xref: /freebsd/sys/net/radix.c (revision 6780ab54325a71e7e70112b11657973edde8655e)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)radix.c	8.5 (Berkeley) 5/19/95
34  * $FreeBSD$
35  */
36 
37 /*
38  * Routines to build and maintain radix trees for routing lookups.
39  */
40 #ifndef _RADIX_H_
41 #include <sys/param.h>
42 #ifdef	_KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/domain.h>
46 #else
47 #include <stdlib.h>
48 #endif
49 #include <sys/syslog.h>
50 #include <net/radix.h>
51 #endif
52 
53 static int	rn_walktree_from(struct radix_node_head *h, void *a, void *m,
54 		    walktree_f_t *f, void *w);
55 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
56 static struct radix_node
57 	 *rn_insert(void *, struct radix_node_head *, int *,
58 	     struct radix_node [2]),
59 	 *rn_newpair(void *, int, struct radix_node[2]),
60 	 *rn_search(void *, struct radix_node *),
61 	 *rn_search_m(void *, struct radix_node *, void *);
62 
63 static int	max_keylen;
64 static struct radix_mask *rn_mkfreelist;
65 static struct radix_node_head *mask_rnhead;
66 static char *addmask_key;
67 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
68 static char *rn_zeros, *rn_ones;
69 
70 #define rn_masktop (mask_rnhead->rnh_treetop)
71 #undef Bcmp
72 #define Bcmp(a, b, l) \
73 	((l) == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)(l)))
74 
75 static int	rn_lexobetter(void *m_arg, void *n_arg);
76 static struct radix_mask *
77 		rn_new_radix_mask(struct radix_node *tt,
78 		    struct radix_mask *next);
79 static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
80 		    int skip);
81 
82 /*
83  * The data structure for the keys is a radix tree with one way
84  * branching removed.  The index rn_bit at an internal node n represents a bit
85  * position to be tested.  The tree is arranged so that all descendants
86  * of a node n have keys whose bits all agree up to position rn_bit - 1.
87  * (We say the index of n is rn_bit.)
88  *
89  * There is at least one descendant which has a one bit at position rn_bit,
90  * and at least one with a zero there.
91  *
92  * A route is determined by a pair of key and mask.  We require that the
93  * bit-wise logical and of the key and mask to be the key.
94  * We define the index of a route to associated with the mask to be
95  * the first bit number in the mask where 0 occurs (with bit number 0
96  * representing the highest order bit).
97  *
98  * We say a mask is normal if every bit is 0, past the index of the mask.
99  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
100  * and m is a normal mask, then the route applies to every descendant of n.
101  * If the index(m) < rn_bit, this implies the trailing last few bits of k
102  * before bit b are all 0, (and hence consequently true of every descendant
103  * of n), so the route applies to all descendants of the node as well.
104  *
105  * Similar logic shows that a non-normal mask m such that
106  * index(m) <= index(n) could potentially apply to many children of n.
107  * Thus, for each non-host route, we attach its mask to a list at an internal
108  * node as high in the tree as we can go.
109  *
110  * The present version of the code makes use of normal routes in short-
111  * circuiting an explict mask and compare operation when testing whether
112  * a key satisfies a normal route, and also in remembering the unique leaf
113  * that governs a subtree.
114  */
115 
116 static struct radix_node *
117 rn_search(v_arg, head)
118 	void *v_arg;
119 	struct radix_node *head;
120 {
121 	register struct radix_node *x;
122 	register caddr_t v;
123 
124 	for (x = head, v = v_arg; x->rn_bit >= 0;) {
125 		if (x->rn_bmask & v[x->rn_offset])
126 			x = x->rn_right;
127 		else
128 			x = x->rn_left;
129 	}
130 	return (x);
131 }
132 
133 static struct radix_node *
134 rn_search_m(v_arg, head, m_arg)
135 	struct radix_node *head;
136 	void *v_arg, *m_arg;
137 {
138 	register struct radix_node *x;
139 	register caddr_t v = v_arg, m = m_arg;
140 
141 	for (x = head; x->rn_bit >= 0;) {
142 		if ((x->rn_bmask & m[x->rn_offset]) &&
143 		    (x->rn_bmask & v[x->rn_offset]))
144 			x = x->rn_right;
145 		else
146 			x = x->rn_left;
147 	}
148 	return x;
149 }
150 
151 int
152 rn_refines(m_arg, n_arg)
153 	void *m_arg, *n_arg;
154 {
155 	register caddr_t m = m_arg, n = n_arg;
156 	register caddr_t lim, lim2 = lim = n + *(u_char *)n;
157 	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
158 	int masks_are_equal = 1;
159 
160 	if (longer > 0)
161 		lim -= longer;
162 	while (n < lim) {
163 		if (*n & ~(*m))
164 			return 0;
165 		if (*n++ != *m++)
166 			masks_are_equal = 0;
167 	}
168 	while (n < lim2)
169 		if (*n++)
170 			return 0;
171 	if (masks_are_equal && (longer < 0))
172 		for (lim2 = m - longer; m < lim2; )
173 			if (*m++)
174 				return 1;
175 	return (!masks_are_equal);
176 }
177 
178 struct radix_node *
179 rn_lookup(v_arg, m_arg, head)
180 	void *v_arg, *m_arg;
181 	struct radix_node_head *head;
182 {
183 	register struct radix_node *x;
184 	caddr_t netmask = 0;
185 
186 	if (m_arg) {
187 		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
188 		if (x == 0)
189 			return (0);
190 		netmask = x->rn_key;
191 	}
192 	x = rn_match(v_arg, head);
193 	if (x && netmask) {
194 		while (x && x->rn_mask != netmask)
195 			x = x->rn_dupedkey;
196 	}
197 	return x;
198 }
199 
200 static int
201 rn_satisfies_leaf(trial, leaf, skip)
202 	char *trial;
203 	register struct radix_node *leaf;
204 	int skip;
205 {
206 	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
207 	char *cplim;
208 	int length = min(*(u_char *)cp, *(u_char *)cp2);
209 
210 	if (cp3 == 0)
211 		cp3 = rn_ones;
212 	else
213 		length = min(length, *(u_char *)cp3);
214 	cplim = cp + length; cp3 += skip; cp2 += skip;
215 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
216 		if ((*cp ^ *cp2) & *cp3)
217 			return 0;
218 	return 1;
219 }
220 
221 struct radix_node *
222 rn_match(v_arg, head)
223 	void *v_arg;
224 	struct radix_node_head *head;
225 {
226 	caddr_t v = v_arg;
227 	register struct radix_node *t = head->rnh_treetop, *x;
228 	register caddr_t cp = v, cp2;
229 	caddr_t cplim;
230 	struct radix_node *saved_t, *top = t;
231 	int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
232 	register int test, b, rn_bit;
233 
234 	/*
235 	 * Open code rn_search(v, top) to avoid overhead of extra
236 	 * subroutine call.
237 	 */
238 	for (; t->rn_bit >= 0; ) {
239 		if (t->rn_bmask & cp[t->rn_offset])
240 			t = t->rn_right;
241 		else
242 			t = t->rn_left;
243 	}
244 	/*
245 	 * See if we match exactly as a host destination
246 	 * or at least learn how many bits match, for normal mask finesse.
247 	 *
248 	 * It doesn't hurt us to limit how many bytes to check
249 	 * to the length of the mask, since if it matches we had a genuine
250 	 * match and the leaf we have is the most specific one anyway;
251 	 * if it didn't match with a shorter length it would fail
252 	 * with a long one.  This wins big for class B&C netmasks which
253 	 * are probably the most common case...
254 	 */
255 	if (t->rn_mask)
256 		vlen = *(u_char *)t->rn_mask;
257 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
258 	for (; cp < cplim; cp++, cp2++)
259 		if (*cp != *cp2)
260 			goto on1;
261 	/*
262 	 * This extra grot is in case we are explicitly asked
263 	 * to look up the default.  Ugh!
264 	 *
265 	 * Never return the root node itself, it seems to cause a
266 	 * lot of confusion.
267 	 */
268 	if (t->rn_flags & RNF_ROOT)
269 		t = t->rn_dupedkey;
270 	return t;
271 on1:
272 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
273 	for (b = 7; (test >>= 1) > 0;)
274 		b--;
275 	matched_off = cp - v;
276 	b += matched_off << 3;
277 	rn_bit = -1 - b;
278 	/*
279 	 * If there is a host route in a duped-key chain, it will be first.
280 	 */
281 	if ((saved_t = t)->rn_mask == 0)
282 		t = t->rn_dupedkey;
283 	for (; t; t = t->rn_dupedkey)
284 		/*
285 		 * Even if we don't match exactly as a host,
286 		 * we may match if the leaf we wound up at is
287 		 * a route to a net.
288 		 */
289 		if (t->rn_flags & RNF_NORMAL) {
290 			if (rn_bit <= t->rn_bit)
291 				return t;
292 		} else if (rn_satisfies_leaf(v, t, matched_off))
293 				return t;
294 	t = saved_t;
295 	/* start searching up the tree */
296 	do {
297 		register struct radix_mask *m;
298 		t = t->rn_parent;
299 		m = t->rn_mklist;
300 		/*
301 		 * If non-contiguous masks ever become important
302 		 * we can restore the masking and open coding of
303 		 * the search and satisfaction test and put the
304 		 * calculation of "off" back before the "do".
305 		 */
306 		while (m) {
307 			if (m->rm_flags & RNF_NORMAL) {
308 				if (rn_bit <= m->rm_bit)
309 					return (m->rm_leaf);
310 			} else {
311 				off = min(t->rn_offset, matched_off);
312 				x = rn_search_m(v, t, m->rm_mask);
313 				while (x && x->rn_mask != m->rm_mask)
314 					x = x->rn_dupedkey;
315 				if (x && rn_satisfies_leaf(v, x, off))
316 					return x;
317 			}
318 			m = m->rm_mklist;
319 		}
320 	} while (t != top);
321 	return 0;
322 }
323 
324 #ifdef RN_DEBUG
325 int	rn_nodenum;
326 struct	radix_node *rn_clist;
327 int	rn_saveinfo;
328 int	rn_debug =  1;
329 #endif
330 
331 static struct radix_node *
332 rn_newpair(v, b, nodes)
333 	void *v;
334 	int b;
335 	struct radix_node nodes[2];
336 {
337 	register struct radix_node *tt = nodes, *t = tt + 1;
338 	t->rn_bit = b;
339 	t->rn_bmask = 0x80 >> (b & 7);
340 	t->rn_left = tt;
341 	t->rn_offset = b >> 3;
342 	tt->rn_bit = -1;
343 	tt->rn_key = (caddr_t)v;
344 	tt->rn_parent = t;
345 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
346 	tt->rn_mklist = t->rn_mklist = 0;
347 #ifdef RN_DEBUG
348 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
349 	tt->rn_twin = t;
350 	tt->rn_ybro = rn_clist;
351 	rn_clist = tt;
352 #endif
353 	return t;
354 }
355 
356 static struct radix_node *
357 rn_insert(v_arg, head, dupentry, nodes)
358 	void *v_arg;
359 	struct radix_node_head *head;
360 	int *dupentry;
361 	struct radix_node nodes[2];
362 {
363 	caddr_t v = v_arg;
364 	struct radix_node *top = head->rnh_treetop;
365 	int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
366 	register struct radix_node *t = rn_search(v_arg, top);
367 	register caddr_t cp = v + head_off;
368 	register int b;
369 	struct radix_node *tt;
370     	/*
371 	 * Find first bit at which v and t->rn_key differ
372 	 */
373     {
374 	register caddr_t cp2 = t->rn_key + head_off;
375 	register int cmp_res;
376 	caddr_t cplim = v + vlen;
377 
378 	while (cp < cplim)
379 		if (*cp2++ != *cp++)
380 			goto on1;
381 	*dupentry = 1;
382 	return t;
383 on1:
384 	*dupentry = 0;
385 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
386 	for (b = (cp - v) << 3; cmp_res; b--)
387 		cmp_res >>= 1;
388     }
389     {
390 	register struct radix_node *p, *x = top;
391 	cp = v;
392 	do {
393 		p = x;
394 		if (cp[x->rn_offset] & x->rn_bmask)
395 			x = x->rn_right;
396 		else
397 			x = x->rn_left;
398 	} while (b > (unsigned) x->rn_bit);
399 				/* x->rn_bit < b && x->rn_bit >= 0 */
400 #ifdef RN_DEBUG
401 	if (rn_debug)
402 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
403 #endif
404 	t = rn_newpair(v_arg, b, nodes);
405 	tt = t->rn_left;
406 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
407 		p->rn_left = t;
408 	else
409 		p->rn_right = t;
410 	x->rn_parent = t;
411 	t->rn_parent = p; /* frees x, p as temp vars below */
412 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
413 		t->rn_right = x;
414 	} else {
415 		t->rn_right = tt;
416 		t->rn_left = x;
417 	}
418 #ifdef RN_DEBUG
419 	if (rn_debug)
420 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
421 #endif
422     }
423 	return (tt);
424 }
425 
426 struct radix_node *
427 rn_addmask(n_arg, search, skip)
428 	int search, skip;
429 	void *n_arg;
430 {
431 	caddr_t netmask = (caddr_t)n_arg;
432 	register struct radix_node *x;
433 	register caddr_t cp, cplim;
434 	register int b = 0, mlen, j;
435 	int maskduplicated, m0, isnormal;
436 	struct radix_node *saved_x;
437 	static int last_zeroed = 0;
438 
439 	if ((mlen = *(u_char *)netmask) > max_keylen)
440 		mlen = max_keylen;
441 	if (skip == 0)
442 		skip = 1;
443 	if (mlen <= skip)
444 		return (mask_rnhead->rnh_nodes);
445 	if (skip > 1)
446 		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
447 	if ((m0 = mlen) > skip)
448 		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
449 	/*
450 	 * Trim trailing zeroes.
451 	 */
452 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
453 		cp--;
454 	mlen = cp - addmask_key;
455 	if (mlen <= skip) {
456 		if (m0 >= last_zeroed)
457 			last_zeroed = mlen;
458 		return (mask_rnhead->rnh_nodes);
459 	}
460 	if (m0 < last_zeroed)
461 		Bzero(addmask_key + m0, last_zeroed - m0);
462 	*addmask_key = last_zeroed = mlen;
463 	x = rn_search(addmask_key, rn_masktop);
464 	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
465 		x = 0;
466 	if (x || search)
467 		return (x);
468 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
469 	if ((saved_x = x) == 0)
470 		return (0);
471 	Bzero(x, max_keylen + 2 * sizeof (*x));
472 	netmask = cp = (caddr_t)(x + 2);
473 	Bcopy(addmask_key, cp, mlen);
474 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
475 	if (maskduplicated) {
476 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
477 		Free(saved_x);
478 		return (x);
479 	}
480 	/*
481 	 * Calculate index of mask, and check for normalcy.
482 	 */
483 	cplim = netmask + mlen; isnormal = 1;
484 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
485 		cp++;
486 	if (cp != cplim) {
487 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
488 			b++;
489 		if (*cp != normal_chars[b] || cp != (cplim - 1))
490 			isnormal = 0;
491 	}
492 	b += (cp - netmask) << 3;
493 	x->rn_bit = -1 - b;
494 	if (isnormal)
495 		x->rn_flags |= RNF_NORMAL;
496 	return (x);
497 }
498 
499 static int	/* XXX: arbitrary ordering for non-contiguous masks */
500 rn_lexobetter(m_arg, n_arg)
501 	void *m_arg, *n_arg;
502 {
503 	register u_char *mp = m_arg, *np = n_arg, *lim;
504 
505 	if (*mp > *np)
506 		return 1;  /* not really, but need to check longer one first */
507 	if (*mp == *np)
508 		for (lim = mp + *mp; mp < lim;)
509 			if (*mp++ > *np++)
510 				return 1;
511 	return 0;
512 }
513 
514 static struct radix_mask *
515 rn_new_radix_mask(tt, next)
516 	register struct radix_node *tt;
517 	register struct radix_mask *next;
518 {
519 	register struct radix_mask *m;
520 
521 	MKGet(m);
522 	if (m == 0) {
523 		log(LOG_ERR, "Mask for route not entered\n");
524 		return (0);
525 	}
526 	Bzero(m, sizeof *m);
527 	m->rm_bit = tt->rn_bit;
528 	m->rm_flags = tt->rn_flags;
529 	if (tt->rn_flags & RNF_NORMAL)
530 		m->rm_leaf = tt;
531 	else
532 		m->rm_mask = tt->rn_mask;
533 	m->rm_mklist = next;
534 	tt->rn_mklist = m;
535 	return m;
536 }
537 
538 struct radix_node *
539 rn_addroute(v_arg, n_arg, head, treenodes)
540 	void *v_arg, *n_arg;
541 	struct radix_node_head *head;
542 	struct radix_node treenodes[2];
543 {
544 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
545 	register struct radix_node *t, *x = 0, *tt;
546 	struct radix_node *saved_tt, *top = head->rnh_treetop;
547 	short b = 0, b_leaf = 0;
548 	int keyduplicated;
549 	caddr_t mmask;
550 	struct radix_mask *m, **mp;
551 
552 	/*
553 	 * In dealing with non-contiguous masks, there may be
554 	 * many different routes which have the same mask.
555 	 * We will find it useful to have a unique pointer to
556 	 * the mask to speed avoiding duplicate references at
557 	 * nodes and possibly save time in calculating indices.
558 	 */
559 	if (netmask)  {
560 		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
561 			return (0);
562 		b_leaf = x->rn_bit;
563 		b = -1 - x->rn_bit;
564 		netmask = x->rn_key;
565 	}
566 	/*
567 	 * Deal with duplicated keys: attach node to previous instance
568 	 */
569 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
570 	if (keyduplicated) {
571 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
572 			if (tt->rn_mask == netmask)
573 				return (0);
574 			if (netmask == 0 ||
575 			    (tt->rn_mask &&
576 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
577 			      || rn_refines(netmask, tt->rn_mask)
578 			      || rn_lexobetter(netmask, tt->rn_mask))))
579 				break;
580 		}
581 		/*
582 		 * If the mask is not duplicated, we wouldn't
583 		 * find it among possible duplicate key entries
584 		 * anyway, so the above test doesn't hurt.
585 		 *
586 		 * We sort the masks for a duplicated key the same way as
587 		 * in a masklist -- most specific to least specific.
588 		 * This may require the unfortunate nuisance of relocating
589 		 * the head of the list.
590 		 *
591 		 * We also reverse, or doubly link the list through the
592 		 * parent pointer.
593 		 */
594 		if (tt == saved_tt) {
595 			struct	radix_node *xx = x;
596 			/* link in at head of list */
597 			(tt = treenodes)->rn_dupedkey = t;
598 			tt->rn_flags = t->rn_flags;
599 			tt->rn_parent = x = t->rn_parent;
600 			t->rn_parent = tt;	 		/* parent */
601 			if (x->rn_left == t)
602 				x->rn_left = tt;
603 			else
604 				x->rn_right = tt;
605 			saved_tt = tt; x = xx;
606 		} else {
607 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
608 			t->rn_dupedkey = tt;
609 			tt->rn_parent = t;			/* parent */
610 			if (tt->rn_dupedkey)			/* parent */
611 				tt->rn_dupedkey->rn_parent = tt; /* parent */
612 		}
613 #ifdef RN_DEBUG
614 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
615 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
616 #endif
617 		tt->rn_key = (caddr_t) v;
618 		tt->rn_bit = -1;
619 		tt->rn_flags = RNF_ACTIVE;
620 	}
621 	/*
622 	 * Put mask in tree.
623 	 */
624 	if (netmask) {
625 		tt->rn_mask = netmask;
626 		tt->rn_bit = x->rn_bit;
627 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
628 	}
629 	t = saved_tt->rn_parent;
630 	if (keyduplicated)
631 		goto on2;
632 	b_leaf = -1 - t->rn_bit;
633 	if (t->rn_right == saved_tt)
634 		x = t->rn_left;
635 	else
636 		x = t->rn_right;
637 	/* Promote general routes from below */
638 	if (x->rn_bit < 0) {
639 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
640 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
641 			*mp = m = rn_new_radix_mask(x, 0);
642 			if (m)
643 				mp = &m->rm_mklist;
644 		}
645 	} else if (x->rn_mklist) {
646 		/*
647 		 * Skip over masks whose index is > that of new node
648 		 */
649 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
650 			if (m->rm_bit >= b_leaf)
651 				break;
652 		t->rn_mklist = m; *mp = 0;
653 	}
654 on2:
655 	/* Add new route to highest possible ancestor's list */
656 	if ((netmask == 0) || (b > t->rn_bit ))
657 		return tt; /* can't lift at all */
658 	b_leaf = tt->rn_bit;
659 	do {
660 		x = t;
661 		t = t->rn_parent;
662 	} while (b <= t->rn_bit && x != top);
663 	/*
664 	 * Search through routes associated with node to
665 	 * insert new route according to index.
666 	 * Need same criteria as when sorting dupedkeys to avoid
667 	 * double loop on deletion.
668 	 */
669 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
670 		if (m->rm_bit < b_leaf)
671 			continue;
672 		if (m->rm_bit > b_leaf)
673 			break;
674 		if (m->rm_flags & RNF_NORMAL) {
675 			mmask = m->rm_leaf->rn_mask;
676 			if (tt->rn_flags & RNF_NORMAL) {
677 			    log(LOG_ERR,
678 			        "Non-unique normal route, mask not entered\n");
679 				return tt;
680 			}
681 		} else
682 			mmask = m->rm_mask;
683 		if (mmask == netmask) {
684 			m->rm_refs++;
685 			tt->rn_mklist = m;
686 			return tt;
687 		}
688 		if (rn_refines(netmask, mmask)
689 		    || rn_lexobetter(netmask, mmask))
690 			break;
691 	}
692 	*mp = rn_new_radix_mask(tt, *mp);
693 	return tt;
694 }
695 
696 struct radix_node *
697 rn_delete(v_arg, netmask_arg, head)
698 	void *v_arg, *netmask_arg;
699 	struct radix_node_head *head;
700 {
701 	register struct radix_node *t, *p, *x, *tt;
702 	struct radix_mask *m, *saved_m, **mp;
703 	struct radix_node *dupedkey, *saved_tt, *top;
704 	caddr_t v, netmask;
705 	int b, head_off, vlen;
706 
707 	v = v_arg;
708 	netmask = netmask_arg;
709 	x = head->rnh_treetop;
710 	tt = rn_search(v, x);
711 	head_off = x->rn_offset;
712 	vlen =  *(u_char *)v;
713 	saved_tt = tt;
714 	top = x;
715 	if (tt == 0 ||
716 	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
717 		return (0);
718 	/*
719 	 * Delete our route from mask lists.
720 	 */
721 	if (netmask) {
722 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
723 			return (0);
724 		netmask = x->rn_key;
725 		while (tt->rn_mask != netmask)
726 			if ((tt = tt->rn_dupedkey) == 0)
727 				return (0);
728 	}
729 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
730 		goto on1;
731 	if (tt->rn_flags & RNF_NORMAL) {
732 		if (m->rm_leaf != tt || m->rm_refs > 0) {
733 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
734 			return 0;  /* dangling ref could cause disaster */
735 		}
736 	} else {
737 		if (m->rm_mask != tt->rn_mask) {
738 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
739 			goto on1;
740 		}
741 		if (--m->rm_refs >= 0)
742 			goto on1;
743 	}
744 	b = -1 - tt->rn_bit;
745 	t = saved_tt->rn_parent;
746 	if (b > t->rn_bit)
747 		goto on1; /* Wasn't lifted at all */
748 	do {
749 		x = t;
750 		t = t->rn_parent;
751 	} while (b <= t->rn_bit && x != top);
752 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
753 		if (m == saved_m) {
754 			*mp = m->rm_mklist;
755 			MKFree(m);
756 			break;
757 		}
758 	if (m == 0) {
759 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
760 		if (tt->rn_flags & RNF_NORMAL)
761 			return (0); /* Dangling ref to us */
762 	}
763 on1:
764 	/*
765 	 * Eliminate us from tree
766 	 */
767 	if (tt->rn_flags & RNF_ROOT)
768 		return (0);
769 #ifdef RN_DEBUG
770 	/* Get us out of the creation list */
771 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
772 	if (t) t->rn_ybro = tt->rn_ybro;
773 #endif
774 	t = tt->rn_parent;
775 	dupedkey = saved_tt->rn_dupedkey;
776 	if (dupedkey) {
777 		/*
778 		 * Here, tt is the deletion target and
779 		 * saved_tt is the head of the dupekey chain.
780 		 */
781 		if (tt == saved_tt) {
782 			/* remove from head of chain */
783 			x = dupedkey; x->rn_parent = t;
784 			if (t->rn_left == tt)
785 				t->rn_left = x;
786 			else
787 				t->rn_right = x;
788 		} else {
789 			/* find node in front of tt on the chain */
790 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
791 				p = p->rn_dupedkey;
792 			if (p) {
793 				p->rn_dupedkey = tt->rn_dupedkey;
794 				if (tt->rn_dupedkey)		/* parent */
795 					tt->rn_dupedkey->rn_parent = p;
796 								/* parent */
797 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
798 		}
799 		t = tt + 1;
800 		if  (t->rn_flags & RNF_ACTIVE) {
801 #ifndef RN_DEBUG
802 			*++x = *t;
803 			p = t->rn_parent;
804 #else
805 			b = t->rn_info;
806 			*++x = *t;
807 			t->rn_info = b;
808 			p = t->rn_parent;
809 #endif
810 			if (p->rn_left == t)
811 				p->rn_left = x;
812 			else
813 				p->rn_right = x;
814 			x->rn_left->rn_parent = x;
815 			x->rn_right->rn_parent = x;
816 		}
817 		goto out;
818 	}
819 	if (t->rn_left == tt)
820 		x = t->rn_right;
821 	else
822 		x = t->rn_left;
823 	p = t->rn_parent;
824 	if (p->rn_right == t)
825 		p->rn_right = x;
826 	else
827 		p->rn_left = x;
828 	x->rn_parent = p;
829 	/*
830 	 * Demote routes attached to us.
831 	 */
832 	if (t->rn_mklist) {
833 		if (x->rn_bit >= 0) {
834 			for (mp = &x->rn_mklist; (m = *mp);)
835 				mp = &m->rm_mklist;
836 			*mp = t->rn_mklist;
837 		} else {
838 			/* If there are any key,mask pairs in a sibling
839 			   duped-key chain, some subset will appear sorted
840 			   in the same order attached to our mklist */
841 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
842 				if (m == x->rn_mklist) {
843 					struct radix_mask *mm = m->rm_mklist;
844 					x->rn_mklist = 0;
845 					if (--(m->rm_refs) < 0)
846 						MKFree(m);
847 					m = mm;
848 				}
849 			if (m)
850 				log(LOG_ERR,
851 				    "rn_delete: Orphaned Mask %p at %p\n",
852 				    (void *)m, (void *)x);
853 		}
854 	}
855 	/*
856 	 * We may be holding an active internal node in the tree.
857 	 */
858 	x = tt + 1;
859 	if (t != x) {
860 #ifndef RN_DEBUG
861 		*t = *x;
862 #else
863 		b = t->rn_info;
864 		*t = *x;
865 		t->rn_info = b;
866 #endif
867 		t->rn_left->rn_parent = t;
868 		t->rn_right->rn_parent = t;
869 		p = x->rn_parent;
870 		if (p->rn_left == x)
871 			p->rn_left = t;
872 		else
873 			p->rn_right = t;
874 	}
875 out:
876 	tt->rn_flags &= ~RNF_ACTIVE;
877 	tt[1].rn_flags &= ~RNF_ACTIVE;
878 	return (tt);
879 }
880 
881 /*
882  * This is the same as rn_walktree() except for the parameters and the
883  * exit.
884  */
885 static int
886 rn_walktree_from(h, a, m, f, w)
887 	struct radix_node_head *h;
888 	void *a, *m;
889 	walktree_f_t *f;
890 	void *w;
891 {
892 	int error;
893 	struct radix_node *base, *next;
894 	u_char *xa = (u_char *)a;
895 	u_char *xm = (u_char *)m;
896 	register struct radix_node *rn, *last = 0 /* shut up gcc */;
897 	int stopping = 0;
898 	int lastb;
899 
900 	/*
901 	 * rn_search_m is sort-of-open-coded here.
902 	 */
903 	/* printf("about to search\n"); */
904 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
905 		last = rn;
906 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
907 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
908 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
909 			break;
910 		}
911 		if (rn->rn_bmask & xa[rn->rn_offset]) {
912 			rn = rn->rn_right;
913 		} else {
914 			rn = rn->rn_left;
915 		}
916 	}
917 	/* printf("done searching\n"); */
918 
919 	/*
920 	 * Two cases: either we stepped off the end of our mask,
921 	 * in which case last == rn, or we reached a leaf, in which
922 	 * case we want to start from the last node we looked at.
923 	 * Either way, last is the node we want to start from.
924 	 */
925 	rn = last;
926 	lastb = rn->rn_bit;
927 
928 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
929 
930 	/*
931 	 * This gets complicated because we may delete the node
932 	 * while applying the function f to it, so we need to calculate
933 	 * the successor node in advance.
934 	 */
935 	while (rn->rn_bit >= 0)
936 		rn = rn->rn_left;
937 
938 	while (!stopping) {
939 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
940 		base = rn;
941 		/* If at right child go back up, otherwise, go right */
942 		while (rn->rn_parent->rn_right == rn
943 		       && !(rn->rn_flags & RNF_ROOT)) {
944 			rn = rn->rn_parent;
945 
946 			/* if went up beyond last, stop */
947 			if (rn->rn_bit < lastb) {
948 				stopping = 1;
949 				/* printf("up too far\n"); */
950 			}
951 		}
952 
953 		/* Find the next *leaf* since next node might vanish, too */
954 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
955 			rn = rn->rn_left;
956 		next = rn;
957 		/* Process leaves */
958 		while ((rn = base) != 0) {
959 			base = rn->rn_dupedkey;
960 			/* printf("leaf %p\n", rn); */
961 			if (!(rn->rn_flags & RNF_ROOT)
962 			    && (error = (*f)(rn, w)))
963 				return (error);
964 		}
965 		rn = next;
966 
967 		if (rn->rn_flags & RNF_ROOT) {
968 			/* printf("root, stopping"); */
969 			stopping = 1;
970 		}
971 
972 	}
973 	return 0;
974 }
975 
976 static int
977 rn_walktree(h, f, w)
978 	struct radix_node_head *h;
979 	walktree_f_t *f;
980 	void *w;
981 {
982 	int error;
983 	struct radix_node *base, *next;
984 	register struct radix_node *rn = h->rnh_treetop;
985 	/*
986 	 * This gets complicated because we may delete the node
987 	 * while applying the function f to it, so we need to calculate
988 	 * the successor node in advance.
989 	 */
990 	/* First time through node, go left */
991 	while (rn->rn_bit >= 0)
992 		rn = rn->rn_left;
993 	for (;;) {
994 		base = rn;
995 		/* If at right child go back up, otherwise, go right */
996 		while (rn->rn_parent->rn_right == rn
997 		       && (rn->rn_flags & RNF_ROOT) == 0)
998 			rn = rn->rn_parent;
999 		/* Find the next *leaf* since next node might vanish, too */
1000 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1001 			rn = rn->rn_left;
1002 		next = rn;
1003 		/* Process leaves */
1004 		while ((rn = base)) {
1005 			base = rn->rn_dupedkey;
1006 			if (!(rn->rn_flags & RNF_ROOT)
1007 			    && (error = (*f)(rn, w)))
1008 				return (error);
1009 		}
1010 		rn = next;
1011 		if (rn->rn_flags & RNF_ROOT)
1012 			return (0);
1013 	}
1014 	/* NOTREACHED */
1015 }
1016 
1017 int
1018 rn_inithead(head, off)
1019 	void **head;
1020 	int off;
1021 {
1022 	register struct radix_node_head *rnh;
1023 	register struct radix_node *t, *tt, *ttt;
1024 	if (*head)
1025 		return (1);
1026 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1027 	if (rnh == 0)
1028 		return (0);
1029 	Bzero(rnh, sizeof (*rnh));
1030 	RADIX_NODE_HEAD_LOCK_INIT(rnh);
1031 	*head = rnh;
1032 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1033 	ttt = rnh->rnh_nodes + 2;
1034 	t->rn_right = ttt;
1035 	t->rn_parent = t;
1036 	tt = t->rn_left;
1037 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1038 	tt->rn_bit = -1 - off;
1039 	*ttt = *tt;
1040 	ttt->rn_key = rn_ones;
1041 	rnh->rnh_addaddr = rn_addroute;
1042 	rnh->rnh_deladdr = rn_delete;
1043 	rnh->rnh_matchaddr = rn_match;
1044 	rnh->rnh_lookup = rn_lookup;
1045 	rnh->rnh_walktree = rn_walktree;
1046 	rnh->rnh_walktree_from = rn_walktree_from;
1047 	rnh->rnh_treetop = t;
1048 	return (1);
1049 }
1050 
1051 void
1052 rn_init()
1053 {
1054 	char *cp, *cplim;
1055 #ifdef _KERNEL
1056 	struct domain *dom;
1057 
1058 	for (dom = domains; dom; dom = dom->dom_next)
1059 		if (dom->dom_maxrtkey > max_keylen)
1060 			max_keylen = dom->dom_maxrtkey;
1061 #endif
1062 	if (max_keylen == 0) {
1063 		log(LOG_ERR,
1064 		    "rn_init: radix functions require max_keylen be set\n");
1065 		return;
1066 	}
1067 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1068 	if (rn_zeros == NULL)
1069 		panic("rn_init");
1070 	Bzero(rn_zeros, 3 * max_keylen);
1071 	rn_ones = cp = rn_zeros + max_keylen;
1072 	addmask_key = cplim = rn_ones + max_keylen;
1073 	while (cp < cplim)
1074 		*cp++ = -1;
1075 	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1076 		panic("rn_init 2");
1077 }
1078