1 /*- 2 * Copyright (c) 1988, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)radix.c 8.5 (Berkeley) 5/19/95 30 * $FreeBSD$ 31 */ 32 33 /* 34 * Routines to build and maintain radix trees for routing lookups. 35 */ 36 #ifndef _RADIX_H_ 37 #include <sys/param.h> 38 #ifdef _KERNEL 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/domain.h> 44 #else 45 #include <stdlib.h> 46 #endif 47 #include <sys/syslog.h> 48 #include <net/radix.h> 49 #endif 50 51 static int rn_walktree_from(struct radix_node_head *h, void *a, void *m, 52 walktree_f_t *f, void *w); 53 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); 54 static struct radix_node 55 *rn_insert(void *, struct radix_node_head *, int *, 56 struct radix_node [2]), 57 *rn_newpair(void *, int, struct radix_node[2]), 58 *rn_search(void *, struct radix_node *), 59 *rn_search_m(void *, struct radix_node *, void *); 60 61 static int max_keylen; 62 static struct radix_mask *rn_mkfreelist; 63 static struct radix_node_head *mask_rnhead; 64 /* 65 * Work area -- the following point to 3 buffers of size max_keylen, 66 * allocated in this order in a block of memory malloc'ed by rn_init. 67 */ 68 static char *rn_zeros, *rn_ones, *addmask_key; 69 70 #define MKGet(m) { \ 71 if (rn_mkfreelist) { \ 72 m = rn_mkfreelist; \ 73 rn_mkfreelist = (m)->rm_mklist; \ 74 } else \ 75 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); } 76 77 #define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);} 78 79 #define rn_masktop (mask_rnhead->rnh_treetop) 80 81 static int rn_lexobetter(void *m_arg, void *n_arg); 82 static struct radix_mask * 83 rn_new_radix_mask(struct radix_node *tt, 84 struct radix_mask *next); 85 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, 86 int skip); 87 88 /* 89 * The data structure for the keys is a radix tree with one way 90 * branching removed. The index rn_bit at an internal node n represents a bit 91 * position to be tested. The tree is arranged so that all descendants 92 * of a node n have keys whose bits all agree up to position rn_bit - 1. 93 * (We say the index of n is rn_bit.) 94 * 95 * There is at least one descendant which has a one bit at position rn_bit, 96 * and at least one with a zero there. 97 * 98 * A route is determined by a pair of key and mask. We require that the 99 * bit-wise logical and of the key and mask to be the key. 100 * We define the index of a route to associated with the mask to be 101 * the first bit number in the mask where 0 occurs (with bit number 0 102 * representing the highest order bit). 103 * 104 * We say a mask is normal if every bit is 0, past the index of the mask. 105 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 106 * and m is a normal mask, then the route applies to every descendant of n. 107 * If the index(m) < rn_bit, this implies the trailing last few bits of k 108 * before bit b are all 0, (and hence consequently true of every descendant 109 * of n), so the route applies to all descendants of the node as well. 110 * 111 * Similar logic shows that a non-normal mask m such that 112 * index(m) <= index(n) could potentially apply to many children of n. 113 * Thus, for each non-host route, we attach its mask to a list at an internal 114 * node as high in the tree as we can go. 115 * 116 * The present version of the code makes use of normal routes in short- 117 * circuiting an explict mask and compare operation when testing whether 118 * a key satisfies a normal route, and also in remembering the unique leaf 119 * that governs a subtree. 120 */ 121 122 /* 123 * Most of the functions in this code assume that the key/mask arguments 124 * are sockaddr-like structures, where the first byte is an u_char 125 * indicating the size of the entire structure. 126 * 127 * To make the assumption more explicit, we use the LEN() macro to access 128 * this field. It is safe to pass an expression with side effects 129 * to LEN() as the argument is evaluated only once. 130 */ 131 #define LEN(x) (*(const u_char *)(x)) 132 133 /* 134 * XXX THIS NEEDS TO BE FIXED 135 * In the code, pointers to keys and masks are passed as either 136 * 'void *' (because callers use to pass pointers of various kinds), or 137 * 'caddr_t' (which is fine for pointer arithmetics, but not very 138 * clean when you dereference it to access data). Furthermore, caddr_t 139 * is really 'char *', while the natural type to operate on keys and 140 * masks would be 'u_char'. This mismatch require a lot of casts and 141 * intermediate variables to adapt types that clutter the code. 142 */ 143 144 /* 145 * Search a node in the tree matching the key. 146 */ 147 static struct radix_node * 148 rn_search(v_arg, head) 149 void *v_arg; 150 struct radix_node *head; 151 { 152 register struct radix_node *x; 153 register caddr_t v; 154 155 for (x = head, v = v_arg; x->rn_bit >= 0;) { 156 if (x->rn_bmask & v[x->rn_offset]) 157 x = x->rn_right; 158 else 159 x = x->rn_left; 160 } 161 return (x); 162 } 163 164 /* 165 * Same as above, but with an additional mask. 166 * XXX note this function is used only once. 167 */ 168 static struct radix_node * 169 rn_search_m(v_arg, head, m_arg) 170 struct radix_node *head; 171 void *v_arg, *m_arg; 172 { 173 register struct radix_node *x; 174 register caddr_t v = v_arg, m = m_arg; 175 176 for (x = head; x->rn_bit >= 0;) { 177 if ((x->rn_bmask & m[x->rn_offset]) && 178 (x->rn_bmask & v[x->rn_offset])) 179 x = x->rn_right; 180 else 181 x = x->rn_left; 182 } 183 return x; 184 } 185 186 int 187 rn_refines(m_arg, n_arg) 188 void *m_arg, *n_arg; 189 { 190 register caddr_t m = m_arg, n = n_arg; 191 register caddr_t lim, lim2 = lim = n + LEN(n); 192 int longer = LEN(n++) - (int)LEN(m++); 193 int masks_are_equal = 1; 194 195 if (longer > 0) 196 lim -= longer; 197 while (n < lim) { 198 if (*n & ~(*m)) 199 return 0; 200 if (*n++ != *m++) 201 masks_are_equal = 0; 202 } 203 while (n < lim2) 204 if (*n++) 205 return 0; 206 if (masks_are_equal && (longer < 0)) 207 for (lim2 = m - longer; m < lim2; ) 208 if (*m++) 209 return 1; 210 return (!masks_are_equal); 211 } 212 213 struct radix_node * 214 rn_lookup(v_arg, m_arg, head) 215 void *v_arg, *m_arg; 216 struct radix_node_head *head; 217 { 218 register struct radix_node *x; 219 caddr_t netmask = 0; 220 221 if (m_arg) { 222 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset); 223 if (x == 0) 224 return (0); 225 netmask = x->rn_key; 226 } 227 x = rn_match(v_arg, head); 228 if (x && netmask) { 229 while (x && x->rn_mask != netmask) 230 x = x->rn_dupedkey; 231 } 232 return x; 233 } 234 235 static int 236 rn_satisfies_leaf(trial, leaf, skip) 237 char *trial; 238 register struct radix_node *leaf; 239 int skip; 240 { 241 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 242 char *cplim; 243 int length = min(LEN(cp), LEN(cp2)); 244 245 if (cp3 == 0) 246 cp3 = rn_ones; 247 else 248 length = min(length, *(u_char *)cp3); 249 cplim = cp + length; cp3 += skip; cp2 += skip; 250 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 251 if ((*cp ^ *cp2) & *cp3) 252 return 0; 253 return 1; 254 } 255 256 struct radix_node * 257 rn_match(v_arg, head) 258 void *v_arg; 259 struct radix_node_head *head; 260 { 261 caddr_t v = v_arg; 262 register struct radix_node *t = head->rnh_treetop, *x; 263 register caddr_t cp = v, cp2; 264 caddr_t cplim; 265 struct radix_node *saved_t, *top = t; 266 int off = t->rn_offset, vlen = LEN(cp), matched_off; 267 register int test, b, rn_bit; 268 269 /* 270 * Open code rn_search(v, top) to avoid overhead of extra 271 * subroutine call. 272 */ 273 for (; t->rn_bit >= 0; ) { 274 if (t->rn_bmask & cp[t->rn_offset]) 275 t = t->rn_right; 276 else 277 t = t->rn_left; 278 } 279 /* 280 * See if we match exactly as a host destination 281 * or at least learn how many bits match, for normal mask finesse. 282 * 283 * It doesn't hurt us to limit how many bytes to check 284 * to the length of the mask, since if it matches we had a genuine 285 * match and the leaf we have is the most specific one anyway; 286 * if it didn't match with a shorter length it would fail 287 * with a long one. This wins big for class B&C netmasks which 288 * are probably the most common case... 289 */ 290 if (t->rn_mask) 291 vlen = *(u_char *)t->rn_mask; 292 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 293 for (; cp < cplim; cp++, cp2++) 294 if (*cp != *cp2) 295 goto on1; 296 /* 297 * This extra grot is in case we are explicitly asked 298 * to look up the default. Ugh! 299 * 300 * Never return the root node itself, it seems to cause a 301 * lot of confusion. 302 */ 303 if (t->rn_flags & RNF_ROOT) 304 t = t->rn_dupedkey; 305 return t; 306 on1: 307 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 308 for (b = 7; (test >>= 1) > 0;) 309 b--; 310 matched_off = cp - v; 311 b += matched_off << 3; 312 rn_bit = -1 - b; 313 /* 314 * If there is a host route in a duped-key chain, it will be first. 315 */ 316 if ((saved_t = t)->rn_mask == 0) 317 t = t->rn_dupedkey; 318 for (; t; t = t->rn_dupedkey) 319 /* 320 * Even if we don't match exactly as a host, 321 * we may match if the leaf we wound up at is 322 * a route to a net. 323 */ 324 if (t->rn_flags & RNF_NORMAL) { 325 if (rn_bit <= t->rn_bit) 326 return t; 327 } else if (rn_satisfies_leaf(v, t, matched_off)) 328 return t; 329 t = saved_t; 330 /* start searching up the tree */ 331 do { 332 register struct radix_mask *m; 333 t = t->rn_parent; 334 m = t->rn_mklist; 335 /* 336 * If non-contiguous masks ever become important 337 * we can restore the masking and open coding of 338 * the search and satisfaction test and put the 339 * calculation of "off" back before the "do". 340 */ 341 while (m) { 342 if (m->rm_flags & RNF_NORMAL) { 343 if (rn_bit <= m->rm_bit) 344 return (m->rm_leaf); 345 } else { 346 off = min(t->rn_offset, matched_off); 347 x = rn_search_m(v, t, m->rm_mask); 348 while (x && x->rn_mask != m->rm_mask) 349 x = x->rn_dupedkey; 350 if (x && rn_satisfies_leaf(v, x, off)) 351 return x; 352 } 353 m = m->rm_mklist; 354 } 355 } while (t != top); 356 return 0; 357 } 358 359 #ifdef RN_DEBUG 360 int rn_nodenum; 361 struct radix_node *rn_clist; 362 int rn_saveinfo; 363 int rn_debug = 1; 364 #endif 365 366 /* 367 * Whenever we add a new leaf to the tree, we also add a parent node, 368 * so we allocate them as an array of two elements: the first one must be 369 * the leaf (see RNTORT() in route.c), the second one is the parent. 370 * This routine initializes the relevant fields of the nodes, so that 371 * the leaf is the left child of the parent node, and both nodes have 372 * (almost) all all fields filled as appropriate. 373 * (XXX some fields are left unset, see the '#if 0' section). 374 * The function returns a pointer to the parent node. 375 */ 376 377 static struct radix_node * 378 rn_newpair(v, b, nodes) 379 void *v; 380 int b; 381 struct radix_node nodes[2]; 382 { 383 register struct radix_node *tt = nodes, *t = tt + 1; 384 t->rn_bit = b; 385 t->rn_bmask = 0x80 >> (b & 7); 386 t->rn_left = tt; 387 t->rn_offset = b >> 3; 388 389 #if 0 /* XXX perhaps we should fill these fields as well. */ 390 t->rn_parent = t->rn_right = NULL; 391 392 tt->rn_mask = NULL; 393 tt->rn_dupedkey = NULL; 394 tt->rn_bmask = 0; 395 #endif 396 tt->rn_bit = -1; 397 tt->rn_key = (caddr_t)v; 398 tt->rn_parent = t; 399 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 400 tt->rn_mklist = t->rn_mklist = 0; 401 #ifdef RN_DEBUG 402 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 403 tt->rn_twin = t; 404 tt->rn_ybro = rn_clist; 405 rn_clist = tt; 406 #endif 407 return t; 408 } 409 410 static struct radix_node * 411 rn_insert(v_arg, head, dupentry, nodes) 412 void *v_arg; 413 struct radix_node_head *head; 414 int *dupentry; 415 struct radix_node nodes[2]; 416 { 417 caddr_t v = v_arg; 418 struct radix_node *top = head->rnh_treetop; 419 int head_off = top->rn_offset, vlen = (int)LEN(v); 420 register struct radix_node *t = rn_search(v_arg, top); 421 register caddr_t cp = v + head_off; 422 register int b; 423 struct radix_node *tt; 424 /* 425 * Find first bit at which v and t->rn_key differ 426 */ 427 { 428 register caddr_t cp2 = t->rn_key + head_off; 429 register int cmp_res; 430 caddr_t cplim = v + vlen; 431 432 while (cp < cplim) 433 if (*cp2++ != *cp++) 434 goto on1; 435 *dupentry = 1; 436 return t; 437 on1: 438 *dupentry = 0; 439 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 440 for (b = (cp - v) << 3; cmp_res; b--) 441 cmp_res >>= 1; 442 } 443 { 444 register struct radix_node *p, *x = top; 445 cp = v; 446 do { 447 p = x; 448 if (cp[x->rn_offset] & x->rn_bmask) 449 x = x->rn_right; 450 else 451 x = x->rn_left; 452 } while (b > (unsigned) x->rn_bit); 453 /* x->rn_bit < b && x->rn_bit >= 0 */ 454 #ifdef RN_DEBUG 455 if (rn_debug) 456 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 457 #endif 458 t = rn_newpair(v_arg, b, nodes); 459 tt = t->rn_left; 460 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 461 p->rn_left = t; 462 else 463 p->rn_right = t; 464 x->rn_parent = t; 465 t->rn_parent = p; /* frees x, p as temp vars below */ 466 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 467 t->rn_right = x; 468 } else { 469 t->rn_right = tt; 470 t->rn_left = x; 471 } 472 #ifdef RN_DEBUG 473 if (rn_debug) 474 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 475 #endif 476 } 477 return (tt); 478 } 479 480 struct radix_node * 481 rn_addmask(n_arg, search, skip) 482 int search, skip; 483 void *n_arg; 484 { 485 caddr_t netmask = (caddr_t)n_arg; 486 register struct radix_node *x; 487 register caddr_t cp, cplim; 488 register int b = 0, mlen, j; 489 int maskduplicated, m0, isnormal; 490 struct radix_node *saved_x; 491 static int last_zeroed = 0; 492 493 if ((mlen = LEN(netmask)) > max_keylen) 494 mlen = max_keylen; 495 if (skip == 0) 496 skip = 1; 497 if (mlen <= skip) 498 return (mask_rnhead->rnh_nodes); 499 if (skip > 1) 500 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 501 if ((m0 = mlen) > skip) 502 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 503 /* 504 * Trim trailing zeroes. 505 */ 506 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 507 cp--; 508 mlen = cp - addmask_key; 509 if (mlen <= skip) { 510 if (m0 >= last_zeroed) 511 last_zeroed = mlen; 512 return (mask_rnhead->rnh_nodes); 513 } 514 if (m0 < last_zeroed) 515 bzero(addmask_key + m0, last_zeroed - m0); 516 *addmask_key = last_zeroed = mlen; 517 x = rn_search(addmask_key, rn_masktop); 518 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 519 x = 0; 520 if (x || search) 521 return (x); 522 R_Zalloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); 523 if ((saved_x = x) == 0) 524 return (0); 525 netmask = cp = (caddr_t)(x + 2); 526 bcopy(addmask_key, cp, mlen); 527 x = rn_insert(cp, mask_rnhead, &maskduplicated, x); 528 if (maskduplicated) { 529 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 530 Free(saved_x); 531 return (x); 532 } 533 /* 534 * Calculate index of mask, and check for normalcy. 535 * First find the first byte with a 0 bit, then if there are 536 * more bits left (remember we already trimmed the trailing 0's), 537 * the pattern must be one of those in normal_chars[], or we have 538 * a non-contiguous mask. 539 */ 540 cplim = netmask + mlen; 541 isnormal = 1; 542 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) 543 cp++; 544 if (cp != cplim) { 545 static char normal_chars[] = { 546 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 547 548 for (j = 0x80; (j & *cp) != 0; j >>= 1) 549 b++; 550 if (*cp != normal_chars[b] || cp != (cplim - 1)) 551 isnormal = 0; 552 } 553 b += (cp - netmask) << 3; 554 x->rn_bit = -1 - b; 555 if (isnormal) 556 x->rn_flags |= RNF_NORMAL; 557 return (x); 558 } 559 560 static int /* XXX: arbitrary ordering for non-contiguous masks */ 561 rn_lexobetter(m_arg, n_arg) 562 void *m_arg, *n_arg; 563 { 564 register u_char *mp = m_arg, *np = n_arg, *lim; 565 566 if (LEN(mp) > LEN(np)) 567 return 1; /* not really, but need to check longer one first */ 568 if (LEN(mp) == LEN(np)) 569 for (lim = mp + LEN(mp); mp < lim;) 570 if (*mp++ > *np++) 571 return 1; 572 return 0; 573 } 574 575 static struct radix_mask * 576 rn_new_radix_mask(tt, next) 577 register struct radix_node *tt; 578 register struct radix_mask *next; 579 { 580 register struct radix_mask *m; 581 582 MKGet(m); 583 if (m == 0) { 584 log(LOG_ERR, "Mask for route not entered\n"); 585 return (0); 586 } 587 bzero(m, sizeof *m); 588 m->rm_bit = tt->rn_bit; 589 m->rm_flags = tt->rn_flags; 590 if (tt->rn_flags & RNF_NORMAL) 591 m->rm_leaf = tt; 592 else 593 m->rm_mask = tt->rn_mask; 594 m->rm_mklist = next; 595 tt->rn_mklist = m; 596 return m; 597 } 598 599 struct radix_node * 600 rn_addroute(v_arg, n_arg, head, treenodes) 601 void *v_arg, *n_arg; 602 struct radix_node_head *head; 603 struct radix_node treenodes[2]; 604 { 605 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 606 register struct radix_node *t, *x = 0, *tt; 607 struct radix_node *saved_tt, *top = head->rnh_treetop; 608 short b = 0, b_leaf = 0; 609 int keyduplicated; 610 caddr_t mmask; 611 struct radix_mask *m, **mp; 612 613 /* 614 * In dealing with non-contiguous masks, there may be 615 * many different routes which have the same mask. 616 * We will find it useful to have a unique pointer to 617 * the mask to speed avoiding duplicate references at 618 * nodes and possibly save time in calculating indices. 619 */ 620 if (netmask) { 621 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) 622 return (0); 623 b_leaf = x->rn_bit; 624 b = -1 - x->rn_bit; 625 netmask = x->rn_key; 626 } 627 /* 628 * Deal with duplicated keys: attach node to previous instance 629 */ 630 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 631 if (keyduplicated) { 632 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 633 if (tt->rn_mask == netmask) 634 return (0); 635 if (netmask == 0 || 636 (tt->rn_mask && 637 ((b_leaf < tt->rn_bit) /* index(netmask) > node */ 638 || rn_refines(netmask, tt->rn_mask) 639 || rn_lexobetter(netmask, tt->rn_mask)))) 640 break; 641 } 642 /* 643 * If the mask is not duplicated, we wouldn't 644 * find it among possible duplicate key entries 645 * anyway, so the above test doesn't hurt. 646 * 647 * We sort the masks for a duplicated key the same way as 648 * in a masklist -- most specific to least specific. 649 * This may require the unfortunate nuisance of relocating 650 * the head of the list. 651 * 652 * We also reverse, or doubly link the list through the 653 * parent pointer. 654 */ 655 if (tt == saved_tt) { 656 struct radix_node *xx = x; 657 /* link in at head of list */ 658 (tt = treenodes)->rn_dupedkey = t; 659 tt->rn_flags = t->rn_flags; 660 tt->rn_parent = x = t->rn_parent; 661 t->rn_parent = tt; /* parent */ 662 if (x->rn_left == t) 663 x->rn_left = tt; 664 else 665 x->rn_right = tt; 666 saved_tt = tt; x = xx; 667 } else { 668 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 669 t->rn_dupedkey = tt; 670 tt->rn_parent = t; /* parent */ 671 if (tt->rn_dupedkey) /* parent */ 672 tt->rn_dupedkey->rn_parent = tt; /* parent */ 673 } 674 #ifdef RN_DEBUG 675 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 676 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 677 #endif 678 tt->rn_key = (caddr_t) v; 679 tt->rn_bit = -1; 680 tt->rn_flags = RNF_ACTIVE; 681 } 682 /* 683 * Put mask in tree. 684 */ 685 if (netmask) { 686 tt->rn_mask = netmask; 687 tt->rn_bit = x->rn_bit; 688 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 689 } 690 t = saved_tt->rn_parent; 691 if (keyduplicated) 692 goto on2; 693 b_leaf = -1 - t->rn_bit; 694 if (t->rn_right == saved_tt) 695 x = t->rn_left; 696 else 697 x = t->rn_right; 698 /* Promote general routes from below */ 699 if (x->rn_bit < 0) { 700 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 701 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 702 *mp = m = rn_new_radix_mask(x, 0); 703 if (m) 704 mp = &m->rm_mklist; 705 } 706 } else if (x->rn_mklist) { 707 /* 708 * Skip over masks whose index is > that of new node 709 */ 710 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 711 if (m->rm_bit >= b_leaf) 712 break; 713 t->rn_mklist = m; *mp = 0; 714 } 715 on2: 716 /* Add new route to highest possible ancestor's list */ 717 if ((netmask == 0) || (b > t->rn_bit )) 718 return tt; /* can't lift at all */ 719 b_leaf = tt->rn_bit; 720 do { 721 x = t; 722 t = t->rn_parent; 723 } while (b <= t->rn_bit && x != top); 724 /* 725 * Search through routes associated with node to 726 * insert new route according to index. 727 * Need same criteria as when sorting dupedkeys to avoid 728 * double loop on deletion. 729 */ 730 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 731 if (m->rm_bit < b_leaf) 732 continue; 733 if (m->rm_bit > b_leaf) 734 break; 735 if (m->rm_flags & RNF_NORMAL) { 736 mmask = m->rm_leaf->rn_mask; 737 if (tt->rn_flags & RNF_NORMAL) { 738 log(LOG_ERR, 739 "Non-unique normal route, mask not entered\n"); 740 return tt; 741 } 742 } else 743 mmask = m->rm_mask; 744 if (mmask == netmask) { 745 m->rm_refs++; 746 tt->rn_mklist = m; 747 return tt; 748 } 749 if (rn_refines(netmask, mmask) 750 || rn_lexobetter(netmask, mmask)) 751 break; 752 } 753 *mp = rn_new_radix_mask(tt, *mp); 754 return tt; 755 } 756 757 struct radix_node * 758 rn_delete(v_arg, netmask_arg, head) 759 void *v_arg, *netmask_arg; 760 struct radix_node_head *head; 761 { 762 register struct radix_node *t, *p, *x, *tt; 763 struct radix_mask *m, *saved_m, **mp; 764 struct radix_node *dupedkey, *saved_tt, *top; 765 caddr_t v, netmask; 766 int b, head_off, vlen; 767 768 v = v_arg; 769 netmask = netmask_arg; 770 x = head->rnh_treetop; 771 tt = rn_search(v, x); 772 head_off = x->rn_offset; 773 vlen = LEN(v); 774 saved_tt = tt; 775 top = x; 776 if (tt == 0 || 777 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 778 return (0); 779 /* 780 * Delete our route from mask lists. 781 */ 782 if (netmask) { 783 if ((x = rn_addmask(netmask, 1, head_off)) == 0) 784 return (0); 785 netmask = x->rn_key; 786 while (tt->rn_mask != netmask) 787 if ((tt = tt->rn_dupedkey) == 0) 788 return (0); 789 } 790 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) 791 goto on1; 792 if (tt->rn_flags & RNF_NORMAL) { 793 if (m->rm_leaf != tt || m->rm_refs > 0) { 794 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 795 return 0; /* dangling ref could cause disaster */ 796 } 797 } else { 798 if (m->rm_mask != tt->rn_mask) { 799 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 800 goto on1; 801 } 802 if (--m->rm_refs >= 0) 803 goto on1; 804 } 805 b = -1 - tt->rn_bit; 806 t = saved_tt->rn_parent; 807 if (b > t->rn_bit) 808 goto on1; /* Wasn't lifted at all */ 809 do { 810 x = t; 811 t = t->rn_parent; 812 } while (b <= t->rn_bit && x != top); 813 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 814 if (m == saved_m) { 815 *mp = m->rm_mklist; 816 MKFree(m); 817 break; 818 } 819 if (m == 0) { 820 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 821 if (tt->rn_flags & RNF_NORMAL) 822 return (0); /* Dangling ref to us */ 823 } 824 on1: 825 /* 826 * Eliminate us from tree 827 */ 828 if (tt->rn_flags & RNF_ROOT) 829 return (0); 830 #ifdef RN_DEBUG 831 /* Get us out of the creation list */ 832 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 833 if (t) t->rn_ybro = tt->rn_ybro; 834 #endif 835 t = tt->rn_parent; 836 dupedkey = saved_tt->rn_dupedkey; 837 if (dupedkey) { 838 /* 839 * Here, tt is the deletion target and 840 * saved_tt is the head of the dupekey chain. 841 */ 842 if (tt == saved_tt) { 843 /* remove from head of chain */ 844 x = dupedkey; x->rn_parent = t; 845 if (t->rn_left == tt) 846 t->rn_left = x; 847 else 848 t->rn_right = x; 849 } else { 850 /* find node in front of tt on the chain */ 851 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 852 p = p->rn_dupedkey; 853 if (p) { 854 p->rn_dupedkey = tt->rn_dupedkey; 855 if (tt->rn_dupedkey) /* parent */ 856 tt->rn_dupedkey->rn_parent = p; 857 /* parent */ 858 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 859 } 860 t = tt + 1; 861 if (t->rn_flags & RNF_ACTIVE) { 862 #ifndef RN_DEBUG 863 *++x = *t; 864 p = t->rn_parent; 865 #else 866 b = t->rn_info; 867 *++x = *t; 868 t->rn_info = b; 869 p = t->rn_parent; 870 #endif 871 if (p->rn_left == t) 872 p->rn_left = x; 873 else 874 p->rn_right = x; 875 x->rn_left->rn_parent = x; 876 x->rn_right->rn_parent = x; 877 } 878 goto out; 879 } 880 if (t->rn_left == tt) 881 x = t->rn_right; 882 else 883 x = t->rn_left; 884 p = t->rn_parent; 885 if (p->rn_right == t) 886 p->rn_right = x; 887 else 888 p->rn_left = x; 889 x->rn_parent = p; 890 /* 891 * Demote routes attached to us. 892 */ 893 if (t->rn_mklist) { 894 if (x->rn_bit >= 0) { 895 for (mp = &x->rn_mklist; (m = *mp);) 896 mp = &m->rm_mklist; 897 *mp = t->rn_mklist; 898 } else { 899 /* If there are any key,mask pairs in a sibling 900 duped-key chain, some subset will appear sorted 901 in the same order attached to our mklist */ 902 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 903 if (m == x->rn_mklist) { 904 struct radix_mask *mm = m->rm_mklist; 905 x->rn_mklist = 0; 906 if (--(m->rm_refs) < 0) 907 MKFree(m); 908 m = mm; 909 } 910 if (m) 911 log(LOG_ERR, 912 "rn_delete: Orphaned Mask %p at %p\n", 913 (void *)m, (void *)x); 914 } 915 } 916 /* 917 * We may be holding an active internal node in the tree. 918 */ 919 x = tt + 1; 920 if (t != x) { 921 #ifndef RN_DEBUG 922 *t = *x; 923 #else 924 b = t->rn_info; 925 *t = *x; 926 t->rn_info = b; 927 #endif 928 t->rn_left->rn_parent = t; 929 t->rn_right->rn_parent = t; 930 p = x->rn_parent; 931 if (p->rn_left == x) 932 p->rn_left = t; 933 else 934 p->rn_right = t; 935 } 936 out: 937 tt->rn_flags &= ~RNF_ACTIVE; 938 tt[1].rn_flags &= ~RNF_ACTIVE; 939 return (tt); 940 } 941 942 /* 943 * This is the same as rn_walktree() except for the parameters and the 944 * exit. 945 */ 946 static int 947 rn_walktree_from(h, a, m, f, w) 948 struct radix_node_head *h; 949 void *a, *m; 950 walktree_f_t *f; 951 void *w; 952 { 953 int error; 954 struct radix_node *base, *next; 955 u_char *xa = (u_char *)a; 956 u_char *xm = (u_char *)m; 957 register struct radix_node *rn, *last = 0 /* shut up gcc */; 958 int stopping = 0; 959 int lastb; 960 961 /* 962 * rn_search_m is sort-of-open-coded here. We cannot use the 963 * function because we need to keep track of the last node seen. 964 */ 965 /* printf("about to search\n"); */ 966 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { 967 last = rn; 968 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", 969 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ 970 if (!(rn->rn_bmask & xm[rn->rn_offset])) { 971 break; 972 } 973 if (rn->rn_bmask & xa[rn->rn_offset]) { 974 rn = rn->rn_right; 975 } else { 976 rn = rn->rn_left; 977 } 978 } 979 /* printf("done searching\n"); */ 980 981 /* 982 * Two cases: either we stepped off the end of our mask, 983 * in which case last == rn, or we reached a leaf, in which 984 * case we want to start from the last node we looked at. 985 * Either way, last is the node we want to start from. 986 */ 987 rn = last; 988 lastb = rn->rn_bit; 989 990 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 991 992 /* 993 * This gets complicated because we may delete the node 994 * while applying the function f to it, so we need to calculate 995 * the successor node in advance. 996 */ 997 while (rn->rn_bit >= 0) 998 rn = rn->rn_left; 999 1000 while (!stopping) { 1001 /* printf("node %p (%d)\n", rn, rn->rn_bit); */ 1002 base = rn; 1003 /* If at right child go back up, otherwise, go right */ 1004 while (rn->rn_parent->rn_right == rn 1005 && !(rn->rn_flags & RNF_ROOT)) { 1006 rn = rn->rn_parent; 1007 1008 /* if went up beyond last, stop */ 1009 if (rn->rn_bit < lastb) { 1010 stopping = 1; 1011 /* printf("up too far\n"); */ 1012 /* 1013 * XXX we should jump to the 'Process leaves' 1014 * part, because the values of 'rn' and 'next' 1015 * we compute will not be used. Not a big deal 1016 * because this loop will terminate, but it is 1017 * inefficient and hard to understand! 1018 */ 1019 } 1020 } 1021 1022 /* Find the next *leaf* since next node might vanish, too */ 1023 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1024 rn = rn->rn_left; 1025 next = rn; 1026 /* Process leaves */ 1027 while ((rn = base) != 0) { 1028 base = rn->rn_dupedkey; 1029 /* printf("leaf %p\n", rn); */ 1030 if (!(rn->rn_flags & RNF_ROOT) 1031 && (error = (*f)(rn, w))) 1032 return (error); 1033 } 1034 rn = next; 1035 1036 if (rn->rn_flags & RNF_ROOT) { 1037 /* printf("root, stopping"); */ 1038 stopping = 1; 1039 } 1040 1041 } 1042 return 0; 1043 } 1044 1045 static int 1046 rn_walktree(h, f, w) 1047 struct radix_node_head *h; 1048 walktree_f_t *f; 1049 void *w; 1050 { 1051 int error; 1052 struct radix_node *base, *next; 1053 register struct radix_node *rn = h->rnh_treetop; 1054 /* 1055 * This gets complicated because we may delete the node 1056 * while applying the function f to it, so we need to calculate 1057 * the successor node in advance. 1058 */ 1059 /* First time through node, go left */ 1060 while (rn->rn_bit >= 0) 1061 rn = rn->rn_left; 1062 for (;;) { 1063 base = rn; 1064 /* If at right child go back up, otherwise, go right */ 1065 while (rn->rn_parent->rn_right == rn 1066 && (rn->rn_flags & RNF_ROOT) == 0) 1067 rn = rn->rn_parent; 1068 /* Find the next *leaf* since next node might vanish, too */ 1069 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1070 rn = rn->rn_left; 1071 next = rn; 1072 /* Process leaves */ 1073 while ((rn = base)) { 1074 base = rn->rn_dupedkey; 1075 if (!(rn->rn_flags & RNF_ROOT) 1076 && (error = (*f)(rn, w))) 1077 return (error); 1078 } 1079 rn = next; 1080 if (rn->rn_flags & RNF_ROOT) 1081 return (0); 1082 } 1083 /* NOTREACHED */ 1084 } 1085 1086 /* 1087 * Allocate and initialize an empty tree. This has 3 nodes, which are 1088 * part of the radix_node_head (in the order <left,root,right>) and are 1089 * marked RNF_ROOT so they cannot be freed. 1090 * The leaves have all-zero and all-one keys, with significant 1091 * bits starting at 'off'. 1092 * Return 1 on success, 0 on error. 1093 */ 1094 int 1095 rn_inithead(head, off) 1096 void **head; 1097 int off; 1098 { 1099 register struct radix_node_head *rnh; 1100 register struct radix_node *t, *tt, *ttt; 1101 if (*head) 1102 return (1); 1103 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1104 if (rnh == 0) 1105 return (0); 1106 #ifdef _KERNEL 1107 RADIX_NODE_HEAD_LOCK_INIT(rnh); 1108 #endif 1109 *head = rnh; 1110 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); 1111 ttt = rnh->rnh_nodes + 2; 1112 t->rn_right = ttt; 1113 t->rn_parent = t; 1114 tt = t->rn_left; /* ... which in turn is rnh->rnh_nodes */ 1115 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1116 tt->rn_bit = -1 - off; 1117 *ttt = *tt; 1118 ttt->rn_key = rn_ones; 1119 rnh->rnh_addaddr = rn_addroute; 1120 rnh->rnh_deladdr = rn_delete; 1121 rnh->rnh_matchaddr = rn_match; 1122 rnh->rnh_lookup = rn_lookup; 1123 rnh->rnh_walktree = rn_walktree; 1124 rnh->rnh_walktree_from = rn_walktree_from; 1125 rnh->rnh_treetop = t; 1126 return (1); 1127 } 1128 1129 void 1130 rn_init() 1131 { 1132 char *cp, *cplim; 1133 #ifdef _KERNEL 1134 struct domain *dom; 1135 1136 for (dom = domains; dom; dom = dom->dom_next) 1137 if (dom->dom_maxrtkey > max_keylen) 1138 max_keylen = dom->dom_maxrtkey; 1139 #endif 1140 if (max_keylen == 0) { 1141 log(LOG_ERR, 1142 "rn_init: radix functions require max_keylen be set\n"); 1143 return; 1144 } 1145 R_Malloc(rn_zeros, char *, 3 * max_keylen); 1146 if (rn_zeros == NULL) 1147 panic("rn_init"); 1148 bzero(rn_zeros, 3 * max_keylen); 1149 rn_ones = cp = rn_zeros + max_keylen; 1150 addmask_key = cplim = rn_ones + max_keylen; 1151 while (cp < cplim) 1152 *cp++ = -1; 1153 if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0) 1154 panic("rn_init 2"); 1155 } 1156