1 /* 2 * Copyright (c) 1988, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)radix.c 8.4 (Berkeley) 11/2/94 34 * $Id: radix.c,v 1.16 1999/04/26 09:05:31 peter Exp $ 35 */ 36 37 /* 38 * Routines to build and maintain radix trees for routing lookups. 39 */ 40 #ifndef _RADIX_H_ 41 #include <sys/param.h> 42 #ifdef KERNEL 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #define M_DONTWAIT M_NOWAIT 46 #include <sys/domain.h> 47 #else 48 #include <stdlib.h> 49 #endif 50 #include <sys/syslog.h> 51 #include <net/radix.h> 52 #endif 53 54 static int rn_walktree_from __P((struct radix_node_head *h, void *a, 55 void *m, walktree_f_t *f, void *w)); 56 static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *)); 57 static struct radix_node 58 *rn_insert __P((void *, struct radix_node_head *, int *, 59 struct radix_node [2])), 60 *rn_newpair __P((void *, int, struct radix_node[2])), 61 *rn_search __P((void *, struct radix_node *)), 62 *rn_search_m __P((void *, struct radix_node *, void *)); 63 64 static int max_keylen; 65 static struct radix_mask *rn_mkfreelist; 66 static struct radix_node_head *mask_rnhead; 67 static char *addmask_key; 68 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; 69 static char *rn_zeros, *rn_ones; 70 71 #define rn_masktop (mask_rnhead->rnh_treetop) 72 #undef Bcmp 73 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l)) 74 75 static int rn_lexobetter __P((void *m_arg, void *n_arg)); 76 static struct radix_mask * 77 rn_new_radix_mask __P((struct radix_node *tt, 78 struct radix_mask *next)); 79 static int rn_satsifies_leaf __P((char *trial, struct radix_node *leaf, 80 int skip)); 81 82 /* 83 * The data structure for the keys is a radix tree with one way 84 * branching removed. The index rn_b at an internal node n represents a bit 85 * position to be tested. The tree is arranged so that all descendants 86 * of a node n have keys whose bits all agree up to position rn_b - 1. 87 * (We say the index of n is rn_b.) 88 * 89 * There is at least one descendant which has a one bit at position rn_b, 90 * and at least one with a zero there. 91 * 92 * A route is determined by a pair of key and mask. We require that the 93 * bit-wise logical and of the key and mask to be the key. 94 * We define the index of a route to associated with the mask to be 95 * the first bit number in the mask where 0 occurs (with bit number 0 96 * representing the highest order bit). 97 * 98 * We say a mask is normal if every bit is 0, past the index of the mask. 99 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, 100 * and m is a normal mask, then the route applies to every descendant of n. 101 * If the index(m) < rn_b, this implies the trailing last few bits of k 102 * before bit b are all 0, (and hence consequently true of every descendant 103 * of n), so the route applies to all descendants of the node as well. 104 * 105 * Similar logic shows that a non-normal mask m such that 106 * index(m) <= index(n) could potentially apply to many children of n. 107 * Thus, for each non-host route, we attach its mask to a list at an internal 108 * node as high in the tree as we can go. 109 * 110 * The present version of the code makes use of normal routes in short- 111 * circuiting an explict mask and compare operation when testing whether 112 * a key satisfies a normal route, and also in remembering the unique leaf 113 * that governs a subtree. 114 */ 115 116 static struct radix_node * 117 rn_search(v_arg, head) 118 void *v_arg; 119 struct radix_node *head; 120 { 121 register struct radix_node *x; 122 register caddr_t v; 123 124 for (x = head, v = v_arg; x->rn_b >= 0;) { 125 if (x->rn_bmask & v[x->rn_off]) 126 x = x->rn_r; 127 else 128 x = x->rn_l; 129 } 130 return (x); 131 } 132 133 static struct radix_node * 134 rn_search_m(v_arg, head, m_arg) 135 struct radix_node *head; 136 void *v_arg, *m_arg; 137 { 138 register struct radix_node *x; 139 register caddr_t v = v_arg, m = m_arg; 140 141 for (x = head; x->rn_b >= 0;) { 142 if ((x->rn_bmask & m[x->rn_off]) && 143 (x->rn_bmask & v[x->rn_off])) 144 x = x->rn_r; 145 else 146 x = x->rn_l; 147 } 148 return x; 149 } 150 151 int 152 rn_refines(m_arg, n_arg) 153 void *m_arg, *n_arg; 154 { 155 register caddr_t m = m_arg, n = n_arg; 156 register caddr_t lim, lim2 = lim = n + *(u_char *)n; 157 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++); 158 int masks_are_equal = 1; 159 160 if (longer > 0) 161 lim -= longer; 162 while (n < lim) { 163 if (*n & ~(*m)) 164 return 0; 165 if (*n++ != *m++) 166 masks_are_equal = 0; 167 } 168 while (n < lim2) 169 if (*n++) 170 return 0; 171 if (masks_are_equal && (longer < 0)) 172 for (lim2 = m - longer; m < lim2; ) 173 if (*m++) 174 return 1; 175 return (!masks_are_equal); 176 } 177 178 struct radix_node * 179 rn_lookup(v_arg, m_arg, head) 180 void *v_arg, *m_arg; 181 struct radix_node_head *head; 182 { 183 register struct radix_node *x; 184 caddr_t netmask = 0; 185 186 if (m_arg) { 187 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0) 188 return (0); 189 netmask = x->rn_key; 190 } 191 x = rn_match(v_arg, head); 192 if (x && netmask) { 193 while (x && x->rn_mask != netmask) 194 x = x->rn_dupedkey; 195 } 196 return x; 197 } 198 199 static int 200 rn_satsifies_leaf(trial, leaf, skip) 201 char *trial; 202 register struct radix_node *leaf; 203 int skip; 204 { 205 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 206 char *cplim; 207 int length = min(*(u_char *)cp, *(u_char *)cp2); 208 209 if (cp3 == 0) 210 cp3 = rn_ones; 211 else 212 length = min(length, *(u_char *)cp3); 213 cplim = cp + length; cp3 += skip; cp2 += skip; 214 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 215 if ((*cp ^ *cp2) & *cp3) 216 return 0; 217 return 1; 218 } 219 220 struct radix_node * 221 rn_match(v_arg, head) 222 void *v_arg; 223 struct radix_node_head *head; 224 { 225 caddr_t v = v_arg; 226 register struct radix_node *t = head->rnh_treetop, *x; 227 register caddr_t cp = v, cp2; 228 caddr_t cplim; 229 struct radix_node *saved_t, *top = t; 230 int off = t->rn_off, vlen = *(u_char *)cp, matched_off; 231 register int test, b, rn_b; 232 233 /* 234 * Open code rn_search(v, top) to avoid overhead of extra 235 * subroutine call. 236 */ 237 for (; t->rn_b >= 0; ) { 238 if (t->rn_bmask & cp[t->rn_off]) 239 t = t->rn_r; 240 else 241 t = t->rn_l; 242 } 243 /* 244 * See if we match exactly as a host destination 245 * or at least learn how many bits match, for normal mask finesse. 246 * 247 * It doesn't hurt us to limit how many bytes to check 248 * to the length of the mask, since if it matches we had a genuine 249 * match and the leaf we have is the most specific one anyway; 250 * if it didn't match with a shorter length it would fail 251 * with a long one. This wins big for class B&C netmasks which 252 * are probably the most common case... 253 */ 254 if (t->rn_mask) 255 vlen = *(u_char *)t->rn_mask; 256 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 257 for (; cp < cplim; cp++, cp2++) 258 if (*cp != *cp2) 259 goto on1; 260 /* 261 * This extra grot is in case we are explicitly asked 262 * to look up the default. Ugh! 263 */ 264 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey) 265 t = t->rn_dupedkey; 266 return t; 267 on1: 268 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 269 for (b = 7; (test >>= 1) > 0;) 270 b--; 271 matched_off = cp - v; 272 b += matched_off << 3; 273 rn_b = -1 - b; 274 /* 275 * If there is a host route in a duped-key chain, it will be first. 276 */ 277 if ((saved_t = t)->rn_mask == 0) 278 t = t->rn_dupedkey; 279 for (; t; t = t->rn_dupedkey) 280 /* 281 * Even if we don't match exactly as a host, 282 * we may match if the leaf we wound up at is 283 * a route to a net. 284 */ 285 if (t->rn_flags & RNF_NORMAL) { 286 if (rn_b <= t->rn_b) 287 return t; 288 } else if (rn_satsifies_leaf(v, t, matched_off)) 289 return t; 290 t = saved_t; 291 /* start searching up the tree */ 292 do { 293 register struct radix_mask *m; 294 t = t->rn_p; 295 m = t->rn_mklist; 296 if (m) { 297 /* 298 * If non-contiguous masks ever become important 299 * we can restore the masking and open coding of 300 * the search and satisfaction test and put the 301 * calculation of "off" back before the "do". 302 */ 303 do { 304 if (m->rm_flags & RNF_NORMAL) { 305 if (rn_b <= m->rm_b) 306 return (m->rm_leaf); 307 } else { 308 off = min(t->rn_off, matched_off); 309 x = rn_search_m(v, t, m->rm_mask); 310 while (x && x->rn_mask != m->rm_mask) 311 x = x->rn_dupedkey; 312 if (x && rn_satsifies_leaf(v, x, off)) 313 return x; 314 } 315 m = m->rm_mklist; 316 } while (m); 317 } 318 } while (t != top); 319 return 0; 320 } 321 322 #ifdef RN_DEBUG 323 int rn_nodenum; 324 struct radix_node *rn_clist; 325 int rn_saveinfo; 326 int rn_debug = 1; 327 #endif 328 329 static struct radix_node * 330 rn_newpair(v, b, nodes) 331 void *v; 332 int b; 333 struct radix_node nodes[2]; 334 { 335 register struct radix_node *tt = nodes, *t = tt + 1; 336 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7); 337 t->rn_l = tt; t->rn_off = b >> 3; 338 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t; 339 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 340 #ifdef RN_DEBUG 341 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 342 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 343 #endif 344 return t; 345 } 346 347 static struct radix_node * 348 rn_insert(v_arg, head, dupentry, nodes) 349 void *v_arg; 350 struct radix_node_head *head; 351 int *dupentry; 352 struct radix_node nodes[2]; 353 { 354 caddr_t v = v_arg; 355 struct radix_node *top = head->rnh_treetop; 356 int head_off = top->rn_off, vlen = (int)*((u_char *)v); 357 register struct radix_node *t = rn_search(v_arg, top); 358 register caddr_t cp = v + head_off; 359 register int b; 360 struct radix_node *tt; 361 /* 362 * Find first bit at which v and t->rn_key differ 363 */ 364 { 365 register caddr_t cp2 = t->rn_key + head_off; 366 register int cmp_res; 367 caddr_t cplim = v + vlen; 368 369 while (cp < cplim) 370 if (*cp2++ != *cp++) 371 goto on1; 372 *dupentry = 1; 373 return t; 374 on1: 375 *dupentry = 0; 376 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 377 for (b = (cp - v) << 3; cmp_res; b--) 378 cmp_res >>= 1; 379 } 380 { 381 register struct radix_node *p, *x = top; 382 cp = v; 383 do { 384 p = x; 385 if (cp[x->rn_off] & x->rn_bmask) 386 x = x->rn_r; 387 else x = x->rn_l; 388 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */ 389 #ifdef RN_DEBUG 390 if (rn_debug) 391 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 392 #endif 393 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l; 394 if ((cp[p->rn_off] & p->rn_bmask) == 0) 395 p->rn_l = t; 396 else 397 p->rn_r = t; 398 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */ 399 if ((cp[t->rn_off] & t->rn_bmask) == 0) { 400 t->rn_r = x; 401 } else { 402 t->rn_r = tt; t->rn_l = x; 403 } 404 #ifdef RN_DEBUG 405 if (rn_debug) 406 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 407 #endif 408 } 409 return (tt); 410 } 411 412 struct radix_node * 413 rn_addmask(n_arg, search, skip) 414 int search, skip; 415 void *n_arg; 416 { 417 caddr_t netmask = (caddr_t)n_arg; 418 register struct radix_node *x; 419 register caddr_t cp, cplim; 420 register int b = 0, mlen, j; 421 int maskduplicated, m0, isnormal; 422 struct radix_node *saved_x; 423 static int last_zeroed = 0; 424 425 if ((mlen = *(u_char *)netmask) > max_keylen) 426 mlen = max_keylen; 427 if (skip == 0) 428 skip = 1; 429 if (mlen <= skip) 430 return (mask_rnhead->rnh_nodes); 431 if (skip > 1) 432 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 433 if ((m0 = mlen) > skip) 434 Bcopy(netmask + skip, addmask_key + skip, mlen - skip); 435 /* 436 * Trim trailing zeroes. 437 */ 438 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 439 cp--; 440 mlen = cp - addmask_key; 441 if (mlen <= skip) { 442 if (m0 >= last_zeroed) 443 last_zeroed = mlen; 444 return (mask_rnhead->rnh_nodes); 445 } 446 if (m0 < last_zeroed) 447 Bzero(addmask_key + m0, last_zeroed - m0); 448 *addmask_key = last_zeroed = mlen; 449 x = rn_search(addmask_key, rn_masktop); 450 if (Bcmp(addmask_key, x->rn_key, mlen) != 0) 451 x = 0; 452 if (x || search) 453 return (x); 454 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); 455 if ((saved_x = x) == 0) 456 return (0); 457 Bzero(x, max_keylen + 2 * sizeof (*x)); 458 netmask = cp = (caddr_t)(x + 2); 459 Bcopy(addmask_key, cp, mlen); 460 x = rn_insert(cp, mask_rnhead, &maskduplicated, x); 461 if (maskduplicated) { 462 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 463 Free(saved_x); 464 return (x); 465 } 466 /* 467 * Calculate index of mask, and check for normalcy. 468 */ 469 cplim = netmask + mlen; isnormal = 1; 470 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) 471 cp++; 472 if (cp != cplim) { 473 for (j = 0x80; (j & *cp) != 0; j >>= 1) 474 b++; 475 if (*cp != normal_chars[b] || cp != (cplim - 1)) 476 isnormal = 0; 477 } 478 b += (cp - netmask) << 3; 479 x->rn_b = -1 - b; 480 if (isnormal) 481 x->rn_flags |= RNF_NORMAL; 482 return (x); 483 } 484 485 static int /* XXX: arbitrary ordering for non-contiguous masks */ 486 rn_lexobetter(m_arg, n_arg) 487 void *m_arg, *n_arg; 488 { 489 register u_char *mp = m_arg, *np = n_arg, *lim; 490 491 if (*mp > *np) 492 return 1; /* not really, but need to check longer one first */ 493 if (*mp == *np) 494 for (lim = mp + *mp; mp < lim;) 495 if (*mp++ > *np++) 496 return 1; 497 return 0; 498 } 499 500 static struct radix_mask * 501 rn_new_radix_mask(tt, next) 502 register struct radix_node *tt; 503 register struct radix_mask *next; 504 { 505 register struct radix_mask *m; 506 507 MKGet(m); 508 if (m == 0) { 509 log(LOG_ERR, "Mask for route not entered\n"); 510 return (0); 511 } 512 Bzero(m, sizeof *m); 513 m->rm_b = tt->rn_b; 514 m->rm_flags = tt->rn_flags; 515 if (tt->rn_flags & RNF_NORMAL) 516 m->rm_leaf = tt; 517 else 518 m->rm_mask = tt->rn_mask; 519 m->rm_mklist = next; 520 tt->rn_mklist = m; 521 return m; 522 } 523 524 struct radix_node * 525 rn_addroute(v_arg, n_arg, head, treenodes) 526 void *v_arg, *n_arg; 527 struct radix_node_head *head; 528 struct radix_node treenodes[2]; 529 { 530 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 531 register struct radix_node *t, *x = 0, *tt; 532 struct radix_node *saved_tt, *top = head->rnh_treetop; 533 short b = 0, b_leaf = 0; 534 int keyduplicated; 535 caddr_t mmask; 536 struct radix_mask *m, **mp; 537 538 /* 539 * In dealing with non-contiguous masks, there may be 540 * many different routes which have the same mask. 541 * We will find it useful to have a unique pointer to 542 * the mask to speed avoiding duplicate references at 543 * nodes and possibly save time in calculating indices. 544 */ 545 if (netmask) { 546 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0) 547 return (0); 548 b_leaf = x->rn_b; 549 b = -1 - x->rn_b; 550 netmask = x->rn_key; 551 } 552 /* 553 * Deal with duplicated keys: attach node to previous instance 554 */ 555 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 556 if (keyduplicated) { 557 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 558 if (tt->rn_mask == netmask) 559 return (0); 560 if (netmask == 0 || 561 (tt->rn_mask && 562 ((b_leaf < tt->rn_b) || /* index(netmask) > node */ 563 rn_refines(netmask, tt->rn_mask) || 564 rn_lexobetter(netmask, tt->rn_mask)))) 565 break; 566 } 567 /* 568 * If the mask is not duplicated, we wouldn't 569 * find it among possible duplicate key entries 570 * anyway, so the above test doesn't hurt. 571 * 572 * We sort the masks for a duplicated key the same way as 573 * in a masklist -- most specific to least specific. 574 * This may require the unfortunate nuisance of relocating 575 * the head of the list. 576 */ 577 if (tt == saved_tt) { 578 struct radix_node *xx = x; 579 /* link in at head of list */ 580 (tt = treenodes)->rn_dupedkey = t; 581 tt->rn_flags = t->rn_flags; 582 tt->rn_p = x = t->rn_p; 583 t->rn_p = tt; /* parent */ 584 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt; 585 saved_tt = tt; x = xx; 586 } else { 587 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 588 t->rn_dupedkey = tt; 589 tt->rn_p = t; /* parent */ 590 if (tt->rn_dupedkey) /* parent */ 591 tt->rn_dupedkey->rn_p = tt; /* parent */ 592 } 593 #ifdef RN_DEBUG 594 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 595 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 596 #endif 597 tt->rn_key = (caddr_t) v; 598 tt->rn_b = -1; 599 tt->rn_flags = RNF_ACTIVE; 600 } 601 /* 602 * Put mask in tree. 603 */ 604 if (netmask) { 605 tt->rn_mask = netmask; 606 tt->rn_b = x->rn_b; 607 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 608 } 609 t = saved_tt->rn_p; 610 if (keyduplicated) 611 goto on2; 612 b_leaf = -1 - t->rn_b; 613 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r; 614 /* Promote general routes from below */ 615 if (x->rn_b < 0) { 616 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 617 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) { 618 *mp = m = rn_new_radix_mask(x, 0); 619 if (m) 620 mp = &m->rm_mklist; 621 } 622 } else if (x->rn_mklist) { 623 /* 624 * Skip over masks whose index is > that of new node 625 */ 626 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 627 if (m->rm_b >= b_leaf) 628 break; 629 t->rn_mklist = m; *mp = 0; 630 } 631 on2: 632 /* Add new route to highest possible ancestor's list */ 633 if ((netmask == 0) || (b > t->rn_b )) 634 return tt; /* can't lift at all */ 635 b_leaf = tt->rn_b; 636 do { 637 x = t; 638 t = t->rn_p; 639 } while (b <= t->rn_b && x != top); 640 /* 641 * Search through routes associated with node to 642 * insert new route according to index. 643 * Need same criteria as when sorting dupedkeys to avoid 644 * double loop on deletion. 645 */ 646 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 647 if (m->rm_b < b_leaf) 648 continue; 649 if (m->rm_b > b_leaf) 650 break; 651 if (m->rm_flags & RNF_NORMAL) { 652 mmask = m->rm_leaf->rn_mask; 653 if (tt->rn_flags & RNF_NORMAL) { 654 log(LOG_ERR, 655 "Non-unique normal route, mask not entered"); 656 return tt; 657 } 658 } else 659 mmask = m->rm_mask; 660 if (mmask == netmask) { 661 m->rm_refs++; 662 tt->rn_mklist = m; 663 return tt; 664 } 665 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) 666 break; 667 } 668 *mp = rn_new_radix_mask(tt, *mp); 669 return tt; 670 } 671 672 struct radix_node * 673 rn_delete(v_arg, netmask_arg, head) 674 void *v_arg, *netmask_arg; 675 struct radix_node_head *head; 676 { 677 register struct radix_node *t, *p, *x, *tt; 678 struct radix_mask *m, *saved_m, **mp; 679 struct radix_node *dupedkey, *saved_tt, *top; 680 caddr_t v, netmask; 681 int b, head_off, vlen; 682 683 v = v_arg; 684 netmask = netmask_arg; 685 x = head->rnh_treetop; 686 tt = rn_search(v, x); 687 head_off = x->rn_off; 688 vlen = *(u_char *)v; 689 saved_tt = tt; 690 top = x; 691 if (tt == 0 || 692 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 693 return (0); 694 /* 695 * Delete our route from mask lists. 696 */ 697 if (netmask) { 698 if ((x = rn_addmask(netmask, 1, head_off)) == 0) 699 return (0); 700 netmask = x->rn_key; 701 while (tt->rn_mask != netmask) 702 if ((tt = tt->rn_dupedkey) == 0) 703 return (0); 704 } 705 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) 706 goto on1; 707 if (tt->rn_flags & RNF_NORMAL) { 708 if (m->rm_leaf != tt || m->rm_refs > 0) { 709 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 710 return 0; /* dangling ref could cause disaster */ 711 } 712 } else { 713 if (m->rm_mask != tt->rn_mask) { 714 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 715 goto on1; 716 } 717 if (--m->rm_refs >= 0) 718 goto on1; 719 } 720 b = -1 - tt->rn_b; 721 t = saved_tt->rn_p; 722 if (b > t->rn_b) 723 goto on1; /* Wasn't lifted at all */ 724 do { 725 x = t; 726 t = t->rn_p; 727 } while (b <= t->rn_b && x != top); 728 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 729 if (m == saved_m) { 730 *mp = m->rm_mklist; 731 MKFree(m); 732 break; 733 } 734 if (m == 0) { 735 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 736 if (tt->rn_flags & RNF_NORMAL) 737 return (0); /* Dangling ref to us */ 738 } 739 on1: 740 /* 741 * Eliminate us from tree 742 */ 743 if (tt->rn_flags & RNF_ROOT) 744 return (0); 745 #ifdef RN_DEBUG 746 /* Get us out of the creation list */ 747 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 748 if (t) t->rn_ybro = tt->rn_ybro; 749 #endif 750 t = tt->rn_p; 751 dupedkey = saved_tt->rn_dupedkey; 752 if (dupedkey) { 753 /* 754 * at this point, tt is the deletion target and saved_tt 755 * is the head of the dupekey chain 756 */ 757 if (tt == saved_tt) { 758 /* remove from head of chain */ 759 x = dupedkey; x->rn_p = t; 760 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x; 761 } else { 762 /* find node in front of tt on the chain */ 763 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 764 p = p->rn_dupedkey; 765 if (p) { 766 p->rn_dupedkey = tt->rn_dupedkey; 767 if (tt->rn_dupedkey) /* parent */ 768 tt->rn_dupedkey->rn_p = p; /* parent */ 769 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 770 } 771 t = tt + 1; 772 if (t->rn_flags & RNF_ACTIVE) { 773 #ifndef RN_DEBUG 774 *++x = *t; p = t->rn_p; 775 #else 776 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p; 777 #endif 778 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x; 779 x->rn_l->rn_p = x; x->rn_r->rn_p = x; 780 } 781 goto out; 782 } 783 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l; 784 p = t->rn_p; 785 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x; 786 x->rn_p = p; 787 /* 788 * Demote routes attached to us. 789 */ 790 if (t->rn_mklist) { 791 if (x->rn_b >= 0) { 792 for (mp = &x->rn_mklist; (m = *mp);) 793 mp = &m->rm_mklist; 794 *mp = t->rn_mklist; 795 } else { 796 /* If there are any key,mask pairs in a sibling 797 duped-key chain, some subset will appear sorted 798 in the same order attached to our mklist */ 799 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 800 if (m == x->rn_mklist) { 801 struct radix_mask *mm = m->rm_mklist; 802 x->rn_mklist = 0; 803 if (--(m->rm_refs) < 0) 804 MKFree(m); 805 m = mm; 806 } 807 if (m) 808 log(LOG_ERR, 809 "rn_delete: Orphaned Mask %p at %p\n", 810 (void *)m, (void *)x); 811 } 812 } 813 /* 814 * We may be holding an active internal node in the tree. 815 */ 816 x = tt + 1; 817 if (t != x) { 818 #ifndef RN_DEBUG 819 *t = *x; 820 #else 821 b = t->rn_info; *t = *x; t->rn_info = b; 822 #endif 823 t->rn_l->rn_p = t; t->rn_r->rn_p = t; 824 p = x->rn_p; 825 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t; 826 } 827 out: 828 tt->rn_flags &= ~RNF_ACTIVE; 829 tt[1].rn_flags &= ~RNF_ACTIVE; 830 return (tt); 831 } 832 833 /* 834 * This is the same as rn_walktree() except for the parameters and the 835 * exit. 836 */ 837 static int 838 rn_walktree_from(h, a, m, f, w) 839 struct radix_node_head *h; 840 void *a, *m; 841 walktree_f_t *f; 842 void *w; 843 { 844 int error; 845 struct radix_node *base, *next; 846 u_char *xa = (u_char *)a; 847 u_char *xm = (u_char *)m; 848 register struct radix_node *rn, *last = 0 /* shut up gcc */; 849 int stopping = 0; 850 int lastb; 851 852 /* 853 * rn_search_m is sort-of-open-coded here. 854 */ 855 /* printf("about to search\n"); */ 856 for (rn = h->rnh_treetop; rn->rn_b >= 0; ) { 857 last = rn; 858 /* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n", 859 rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */ 860 if (!(rn->rn_bmask & xm[rn->rn_off])) { 861 break; 862 } 863 if (rn->rn_bmask & xa[rn->rn_off]) { 864 rn = rn->rn_r; 865 } else { 866 rn = rn->rn_l; 867 } 868 } 869 /* printf("done searching\n"); */ 870 871 /* 872 * Two cases: either we stepped off the end of our mask, 873 * in which case last == rn, or we reached a leaf, in which 874 * case we want to start from the last node we looked at. 875 * Either way, last is the node we want to start from. 876 */ 877 rn = last; 878 lastb = rn->rn_b; 879 880 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 881 882 /* 883 * This gets complicated because we may delete the node 884 * while applying the function f to it, so we need to calculate 885 * the successor node in advance. 886 */ 887 while (rn->rn_b >= 0) 888 rn = rn->rn_l; 889 890 while (!stopping) { 891 /* printf("node %p (%d)\n", rn, rn->rn_b); */ 892 base = rn; 893 /* If at right child go back up, otherwise, go right */ 894 while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) { 895 rn = rn->rn_p; 896 897 /* if went up beyond last, stop */ 898 if (rn->rn_b < lastb) { 899 stopping = 1; 900 /* printf("up too far\n"); */ 901 } 902 } 903 904 /* Find the next *leaf* since next node might vanish, too */ 905 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) 906 rn = rn->rn_l; 907 next = rn; 908 /* Process leaves */ 909 while ((rn = base) != 0) { 910 base = rn->rn_dupedkey; 911 /* printf("leaf %p\n", rn); */ 912 if (!(rn->rn_flags & RNF_ROOT) 913 && (error = (*f)(rn, w))) 914 return (error); 915 } 916 rn = next; 917 918 if (rn->rn_flags & RNF_ROOT) { 919 /* printf("root, stopping"); */ 920 stopping = 1; 921 } 922 923 } 924 return 0; 925 } 926 927 static int 928 rn_walktree(h, f, w) 929 struct radix_node_head *h; 930 walktree_f_t *f; 931 void *w; 932 { 933 int error; 934 struct radix_node *base, *next; 935 register struct radix_node *rn = h->rnh_treetop; 936 /* 937 * This gets complicated because we may delete the node 938 * while applying the function f to it, so we need to calculate 939 * the successor node in advance. 940 */ 941 /* First time through node, go left */ 942 while (rn->rn_b >= 0) 943 rn = rn->rn_l; 944 for (;;) { 945 base = rn; 946 /* If at right child go back up, otherwise, go right */ 947 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) 948 rn = rn->rn_p; 949 /* Find the next *leaf* since next node might vanish, too */ 950 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) 951 rn = rn->rn_l; 952 next = rn; 953 /* Process leaves */ 954 while ((rn = base)) { 955 base = rn->rn_dupedkey; 956 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) 957 return (error); 958 } 959 rn = next; 960 if (rn->rn_flags & RNF_ROOT) 961 return (0); 962 } 963 /* NOTREACHED */ 964 } 965 966 int 967 rn_inithead(head, off) 968 void **head; 969 int off; 970 { 971 register struct radix_node_head *rnh; 972 register struct radix_node *t, *tt, *ttt; 973 if (*head) 974 return (1); 975 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh)); 976 if (rnh == 0) 977 return (0); 978 Bzero(rnh, sizeof (*rnh)); 979 *head = rnh; 980 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); 981 ttt = rnh->rnh_nodes + 2; 982 t->rn_r = ttt; 983 t->rn_p = t; 984 tt = t->rn_l; 985 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 986 tt->rn_b = -1 - off; 987 *ttt = *tt; 988 ttt->rn_key = rn_ones; 989 rnh->rnh_addaddr = rn_addroute; 990 rnh->rnh_deladdr = rn_delete; 991 rnh->rnh_matchaddr = rn_match; 992 rnh->rnh_lookup = rn_lookup; 993 rnh->rnh_walktree = rn_walktree; 994 rnh->rnh_walktree_from = rn_walktree_from; 995 rnh->rnh_treetop = t; 996 return (1); 997 } 998 999 void 1000 rn_init() 1001 { 1002 char *cp, *cplim; 1003 #ifdef KERNEL 1004 struct domain *dom; 1005 1006 for (dom = domains; dom; dom = dom->dom_next) 1007 if (dom->dom_maxrtkey > max_keylen) 1008 max_keylen = dom->dom_maxrtkey; 1009 #endif 1010 if (max_keylen == 0) { 1011 log(LOG_ERR, 1012 "rn_init: radix functions require max_keylen be set\n"); 1013 return; 1014 } 1015 R_Malloc(rn_zeros, char *, 3 * max_keylen); 1016 if (rn_zeros == NULL) 1017 panic("rn_init"); 1018 Bzero(rn_zeros, 3 * max_keylen); 1019 rn_ones = cp = rn_zeros + max_keylen; 1020 addmask_key = cplim = rn_ones + max_keylen; 1021 while (cp < cplim) 1022 *cp++ = -1; 1023 if (rn_inithead((void **)&mask_rnhead, 0) == 0) 1024 panic("rn_init 2"); 1025 } 1026