id: radix.c,v 1.8 1995/04/28 23:01:34 pst Exp $
35  */
36 
37 /*
38  * Routines to build and maintain radix trees for routing lookups.
39  */
40 #ifndef _RADIX_H_
41 #include <sys/param.h>
42 #ifdef	KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #define	M_DONTWAIT M_NOWAIT
46 #include <sys/domain.h>
47 #else
48 #include <stdlib.h>
49 #endif
50 #include <sys/syslog.h>
51 #include <net/radix.h>
52 #endif
53 
54 int	max_keylen;
55 struct radix_mask *rn_mkfreelist;
56 struct radix_node_head *mask_rnhead;
57 static char *addmask_key;
58 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
59 static char *rn_zeros, *rn_ones;
60 
61 #define rn_masktop (mask_rnhead->rnh_treetop)
62 #undef Bcmp
63 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
64 /*
65  * The data structure for the keys is a radix tree with one way
66  * branching removed.  The index rn_b at an internal node n represents a bit
67  * position to be tested.  The tree is arranged so that all descendants
68  * of a node n have keys whose bits all agree up to position rn_b - 1.
69  * (We say the index of n is rn_b.)
70  *
71  * There is at least one descendant which has a one bit at position rn_b,
72  * and at least one with a zero there.
73  *
74  * A route is determined by a pair of key and mask.  We require that the
75  * bit-wise logical and of the key and mask to be the key.
76  * We define the index of a route to associated with the mask to be
77  * the first bit number in the mask where 0 occurs (with bit number 0
78  * representing the highest order bit).
79  *
80  * We say a mask is normal if every bit is 0, past the index of the mask.
81  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
82  * and m is a normal mask, then the route applies to every descendant of n.
83  * If the index(m) < rn_b, this implies the trailing last few bits of k
84  * before bit b are all 0, (and hence consequently true of every descendant
85  * of n), so the route applies to all descendants of the node as well.
86  *
87  * Similar logic shows that a non-normal mask m such that
88  * index(m) <= index(n) could potentially apply to many children of n.
89  * Thus, for each non-host route, we attach its mask to a list at an internal
90  * node as high in the tree as we can go.
91  *
92  * The present version of the code makes use of normal routes in short-
93  * circuiting an explict mask and compare operation when testing whether
94  * a key satisfies a normal route, and also in remembering the unique leaf
95  * that governs a subtree.
96  */
97 
98 struct radix_node *
99 rn_search(v_arg, head)
100 	void *v_arg;
101 	struct radix_node *head;
102 {
103 	register struct radix_node *x;
104 	register caddr_t v;
105 
106 	for (x = head, v = v_arg; x->rn_b >= 0;) {
107 		if (x->rn_bmask & v[x->rn_off])
108 			x = x->rn_r;
109 		else
110 			x = x->rn_l;
111 	}
112 	return (x);
113 };
114 
115 struct radix_node *
116 rn_search_m(v_arg, head, m_arg)
117 	struct radix_node *head;
118 	void *v_arg, *m_arg;
119 {
120 	register struct radix_node *x;
121 	register caddr_t v = v_arg, m = m_arg;
122 
123 	for (x = head; x->rn_b >= 0;) {
124 		if ((x->rn_bmask & m[x->rn_off]) &&
125 		    (x->rn_bmask & v[x->rn_off]))
126 			x = x->rn_r;
127 		else
128 			x = x->rn_l;
129 	}
130 	return x;
131 };
132 
133 int
134 rn_refines(m_arg, n_arg)
135 	void *m_arg, *n_arg;
136 {
137 	register caddr_t m = m_arg, n = n_arg;
138 	register caddr_t lim, lim2 = lim = n + *(u_char *)n;
139 	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
140 	int masks_are_equal = 1;
141 
142 	if (longer > 0)
143 		lim -= longer;
144 	while (n < lim) {
145 		if (*n & ~(*m))
146 			return 0;
147 		if (*n++ != *m++)
148 			masks_are_equal = 0;
149 	}
150 	while (n < lim2)
151 		if (*n++)
152 			return 0;
153 	if (masks_are_equal && (longer < 0))
154 		for (lim2 = m - longer; m < lim2; )
155 			if (*m++)
156 				return 1;
157 	return (!masks_are_equal);
158 }
159 
160 struct radix_node *
161 rn_lookup(v_arg, m_arg, head)
162 	void *v_arg, *m_arg;
163 	struct radix_node_head *head;
164 {
165 	register struct radix_node *x;
166 	caddr_t netmask = 0;
167 
168 	if (m_arg) {
169 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
170 			return (0);
171 		netmask = x->rn_key;
172 	}
173 	x = rn_match(v_arg, head);
174 	if (x && netmask) {
175 		while (x && x->rn_mask != netmask)
176 			x = x->rn_dupedkey;
177 	}
178 	return x;
179 }
180 
181 static int
182 rn_satsifies_leaf(trial, leaf, skip)
183 	char *trial;
184 	register struct radix_node *leaf;
185 	int skip;
186 {
187 	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
188 	char *cplim;
189 	int length = min(*(u_char *)cp, *(u_char *)cp2);
190 
191 	if (cp3 == 0)
192 		cp3 = rn_ones;
193 	else
194 		length = min(length, *(u_char *)cp3);
195 	cplim = cp + length; cp3 += skip; cp2 += skip;
196 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
197 		if ((*cp ^ *cp2) & *cp3)
198 			return 0;
199 	return 1;
200 }
201 
202 struct radix_node *
203 rn_match(v_arg, head)
204 	void *v_arg;
205 	struct radix_node_head *head;
206 {
207 	caddr_t v = v_arg;
208 	register struct radix_node *t = head->rnh_treetop, *x;
209 	register caddr_t cp = v, cp2;
210 	caddr_t cplim;
211 	struct radix_node *saved_t, *top = t;
212 	int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
213 	register int test, b, rn_b;
214 
215 	/*
216 	 * Open code rn_search(v, top) to avoid overhead of extra
217 	 * subroutine call.
218 	 */
219 	for (; t->rn_b >= 0; ) {
220 		if (t->rn_bmask & cp[t->rn_off])
221 			t = t->rn_r;
222 		else
223 			t = t->rn_l;
224 	}
225 	/*
226 	 * See if we match exactly as a host destination
227 	 * or at least learn how many bits match, for normal mask finesse.
228 	 *
229 	 * It doesn't hurt us to limit how many bytes to check
230 	 * to the length of the mask, since if it matches we had a genuine
231 	 * match and the leaf we have is the most specific one anyway;
232 	 * if it didn't match with a shorter length it would fail
233 	 * with a long one.  This wins big for class B&C netmasks which
234 	 * are probably the most common case...
235 	 */
236 	if (t->rn_mask)
237 		vlen = *(u_char *)t->rn_mask;
238 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
239 	for (; cp < cplim; cp++, cp2++)
240 		if (*cp != *cp2)
241 			goto on1;
242 	/*
243 	 * This extra grot is in case we are explicitly asked
244 	 * to look up the default.  Ugh!
245 	 */
246 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
247 		t = t->rn_dupedkey;
248 	return t;
249 on1:
250 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
251 	for (b = 7; (test >>= 1) > 0;)
252 		b--;
253 	matched_off = cp - v;
254 	b += matched_off << 3;
255 	rn_b = -1 - b;
256 	/*
257 	 * If there is a host route in a duped-key chain, it will be first.
258 	 */
259 	if ((saved_t = t)->rn_mask == 0)
260 		t = t->rn_dupedkey;
261 	for (; t; t = t->rn_dupedkey)
262 		/*
263 		 * Even if we don't match exactly as a host,
264 		 * we may match if the leaf we wound up at is
265 		 * a route to a net.
266 		 */
267 		if (t->rn_flags & RNF_NORMAL) {
268 			if (rn_b <= t->rn_b)
269 				return t;
270 		} else if (rn_satsifies_leaf(v, t, matched_off))
271 				return t;
272 	t = saved_t;
273 	/* start searching up the tree */
274 	do {
275 		register struct radix_mask *m;
276 		t = t->rn_p;
277 		m = t->rn_mklist;
278 		if (m) {
279 			/*
280 			 * If non-contiguous masks ever become important
281 			 * we can restore the masking and open coding of
282 			 * the search and satisfaction test and put the
283 			 * calculation of "off" back before the "do".
284 			 */
285 			do {
286 				if (m->rm_flags & RNF_NORMAL) {
287 					if (rn_b <= m->rm_b)
288 						return (m->rm_leaf);
289 				} else {
290 					off = min(t->rn_off, matched_off);
291 					x = rn_search_m(v, t, m->rm_mask);
292 					while (x && x->rn_mask != m->rm_mask)
293 						x = x->rn_dupedkey;
294 					if (x && rn_satsifies_leaf(v, x, off))
295 						    return x;
296 				}
297 				m = m->rm_mklist;
298 			} while (m);
299 		}
300 	} while (t != top);
301 	return 0;
302 };
303 
304 #ifdef RN_DEBUG
305 int	rn_nodenum;
306 struct	radix_node *rn_clist;
307 int	rn_saveinfo;
308 int	rn_debug =  1;
309 #endif
310 
311 struct radix_node *
312 rn_newpair(v, b, nodes)
313 	void *v;
314 	int b;
315 	struct radix_node nodes[2];
316 {
317 	register struct radix_node *tt = nodes, *t = tt + 1;
318 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
319 	t->rn_l = tt; t->rn_off = b >> 3;
320 	tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
321 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
322 #ifdef RN_DEBUG
323 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
324 	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
325 #endif
326 	return t;
327 }
328 
329 struct radix_node *
330 rn_insert(v_arg, head, dupentry, nodes)
331 	void *v_arg;
332 	struct radix_node_head *head;
333 	int *dupentry;
334 	struct radix_node nodes[2];
335 {
336 	caddr_t v = v_arg;
337 	struct radix_node *top = head->rnh_treetop;
338 	int head_off = top->rn_off, vlen = (int)*((u_char *)v);
339 	register struct radix_node *t = rn_search(v_arg, top);
340 	register caddr_t cp = v + head_off;
341 	register int b;
342 	struct radix_node *tt;
343     	/*
344 	 * Find first bit at which v and t->rn_key differ
345 	 */
346     {
347 	register caddr_t cp2 = t->rn_key + head_off;
348 	register int cmp_res;
349 	caddr_t cplim = v + vlen;
350 
351 	while (cp < cplim)
352 		if (*cp2++ != *cp++)
353 			goto on1;
354 	*dupentry = 1;
355 	return t;
356 on1:
357 	*dupentry = 0;
358 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
359 	for (b = (cp - v) << 3; cmp_res; b--)
360 		cmp_res >>= 1;
361     }
362     {
363 	register struct radix_node *p, *x = top;
364 	cp = v;
365 	do {
366 		p = x;
367 		if (cp[x->rn_off] & x->rn_bmask)
368 			x = x->rn_r;
369 		else x = x->rn_l;
370 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
371 #ifdef RN_DEBUG
372 	if (rn_debug)
373 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
374 #endif
375 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
376 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
377 		p->rn_l = t;
378 	else
379 		p->rn_r = t;
380 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
381 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
382 		t->rn_r = x;
383 	} else {
384 		t->rn_r = tt; t->rn_l = x;
385 	}
386 #ifdef RN_DEBUG
387 	if (rn_debug)
388 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
389 #endif
390     }
391 	return (tt);
392 }
393 
394 struct radix_node *
395 rn_addmask(n_arg, search, skip)
396 	int search, skip;
397 	void *n_arg;
398 {
399 	caddr_t netmask = (caddr_t)n_arg;
400 	register struct radix_node *x;
401 	register caddr_t cp, cplim;
402 	register int b = 0, mlen, j;
403 	int maskduplicated, m0, isnormal;
404 	struct radix_node *saved_x;
405 	static int last_zeroed = 0;
406 
407 	if ((mlen = *(u_char *)netmask) > max_keylen)
408 		mlen = max_keylen;
409 	if (skip == 0)
410 		skip = 1;
411 	if (mlen <= skip)
412 		return (mask_rnhead->rnh_nodes);
413 	if (skip > 1)
414 		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
415 	if ((m0 = mlen) > skip)
416 		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
417 	/*
418 	 * Trim trailing zeroes.
419 	 */
420 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
421 		cp--;
422 	mlen = cp - addmask_key;
423 	if (mlen <= skip) {
424 		if (m0 >= last_zeroed)
425 			last_zeroed = mlen;
426 		return (mask_rnhead->rnh_nodes);
427 	}
428 	if (m0 < last_zeroed)
429 		Bzero(addmask_key + m0, last_zeroed - m0);
430 	*addmask_key = last_zeroed = mlen;
431 	x = rn_search(addmask_key, rn_masktop);
432 	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
433 		x = 0;
434 	if (x || search)
435 		return (x);
436 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
437 	if ((saved_x = x) == 0)
438 		return (0);
439 	Bzero(x, max_keylen + 2 * sizeof (*x));
440 	netmask = cp = (caddr_t)(x + 2);
441 	Bcopy(addmask_key, cp, mlen);
442 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
443 	if (maskduplicated) {
444 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
445 		Free(saved_x);
446 		return (x);
447 	}
448 	/*
449 	 * Calculate index of mask, and check for normalcy.
450 	 */
451 	cplim = netmask + mlen; isnormal = 1;
452 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
453 		cp++;
454 	if (cp != cplim) {
455 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
456 			b++;
457 		if (*cp != normal_chars[b] || cp != (cplim - 1))
458 			isnormal = 0;
459 	}
460 	b += (cp - netmask) << 3;
461 	x->rn_b = -1 - b;
462 	if (isnormal)
463 		x->rn_flags |= RNF_NORMAL;
464 	return (x);
465 }
466 
467 static int	/* XXX: arbitrary ordering for non-contiguous masks */
468 rn_lexobetter(m_arg, n_arg)
469 	void *m_arg, *n_arg;
470 {
471 	register u_char *mp = m_arg, *np = n_arg, *lim;
472 
473 	if (*mp > *np)
474 		return 1;  /* not really, but need to check longer one first */
475 	if (*mp == *np)
476 		for (lim = mp + *mp; mp < lim;)
477 			if (*mp++ > *np++)
478 				return 1;
479 	return 0;
480 }
481 
482 static struct radix_mask *
483 rn_new_radix_mask(tt, next)
484 	register struct radix_node *tt;
485 	register struct radix_mask *next;
486 {
487 	register struct radix_mask *m;
488 
489 	MKGet(m);
490 	if (m == 0) {
491 		log(LOG_ERR, "Mask for route not entered\n");
492 		return (0);
493 	}
494 	Bzero(m, sizeof *m);
495 	m->rm_b = tt->rn_b;
496 	m->rm_flags = tt->rn_flags;
497 	if (tt->rn_flags & RNF_NORMAL)
498 		m->rm_leaf = tt;
499 	else
500 		m->rm_mask = tt->rn_mask;
501 	m->rm_mklist = next;
502 	tt->rn_mklist = m;
503 	return m;
504 }
505 
506 struct radix_node *
507 rn_addroute(v_arg, n_arg, head, treenodes)
508 	void *v_arg, *n_arg;
509 	struct radix_node_head *head;
510 	struct radix_node treenodes[2];
511 {
512 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
513 	register struct radix_node *t, *x = 0, *tt;
514 	struct radix_node *saved_tt, *top = head->rnh_treetop;
515 	short b = 0, b_leaf = 0;
516 	int keyduplicated;
517 	caddr_t mmask;
518 	struct radix_mask *m, **mp;
519 
520 	/*
521 	 * In dealing with non-contiguous masks, there may be
522 	 * many different routes which have the same mask.
523 	 * We will find it useful to have a unique pointer to
524 	 * the mask to speed avoiding duplicate references at
525 	 * nodes and possibly save time in calculating indices.
526 	 */
527 	if (netmask)  {
528 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
529 			return (0);
530 		b_leaf = x->rn_b;
531 		b = -1 - x->rn_b;
532 		netmask = x->rn_key;
533 	}
534 	/*
535 	 * Deal with duplicated keys: attach node to previous instance
536 	 */
537 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
538 	if (keyduplicated) {
539 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
540 			if (tt->rn_mask == netmask)
541 				return (0);
542 			if (netmask == 0 ||
543 			    (tt->rn_mask &&
544 			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
545 			       rn_refines(netmask, tt->rn_mask) ||
546 			       rn_lexobetter(netmask, tt->rn_mask))))
547 				break;
548 		}
549 		/*
550 		 * If the mask is not duplicated, we wouldn't
551 		 * find it among possible duplicate key entries
552 		 * anyway, so the above test doesn't hurt.
553 		 *
554 		 * We sort the masks for a duplicated key the same way as
555 		 * in a masklist -- most specific to least specific.
556 		 * This may require the unfortunate nuisance of relocating
557 		 * the head of the list.
558 		 */
559 		if (tt == saved_tt) {
560 			struct	radix_node *xx = x;
561 			/* link in at head of list */
562 			(tt = treenodes)->rn_dupedkey = t;
563 			tt->rn_flags = t->rn_flags;
564 			tt->rn_p = x = t->rn_p;
565 			t->rn_p = tt;				/* parent */
566 			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
567 			saved_tt = tt; x = xx;
568 		} else {
569 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
570 			t->rn_dupedkey = tt;
571 			tt->rn_p = t;				/* parent */
572 			if (tt->rn_dupedkey)			/* parent */
573 				tt->rn_dupedkey->rn_p = tt;	/* parent */
574 		}
575 #ifdef RN_DEBUG
576 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
577 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
578 #endif
579 		tt->rn_key = (caddr_t) v;
580 		tt->rn_b = -1;
581 		tt->rn_flags = RNF_ACTIVE;
582 	}
583 	/*
584 	 * Put mask in tree.
585 	 */
586 	if (netmask) {
587 		tt->rn_mask = netmask;
588 		tt->rn_b = x->rn_b;
589 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
590 	}
591 	t = saved_tt->rn_p;
592 	if (keyduplicated)
593 		goto on2;
594 	b_leaf = -1 - t->rn_b;
595 	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
596 	/* Promote general routes from below */
597 	if (x->rn_b < 0) {
598 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
599 		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
600 			*mp = m = rn_new_radix_mask(x, 0);
601 			if (m)
602 				mp = &m->rm_mklist;
603 		}
604 	} else if (x->rn_mklist) {
605 		/*
606 		 * Skip over masks whose index is > that of new node
607 		 */
608 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
609 			if (m->rm_b >= b_leaf)
610 				break;
611 		t->rn_mklist = m; *mp = 0;
612 	}
613 on2:
614 	/* Add new route to highest possible ancestor's list */
615 	if ((netmask == 0) || (b > t->rn_b ))
616 		return tt; /* can't lift at all */
617 	b_leaf = tt->rn_b;
618 	do {
619 		x = t;
620 		t = t->rn_p;
621 	} while (b <= t->rn_b && x != top);
622 	/*
623 	 * Search through routes associated with node to
624 	 * insert new route according to index.
625 	 * Need same criteria as when sorting dupedkeys to avoid
626 	 * double loop on deletion.
627 	 */
628 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
629 		if (m->rm_b < b_leaf)
630 			continue;
631 		if (m->rm_b > b_leaf)
632 			break;
633 		if (m->rm_flags & RNF_NORMAL) {
634 			mmask = m->rm_leaf->rn_mask;
635 			if (tt->rn_flags & RNF_NORMAL) {
636 				log(LOG_ERR,
637 				   "Non-unique normal route, mask not entered");
638 				return tt;
639 			}
640 		} else
641 			mmask = m->rm_mask;
642 		if (mmask == netmask) {
643 			m->rm_refs++;
644 			tt->rn_mklist = m;
645 			return tt;
646 		}
647 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
648 			break;
649 	}
650 	*mp = rn_new_radix_mask(tt, *mp);
651 	return tt;
652 }
653 
654 struct radix_node *
655 rn_delete(v_arg, netmask_arg, head)
656 	void *v_arg, *netmask_arg;
657 	struct radix_node_head *head;
658 {
659 	register struct radix_node *t, *p, *x, *tt;
660 	struct radix_mask *m, *saved_m, **mp;
661 	struct radix_node *dupedkey, *saved_tt, *top;
662 	caddr_t v, netmask;
663 	int b, head_off, vlen;
664 
665 	v = v_arg;
666 	netmask = netmask_arg;
667 	x = head->rnh_treetop;
668 	tt = rn_search(v, x);
669 	head_off = x->rn_off;
670 	vlen =  *(u_char *)v;
671 	saved_tt = tt;
672 	top = x;
673 	if (tt == 0 ||
674 	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
675 		return (0);
676 	/*
677 	 * Delete our route from mask lists.
678 	 */
679 	if (netmask) {
680 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
681 			return (0);
682 		netmask = x->rn_key;
683 		while (tt->rn_mask != netmask)
684 			if ((tt = tt->rn_dupedkey) == 0)
685 				return (0);
686 	}
687 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
688 		goto on1;
689 	if (tt->rn_flags & RNF_NORMAL) {
690 		if (m->rm_leaf != tt || m->rm_refs > 0) {
691 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
692 			return 0;  /* dangling ref could cause disaster */
693 		}
694 	} else {
695 		if (m->rm_mask != tt->rn_mask) {
696 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
697 			goto on1;
698 		}
699 		if (--m->rm_refs >= 0)
700 			goto on1;
701 	}
702 	b = -1 - tt->rn_b;
703 	t = saved_tt->rn_p;
704 	if (b > t->rn_b)
705 		goto on1; /* Wasn't lifted at all */
706 	do {
707 		x = t;
708 		t = t->rn_p;
709 	} while (b <= t->rn_b && x != top);
710 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
711 		if (m == saved_m) {
712 			*mp = m->rm_mklist;
713 			MKFree(m);
714 			break;
715 		}
716 	if (m == 0) {
717 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
718 		if (tt->rn_flags & RNF_NORMAL)
719 			return (0); /* Dangling ref to us */
720 	}
721 on1:
722 	/*
723 	 * Eliminate us from tree
724 	 */
725 	if (tt->rn_flags & RNF_ROOT)
726 		return (0);
727 #ifdef RN_DEBUG
728 	/* Get us out of the creation list */
729 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
730 	if (t) t->rn_ybro = tt->rn_ybro;
731 #endif
732 	t = tt->rn_p;
733 	dupedkey = saved_tt->rn_dupedkey;
734 	if (dupedkey) {
735 		/*
736 		 * at this point, tt is the deletion target and saved_tt
737 		 * is the head of the dupekey chain
738 		 */
739 		if (tt == saved_tt) {
740 			/* remove from head of chain */
741 			x = dupedkey; x->rn_p = t;
742 			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
743 		} else {
744 			/* find node in front of tt on the chain */
745 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
746 				p = p->rn_dupedkey;
747 			if (p) {
748 				p->rn_dupedkey = tt->rn_dupedkey;
749 				if (tt->rn_dupedkey)		   /* parent */
750 					tt->rn_dupedkey->rn_p = p; /* parent */
751 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
752 		}
753 		t = tt + 1;
754 		if  (t->rn_flags & RNF_ACTIVE) {
755 #ifndef RN_DEBUG
756 			*++x = *t; p = t->rn_p;
757 #else
758 			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
759 #endif
760 			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
761 			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
762 		}
763 		goto out;
764 	}
765 	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
766 	p = t->rn_p;
767 	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
768 	x->rn_p = p;
769 	/*
770 	 * Demote routes attached to us.
771 	 */
772 	if (t->rn_mklist) {
773 		if (x->rn_b >= 0) {
774 			for (mp = &x->rn_mklist; (m = *mp);)
775 				mp = &m->rm_mklist;
776 			*mp = t->rn_mklist;
777 		} else {
778 			/* If there are any key,mask pairs in a sibling
779 			   duped-key chain, some subset will appear sorted
780 			   in the same order attached to our mklist */
781 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
782 				if (m == x->rn_mklist) {
783 					struct radix_mask *mm = m->rm_mklist;
784 					x->rn_mklist = 0;
785 					if (--(m->rm_refs) < 0)
786 						MKFree(m);
787 					m = mm;
788 				}
789 			if (m)
790 				log(LOG_ERR, "%s %p at %x\n",
791 					    "rn_delete: Orphaned Mask", m, x);
792 		}
793 	}
794 	/*
795 	 * We may be holding an active internal node in the tree.
796 	 */
797 	x = tt + 1;
798 	if (t != x) {
799 #ifndef RN_DEBUG
800 		*t = *x;
801 #else
802 		b = t->rn_info; *t = *x; t->rn_info = b;
803 #endif
804 		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
805 		p = x->rn_p;
806 		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
807 	}
808 out:
809 	tt->rn_flags &= ~RNF_ACTIVE;
810 	tt[1].rn_flags &= ~RNF_ACTIVE;
811 	return (tt);
812 }
813 
814 /*
815  * This is the same as rn_walktree() except for the parameters and the
816  * exit.
817  */
818 int
819 rn_walktree_from(h, a, m, f, w)
820 	struct radix_node_head *h;
821 	void *a, *m;
822 	register int (*f)();
823 	void *w;
824 {
825 	int error;
826 	struct radix_node *base, *next;
827 	u_char *xa = (u_char *)a;
828 	u_char *xm = (u_char *)m;
829 	register struct radix_node *rn, *last = 0 /* shut up gcc */;
830 	int stopping = 0;
831 	int lastb;
832 
833 	/*
834 	 * rn_search_m is sort-of-open-coded here.
835 	 */
836 	/* printf("about to search\n"); */
837 	for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
838 		last = rn;
839 		/* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
840 		       rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
841 		if (!(rn->rn_bmask & xm[rn->rn_off])) {
842 			break;
843 		}
844 		if (rn->rn_bmask & xa[rn->rn_off]) {
845 			rn = rn->rn_r;
846 		} else {
847 			rn = rn->rn_l;
848 		}
849 	}
850 	/* printf("done searching\n"); */
851 
852 	/*
853 	 * Two cases: either we stepped off the end of our mask,
854 	 * in which case last == rn, or we reached a leaf, in which
855 	 * case we want to start from the last node we looked at.
856 	 * Either way, last is the node we want to start from.
857 	 */
858 	rn = last;
859 	lastb = rn->rn_b;
860 
861 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
862 
863 	/*
864 	 * This gets complicated because we may delete the node
865 	 * while applying the function f to it, so we need to calculate
866 	 * the successor node in advance.
867 	 */
868 	while (rn->rn_b >= 0)
869 		rn = rn->rn_l;
870 
871 	while (!stopping) {
872 		/* printf("node %p (%d)\n", rn, rn->rn_b); */
873 		base = rn;
874 		/* If at right child go back up, otherwise, go right */
875 		while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
876 			rn = rn->rn_p;
877 
878 			/* if went up beyond last, stop */
879 			if (rn->rn_b < lastb) {
880 				stopping = 1;
881 				/* printf("up too far\n"); */
882 			}
883 		}
884 
885 		/* Find the next *leaf* since next node might vanish, too */
886 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
887 			rn = rn->rn_l;
888 		next = rn;
889 		/* Process leaves */
890 		while ((rn = base) != 0) {
891 			base = rn->rn_dupedkey;
892 			/* printf("leaf %p\n", rn); */
893 			if (!(rn->rn_flags & RNF_ROOT)
894 			    && (error = (*f)(rn, w)))
895 				return (error);
896 		}
897 		rn = next;
898 
899 		if (rn->rn_flags & RNF_ROOT) {
900 			/* printf("root, stopping"); */
901 			stopping = 1;
902 		}
903 
904 	}
905 	return 0;
906 }
907 
908 int
909 rn_walktree(h, f, w)
910 	struct radix_node_head *h;
911 	register int (*f)();
912 	void *w;
913 {
914 	int error;
915 	struct radix_node *base, *next;
916 	register struct radix_node *rn = h->rnh_treetop;
917 	/*
918 	 * This gets complicated because we may delete the node
919 	 * while applying the function f to it, so we need to calculate
920 	 * the successor node in advance.
921 	 */
922 	/* First time through node, go left */
923 	while (rn->rn_b >= 0)
924 		rn = rn->rn_l;
925 	for (;;) {
926 		base = rn;
927 		/* If at right child go back up, otherwise, go right */
928 		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
929 			rn = rn->rn_p;
930 		/* Find the next *leaf* since next node might vanish, too */
931 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
932 			rn = rn->rn_l;
933 		next = rn;
934 		/* Process leaves */
935 		while ((rn = base)) {
936 			base = rn->rn_dupedkey;
937 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
938 				return (error);
939 		}
940 		rn = next;
941 		if (rn->rn_flags & RNF_ROOT)
942 			return (0);
943 	}
944 	/* NOTREACHED */
945 }
946 
947 int
948 rn_inithead(head, off)
949 	void **head;
950 	int off;
951 {
952 	register struct radix_node_head *rnh;
953 	register struct radix_node *t, *tt, *ttt;
954 	if (*head)
955 		return (1);
956 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
957 	if (rnh == 0)
958 		return (0);
959 	Bzero(rnh, sizeof (*rnh));
960 	*head = rnh;
961 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
962 	ttt = rnh->rnh_nodes + 2;
963 	t->rn_r = ttt;
964 	t->rn_p = t;
965 	tt = t->rn_l;
966 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
967 	tt->rn_b = -1 - off;
968 	*ttt = *tt;
969 	ttt->rn_key = rn_ones;
970 	rnh->rnh_addaddr = rn_addroute;
971 	rnh->rnh_deladdr = rn_delete;
972 	rnh->rnh_matchaddr = rn_match;
973 	rnh->rnh_lookup = rn_lookup;
974 	rnh->rnh_walktree = rn_walktree;
975 	rnh->rnh_walktree_from = rn_walktree_from;
976 	rnh->rnh_treetop = t;
977 	return (1);
978 }
979 
980 void
981 rn_init()
982 {
983 	char *cp, *cplim;
984 #ifdef KERNEL
985 	struct domain *dom;
986 
987 	for (dom = domains; dom; dom = dom->dom_next)
988 		if (dom->dom_maxrtkey > max_keylen)
989 			max_keylen = dom->dom_maxrtkey;
990 #endif
991 	if (max_keylen == 0) {
992 		log(LOG_ERR,
993 		    "rn_init: radix functions require max_keylen be set\n");
994 		return;
995 	}
996 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
997 	if (rn_zeros == NULL)
998 		panic("rn_init");
999 	Bzero(rn_zeros, 3 * max_keylen);
1000 	rn_ones = cp = rn_zeros + max_keylen;
1001 	addmask_key = cplim = rn_ones + max_keylen;
1002 	while (cp < cplim)
1003 		*cp++ = -1;
1004 	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1005 		panic("rn_init 2");
1006 }
1007