xref: /freebsd/sys/net/radix.c (revision 6e8394b8baa7d5d9153ab90de6824bcd19b3b4e1)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34  *	$Id: radix.c,v 1.16 1999/04/26 09:05:31 peter Exp $
35  */
36 
37 /*
38  * Routines to build and maintain radix trees for routing lookups.
39  */
40 #ifndef _RADIX_H_
41 #include <sys/param.h>
42 #ifdef	KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #define	M_DONTWAIT M_NOWAIT
46 #include <sys/domain.h>
47 #else
48 #include <stdlib.h>
49 #endif
50 #include <sys/syslog.h>
51 #include <net/radix.h>
52 #endif
53 
54 static int	rn_walktree_from __P((struct radix_node_head *h, void *a,
55 				      void *m, walktree_f_t *f, void *w));
56 static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
57 static struct radix_node
58 	 *rn_insert __P((void *, struct radix_node_head *, int *,
59 			struct radix_node [2])),
60 	 *rn_newpair __P((void *, int, struct radix_node[2])),
61 	 *rn_search __P((void *, struct radix_node *)),
62 	 *rn_search_m __P((void *, struct radix_node *, void *));
63 
64 static int	max_keylen;
65 static struct radix_mask *rn_mkfreelist;
66 static struct radix_node_head *mask_rnhead;
67 static char *addmask_key;
68 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
69 static char *rn_zeros, *rn_ones;
70 
71 #define rn_masktop (mask_rnhead->rnh_treetop)
72 #undef Bcmp
73 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
74 
75 static int	rn_lexobetter __P((void *m_arg, void *n_arg));
76 static struct radix_mask *
77 		rn_new_radix_mask __P((struct radix_node *tt,
78 				       struct radix_mask *next));
79 static int	rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
80 				       int skip));
81 
82 /*
83  * The data structure for the keys is a radix tree with one way
84  * branching removed.  The index rn_b at an internal node n represents a bit
85  * position to be tested.  The tree is arranged so that all descendants
86  * of a node n have keys whose bits all agree up to position rn_b - 1.
87  * (We say the index of n is rn_b.)
88  *
89  * There is at least one descendant which has a one bit at position rn_b,
90  * and at least one with a zero there.
91  *
92  * A route is determined by a pair of key and mask.  We require that the
93  * bit-wise logical and of the key and mask to be the key.
94  * We define the index of a route to associated with the mask to be
95  * the first bit number in the mask where 0 occurs (with bit number 0
96  * representing the highest order bit).
97  *
98  * We say a mask is normal if every bit is 0, past the index of the mask.
99  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
100  * and m is a normal mask, then the route applies to every descendant of n.
101  * If the index(m) < rn_b, this implies the trailing last few bits of k
102  * before bit b are all 0, (and hence consequently true of every descendant
103  * of n), so the route applies to all descendants of the node as well.
104  *
105  * Similar logic shows that a non-normal mask m such that
106  * index(m) <= index(n) could potentially apply to many children of n.
107  * Thus, for each non-host route, we attach its mask to a list at an internal
108  * node as high in the tree as we can go.
109  *
110  * The present version of the code makes use of normal routes in short-
111  * circuiting an explict mask and compare operation when testing whether
112  * a key satisfies a normal route, and also in remembering the unique leaf
113  * that governs a subtree.
114  */
115 
116 static struct radix_node *
117 rn_search(v_arg, head)
118 	void *v_arg;
119 	struct radix_node *head;
120 {
121 	register struct radix_node *x;
122 	register caddr_t v;
123 
124 	for (x = head, v = v_arg; x->rn_b >= 0;) {
125 		if (x->rn_bmask & v[x->rn_off])
126 			x = x->rn_r;
127 		else
128 			x = x->rn_l;
129 	}
130 	return (x);
131 }
132 
133 static struct radix_node *
134 rn_search_m(v_arg, head, m_arg)
135 	struct radix_node *head;
136 	void *v_arg, *m_arg;
137 {
138 	register struct radix_node *x;
139 	register caddr_t v = v_arg, m = m_arg;
140 
141 	for (x = head; x->rn_b >= 0;) {
142 		if ((x->rn_bmask & m[x->rn_off]) &&
143 		    (x->rn_bmask & v[x->rn_off]))
144 			x = x->rn_r;
145 		else
146 			x = x->rn_l;
147 	}
148 	return x;
149 }
150 
151 int
152 rn_refines(m_arg, n_arg)
153 	void *m_arg, *n_arg;
154 {
155 	register caddr_t m = m_arg, n = n_arg;
156 	register caddr_t lim, lim2 = lim = n + *(u_char *)n;
157 	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
158 	int masks_are_equal = 1;
159 
160 	if (longer > 0)
161 		lim -= longer;
162 	while (n < lim) {
163 		if (*n & ~(*m))
164 			return 0;
165 		if (*n++ != *m++)
166 			masks_are_equal = 0;
167 	}
168 	while (n < lim2)
169 		if (*n++)
170 			return 0;
171 	if (masks_are_equal && (longer < 0))
172 		for (lim2 = m - longer; m < lim2; )
173 			if (*m++)
174 				return 1;
175 	return (!masks_are_equal);
176 }
177 
178 struct radix_node *
179 rn_lookup(v_arg, m_arg, head)
180 	void *v_arg, *m_arg;
181 	struct radix_node_head *head;
182 {
183 	register struct radix_node *x;
184 	caddr_t netmask = 0;
185 
186 	if (m_arg) {
187 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
188 			return (0);
189 		netmask = x->rn_key;
190 	}
191 	x = rn_match(v_arg, head);
192 	if (x && netmask) {
193 		while (x && x->rn_mask != netmask)
194 			x = x->rn_dupedkey;
195 	}
196 	return x;
197 }
198 
199 static int
200 rn_satsifies_leaf(trial, leaf, skip)
201 	char *trial;
202 	register struct radix_node *leaf;
203 	int skip;
204 {
205 	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
206 	char *cplim;
207 	int length = min(*(u_char *)cp, *(u_char *)cp2);
208 
209 	if (cp3 == 0)
210 		cp3 = rn_ones;
211 	else
212 		length = min(length, *(u_char *)cp3);
213 	cplim = cp + length; cp3 += skip; cp2 += skip;
214 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
215 		if ((*cp ^ *cp2) & *cp3)
216 			return 0;
217 	return 1;
218 }
219 
220 struct radix_node *
221 rn_match(v_arg, head)
222 	void *v_arg;
223 	struct radix_node_head *head;
224 {
225 	caddr_t v = v_arg;
226 	register struct radix_node *t = head->rnh_treetop, *x;
227 	register caddr_t cp = v, cp2;
228 	caddr_t cplim;
229 	struct radix_node *saved_t, *top = t;
230 	int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
231 	register int test, b, rn_b;
232 
233 	/*
234 	 * Open code rn_search(v, top) to avoid overhead of extra
235 	 * subroutine call.
236 	 */
237 	for (; t->rn_b >= 0; ) {
238 		if (t->rn_bmask & cp[t->rn_off])
239 			t = t->rn_r;
240 		else
241 			t = t->rn_l;
242 	}
243 	/*
244 	 * See if we match exactly as a host destination
245 	 * or at least learn how many bits match, for normal mask finesse.
246 	 *
247 	 * It doesn't hurt us to limit how many bytes to check
248 	 * to the length of the mask, since if it matches we had a genuine
249 	 * match and the leaf we have is the most specific one anyway;
250 	 * if it didn't match with a shorter length it would fail
251 	 * with a long one.  This wins big for class B&C netmasks which
252 	 * are probably the most common case...
253 	 */
254 	if (t->rn_mask)
255 		vlen = *(u_char *)t->rn_mask;
256 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
257 	for (; cp < cplim; cp++, cp2++)
258 		if (*cp != *cp2)
259 			goto on1;
260 	/*
261 	 * This extra grot is in case we are explicitly asked
262 	 * to look up the default.  Ugh!
263 	 */
264 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
265 		t = t->rn_dupedkey;
266 	return t;
267 on1:
268 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
269 	for (b = 7; (test >>= 1) > 0;)
270 		b--;
271 	matched_off = cp - v;
272 	b += matched_off << 3;
273 	rn_b = -1 - b;
274 	/*
275 	 * If there is a host route in a duped-key chain, it will be first.
276 	 */
277 	if ((saved_t = t)->rn_mask == 0)
278 		t = t->rn_dupedkey;
279 	for (; t; t = t->rn_dupedkey)
280 		/*
281 		 * Even if we don't match exactly as a host,
282 		 * we may match if the leaf we wound up at is
283 		 * a route to a net.
284 		 */
285 		if (t->rn_flags & RNF_NORMAL) {
286 			if (rn_b <= t->rn_b)
287 				return t;
288 		} else if (rn_satsifies_leaf(v, t, matched_off))
289 				return t;
290 	t = saved_t;
291 	/* start searching up the tree */
292 	do {
293 		register struct radix_mask *m;
294 		t = t->rn_p;
295 		m = t->rn_mklist;
296 		if (m) {
297 			/*
298 			 * If non-contiguous masks ever become important
299 			 * we can restore the masking and open coding of
300 			 * the search and satisfaction test and put the
301 			 * calculation of "off" back before the "do".
302 			 */
303 			do {
304 				if (m->rm_flags & RNF_NORMAL) {
305 					if (rn_b <= m->rm_b)
306 						return (m->rm_leaf);
307 				} else {
308 					off = min(t->rn_off, matched_off);
309 					x = rn_search_m(v, t, m->rm_mask);
310 					while (x && x->rn_mask != m->rm_mask)
311 						x = x->rn_dupedkey;
312 					if (x && rn_satsifies_leaf(v, x, off))
313 						    return x;
314 				}
315 				m = m->rm_mklist;
316 			} while (m);
317 		}
318 	} while (t != top);
319 	return 0;
320 }
321 
322 #ifdef RN_DEBUG
323 int	rn_nodenum;
324 struct	radix_node *rn_clist;
325 int	rn_saveinfo;
326 int	rn_debug =  1;
327 #endif
328 
329 static struct radix_node *
330 rn_newpair(v, b, nodes)
331 	void *v;
332 	int b;
333 	struct radix_node nodes[2];
334 {
335 	register struct radix_node *tt = nodes, *t = tt + 1;
336 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
337 	t->rn_l = tt; t->rn_off = b >> 3;
338 	tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
339 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
340 #ifdef RN_DEBUG
341 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
342 	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
343 #endif
344 	return t;
345 }
346 
347 static struct radix_node *
348 rn_insert(v_arg, head, dupentry, nodes)
349 	void *v_arg;
350 	struct radix_node_head *head;
351 	int *dupentry;
352 	struct radix_node nodes[2];
353 {
354 	caddr_t v = v_arg;
355 	struct radix_node *top = head->rnh_treetop;
356 	int head_off = top->rn_off, vlen = (int)*((u_char *)v);
357 	register struct radix_node *t = rn_search(v_arg, top);
358 	register caddr_t cp = v + head_off;
359 	register int b;
360 	struct radix_node *tt;
361     	/*
362 	 * Find first bit at which v and t->rn_key differ
363 	 */
364     {
365 	register caddr_t cp2 = t->rn_key + head_off;
366 	register int cmp_res;
367 	caddr_t cplim = v + vlen;
368 
369 	while (cp < cplim)
370 		if (*cp2++ != *cp++)
371 			goto on1;
372 	*dupentry = 1;
373 	return t;
374 on1:
375 	*dupentry = 0;
376 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
377 	for (b = (cp - v) << 3; cmp_res; b--)
378 		cmp_res >>= 1;
379     }
380     {
381 	register struct radix_node *p, *x = top;
382 	cp = v;
383 	do {
384 		p = x;
385 		if (cp[x->rn_off] & x->rn_bmask)
386 			x = x->rn_r;
387 		else x = x->rn_l;
388 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
389 #ifdef RN_DEBUG
390 	if (rn_debug)
391 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
392 #endif
393 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
394 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
395 		p->rn_l = t;
396 	else
397 		p->rn_r = t;
398 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
399 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
400 		t->rn_r = x;
401 	} else {
402 		t->rn_r = tt; t->rn_l = x;
403 	}
404 #ifdef RN_DEBUG
405 	if (rn_debug)
406 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
407 #endif
408     }
409 	return (tt);
410 }
411 
412 struct radix_node *
413 rn_addmask(n_arg, search, skip)
414 	int search, skip;
415 	void *n_arg;
416 {
417 	caddr_t netmask = (caddr_t)n_arg;
418 	register struct radix_node *x;
419 	register caddr_t cp, cplim;
420 	register int b = 0, mlen, j;
421 	int maskduplicated, m0, isnormal;
422 	struct radix_node *saved_x;
423 	static int last_zeroed = 0;
424 
425 	if ((mlen = *(u_char *)netmask) > max_keylen)
426 		mlen = max_keylen;
427 	if (skip == 0)
428 		skip = 1;
429 	if (mlen <= skip)
430 		return (mask_rnhead->rnh_nodes);
431 	if (skip > 1)
432 		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
433 	if ((m0 = mlen) > skip)
434 		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
435 	/*
436 	 * Trim trailing zeroes.
437 	 */
438 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
439 		cp--;
440 	mlen = cp - addmask_key;
441 	if (mlen <= skip) {
442 		if (m0 >= last_zeroed)
443 			last_zeroed = mlen;
444 		return (mask_rnhead->rnh_nodes);
445 	}
446 	if (m0 < last_zeroed)
447 		Bzero(addmask_key + m0, last_zeroed - m0);
448 	*addmask_key = last_zeroed = mlen;
449 	x = rn_search(addmask_key, rn_masktop);
450 	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
451 		x = 0;
452 	if (x || search)
453 		return (x);
454 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
455 	if ((saved_x = x) == 0)
456 		return (0);
457 	Bzero(x, max_keylen + 2 * sizeof (*x));
458 	netmask = cp = (caddr_t)(x + 2);
459 	Bcopy(addmask_key, cp, mlen);
460 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
461 	if (maskduplicated) {
462 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
463 		Free(saved_x);
464 		return (x);
465 	}
466 	/*
467 	 * Calculate index of mask, and check for normalcy.
468 	 */
469 	cplim = netmask + mlen; isnormal = 1;
470 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
471 		cp++;
472 	if (cp != cplim) {
473 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
474 			b++;
475 		if (*cp != normal_chars[b] || cp != (cplim - 1))
476 			isnormal = 0;
477 	}
478 	b += (cp - netmask) << 3;
479 	x->rn_b = -1 - b;
480 	if (isnormal)
481 		x->rn_flags |= RNF_NORMAL;
482 	return (x);
483 }
484 
485 static int	/* XXX: arbitrary ordering for non-contiguous masks */
486 rn_lexobetter(m_arg, n_arg)
487 	void *m_arg, *n_arg;
488 {
489 	register u_char *mp = m_arg, *np = n_arg, *lim;
490 
491 	if (*mp > *np)
492 		return 1;  /* not really, but need to check longer one first */
493 	if (*mp == *np)
494 		for (lim = mp + *mp; mp < lim;)
495 			if (*mp++ > *np++)
496 				return 1;
497 	return 0;
498 }
499 
500 static struct radix_mask *
501 rn_new_radix_mask(tt, next)
502 	register struct radix_node *tt;
503 	register struct radix_mask *next;
504 {
505 	register struct radix_mask *m;
506 
507 	MKGet(m);
508 	if (m == 0) {
509 		log(LOG_ERR, "Mask for route not entered\n");
510 		return (0);
511 	}
512 	Bzero(m, sizeof *m);
513 	m->rm_b = tt->rn_b;
514 	m->rm_flags = tt->rn_flags;
515 	if (tt->rn_flags & RNF_NORMAL)
516 		m->rm_leaf = tt;
517 	else
518 		m->rm_mask = tt->rn_mask;
519 	m->rm_mklist = next;
520 	tt->rn_mklist = m;
521 	return m;
522 }
523 
524 struct radix_node *
525 rn_addroute(v_arg, n_arg, head, treenodes)
526 	void *v_arg, *n_arg;
527 	struct radix_node_head *head;
528 	struct radix_node treenodes[2];
529 {
530 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
531 	register struct radix_node *t, *x = 0, *tt;
532 	struct radix_node *saved_tt, *top = head->rnh_treetop;
533 	short b = 0, b_leaf = 0;
534 	int keyduplicated;
535 	caddr_t mmask;
536 	struct radix_mask *m, **mp;
537 
538 	/*
539 	 * In dealing with non-contiguous masks, there may be
540 	 * many different routes which have the same mask.
541 	 * We will find it useful to have a unique pointer to
542 	 * the mask to speed avoiding duplicate references at
543 	 * nodes and possibly save time in calculating indices.
544 	 */
545 	if (netmask)  {
546 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
547 			return (0);
548 		b_leaf = x->rn_b;
549 		b = -1 - x->rn_b;
550 		netmask = x->rn_key;
551 	}
552 	/*
553 	 * Deal with duplicated keys: attach node to previous instance
554 	 */
555 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
556 	if (keyduplicated) {
557 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
558 			if (tt->rn_mask == netmask)
559 				return (0);
560 			if (netmask == 0 ||
561 			    (tt->rn_mask &&
562 			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
563 			       rn_refines(netmask, tt->rn_mask) ||
564 			       rn_lexobetter(netmask, tt->rn_mask))))
565 				break;
566 		}
567 		/*
568 		 * If the mask is not duplicated, we wouldn't
569 		 * find it among possible duplicate key entries
570 		 * anyway, so the above test doesn't hurt.
571 		 *
572 		 * We sort the masks for a duplicated key the same way as
573 		 * in a masklist -- most specific to least specific.
574 		 * This may require the unfortunate nuisance of relocating
575 		 * the head of the list.
576 		 */
577 		if (tt == saved_tt) {
578 			struct	radix_node *xx = x;
579 			/* link in at head of list */
580 			(tt = treenodes)->rn_dupedkey = t;
581 			tt->rn_flags = t->rn_flags;
582 			tt->rn_p = x = t->rn_p;
583 			t->rn_p = tt;				/* parent */
584 			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
585 			saved_tt = tt; x = xx;
586 		} else {
587 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
588 			t->rn_dupedkey = tt;
589 			tt->rn_p = t;				/* parent */
590 			if (tt->rn_dupedkey)			/* parent */
591 				tt->rn_dupedkey->rn_p = tt;	/* parent */
592 		}
593 #ifdef RN_DEBUG
594 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
595 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
596 #endif
597 		tt->rn_key = (caddr_t) v;
598 		tt->rn_b = -1;
599 		tt->rn_flags = RNF_ACTIVE;
600 	}
601 	/*
602 	 * Put mask in tree.
603 	 */
604 	if (netmask) {
605 		tt->rn_mask = netmask;
606 		tt->rn_b = x->rn_b;
607 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
608 	}
609 	t = saved_tt->rn_p;
610 	if (keyduplicated)
611 		goto on2;
612 	b_leaf = -1 - t->rn_b;
613 	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
614 	/* Promote general routes from below */
615 	if (x->rn_b < 0) {
616 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
617 		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
618 			*mp = m = rn_new_radix_mask(x, 0);
619 			if (m)
620 				mp = &m->rm_mklist;
621 		}
622 	} else if (x->rn_mklist) {
623 		/*
624 		 * Skip over masks whose index is > that of new node
625 		 */
626 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
627 			if (m->rm_b >= b_leaf)
628 				break;
629 		t->rn_mklist = m; *mp = 0;
630 	}
631 on2:
632 	/* Add new route to highest possible ancestor's list */
633 	if ((netmask == 0) || (b > t->rn_b ))
634 		return tt; /* can't lift at all */
635 	b_leaf = tt->rn_b;
636 	do {
637 		x = t;
638 		t = t->rn_p;
639 	} while (b <= t->rn_b && x != top);
640 	/*
641 	 * Search through routes associated with node to
642 	 * insert new route according to index.
643 	 * Need same criteria as when sorting dupedkeys to avoid
644 	 * double loop on deletion.
645 	 */
646 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
647 		if (m->rm_b < b_leaf)
648 			continue;
649 		if (m->rm_b > b_leaf)
650 			break;
651 		if (m->rm_flags & RNF_NORMAL) {
652 			mmask = m->rm_leaf->rn_mask;
653 			if (tt->rn_flags & RNF_NORMAL) {
654 				log(LOG_ERR,
655 				   "Non-unique normal route, mask not entered");
656 				return tt;
657 			}
658 		} else
659 			mmask = m->rm_mask;
660 		if (mmask == netmask) {
661 			m->rm_refs++;
662 			tt->rn_mklist = m;
663 			return tt;
664 		}
665 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
666 			break;
667 	}
668 	*mp = rn_new_radix_mask(tt, *mp);
669 	return tt;
670 }
671 
672 struct radix_node *
673 rn_delete(v_arg, netmask_arg, head)
674 	void *v_arg, *netmask_arg;
675 	struct radix_node_head *head;
676 {
677 	register struct radix_node *t, *p, *x, *tt;
678 	struct radix_mask *m, *saved_m, **mp;
679 	struct radix_node *dupedkey, *saved_tt, *top;
680 	caddr_t v, netmask;
681 	int b, head_off, vlen;
682 
683 	v = v_arg;
684 	netmask = netmask_arg;
685 	x = head->rnh_treetop;
686 	tt = rn_search(v, x);
687 	head_off = x->rn_off;
688 	vlen =  *(u_char *)v;
689 	saved_tt = tt;
690 	top = x;
691 	if (tt == 0 ||
692 	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
693 		return (0);
694 	/*
695 	 * Delete our route from mask lists.
696 	 */
697 	if (netmask) {
698 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
699 			return (0);
700 		netmask = x->rn_key;
701 		while (tt->rn_mask != netmask)
702 			if ((tt = tt->rn_dupedkey) == 0)
703 				return (0);
704 	}
705 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
706 		goto on1;
707 	if (tt->rn_flags & RNF_NORMAL) {
708 		if (m->rm_leaf != tt || m->rm_refs > 0) {
709 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
710 			return 0;  /* dangling ref could cause disaster */
711 		}
712 	} else {
713 		if (m->rm_mask != tt->rn_mask) {
714 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
715 			goto on1;
716 		}
717 		if (--m->rm_refs >= 0)
718 			goto on1;
719 	}
720 	b = -1 - tt->rn_b;
721 	t = saved_tt->rn_p;
722 	if (b > t->rn_b)
723 		goto on1; /* Wasn't lifted at all */
724 	do {
725 		x = t;
726 		t = t->rn_p;
727 	} while (b <= t->rn_b && x != top);
728 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
729 		if (m == saved_m) {
730 			*mp = m->rm_mklist;
731 			MKFree(m);
732 			break;
733 		}
734 	if (m == 0) {
735 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
736 		if (tt->rn_flags & RNF_NORMAL)
737 			return (0); /* Dangling ref to us */
738 	}
739 on1:
740 	/*
741 	 * Eliminate us from tree
742 	 */
743 	if (tt->rn_flags & RNF_ROOT)
744 		return (0);
745 #ifdef RN_DEBUG
746 	/* Get us out of the creation list */
747 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
748 	if (t) t->rn_ybro = tt->rn_ybro;
749 #endif
750 	t = tt->rn_p;
751 	dupedkey = saved_tt->rn_dupedkey;
752 	if (dupedkey) {
753 		/*
754 		 * at this point, tt is the deletion target and saved_tt
755 		 * is the head of the dupekey chain
756 		 */
757 		if (tt == saved_tt) {
758 			/* remove from head of chain */
759 			x = dupedkey; x->rn_p = t;
760 			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
761 		} else {
762 			/* find node in front of tt on the chain */
763 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
764 				p = p->rn_dupedkey;
765 			if (p) {
766 				p->rn_dupedkey = tt->rn_dupedkey;
767 				if (tt->rn_dupedkey)		   /* parent */
768 					tt->rn_dupedkey->rn_p = p; /* parent */
769 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
770 		}
771 		t = tt + 1;
772 		if  (t->rn_flags & RNF_ACTIVE) {
773 #ifndef RN_DEBUG
774 			*++x = *t; p = t->rn_p;
775 #else
776 			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
777 #endif
778 			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
779 			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
780 		}
781 		goto out;
782 	}
783 	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
784 	p = t->rn_p;
785 	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
786 	x->rn_p = p;
787 	/*
788 	 * Demote routes attached to us.
789 	 */
790 	if (t->rn_mklist) {
791 		if (x->rn_b >= 0) {
792 			for (mp = &x->rn_mklist; (m = *mp);)
793 				mp = &m->rm_mklist;
794 			*mp = t->rn_mklist;
795 		} else {
796 			/* If there are any key,mask pairs in a sibling
797 			   duped-key chain, some subset will appear sorted
798 			   in the same order attached to our mklist */
799 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
800 				if (m == x->rn_mklist) {
801 					struct radix_mask *mm = m->rm_mklist;
802 					x->rn_mklist = 0;
803 					if (--(m->rm_refs) < 0)
804 						MKFree(m);
805 					m = mm;
806 				}
807 			if (m)
808 				log(LOG_ERR,
809 				    "rn_delete: Orphaned Mask %p at %p\n",
810 				    (void *)m, (void *)x);
811 		}
812 	}
813 	/*
814 	 * We may be holding an active internal node in the tree.
815 	 */
816 	x = tt + 1;
817 	if (t != x) {
818 #ifndef RN_DEBUG
819 		*t = *x;
820 #else
821 		b = t->rn_info; *t = *x; t->rn_info = b;
822 #endif
823 		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
824 		p = x->rn_p;
825 		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
826 	}
827 out:
828 	tt->rn_flags &= ~RNF_ACTIVE;
829 	tt[1].rn_flags &= ~RNF_ACTIVE;
830 	return (tt);
831 }
832 
833 /*
834  * This is the same as rn_walktree() except for the parameters and the
835  * exit.
836  */
837 static int
838 rn_walktree_from(h, a, m, f, w)
839 	struct radix_node_head *h;
840 	void *a, *m;
841 	walktree_f_t *f;
842 	void *w;
843 {
844 	int error;
845 	struct radix_node *base, *next;
846 	u_char *xa = (u_char *)a;
847 	u_char *xm = (u_char *)m;
848 	register struct radix_node *rn, *last = 0 /* shut up gcc */;
849 	int stopping = 0;
850 	int lastb;
851 
852 	/*
853 	 * rn_search_m is sort-of-open-coded here.
854 	 */
855 	/* printf("about to search\n"); */
856 	for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
857 		last = rn;
858 		/* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
859 		       rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
860 		if (!(rn->rn_bmask & xm[rn->rn_off])) {
861 			break;
862 		}
863 		if (rn->rn_bmask & xa[rn->rn_off]) {
864 			rn = rn->rn_r;
865 		} else {
866 			rn = rn->rn_l;
867 		}
868 	}
869 	/* printf("done searching\n"); */
870 
871 	/*
872 	 * Two cases: either we stepped off the end of our mask,
873 	 * in which case last == rn, or we reached a leaf, in which
874 	 * case we want to start from the last node we looked at.
875 	 * Either way, last is the node we want to start from.
876 	 */
877 	rn = last;
878 	lastb = rn->rn_b;
879 
880 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
881 
882 	/*
883 	 * This gets complicated because we may delete the node
884 	 * while applying the function f to it, so we need to calculate
885 	 * the successor node in advance.
886 	 */
887 	while (rn->rn_b >= 0)
888 		rn = rn->rn_l;
889 
890 	while (!stopping) {
891 		/* printf("node %p (%d)\n", rn, rn->rn_b); */
892 		base = rn;
893 		/* If at right child go back up, otherwise, go right */
894 		while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
895 			rn = rn->rn_p;
896 
897 			/* if went up beyond last, stop */
898 			if (rn->rn_b < lastb) {
899 				stopping = 1;
900 				/* printf("up too far\n"); */
901 			}
902 		}
903 
904 		/* Find the next *leaf* since next node might vanish, too */
905 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
906 			rn = rn->rn_l;
907 		next = rn;
908 		/* Process leaves */
909 		while ((rn = base) != 0) {
910 			base = rn->rn_dupedkey;
911 			/* printf("leaf %p\n", rn); */
912 			if (!(rn->rn_flags & RNF_ROOT)
913 			    && (error = (*f)(rn, w)))
914 				return (error);
915 		}
916 		rn = next;
917 
918 		if (rn->rn_flags & RNF_ROOT) {
919 			/* printf("root, stopping"); */
920 			stopping = 1;
921 		}
922 
923 	}
924 	return 0;
925 }
926 
927 static int
928 rn_walktree(h, f, w)
929 	struct radix_node_head *h;
930 	walktree_f_t *f;
931 	void *w;
932 {
933 	int error;
934 	struct radix_node *base, *next;
935 	register struct radix_node *rn = h->rnh_treetop;
936 	/*
937 	 * This gets complicated because we may delete the node
938 	 * while applying the function f to it, so we need to calculate
939 	 * the successor node in advance.
940 	 */
941 	/* First time through node, go left */
942 	while (rn->rn_b >= 0)
943 		rn = rn->rn_l;
944 	for (;;) {
945 		base = rn;
946 		/* If at right child go back up, otherwise, go right */
947 		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
948 			rn = rn->rn_p;
949 		/* Find the next *leaf* since next node might vanish, too */
950 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
951 			rn = rn->rn_l;
952 		next = rn;
953 		/* Process leaves */
954 		while ((rn = base)) {
955 			base = rn->rn_dupedkey;
956 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
957 				return (error);
958 		}
959 		rn = next;
960 		if (rn->rn_flags & RNF_ROOT)
961 			return (0);
962 	}
963 	/* NOTREACHED */
964 }
965 
966 int
967 rn_inithead(head, off)
968 	void **head;
969 	int off;
970 {
971 	register struct radix_node_head *rnh;
972 	register struct radix_node *t, *tt, *ttt;
973 	if (*head)
974 		return (1);
975 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
976 	if (rnh == 0)
977 		return (0);
978 	Bzero(rnh, sizeof (*rnh));
979 	*head = rnh;
980 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
981 	ttt = rnh->rnh_nodes + 2;
982 	t->rn_r = ttt;
983 	t->rn_p = t;
984 	tt = t->rn_l;
985 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
986 	tt->rn_b = -1 - off;
987 	*ttt = *tt;
988 	ttt->rn_key = rn_ones;
989 	rnh->rnh_addaddr = rn_addroute;
990 	rnh->rnh_deladdr = rn_delete;
991 	rnh->rnh_matchaddr = rn_match;
992 	rnh->rnh_lookup = rn_lookup;
993 	rnh->rnh_walktree = rn_walktree;
994 	rnh->rnh_walktree_from = rn_walktree_from;
995 	rnh->rnh_treetop = t;
996 	return (1);
997 }
998 
999 void
1000 rn_init()
1001 {
1002 	char *cp, *cplim;
1003 #ifdef KERNEL
1004 	struct domain *dom;
1005 
1006 	for (dom = domains; dom; dom = dom->dom_next)
1007 		if (dom->dom_maxrtkey > max_keylen)
1008 			max_keylen = dom->dom_maxrtkey;
1009 #endif
1010 	if (max_keylen == 0) {
1011 		log(LOG_ERR,
1012 		    "rn_init: radix functions require max_keylen be set\n");
1013 		return;
1014 	}
1015 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1016 	if (rn_zeros == NULL)
1017 		panic("rn_init");
1018 	Bzero(rn_zeros, 3 * max_keylen);
1019 	rn_ones = cp = rn_zeros + max_keylen;
1020 	addmask_key = cplim = rn_ones + max_keylen;
1021 	while (cp < cplim)
1022 		*cp++ = -1;
1023 	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1024 		panic("rn_init 2");
1025 }
1026