1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)radix.c 8.5 (Berkeley) 5/19/95 32 * $FreeBSD$ 33 */ 34 35 /* 36 * Routines to build and maintain radix trees for routing lookups. 37 */ 38 #include <sys/param.h> 39 #ifdef _KERNEL 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/syslog.h> 46 #include <net/radix.h> 47 #include "opt_mpath.h" 48 #ifdef RADIX_MPATH 49 #include <net/radix_mpath.h> 50 #endif 51 #else /* !_KERNEL */ 52 #include <stdio.h> 53 #include <strings.h> 54 #include <stdlib.h> 55 #define log(x, arg...) fprintf(stderr, ## arg) 56 #define panic(x) fprintf(stderr, "PANIC: %s", x), exit(1) 57 #define min(a, b) ((a) < (b) ? (a) : (b) ) 58 #include <net/radix.h> 59 #endif /* !_KERNEL */ 60 61 static struct radix_node 62 *rn_insert(void *, struct radix_head *, int *, 63 struct radix_node [2]), 64 *rn_newpair(void *, int, struct radix_node[2]), 65 *rn_search(void *, struct radix_node *), 66 *rn_search_m(void *, struct radix_node *, void *); 67 static struct radix_node *rn_addmask(void *, struct radix_mask_head *, int,int); 68 69 static void rn_detachhead_internal(struct radix_head *); 70 71 #define RADIX_MAX_KEY_LEN 32 72 73 static char rn_zeros[RADIX_MAX_KEY_LEN]; 74 static char rn_ones[RADIX_MAX_KEY_LEN] = { 75 -1, -1, -1, -1, -1, -1, -1, -1, 76 -1, -1, -1, -1, -1, -1, -1, -1, 77 -1, -1, -1, -1, -1, -1, -1, -1, 78 -1, -1, -1, -1, -1, -1, -1, -1, 79 }; 80 81 82 static int rn_lexobetter(void *m_arg, void *n_arg); 83 static struct radix_mask * 84 rn_new_radix_mask(struct radix_node *tt, 85 struct radix_mask *next); 86 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, 87 int skip); 88 89 /* 90 * The data structure for the keys is a radix tree with one way 91 * branching removed. The index rn_bit at an internal node n represents a bit 92 * position to be tested. The tree is arranged so that all descendants 93 * of a node n have keys whose bits all agree up to position rn_bit - 1. 94 * (We say the index of n is rn_bit.) 95 * 96 * There is at least one descendant which has a one bit at position rn_bit, 97 * and at least one with a zero there. 98 * 99 * A route is determined by a pair of key and mask. We require that the 100 * bit-wise logical and of the key and mask to be the key. 101 * We define the index of a route to associated with the mask to be 102 * the first bit number in the mask where 0 occurs (with bit number 0 103 * representing the highest order bit). 104 * 105 * We say a mask is normal if every bit is 0, past the index of the mask. 106 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 107 * and m is a normal mask, then the route applies to every descendant of n. 108 * If the index(m) < rn_bit, this implies the trailing last few bits of k 109 * before bit b are all 0, (and hence consequently true of every descendant 110 * of n), so the route applies to all descendants of the node as well. 111 * 112 * Similar logic shows that a non-normal mask m such that 113 * index(m) <= index(n) could potentially apply to many children of n. 114 * Thus, for each non-host route, we attach its mask to a list at an internal 115 * node as high in the tree as we can go. 116 * 117 * The present version of the code makes use of normal routes in short- 118 * circuiting an explict mask and compare operation when testing whether 119 * a key satisfies a normal route, and also in remembering the unique leaf 120 * that governs a subtree. 121 */ 122 123 /* 124 * Most of the functions in this code assume that the key/mask arguments 125 * are sockaddr-like structures, where the first byte is an u_char 126 * indicating the size of the entire structure. 127 * 128 * To make the assumption more explicit, we use the LEN() macro to access 129 * this field. It is safe to pass an expression with side effects 130 * to LEN() as the argument is evaluated only once. 131 * We cast the result to int as this is the dominant usage. 132 */ 133 #define LEN(x) ( (int) (*(const u_char *)(x)) ) 134 135 /* 136 * XXX THIS NEEDS TO BE FIXED 137 * In the code, pointers to keys and masks are passed as either 138 * 'void *' (because callers use to pass pointers of various kinds), or 139 * 'caddr_t' (which is fine for pointer arithmetics, but not very 140 * clean when you dereference it to access data). Furthermore, caddr_t 141 * is really 'char *', while the natural type to operate on keys and 142 * masks would be 'u_char'. This mismatch require a lot of casts and 143 * intermediate variables to adapt types that clutter the code. 144 */ 145 146 /* 147 * Search a node in the tree matching the key. 148 */ 149 static struct radix_node * 150 rn_search(void *v_arg, struct radix_node *head) 151 { 152 struct radix_node *x; 153 caddr_t v; 154 155 for (x = head, v = v_arg; x->rn_bit >= 0;) { 156 if (x->rn_bmask & v[x->rn_offset]) 157 x = x->rn_right; 158 else 159 x = x->rn_left; 160 } 161 return (x); 162 } 163 164 /* 165 * Same as above, but with an additional mask. 166 * XXX note this function is used only once. 167 */ 168 static struct radix_node * 169 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg) 170 { 171 struct radix_node *x; 172 caddr_t v = v_arg, m = m_arg; 173 174 for (x = head; x->rn_bit >= 0;) { 175 if ((x->rn_bmask & m[x->rn_offset]) && 176 (x->rn_bmask & v[x->rn_offset])) 177 x = x->rn_right; 178 else 179 x = x->rn_left; 180 } 181 return (x); 182 } 183 184 int 185 rn_refines(void *m_arg, void *n_arg) 186 { 187 caddr_t m = m_arg, n = n_arg; 188 caddr_t lim, lim2 = lim = n + LEN(n); 189 int longer = LEN(n++) - LEN(m++); 190 int masks_are_equal = 1; 191 192 if (longer > 0) 193 lim -= longer; 194 while (n < lim) { 195 if (*n & ~(*m)) 196 return (0); 197 if (*n++ != *m++) 198 masks_are_equal = 0; 199 } 200 while (n < lim2) 201 if (*n++) 202 return (0); 203 if (masks_are_equal && (longer < 0)) 204 for (lim2 = m - longer; m < lim2; ) 205 if (*m++) 206 return (1); 207 return (!masks_are_equal); 208 } 209 210 /* 211 * Search for exact match in given @head. 212 * Assume host bits are cleared in @v_arg if @m_arg is not NULL 213 * Note that prefixes with /32 or /128 masks are treated differently 214 * from host routes. 215 */ 216 struct radix_node * 217 rn_lookup(void *v_arg, void *m_arg, struct radix_head *head) 218 { 219 struct radix_node *x; 220 caddr_t netmask; 221 222 if (m_arg != NULL) { 223 /* 224 * Most common case: search exact prefix/mask 225 */ 226 x = rn_addmask(m_arg, head->rnh_masks, 1, 227 head->rnh_treetop->rn_offset); 228 if (x == NULL) 229 return (NULL); 230 netmask = x->rn_key; 231 232 x = rn_match(v_arg, head); 233 234 while (x != NULL && x->rn_mask != netmask) 235 x = x->rn_dupedkey; 236 237 return (x); 238 } 239 240 /* 241 * Search for host address. 242 */ 243 if ((x = rn_match(v_arg, head)) == NULL) 244 return (NULL); 245 246 /* Check if found key is the same */ 247 if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg))) 248 return (NULL); 249 250 /* Check if this is not host route */ 251 if (x->rn_mask != NULL) 252 return (NULL); 253 254 return (x); 255 } 256 257 static int 258 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip) 259 { 260 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 261 char *cplim; 262 int length = min(LEN(cp), LEN(cp2)); 263 264 if (cp3 == NULL) 265 cp3 = rn_ones; 266 else 267 length = min(length, LEN(cp3)); 268 cplim = cp + length; cp3 += skip; cp2 += skip; 269 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 270 if ((*cp ^ *cp2) & *cp3) 271 return (0); 272 return (1); 273 } 274 275 /* 276 * Search for longest-prefix match in given @head 277 */ 278 struct radix_node * 279 rn_match(void *v_arg, struct radix_head *head) 280 { 281 caddr_t v = v_arg; 282 struct radix_node *t = head->rnh_treetop, *x; 283 caddr_t cp = v, cp2; 284 caddr_t cplim; 285 struct radix_node *saved_t, *top = t; 286 int off = t->rn_offset, vlen = LEN(cp), matched_off; 287 int test, b, rn_bit; 288 289 /* 290 * Open code rn_search(v, top) to avoid overhead of extra 291 * subroutine call. 292 */ 293 for (; t->rn_bit >= 0; ) { 294 if (t->rn_bmask & cp[t->rn_offset]) 295 t = t->rn_right; 296 else 297 t = t->rn_left; 298 } 299 /* 300 * See if we match exactly as a host destination 301 * or at least learn how many bits match, for normal mask finesse. 302 * 303 * It doesn't hurt us to limit how many bytes to check 304 * to the length of the mask, since if it matches we had a genuine 305 * match and the leaf we have is the most specific one anyway; 306 * if it didn't match with a shorter length it would fail 307 * with a long one. This wins big for class B&C netmasks which 308 * are probably the most common case... 309 */ 310 if (t->rn_mask) 311 vlen = *(u_char *)t->rn_mask; 312 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 313 for (; cp < cplim; cp++, cp2++) 314 if (*cp != *cp2) 315 goto on1; 316 /* 317 * This extra grot is in case we are explicitly asked 318 * to look up the default. Ugh! 319 * 320 * Never return the root node itself, it seems to cause a 321 * lot of confusion. 322 */ 323 if (t->rn_flags & RNF_ROOT) 324 t = t->rn_dupedkey; 325 return (t); 326 on1: 327 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 328 for (b = 7; (test >>= 1) > 0;) 329 b--; 330 matched_off = cp - v; 331 b += matched_off << 3; 332 rn_bit = -1 - b; 333 /* 334 * If there is a host route in a duped-key chain, it will be first. 335 */ 336 if ((saved_t = t)->rn_mask == 0) 337 t = t->rn_dupedkey; 338 for (; t; t = t->rn_dupedkey) 339 /* 340 * Even if we don't match exactly as a host, 341 * we may match if the leaf we wound up at is 342 * a route to a net. 343 */ 344 if (t->rn_flags & RNF_NORMAL) { 345 if (rn_bit <= t->rn_bit) 346 return (t); 347 } else if (rn_satisfies_leaf(v, t, matched_off)) 348 return (t); 349 t = saved_t; 350 /* start searching up the tree */ 351 do { 352 struct radix_mask *m; 353 t = t->rn_parent; 354 m = t->rn_mklist; 355 /* 356 * If non-contiguous masks ever become important 357 * we can restore the masking and open coding of 358 * the search and satisfaction test and put the 359 * calculation of "off" back before the "do". 360 */ 361 while (m) { 362 if (m->rm_flags & RNF_NORMAL) { 363 if (rn_bit <= m->rm_bit) 364 return (m->rm_leaf); 365 } else { 366 off = min(t->rn_offset, matched_off); 367 x = rn_search_m(v, t, m->rm_mask); 368 while (x && x->rn_mask != m->rm_mask) 369 x = x->rn_dupedkey; 370 if (x && rn_satisfies_leaf(v, x, off)) 371 return (x); 372 } 373 m = m->rm_mklist; 374 } 375 } while (t != top); 376 return (0); 377 } 378 379 #ifdef RN_DEBUG 380 int rn_nodenum; 381 struct radix_node *rn_clist; 382 int rn_saveinfo; 383 int rn_debug = 1; 384 #endif 385 386 /* 387 * Whenever we add a new leaf to the tree, we also add a parent node, 388 * so we allocate them as an array of two elements: the first one must be 389 * the leaf (see RNTORT() in route.c), the second one is the parent. 390 * This routine initializes the relevant fields of the nodes, so that 391 * the leaf is the left child of the parent node, and both nodes have 392 * (almost) all all fields filled as appropriate. 393 * (XXX some fields are left unset, see the '#if 0' section). 394 * The function returns a pointer to the parent node. 395 */ 396 397 static struct radix_node * 398 rn_newpair(void *v, int b, struct radix_node nodes[2]) 399 { 400 struct radix_node *tt = nodes, *t = tt + 1; 401 t->rn_bit = b; 402 t->rn_bmask = 0x80 >> (b & 7); 403 t->rn_left = tt; 404 t->rn_offset = b >> 3; 405 406 #if 0 /* XXX perhaps we should fill these fields as well. */ 407 t->rn_parent = t->rn_right = NULL; 408 409 tt->rn_mask = NULL; 410 tt->rn_dupedkey = NULL; 411 tt->rn_bmask = 0; 412 #endif 413 tt->rn_bit = -1; 414 tt->rn_key = (caddr_t)v; 415 tt->rn_parent = t; 416 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 417 tt->rn_mklist = t->rn_mklist = 0; 418 #ifdef RN_DEBUG 419 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 420 tt->rn_twin = t; 421 tt->rn_ybro = rn_clist; 422 rn_clist = tt; 423 #endif 424 return (t); 425 } 426 427 static struct radix_node * 428 rn_insert(void *v_arg, struct radix_head *head, int *dupentry, 429 struct radix_node nodes[2]) 430 { 431 caddr_t v = v_arg; 432 struct radix_node *top = head->rnh_treetop; 433 int head_off = top->rn_offset, vlen = LEN(v); 434 struct radix_node *t = rn_search(v_arg, top); 435 caddr_t cp = v + head_off; 436 int b; 437 struct radix_node *p, *tt, *x; 438 /* 439 * Find first bit at which v and t->rn_key differ 440 */ 441 caddr_t cp2 = t->rn_key + head_off; 442 int cmp_res; 443 caddr_t cplim = v + vlen; 444 445 while (cp < cplim) 446 if (*cp2++ != *cp++) 447 goto on1; 448 *dupentry = 1; 449 return (t); 450 on1: 451 *dupentry = 0; 452 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 453 for (b = (cp - v) << 3; cmp_res; b--) 454 cmp_res >>= 1; 455 456 x = top; 457 cp = v; 458 do { 459 p = x; 460 if (cp[x->rn_offset] & x->rn_bmask) 461 x = x->rn_right; 462 else 463 x = x->rn_left; 464 } while (b > (unsigned) x->rn_bit); 465 /* x->rn_bit < b && x->rn_bit >= 0 */ 466 #ifdef RN_DEBUG 467 if (rn_debug) 468 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 469 #endif 470 t = rn_newpair(v_arg, b, nodes); 471 tt = t->rn_left; 472 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 473 p->rn_left = t; 474 else 475 p->rn_right = t; 476 x->rn_parent = t; 477 t->rn_parent = p; /* frees x, p as temp vars below */ 478 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 479 t->rn_right = x; 480 } else { 481 t->rn_right = tt; 482 t->rn_left = x; 483 } 484 #ifdef RN_DEBUG 485 if (rn_debug) 486 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 487 #endif 488 return (tt); 489 } 490 491 struct radix_node * 492 rn_addmask(void *n_arg, struct radix_mask_head *maskhead, int search, int skip) 493 { 494 unsigned char *netmask = n_arg; 495 unsigned char *cp, *cplim; 496 struct radix_node *x; 497 int b = 0, mlen, j; 498 int maskduplicated, isnormal; 499 struct radix_node *saved_x; 500 unsigned char addmask_key[RADIX_MAX_KEY_LEN]; 501 502 if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN) 503 mlen = RADIX_MAX_KEY_LEN; 504 if (skip == 0) 505 skip = 1; 506 if (mlen <= skip) 507 return (maskhead->mask_nodes); 508 509 bzero(addmask_key, RADIX_MAX_KEY_LEN); 510 if (skip > 1) 511 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 512 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 513 /* 514 * Trim trailing zeroes. 515 */ 516 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 517 cp--; 518 mlen = cp - addmask_key; 519 if (mlen <= skip) 520 return (maskhead->mask_nodes); 521 *addmask_key = mlen; 522 x = rn_search(addmask_key, maskhead->head.rnh_treetop); 523 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 524 x = NULL; 525 if (x || search) 526 return (x); 527 R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x)); 528 if ((saved_x = x) == NULL) 529 return (0); 530 netmask = cp = (unsigned char *)(x + 2); 531 bcopy(addmask_key, cp, mlen); 532 x = rn_insert(cp, &maskhead->head, &maskduplicated, x); 533 if (maskduplicated) { 534 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 535 R_Free(saved_x); 536 return (x); 537 } 538 /* 539 * Calculate index of mask, and check for normalcy. 540 * First find the first byte with a 0 bit, then if there are 541 * more bits left (remember we already trimmed the trailing 0's), 542 * the bits should be contiguous, otherwise we have got 543 * a non-contiguous mask. 544 */ 545 #define CONTIG(_c) (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1)) 546 cplim = netmask + mlen; 547 isnormal = 1; 548 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) 549 cp++; 550 if (cp != cplim) { 551 for (j = 0x80; (j & *cp) != 0; j >>= 1) 552 b++; 553 if (!CONTIG(*cp) || cp != (cplim - 1)) 554 isnormal = 0; 555 } 556 b += (cp - netmask) << 3; 557 x->rn_bit = -1 - b; 558 if (isnormal) 559 x->rn_flags |= RNF_NORMAL; 560 return (x); 561 } 562 563 static int /* XXX: arbitrary ordering for non-contiguous masks */ 564 rn_lexobetter(void *m_arg, void *n_arg) 565 { 566 u_char *mp = m_arg, *np = n_arg, *lim; 567 568 if (LEN(mp) > LEN(np)) 569 return (1); /* not really, but need to check longer one first */ 570 if (LEN(mp) == LEN(np)) 571 for (lim = mp + LEN(mp); mp < lim;) 572 if (*mp++ > *np++) 573 return (1); 574 return (0); 575 } 576 577 static struct radix_mask * 578 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) 579 { 580 struct radix_mask *m; 581 582 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); 583 if (m == NULL) { 584 log(LOG_ERR, "Failed to allocate route mask\n"); 585 return (0); 586 } 587 bzero(m, sizeof(*m)); 588 m->rm_bit = tt->rn_bit; 589 m->rm_flags = tt->rn_flags; 590 if (tt->rn_flags & RNF_NORMAL) 591 m->rm_leaf = tt; 592 else 593 m->rm_mask = tt->rn_mask; 594 m->rm_mklist = next; 595 tt->rn_mklist = m; 596 return (m); 597 } 598 599 struct radix_node * 600 rn_addroute(void *v_arg, void *n_arg, struct radix_head *head, 601 struct radix_node treenodes[2]) 602 { 603 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 604 struct radix_node *t, *x = NULL, *tt; 605 struct radix_node *saved_tt, *top = head->rnh_treetop; 606 short b = 0, b_leaf = 0; 607 int keyduplicated; 608 caddr_t mmask; 609 struct radix_mask *m, **mp; 610 611 /* 612 * In dealing with non-contiguous masks, there may be 613 * many different routes which have the same mask. 614 * We will find it useful to have a unique pointer to 615 * the mask to speed avoiding duplicate references at 616 * nodes and possibly save time in calculating indices. 617 */ 618 if (netmask) { 619 x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset); 620 if (x == NULL) 621 return (0); 622 b_leaf = x->rn_bit; 623 b = -1 - x->rn_bit; 624 netmask = x->rn_key; 625 } 626 /* 627 * Deal with duplicated keys: attach node to previous instance 628 */ 629 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 630 if (keyduplicated) { 631 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 632 #ifdef RADIX_MPATH 633 /* permit multipath, if enabled for the family */ 634 if (rn_mpath_capable(head) && netmask == tt->rn_mask) { 635 /* 636 * go down to the end of multipaths, so that 637 * new entry goes into the end of rn_dupedkey 638 * chain. 639 */ 640 do { 641 t = tt; 642 tt = tt->rn_dupedkey; 643 } while (tt && t->rn_mask == tt->rn_mask); 644 break; 645 } 646 #endif 647 if (tt->rn_mask == netmask) 648 return (0); 649 if (netmask == 0 || 650 (tt->rn_mask && 651 ((b_leaf < tt->rn_bit) /* index(netmask) > node */ 652 || rn_refines(netmask, tt->rn_mask) 653 || rn_lexobetter(netmask, tt->rn_mask)))) 654 break; 655 } 656 /* 657 * If the mask is not duplicated, we wouldn't 658 * find it among possible duplicate key entries 659 * anyway, so the above test doesn't hurt. 660 * 661 * We sort the masks for a duplicated key the same way as 662 * in a masklist -- most specific to least specific. 663 * This may require the unfortunate nuisance of relocating 664 * the head of the list. 665 * 666 * We also reverse, or doubly link the list through the 667 * parent pointer. 668 */ 669 if (tt == saved_tt) { 670 struct radix_node *xx = x; 671 /* link in at head of list */ 672 (tt = treenodes)->rn_dupedkey = t; 673 tt->rn_flags = t->rn_flags; 674 tt->rn_parent = x = t->rn_parent; 675 t->rn_parent = tt; /* parent */ 676 if (x->rn_left == t) 677 x->rn_left = tt; 678 else 679 x->rn_right = tt; 680 saved_tt = tt; x = xx; 681 } else { 682 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 683 t->rn_dupedkey = tt; 684 tt->rn_parent = t; /* parent */ 685 if (tt->rn_dupedkey) /* parent */ 686 tt->rn_dupedkey->rn_parent = tt; /* parent */ 687 } 688 #ifdef RN_DEBUG 689 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 690 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 691 #endif 692 tt->rn_key = (caddr_t) v; 693 tt->rn_bit = -1; 694 tt->rn_flags = RNF_ACTIVE; 695 } 696 /* 697 * Put mask in tree. 698 */ 699 if (netmask) { 700 tt->rn_mask = netmask; 701 tt->rn_bit = x->rn_bit; 702 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 703 } 704 t = saved_tt->rn_parent; 705 if (keyduplicated) 706 goto on2; 707 b_leaf = -1 - t->rn_bit; 708 if (t->rn_right == saved_tt) 709 x = t->rn_left; 710 else 711 x = t->rn_right; 712 /* Promote general routes from below */ 713 if (x->rn_bit < 0) { 714 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 715 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 716 *mp = m = rn_new_radix_mask(x, 0); 717 if (m) 718 mp = &m->rm_mklist; 719 } 720 } else if (x->rn_mklist) { 721 /* 722 * Skip over masks whose index is > that of new node 723 */ 724 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 725 if (m->rm_bit >= b_leaf) 726 break; 727 t->rn_mklist = m; *mp = NULL; 728 } 729 on2: 730 /* Add new route to highest possible ancestor's list */ 731 if ((netmask == 0) || (b > t->rn_bit )) 732 return (tt); /* can't lift at all */ 733 b_leaf = tt->rn_bit; 734 do { 735 x = t; 736 t = t->rn_parent; 737 } while (b <= t->rn_bit && x != top); 738 /* 739 * Search through routes associated with node to 740 * insert new route according to index. 741 * Need same criteria as when sorting dupedkeys to avoid 742 * double loop on deletion. 743 */ 744 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 745 if (m->rm_bit < b_leaf) 746 continue; 747 if (m->rm_bit > b_leaf) 748 break; 749 if (m->rm_flags & RNF_NORMAL) { 750 mmask = m->rm_leaf->rn_mask; 751 if (tt->rn_flags & RNF_NORMAL) { 752 #if !defined(RADIX_MPATH) 753 log(LOG_ERR, 754 "Non-unique normal route, mask not entered\n"); 755 #endif 756 return (tt); 757 } 758 } else 759 mmask = m->rm_mask; 760 if (mmask == netmask) { 761 m->rm_refs++; 762 tt->rn_mklist = m; 763 return (tt); 764 } 765 if (rn_refines(netmask, mmask) 766 || rn_lexobetter(netmask, mmask)) 767 break; 768 } 769 *mp = rn_new_radix_mask(tt, *mp); 770 return (tt); 771 } 772 773 struct radix_node * 774 rn_delete(void *v_arg, void *netmask_arg, struct radix_head *head) 775 { 776 struct radix_node *t, *p, *x, *tt; 777 struct radix_mask *m, *saved_m, **mp; 778 struct radix_node *dupedkey, *saved_tt, *top; 779 caddr_t v, netmask; 780 int b, head_off, vlen; 781 782 v = v_arg; 783 netmask = netmask_arg; 784 x = head->rnh_treetop; 785 tt = rn_search(v, x); 786 head_off = x->rn_offset; 787 vlen = LEN(v); 788 saved_tt = tt; 789 top = x; 790 if (tt == NULL || 791 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 792 return (0); 793 /* 794 * Delete our route from mask lists. 795 */ 796 if (netmask) { 797 x = rn_addmask(netmask, head->rnh_masks, 1, head_off); 798 if (x == NULL) 799 return (0); 800 netmask = x->rn_key; 801 while (tt->rn_mask != netmask) 802 if ((tt = tt->rn_dupedkey) == NULL) 803 return (0); 804 } 805 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL) 806 goto on1; 807 if (tt->rn_flags & RNF_NORMAL) { 808 if (m->rm_leaf != tt || m->rm_refs > 0) { 809 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 810 return (0); /* dangling ref could cause disaster */ 811 } 812 } else { 813 if (m->rm_mask != tt->rn_mask) { 814 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 815 goto on1; 816 } 817 if (--m->rm_refs >= 0) 818 goto on1; 819 } 820 b = -1 - tt->rn_bit; 821 t = saved_tt->rn_parent; 822 if (b > t->rn_bit) 823 goto on1; /* Wasn't lifted at all */ 824 do { 825 x = t; 826 t = t->rn_parent; 827 } while (b <= t->rn_bit && x != top); 828 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 829 if (m == saved_m) { 830 *mp = m->rm_mklist; 831 R_Free(m); 832 break; 833 } 834 if (m == NULL) { 835 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 836 if (tt->rn_flags & RNF_NORMAL) 837 return (0); /* Dangling ref to us */ 838 } 839 on1: 840 /* 841 * Eliminate us from tree 842 */ 843 if (tt->rn_flags & RNF_ROOT) 844 return (0); 845 #ifdef RN_DEBUG 846 /* Get us out of the creation list */ 847 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 848 if (t) t->rn_ybro = tt->rn_ybro; 849 #endif 850 t = tt->rn_parent; 851 dupedkey = saved_tt->rn_dupedkey; 852 if (dupedkey) { 853 /* 854 * Here, tt is the deletion target and 855 * saved_tt is the head of the dupekey chain. 856 */ 857 if (tt == saved_tt) { 858 /* remove from head of chain */ 859 x = dupedkey; x->rn_parent = t; 860 if (t->rn_left == tt) 861 t->rn_left = x; 862 else 863 t->rn_right = x; 864 } else { 865 /* find node in front of tt on the chain */ 866 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 867 p = p->rn_dupedkey; 868 if (p) { 869 p->rn_dupedkey = tt->rn_dupedkey; 870 if (tt->rn_dupedkey) /* parent */ 871 tt->rn_dupedkey->rn_parent = p; 872 /* parent */ 873 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 874 } 875 t = tt + 1; 876 if (t->rn_flags & RNF_ACTIVE) { 877 #ifndef RN_DEBUG 878 *++x = *t; 879 p = t->rn_parent; 880 #else 881 b = t->rn_info; 882 *++x = *t; 883 t->rn_info = b; 884 p = t->rn_parent; 885 #endif 886 if (p->rn_left == t) 887 p->rn_left = x; 888 else 889 p->rn_right = x; 890 x->rn_left->rn_parent = x; 891 x->rn_right->rn_parent = x; 892 } 893 goto out; 894 } 895 if (t->rn_left == tt) 896 x = t->rn_right; 897 else 898 x = t->rn_left; 899 p = t->rn_parent; 900 if (p->rn_right == t) 901 p->rn_right = x; 902 else 903 p->rn_left = x; 904 x->rn_parent = p; 905 /* 906 * Demote routes attached to us. 907 */ 908 if (t->rn_mklist) { 909 if (x->rn_bit >= 0) { 910 for (mp = &x->rn_mklist; (m = *mp);) 911 mp = &m->rm_mklist; 912 *mp = t->rn_mklist; 913 } else { 914 /* If there are any key,mask pairs in a sibling 915 duped-key chain, some subset will appear sorted 916 in the same order attached to our mklist */ 917 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 918 if (m == x->rn_mklist) { 919 struct radix_mask *mm = m->rm_mklist; 920 x->rn_mklist = 0; 921 if (--(m->rm_refs) < 0) 922 R_Free(m); 923 m = mm; 924 } 925 if (m) 926 log(LOG_ERR, 927 "rn_delete: Orphaned Mask %p at %p\n", 928 m, x); 929 } 930 } 931 /* 932 * We may be holding an active internal node in the tree. 933 */ 934 x = tt + 1; 935 if (t != x) { 936 #ifndef RN_DEBUG 937 *t = *x; 938 #else 939 b = t->rn_info; 940 *t = *x; 941 t->rn_info = b; 942 #endif 943 t->rn_left->rn_parent = t; 944 t->rn_right->rn_parent = t; 945 p = x->rn_parent; 946 if (p->rn_left == x) 947 p->rn_left = t; 948 else 949 p->rn_right = t; 950 } 951 out: 952 tt->rn_flags &= ~RNF_ACTIVE; 953 tt[1].rn_flags &= ~RNF_ACTIVE; 954 return (tt); 955 } 956 957 /* 958 * This is the same as rn_walktree() except for the parameters and the 959 * exit. 960 */ 961 int 962 rn_walktree_from(struct radix_head *h, void *a, void *m, 963 walktree_f_t *f, void *w) 964 { 965 int error; 966 struct radix_node *base, *next; 967 u_char *xa = (u_char *)a; 968 u_char *xm = (u_char *)m; 969 struct radix_node *rn, *last = NULL; /* shut up gcc */ 970 int stopping = 0; 971 int lastb; 972 973 KASSERT(m != NULL, ("%s: mask needs to be specified", __func__)); 974 975 /* 976 * rn_search_m is sort-of-open-coded here. We cannot use the 977 * function because we need to keep track of the last node seen. 978 */ 979 /* printf("about to search\n"); */ 980 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { 981 last = rn; 982 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", 983 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ 984 if (!(rn->rn_bmask & xm[rn->rn_offset])) { 985 break; 986 } 987 if (rn->rn_bmask & xa[rn->rn_offset]) { 988 rn = rn->rn_right; 989 } else { 990 rn = rn->rn_left; 991 } 992 } 993 /* printf("done searching\n"); */ 994 995 /* 996 * Two cases: either we stepped off the end of our mask, 997 * in which case last == rn, or we reached a leaf, in which 998 * case we want to start from the leaf. 999 */ 1000 if (rn->rn_bit >= 0) 1001 rn = last; 1002 lastb = last->rn_bit; 1003 1004 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 1005 1006 /* 1007 * This gets complicated because we may delete the node 1008 * while applying the function f to it, so we need to calculate 1009 * the successor node in advance. 1010 */ 1011 while (rn->rn_bit >= 0) 1012 rn = rn->rn_left; 1013 1014 while (!stopping) { 1015 /* printf("node %p (%d)\n", rn, rn->rn_bit); */ 1016 base = rn; 1017 /* If at right child go back up, otherwise, go right */ 1018 while (rn->rn_parent->rn_right == rn 1019 && !(rn->rn_flags & RNF_ROOT)) { 1020 rn = rn->rn_parent; 1021 1022 /* if went up beyond last, stop */ 1023 if (rn->rn_bit <= lastb) { 1024 stopping = 1; 1025 /* printf("up too far\n"); */ 1026 /* 1027 * XXX we should jump to the 'Process leaves' 1028 * part, because the values of 'rn' and 'next' 1029 * we compute will not be used. Not a big deal 1030 * because this loop will terminate, but it is 1031 * inefficient and hard to understand! 1032 */ 1033 } 1034 } 1035 1036 /* 1037 * At the top of the tree, no need to traverse the right 1038 * half, prevent the traversal of the entire tree in the 1039 * case of default route. 1040 */ 1041 if (rn->rn_parent->rn_flags & RNF_ROOT) 1042 stopping = 1; 1043 1044 /* Find the next *leaf* since next node might vanish, too */ 1045 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1046 rn = rn->rn_left; 1047 next = rn; 1048 /* Process leaves */ 1049 while ((rn = base) != NULL) { 1050 base = rn->rn_dupedkey; 1051 /* printf("leaf %p\n", rn); */ 1052 if (!(rn->rn_flags & RNF_ROOT) 1053 && (error = (*f)(rn, w))) 1054 return (error); 1055 } 1056 rn = next; 1057 1058 if (rn->rn_flags & RNF_ROOT) { 1059 /* printf("root, stopping"); */ 1060 stopping = 1; 1061 } 1062 1063 } 1064 return (0); 1065 } 1066 1067 int 1068 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w) 1069 { 1070 int error; 1071 struct radix_node *base, *next; 1072 struct radix_node *rn = h->rnh_treetop; 1073 /* 1074 * This gets complicated because we may delete the node 1075 * while applying the function f to it, so we need to calculate 1076 * the successor node in advance. 1077 */ 1078 1079 /* First time through node, go left */ 1080 while (rn->rn_bit >= 0) 1081 rn = rn->rn_left; 1082 for (;;) { 1083 base = rn; 1084 /* If at right child go back up, otherwise, go right */ 1085 while (rn->rn_parent->rn_right == rn 1086 && (rn->rn_flags & RNF_ROOT) == 0) 1087 rn = rn->rn_parent; 1088 /* Find the next *leaf* since next node might vanish, too */ 1089 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1090 rn = rn->rn_left; 1091 next = rn; 1092 /* Process leaves */ 1093 while ((rn = base)) { 1094 base = rn->rn_dupedkey; 1095 if (!(rn->rn_flags & RNF_ROOT) 1096 && (error = (*f)(rn, w))) 1097 return (error); 1098 } 1099 rn = next; 1100 if (rn->rn_flags & RNF_ROOT) 1101 return (0); 1102 } 1103 /* NOTREACHED */ 1104 } 1105 1106 /* 1107 * Initialize an empty tree. This has 3 nodes, which are passed 1108 * via base_nodes (in the order <left,root,right>) and are 1109 * marked RNF_ROOT so they cannot be freed. 1110 * The leaves have all-zero and all-one keys, with significant 1111 * bits starting at 'off'. 1112 */ 1113 void 1114 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off) 1115 { 1116 struct radix_node *t, *tt, *ttt; 1117 1118 t = rn_newpair(rn_zeros, off, base_nodes); 1119 ttt = base_nodes + 2; 1120 t->rn_right = ttt; 1121 t->rn_parent = t; 1122 tt = t->rn_left; /* ... which in turn is base_nodes */ 1123 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1124 tt->rn_bit = -1 - off; 1125 *ttt = *tt; 1126 ttt->rn_key = rn_ones; 1127 1128 rh->rnh_treetop = t; 1129 } 1130 1131 static void 1132 rn_detachhead_internal(struct radix_head *head) 1133 { 1134 1135 KASSERT((head != NULL), 1136 ("%s: head already freed", __func__)); 1137 1138 /* Free <left,root,right> nodes. */ 1139 R_Free(head); 1140 } 1141 1142 /* Functions used by 'struct radix_node_head' users */ 1143 1144 int 1145 rn_inithead(void **head, int off) 1146 { 1147 struct radix_node_head *rnh; 1148 struct radix_mask_head *rmh; 1149 1150 rnh = *head; 1151 rmh = NULL; 1152 1153 if (*head != NULL) 1154 return (1); 1155 1156 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1157 R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh)); 1158 if (rnh == NULL || rmh == NULL) { 1159 if (rnh != NULL) 1160 R_Free(rnh); 1161 if (rmh != NULL) 1162 R_Free(rmh); 1163 return (0); 1164 } 1165 1166 /* Init trees */ 1167 rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off); 1168 rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0); 1169 *head = rnh; 1170 rnh->rh.rnh_masks = rmh; 1171 1172 /* Finally, set base callbacks */ 1173 rnh->rnh_addaddr = rn_addroute; 1174 rnh->rnh_deladdr = rn_delete; 1175 rnh->rnh_matchaddr = rn_match; 1176 rnh->rnh_lookup = rn_lookup; 1177 rnh->rnh_walktree = rn_walktree; 1178 rnh->rnh_walktree_from = rn_walktree_from; 1179 1180 return (1); 1181 } 1182 1183 static int 1184 rn_freeentry(struct radix_node *rn, void *arg) 1185 { 1186 struct radix_head * const rnh = arg; 1187 struct radix_node *x; 1188 1189 x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh); 1190 if (x != NULL) 1191 R_Free(x); 1192 return (0); 1193 } 1194 1195 int 1196 rn_detachhead(void **head) 1197 { 1198 struct radix_node_head *rnh; 1199 1200 KASSERT((head != NULL && *head != NULL), 1201 ("%s: head already freed", __func__)); 1202 1203 rnh = (struct radix_node_head *)(*head); 1204 1205 rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks); 1206 rn_detachhead_internal(&rnh->rh.rnh_masks->head); 1207 rn_detachhead_internal(&rnh->rh); 1208 1209 *head = NULL; 1210 1211 return (1); 1212 } 1213 1214