1 /*- 2 * Copyright (c) 1988, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)radix.c 8.5 (Berkeley) 5/19/95 30 * $FreeBSD$ 31 */ 32 33 /* 34 * Routines to build and maintain radix trees for routing lookups. 35 */ 36 #include <sys/param.h> 37 #ifdef _KERNEL 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/rwlock.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/syslog.h> 44 #include <net/radix.h> 45 #include "opt_mpath.h" 46 #ifdef RADIX_MPATH 47 #include <net/radix_mpath.h> 48 #endif 49 #else /* !_KERNEL */ 50 #include <stdio.h> 51 #include <strings.h> 52 #include <stdlib.h> 53 #define log(x, arg...) fprintf(stderr, ## arg) 54 #define panic(x) fprintf(stderr, "PANIC: %s", x), exit(1) 55 #define min(a, b) ((a) < (b) ? (a) : (b) ) 56 #include <net/radix.h> 57 #endif /* !_KERNEL */ 58 59 static int rn_walktree_from(struct radix_node_head *h, void *a, void *m, 60 walktree_f_t *f, void *w); 61 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); 62 static struct radix_node 63 *rn_insert(void *, struct radix_node_head *, int *, 64 struct radix_node [2]), 65 *rn_newpair(void *, int, struct radix_node[2]), 66 *rn_search(void *, struct radix_node *), 67 *rn_search_m(void *, struct radix_node *, void *); 68 69 static int max_keylen; 70 static struct radix_mask *rn_mkfreelist; 71 static struct radix_node_head *mask_rnhead; 72 /* 73 * Work area -- the following point to 3 buffers of size max_keylen, 74 * allocated in this order in a block of memory malloc'ed by rn_init. 75 * rn_zeros, rn_ones are set in rn_init and used in readonly afterwards. 76 * addmask_key is used in rn_addmask in rw mode and not thread-safe. 77 */ 78 static char *rn_zeros, *rn_ones, *addmask_key; 79 80 #define MKGet(m) { \ 81 if (rn_mkfreelist) { \ 82 m = rn_mkfreelist; \ 83 rn_mkfreelist = (m)->rm_mklist; \ 84 } else \ 85 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); } 86 87 #define MKFree(m) { (m)->rm_mklist = rn_mkfreelist; rn_mkfreelist = (m);} 88 89 #define rn_masktop (mask_rnhead->rnh_treetop) 90 91 static int rn_lexobetter(void *m_arg, void *n_arg); 92 static struct radix_mask * 93 rn_new_radix_mask(struct radix_node *tt, 94 struct radix_mask *next); 95 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, 96 int skip); 97 98 /* 99 * The data structure for the keys is a radix tree with one way 100 * branching removed. The index rn_bit at an internal node n represents a bit 101 * position to be tested. The tree is arranged so that all descendants 102 * of a node n have keys whose bits all agree up to position rn_bit - 1. 103 * (We say the index of n is rn_bit.) 104 * 105 * There is at least one descendant which has a one bit at position rn_bit, 106 * and at least one with a zero there. 107 * 108 * A route is determined by a pair of key and mask. We require that the 109 * bit-wise logical and of the key and mask to be the key. 110 * We define the index of a route to associated with the mask to be 111 * the first bit number in the mask where 0 occurs (with bit number 0 112 * representing the highest order bit). 113 * 114 * We say a mask is normal if every bit is 0, past the index of the mask. 115 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 116 * and m is a normal mask, then the route applies to every descendant of n. 117 * If the index(m) < rn_bit, this implies the trailing last few bits of k 118 * before bit b are all 0, (and hence consequently true of every descendant 119 * of n), so the route applies to all descendants of the node as well. 120 * 121 * Similar logic shows that a non-normal mask m such that 122 * index(m) <= index(n) could potentially apply to many children of n. 123 * Thus, for each non-host route, we attach its mask to a list at an internal 124 * node as high in the tree as we can go. 125 * 126 * The present version of the code makes use of normal routes in short- 127 * circuiting an explict mask and compare operation when testing whether 128 * a key satisfies a normal route, and also in remembering the unique leaf 129 * that governs a subtree. 130 */ 131 132 /* 133 * Most of the functions in this code assume that the key/mask arguments 134 * are sockaddr-like structures, where the first byte is an u_char 135 * indicating the size of the entire structure. 136 * 137 * To make the assumption more explicit, we use the LEN() macro to access 138 * this field. It is safe to pass an expression with side effects 139 * to LEN() as the argument is evaluated only once. 140 * We cast the result to int as this is the dominant usage. 141 */ 142 #define LEN(x) ( (int) (*(const u_char *)(x)) ) 143 144 /* 145 * XXX THIS NEEDS TO BE FIXED 146 * In the code, pointers to keys and masks are passed as either 147 * 'void *' (because callers use to pass pointers of various kinds), or 148 * 'caddr_t' (which is fine for pointer arithmetics, but not very 149 * clean when you dereference it to access data). Furthermore, caddr_t 150 * is really 'char *', while the natural type to operate on keys and 151 * masks would be 'u_char'. This mismatch require a lot of casts and 152 * intermediate variables to adapt types that clutter the code. 153 */ 154 155 /* 156 * Search a node in the tree matching the key. 157 */ 158 static struct radix_node * 159 rn_search(v_arg, head) 160 void *v_arg; 161 struct radix_node *head; 162 { 163 register struct radix_node *x; 164 register caddr_t v; 165 166 for (x = head, v = v_arg; x->rn_bit >= 0;) { 167 if (x->rn_bmask & v[x->rn_offset]) 168 x = x->rn_right; 169 else 170 x = x->rn_left; 171 } 172 return (x); 173 } 174 175 /* 176 * Same as above, but with an additional mask. 177 * XXX note this function is used only once. 178 */ 179 static struct radix_node * 180 rn_search_m(v_arg, head, m_arg) 181 struct radix_node *head; 182 void *v_arg, *m_arg; 183 { 184 register struct radix_node *x; 185 register caddr_t v = v_arg, m = m_arg; 186 187 for (x = head; x->rn_bit >= 0;) { 188 if ((x->rn_bmask & m[x->rn_offset]) && 189 (x->rn_bmask & v[x->rn_offset])) 190 x = x->rn_right; 191 else 192 x = x->rn_left; 193 } 194 return x; 195 } 196 197 int 198 rn_refines(m_arg, n_arg) 199 void *m_arg, *n_arg; 200 { 201 register caddr_t m = m_arg, n = n_arg; 202 register caddr_t lim, lim2 = lim = n + LEN(n); 203 int longer = LEN(n++) - LEN(m++); 204 int masks_are_equal = 1; 205 206 if (longer > 0) 207 lim -= longer; 208 while (n < lim) { 209 if (*n & ~(*m)) 210 return 0; 211 if (*n++ != *m++) 212 masks_are_equal = 0; 213 } 214 while (n < lim2) 215 if (*n++) 216 return 0; 217 if (masks_are_equal && (longer < 0)) 218 for (lim2 = m - longer; m < lim2; ) 219 if (*m++) 220 return 1; 221 return (!masks_are_equal); 222 } 223 224 struct radix_node * 225 rn_lookup(v_arg, m_arg, head) 226 void *v_arg, *m_arg; 227 struct radix_node_head *head; 228 { 229 register struct radix_node *x; 230 caddr_t netmask = 0; 231 232 if (m_arg) { 233 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset); 234 if (x == 0) 235 return (0); 236 netmask = x->rn_key; 237 } 238 x = rn_match(v_arg, head); 239 if (x && netmask) { 240 while (x && x->rn_mask != netmask) 241 x = x->rn_dupedkey; 242 } 243 return x; 244 } 245 246 static int 247 rn_satisfies_leaf(trial, leaf, skip) 248 char *trial; 249 register struct radix_node *leaf; 250 int skip; 251 { 252 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 253 char *cplim; 254 int length = min(LEN(cp), LEN(cp2)); 255 256 if (cp3 == NULL) 257 cp3 = rn_ones; 258 else 259 length = min(length, LEN(cp3)); 260 cplim = cp + length; cp3 += skip; cp2 += skip; 261 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 262 if ((*cp ^ *cp2) & *cp3) 263 return 0; 264 return 1; 265 } 266 267 struct radix_node * 268 rn_match(v_arg, head) 269 void *v_arg; 270 struct radix_node_head *head; 271 { 272 caddr_t v = v_arg; 273 register struct radix_node *t = head->rnh_treetop, *x; 274 register caddr_t cp = v, cp2; 275 caddr_t cplim; 276 struct radix_node *saved_t, *top = t; 277 int off = t->rn_offset, vlen = LEN(cp), matched_off; 278 register int test, b, rn_bit; 279 280 /* 281 * Open code rn_search(v, top) to avoid overhead of extra 282 * subroutine call. 283 */ 284 for (; t->rn_bit >= 0; ) { 285 if (t->rn_bmask & cp[t->rn_offset]) 286 t = t->rn_right; 287 else 288 t = t->rn_left; 289 } 290 /* 291 * See if we match exactly as a host destination 292 * or at least learn how many bits match, for normal mask finesse. 293 * 294 * It doesn't hurt us to limit how many bytes to check 295 * to the length of the mask, since if it matches we had a genuine 296 * match and the leaf we have is the most specific one anyway; 297 * if it didn't match with a shorter length it would fail 298 * with a long one. This wins big for class B&C netmasks which 299 * are probably the most common case... 300 */ 301 if (t->rn_mask) 302 vlen = *(u_char *)t->rn_mask; 303 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 304 for (; cp < cplim; cp++, cp2++) 305 if (*cp != *cp2) 306 goto on1; 307 /* 308 * This extra grot is in case we are explicitly asked 309 * to look up the default. Ugh! 310 * 311 * Never return the root node itself, it seems to cause a 312 * lot of confusion. 313 */ 314 if (t->rn_flags & RNF_ROOT) 315 t = t->rn_dupedkey; 316 return t; 317 on1: 318 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 319 for (b = 7; (test >>= 1) > 0;) 320 b--; 321 matched_off = cp - v; 322 b += matched_off << 3; 323 rn_bit = -1 - b; 324 /* 325 * If there is a host route in a duped-key chain, it will be first. 326 */ 327 if ((saved_t = t)->rn_mask == 0) 328 t = t->rn_dupedkey; 329 for (; t; t = t->rn_dupedkey) 330 /* 331 * Even if we don't match exactly as a host, 332 * we may match if the leaf we wound up at is 333 * a route to a net. 334 */ 335 if (t->rn_flags & RNF_NORMAL) { 336 if (rn_bit <= t->rn_bit) 337 return t; 338 } else if (rn_satisfies_leaf(v, t, matched_off)) 339 return t; 340 t = saved_t; 341 /* start searching up the tree */ 342 do { 343 register struct radix_mask *m; 344 t = t->rn_parent; 345 m = t->rn_mklist; 346 /* 347 * If non-contiguous masks ever become important 348 * we can restore the masking and open coding of 349 * the search and satisfaction test and put the 350 * calculation of "off" back before the "do". 351 */ 352 while (m) { 353 if (m->rm_flags & RNF_NORMAL) { 354 if (rn_bit <= m->rm_bit) 355 return (m->rm_leaf); 356 } else { 357 off = min(t->rn_offset, matched_off); 358 x = rn_search_m(v, t, m->rm_mask); 359 while (x && x->rn_mask != m->rm_mask) 360 x = x->rn_dupedkey; 361 if (x && rn_satisfies_leaf(v, x, off)) 362 return x; 363 } 364 m = m->rm_mklist; 365 } 366 } while (t != top); 367 return 0; 368 } 369 370 #ifdef RN_DEBUG 371 int rn_nodenum; 372 struct radix_node *rn_clist; 373 int rn_saveinfo; 374 int rn_debug = 1; 375 #endif 376 377 /* 378 * Whenever we add a new leaf to the tree, we also add a parent node, 379 * so we allocate them as an array of two elements: the first one must be 380 * the leaf (see RNTORT() in route.c), the second one is the parent. 381 * This routine initializes the relevant fields of the nodes, so that 382 * the leaf is the left child of the parent node, and both nodes have 383 * (almost) all all fields filled as appropriate. 384 * (XXX some fields are left unset, see the '#if 0' section). 385 * The function returns a pointer to the parent node. 386 */ 387 388 static struct radix_node * 389 rn_newpair(v, b, nodes) 390 void *v; 391 int b; 392 struct radix_node nodes[2]; 393 { 394 register struct radix_node *tt = nodes, *t = tt + 1; 395 t->rn_bit = b; 396 t->rn_bmask = 0x80 >> (b & 7); 397 t->rn_left = tt; 398 t->rn_offset = b >> 3; 399 400 #if 0 /* XXX perhaps we should fill these fields as well. */ 401 t->rn_parent = t->rn_right = NULL; 402 403 tt->rn_mask = NULL; 404 tt->rn_dupedkey = NULL; 405 tt->rn_bmask = 0; 406 #endif 407 tt->rn_bit = -1; 408 tt->rn_key = (caddr_t)v; 409 tt->rn_parent = t; 410 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 411 tt->rn_mklist = t->rn_mklist = 0; 412 #ifdef RN_DEBUG 413 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 414 tt->rn_twin = t; 415 tt->rn_ybro = rn_clist; 416 rn_clist = tt; 417 #endif 418 return t; 419 } 420 421 static struct radix_node * 422 rn_insert(v_arg, head, dupentry, nodes) 423 void *v_arg; 424 struct radix_node_head *head; 425 int *dupentry; 426 struct radix_node nodes[2]; 427 { 428 caddr_t v = v_arg; 429 struct radix_node *top = head->rnh_treetop; 430 int head_off = top->rn_offset, vlen = LEN(v); 431 register struct radix_node *t = rn_search(v_arg, top); 432 register caddr_t cp = v + head_off; 433 register int b; 434 struct radix_node *tt; 435 /* 436 * Find first bit at which v and t->rn_key differ 437 */ 438 { 439 register caddr_t cp2 = t->rn_key + head_off; 440 register int cmp_res; 441 caddr_t cplim = v + vlen; 442 443 while (cp < cplim) 444 if (*cp2++ != *cp++) 445 goto on1; 446 *dupentry = 1; 447 return t; 448 on1: 449 *dupentry = 0; 450 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 451 for (b = (cp - v) << 3; cmp_res; b--) 452 cmp_res >>= 1; 453 } 454 { 455 register struct radix_node *p, *x = top; 456 cp = v; 457 do { 458 p = x; 459 if (cp[x->rn_offset] & x->rn_bmask) 460 x = x->rn_right; 461 else 462 x = x->rn_left; 463 } while (b > (unsigned) x->rn_bit); 464 /* x->rn_bit < b && x->rn_bit >= 0 */ 465 #ifdef RN_DEBUG 466 if (rn_debug) 467 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 468 #endif 469 t = rn_newpair(v_arg, b, nodes); 470 tt = t->rn_left; 471 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 472 p->rn_left = t; 473 else 474 p->rn_right = t; 475 x->rn_parent = t; 476 t->rn_parent = p; /* frees x, p as temp vars below */ 477 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 478 t->rn_right = x; 479 } else { 480 t->rn_right = tt; 481 t->rn_left = x; 482 } 483 #ifdef RN_DEBUG 484 if (rn_debug) 485 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 486 #endif 487 } 488 return (tt); 489 } 490 491 struct radix_node * 492 rn_addmask(n_arg, search, skip) 493 int search, skip; 494 void *n_arg; 495 { 496 caddr_t netmask = (caddr_t)n_arg; 497 register struct radix_node *x; 498 register caddr_t cp, cplim; 499 register int b = 0, mlen, j; 500 int maskduplicated, m0, isnormal; 501 struct radix_node *saved_x; 502 static int last_zeroed = 0; 503 504 if ((mlen = LEN(netmask)) > max_keylen) 505 mlen = max_keylen; 506 if (skip == 0) 507 skip = 1; 508 if (mlen <= skip) 509 return (mask_rnhead->rnh_nodes); 510 if (skip > 1) 511 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 512 if ((m0 = mlen) > skip) 513 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 514 /* 515 * Trim trailing zeroes. 516 */ 517 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 518 cp--; 519 mlen = cp - addmask_key; 520 if (mlen <= skip) { 521 if (m0 >= last_zeroed) 522 last_zeroed = mlen; 523 return (mask_rnhead->rnh_nodes); 524 } 525 if (m0 < last_zeroed) 526 bzero(addmask_key + m0, last_zeroed - m0); 527 *addmask_key = last_zeroed = mlen; 528 x = rn_search(addmask_key, rn_masktop); 529 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 530 x = 0; 531 if (x || search) 532 return (x); 533 R_Zalloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); 534 if ((saved_x = x) == 0) 535 return (0); 536 netmask = cp = (caddr_t)(x + 2); 537 bcopy(addmask_key, cp, mlen); 538 x = rn_insert(cp, mask_rnhead, &maskduplicated, x); 539 if (maskduplicated) { 540 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 541 Free(saved_x); 542 return (x); 543 } 544 /* 545 * Calculate index of mask, and check for normalcy. 546 * First find the first byte with a 0 bit, then if there are 547 * more bits left (remember we already trimmed the trailing 0's), 548 * the pattern must be one of those in normal_chars[], or we have 549 * a non-contiguous mask. 550 */ 551 cplim = netmask + mlen; 552 isnormal = 1; 553 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) 554 cp++; 555 if (cp != cplim) { 556 static char normal_chars[] = { 557 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 558 559 for (j = 0x80; (j & *cp) != 0; j >>= 1) 560 b++; 561 if (*cp != normal_chars[b] || cp != (cplim - 1)) 562 isnormal = 0; 563 } 564 b += (cp - netmask) << 3; 565 x->rn_bit = -1 - b; 566 if (isnormal) 567 x->rn_flags |= RNF_NORMAL; 568 return (x); 569 } 570 571 static int /* XXX: arbitrary ordering for non-contiguous masks */ 572 rn_lexobetter(m_arg, n_arg) 573 void *m_arg, *n_arg; 574 { 575 register u_char *mp = m_arg, *np = n_arg, *lim; 576 577 if (LEN(mp) > LEN(np)) 578 return 1; /* not really, but need to check longer one first */ 579 if (LEN(mp) == LEN(np)) 580 for (lim = mp + LEN(mp); mp < lim;) 581 if (*mp++ > *np++) 582 return 1; 583 return 0; 584 } 585 586 static struct radix_mask * 587 rn_new_radix_mask(tt, next) 588 register struct radix_node *tt; 589 register struct radix_mask *next; 590 { 591 register struct radix_mask *m; 592 593 MKGet(m); 594 if (m == 0) { 595 log(LOG_ERR, "Mask for route not entered\n"); 596 return (0); 597 } 598 bzero(m, sizeof *m); 599 m->rm_bit = tt->rn_bit; 600 m->rm_flags = tt->rn_flags; 601 if (tt->rn_flags & RNF_NORMAL) 602 m->rm_leaf = tt; 603 else 604 m->rm_mask = tt->rn_mask; 605 m->rm_mklist = next; 606 tt->rn_mklist = m; 607 return m; 608 } 609 610 struct radix_node * 611 rn_addroute(v_arg, n_arg, head, treenodes) 612 void *v_arg, *n_arg; 613 struct radix_node_head *head; 614 struct radix_node treenodes[2]; 615 { 616 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 617 register struct radix_node *t, *x = 0, *tt; 618 struct radix_node *saved_tt, *top = head->rnh_treetop; 619 short b = 0, b_leaf = 0; 620 int keyduplicated; 621 caddr_t mmask; 622 struct radix_mask *m, **mp; 623 624 /* 625 * In dealing with non-contiguous masks, there may be 626 * many different routes which have the same mask. 627 * We will find it useful to have a unique pointer to 628 * the mask to speed avoiding duplicate references at 629 * nodes and possibly save time in calculating indices. 630 */ 631 if (netmask) { 632 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) 633 return (0); 634 b_leaf = x->rn_bit; 635 b = -1 - x->rn_bit; 636 netmask = x->rn_key; 637 } 638 /* 639 * Deal with duplicated keys: attach node to previous instance 640 */ 641 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 642 if (keyduplicated) { 643 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 644 #ifdef RADIX_MPATH 645 /* permit multipath, if enabled for the family */ 646 if (rn_mpath_capable(head) && netmask == tt->rn_mask) { 647 /* 648 * go down to the end of multipaths, so that 649 * new entry goes into the end of rn_dupedkey 650 * chain. 651 */ 652 do { 653 t = tt; 654 tt = tt->rn_dupedkey; 655 } while (tt && t->rn_mask == tt->rn_mask); 656 break; 657 } 658 #endif 659 if (tt->rn_mask == netmask) 660 return (0); 661 if (netmask == 0 || 662 (tt->rn_mask && 663 ((b_leaf < tt->rn_bit) /* index(netmask) > node */ 664 || rn_refines(netmask, tt->rn_mask) 665 || rn_lexobetter(netmask, tt->rn_mask)))) 666 break; 667 } 668 /* 669 * If the mask is not duplicated, we wouldn't 670 * find it among possible duplicate key entries 671 * anyway, so the above test doesn't hurt. 672 * 673 * We sort the masks for a duplicated key the same way as 674 * in a masklist -- most specific to least specific. 675 * This may require the unfortunate nuisance of relocating 676 * the head of the list. 677 * 678 * We also reverse, or doubly link the list through the 679 * parent pointer. 680 */ 681 if (tt == saved_tt) { 682 struct radix_node *xx = x; 683 /* link in at head of list */ 684 (tt = treenodes)->rn_dupedkey = t; 685 tt->rn_flags = t->rn_flags; 686 tt->rn_parent = x = t->rn_parent; 687 t->rn_parent = tt; /* parent */ 688 if (x->rn_left == t) 689 x->rn_left = tt; 690 else 691 x->rn_right = tt; 692 saved_tt = tt; x = xx; 693 } else { 694 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 695 t->rn_dupedkey = tt; 696 tt->rn_parent = t; /* parent */ 697 if (tt->rn_dupedkey) /* parent */ 698 tt->rn_dupedkey->rn_parent = tt; /* parent */ 699 } 700 #ifdef RN_DEBUG 701 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 702 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 703 #endif 704 tt->rn_key = (caddr_t) v; 705 tt->rn_bit = -1; 706 tt->rn_flags = RNF_ACTIVE; 707 } 708 /* 709 * Put mask in tree. 710 */ 711 if (netmask) { 712 tt->rn_mask = netmask; 713 tt->rn_bit = x->rn_bit; 714 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 715 } 716 t = saved_tt->rn_parent; 717 if (keyduplicated) 718 goto on2; 719 b_leaf = -1 - t->rn_bit; 720 if (t->rn_right == saved_tt) 721 x = t->rn_left; 722 else 723 x = t->rn_right; 724 /* Promote general routes from below */ 725 if (x->rn_bit < 0) { 726 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 727 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 728 *mp = m = rn_new_radix_mask(x, 0); 729 if (m) 730 mp = &m->rm_mklist; 731 } 732 } else if (x->rn_mklist) { 733 /* 734 * Skip over masks whose index is > that of new node 735 */ 736 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 737 if (m->rm_bit >= b_leaf) 738 break; 739 t->rn_mklist = m; *mp = 0; 740 } 741 on2: 742 /* Add new route to highest possible ancestor's list */ 743 if ((netmask == 0) || (b > t->rn_bit )) 744 return tt; /* can't lift at all */ 745 b_leaf = tt->rn_bit; 746 do { 747 x = t; 748 t = t->rn_parent; 749 } while (b <= t->rn_bit && x != top); 750 /* 751 * Search through routes associated with node to 752 * insert new route according to index. 753 * Need same criteria as when sorting dupedkeys to avoid 754 * double loop on deletion. 755 */ 756 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 757 if (m->rm_bit < b_leaf) 758 continue; 759 if (m->rm_bit > b_leaf) 760 break; 761 if (m->rm_flags & RNF_NORMAL) { 762 mmask = m->rm_leaf->rn_mask; 763 if (tt->rn_flags & RNF_NORMAL) { 764 log(LOG_ERR, 765 "Non-unique normal route, mask not entered\n"); 766 return tt; 767 } 768 } else 769 mmask = m->rm_mask; 770 if (mmask == netmask) { 771 m->rm_refs++; 772 tt->rn_mklist = m; 773 return tt; 774 } 775 if (rn_refines(netmask, mmask) 776 || rn_lexobetter(netmask, mmask)) 777 break; 778 } 779 *mp = rn_new_radix_mask(tt, *mp); 780 return tt; 781 } 782 783 struct radix_node * 784 rn_delete(v_arg, netmask_arg, head) 785 void *v_arg, *netmask_arg; 786 struct radix_node_head *head; 787 { 788 register struct radix_node *t, *p, *x, *tt; 789 struct radix_mask *m, *saved_m, **mp; 790 struct radix_node *dupedkey, *saved_tt, *top; 791 caddr_t v, netmask; 792 int b, head_off, vlen; 793 794 v = v_arg; 795 netmask = netmask_arg; 796 x = head->rnh_treetop; 797 tt = rn_search(v, x); 798 head_off = x->rn_offset; 799 vlen = LEN(v); 800 saved_tt = tt; 801 top = x; 802 if (tt == 0 || 803 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 804 return (0); 805 /* 806 * Delete our route from mask lists. 807 */ 808 if (netmask) { 809 if ((x = rn_addmask(netmask, 1, head_off)) == 0) 810 return (0); 811 netmask = x->rn_key; 812 while (tt->rn_mask != netmask) 813 if ((tt = tt->rn_dupedkey) == 0) 814 return (0); 815 } 816 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) 817 goto on1; 818 if (tt->rn_flags & RNF_NORMAL) { 819 if (m->rm_leaf != tt || m->rm_refs > 0) { 820 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 821 return 0; /* dangling ref could cause disaster */ 822 } 823 } else { 824 if (m->rm_mask != tt->rn_mask) { 825 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 826 goto on1; 827 } 828 if (--m->rm_refs >= 0) 829 goto on1; 830 } 831 b = -1 - tt->rn_bit; 832 t = saved_tt->rn_parent; 833 if (b > t->rn_bit) 834 goto on1; /* Wasn't lifted at all */ 835 do { 836 x = t; 837 t = t->rn_parent; 838 } while (b <= t->rn_bit && x != top); 839 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 840 if (m == saved_m) { 841 *mp = m->rm_mklist; 842 MKFree(m); 843 break; 844 } 845 if (m == 0) { 846 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 847 if (tt->rn_flags & RNF_NORMAL) 848 return (0); /* Dangling ref to us */ 849 } 850 on1: 851 /* 852 * Eliminate us from tree 853 */ 854 if (tt->rn_flags & RNF_ROOT) 855 return (0); 856 #ifdef RN_DEBUG 857 /* Get us out of the creation list */ 858 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 859 if (t) t->rn_ybro = tt->rn_ybro; 860 #endif 861 t = tt->rn_parent; 862 dupedkey = saved_tt->rn_dupedkey; 863 if (dupedkey) { 864 /* 865 * Here, tt is the deletion target and 866 * saved_tt is the head of the dupekey chain. 867 */ 868 if (tt == saved_tt) { 869 /* remove from head of chain */ 870 x = dupedkey; x->rn_parent = t; 871 if (t->rn_left == tt) 872 t->rn_left = x; 873 else 874 t->rn_right = x; 875 } else { 876 /* find node in front of tt on the chain */ 877 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 878 p = p->rn_dupedkey; 879 if (p) { 880 p->rn_dupedkey = tt->rn_dupedkey; 881 if (tt->rn_dupedkey) /* parent */ 882 tt->rn_dupedkey->rn_parent = p; 883 /* parent */ 884 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 885 } 886 t = tt + 1; 887 if (t->rn_flags & RNF_ACTIVE) { 888 #ifndef RN_DEBUG 889 *++x = *t; 890 p = t->rn_parent; 891 #else 892 b = t->rn_info; 893 *++x = *t; 894 t->rn_info = b; 895 p = t->rn_parent; 896 #endif 897 if (p->rn_left == t) 898 p->rn_left = x; 899 else 900 p->rn_right = x; 901 x->rn_left->rn_parent = x; 902 x->rn_right->rn_parent = x; 903 } 904 goto out; 905 } 906 if (t->rn_left == tt) 907 x = t->rn_right; 908 else 909 x = t->rn_left; 910 p = t->rn_parent; 911 if (p->rn_right == t) 912 p->rn_right = x; 913 else 914 p->rn_left = x; 915 x->rn_parent = p; 916 /* 917 * Demote routes attached to us. 918 */ 919 if (t->rn_mklist) { 920 if (x->rn_bit >= 0) { 921 for (mp = &x->rn_mklist; (m = *mp);) 922 mp = &m->rm_mklist; 923 *mp = t->rn_mklist; 924 } else { 925 /* If there are any key,mask pairs in a sibling 926 duped-key chain, some subset will appear sorted 927 in the same order attached to our mklist */ 928 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 929 if (m == x->rn_mklist) { 930 struct radix_mask *mm = m->rm_mklist; 931 x->rn_mklist = 0; 932 if (--(m->rm_refs) < 0) 933 MKFree(m); 934 m = mm; 935 } 936 if (m) 937 log(LOG_ERR, 938 "rn_delete: Orphaned Mask %p at %p\n", 939 (void *)m, (void *)x); 940 } 941 } 942 /* 943 * We may be holding an active internal node in the tree. 944 */ 945 x = tt + 1; 946 if (t != x) { 947 #ifndef RN_DEBUG 948 *t = *x; 949 #else 950 b = t->rn_info; 951 *t = *x; 952 t->rn_info = b; 953 #endif 954 t->rn_left->rn_parent = t; 955 t->rn_right->rn_parent = t; 956 p = x->rn_parent; 957 if (p->rn_left == x) 958 p->rn_left = t; 959 else 960 p->rn_right = t; 961 } 962 out: 963 tt->rn_flags &= ~RNF_ACTIVE; 964 tt[1].rn_flags &= ~RNF_ACTIVE; 965 return (tt); 966 } 967 968 /* 969 * This is the same as rn_walktree() except for the parameters and the 970 * exit. 971 */ 972 static int 973 rn_walktree_from(h, a, m, f, w) 974 struct radix_node_head *h; 975 void *a, *m; 976 walktree_f_t *f; 977 void *w; 978 { 979 int error; 980 struct radix_node *base, *next; 981 u_char *xa = (u_char *)a; 982 u_char *xm = (u_char *)m; 983 register struct radix_node *rn, *last = 0 /* shut up gcc */; 984 int stopping = 0; 985 int lastb; 986 987 /* 988 * rn_search_m is sort-of-open-coded here. We cannot use the 989 * function because we need to keep track of the last node seen. 990 */ 991 /* printf("about to search\n"); */ 992 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { 993 last = rn; 994 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", 995 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ 996 if (!(rn->rn_bmask & xm[rn->rn_offset])) { 997 break; 998 } 999 if (rn->rn_bmask & xa[rn->rn_offset]) { 1000 rn = rn->rn_right; 1001 } else { 1002 rn = rn->rn_left; 1003 } 1004 } 1005 /* printf("done searching\n"); */ 1006 1007 /* 1008 * Two cases: either we stepped off the end of our mask, 1009 * in which case last == rn, or we reached a leaf, in which 1010 * case we want to start from the last node we looked at. 1011 * Either way, last is the node we want to start from. 1012 */ 1013 rn = last; 1014 lastb = rn->rn_bit; 1015 1016 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 1017 1018 /* 1019 * This gets complicated because we may delete the node 1020 * while applying the function f to it, so we need to calculate 1021 * the successor node in advance. 1022 */ 1023 while (rn->rn_bit >= 0) 1024 rn = rn->rn_left; 1025 1026 while (!stopping) { 1027 /* printf("node %p (%d)\n", rn, rn->rn_bit); */ 1028 base = rn; 1029 /* If at right child go back up, otherwise, go right */ 1030 while (rn->rn_parent->rn_right == rn 1031 && !(rn->rn_flags & RNF_ROOT)) { 1032 rn = rn->rn_parent; 1033 1034 /* if went up beyond last, stop */ 1035 if (rn->rn_bit <= lastb) { 1036 stopping = 1; 1037 /* printf("up too far\n"); */ 1038 /* 1039 * XXX we should jump to the 'Process leaves' 1040 * part, because the values of 'rn' and 'next' 1041 * we compute will not be used. Not a big deal 1042 * because this loop will terminate, but it is 1043 * inefficient and hard to understand! 1044 */ 1045 } 1046 } 1047 1048 /* 1049 * At the top of the tree, no need to traverse the right 1050 * half, prevent the traversal of the entire tree in the 1051 * case of default route. 1052 */ 1053 if (rn->rn_parent->rn_flags & RNF_ROOT) 1054 stopping = 1; 1055 1056 /* Find the next *leaf* since next node might vanish, too */ 1057 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1058 rn = rn->rn_left; 1059 next = rn; 1060 /* Process leaves */ 1061 while ((rn = base) != 0) { 1062 base = rn->rn_dupedkey; 1063 /* printf("leaf %p\n", rn); */ 1064 if (!(rn->rn_flags & RNF_ROOT) 1065 && (error = (*f)(rn, w))) 1066 return (error); 1067 } 1068 rn = next; 1069 1070 if (rn->rn_flags & RNF_ROOT) { 1071 /* printf("root, stopping"); */ 1072 stopping = 1; 1073 } 1074 1075 } 1076 return 0; 1077 } 1078 1079 static int 1080 rn_walktree(h, f, w) 1081 struct radix_node_head *h; 1082 walktree_f_t *f; 1083 void *w; 1084 { 1085 int error; 1086 struct radix_node *base, *next; 1087 register struct radix_node *rn = h->rnh_treetop; 1088 /* 1089 * This gets complicated because we may delete the node 1090 * while applying the function f to it, so we need to calculate 1091 * the successor node in advance. 1092 */ 1093 1094 /* First time through node, go left */ 1095 while (rn->rn_bit >= 0) 1096 rn = rn->rn_left; 1097 for (;;) { 1098 base = rn; 1099 /* If at right child go back up, otherwise, go right */ 1100 while (rn->rn_parent->rn_right == rn 1101 && (rn->rn_flags & RNF_ROOT) == 0) 1102 rn = rn->rn_parent; 1103 /* Find the next *leaf* since next node might vanish, too */ 1104 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1105 rn = rn->rn_left; 1106 next = rn; 1107 /* Process leaves */ 1108 while ((rn = base)) { 1109 base = rn->rn_dupedkey; 1110 if (!(rn->rn_flags & RNF_ROOT) 1111 && (error = (*f)(rn, w))) 1112 return (error); 1113 } 1114 rn = next; 1115 if (rn->rn_flags & RNF_ROOT) 1116 return (0); 1117 } 1118 /* NOTREACHED */ 1119 } 1120 1121 /* 1122 * Allocate and initialize an empty tree. This has 3 nodes, which are 1123 * part of the radix_node_head (in the order <left,root,right>) and are 1124 * marked RNF_ROOT so they cannot be freed. 1125 * The leaves have all-zero and all-one keys, with significant 1126 * bits starting at 'off'. 1127 * Return 1 on success, 0 on error. 1128 */ 1129 int 1130 rn_inithead(head, off) 1131 void **head; 1132 int off; 1133 { 1134 register struct radix_node_head *rnh; 1135 register struct radix_node *t, *tt, *ttt; 1136 if (*head) 1137 return (1); 1138 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1139 if (rnh == 0) 1140 return (0); 1141 #ifdef _KERNEL 1142 RADIX_NODE_HEAD_LOCK_INIT(rnh); 1143 #endif 1144 *head = rnh; 1145 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); 1146 ttt = rnh->rnh_nodes + 2; 1147 t->rn_right = ttt; 1148 t->rn_parent = t; 1149 tt = t->rn_left; /* ... which in turn is rnh->rnh_nodes */ 1150 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1151 tt->rn_bit = -1 - off; 1152 *ttt = *tt; 1153 ttt->rn_key = rn_ones; 1154 rnh->rnh_addaddr = rn_addroute; 1155 rnh->rnh_deladdr = rn_delete; 1156 rnh->rnh_matchaddr = rn_match; 1157 rnh->rnh_lookup = rn_lookup; 1158 rnh->rnh_walktree = rn_walktree; 1159 rnh->rnh_walktree_from = rn_walktree_from; 1160 rnh->rnh_treetop = t; 1161 return (1); 1162 } 1163 1164 void 1165 rn_init(int maxk) 1166 { 1167 char *cp, *cplim; 1168 1169 max_keylen = maxk; 1170 if (max_keylen == 0) { 1171 log(LOG_ERR, 1172 "rn_init: radix functions require max_keylen be set\n"); 1173 return; 1174 } 1175 R_Malloc(rn_zeros, char *, 3 * max_keylen); 1176 if (rn_zeros == NULL) 1177 panic("rn_init"); 1178 bzero(rn_zeros, 3 * max_keylen); 1179 rn_ones = cp = rn_zeros + max_keylen; 1180 addmask_key = cplim = rn_ones + max_keylen; 1181 while (cp < cplim) 1182 *cp++ = -1; 1183 if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0) 1184 panic("rn_init 2"); 1185 } 1186