1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)radix.c 8.5 (Berkeley) 5/19/95 32 */ 33 34 /* 35 * Routines to build and maintain radix trees for routing lookups. 36 */ 37 #include <sys/param.h> 38 #ifdef _KERNEL 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/rmlock.h> 42 #include <sys/systm.h> 43 #include <sys/malloc.h> 44 #include <sys/syslog.h> 45 #include <net/radix.h> 46 #else /* !_KERNEL */ 47 #include <stdio.h> 48 #include <strings.h> 49 #include <stdlib.h> 50 #define log(x, arg...) fprintf(stderr, ## arg) 51 #define panic(x) fprintf(stderr, "PANIC: %s", x), exit(1) 52 #define min(a, b) ((a) < (b) ? (a) : (b) ) 53 #include <net/radix.h> 54 #endif /* !_KERNEL */ 55 56 static struct radix_node 57 *rn_insert(void *, struct radix_head *, int *, 58 struct radix_node [2]), 59 *rn_newpair(void *, int, struct radix_node[2]), 60 *rn_search(const void *, struct radix_node *), 61 *rn_search_m(const void *, struct radix_node *, void *); 62 static struct radix_node *rn_addmask(const void *, struct radix_mask_head *, int,int); 63 64 static void rn_detachhead_internal(struct radix_head *); 65 66 #define RADIX_MAX_KEY_LEN 32 67 68 static char rn_zeros[RADIX_MAX_KEY_LEN]; 69 static char rn_ones[RADIX_MAX_KEY_LEN] = { 70 -1, -1, -1, -1, -1, -1, -1, -1, 71 -1, -1, -1, -1, -1, -1, -1, -1, 72 -1, -1, -1, -1, -1, -1, -1, -1, 73 -1, -1, -1, -1, -1, -1, -1, -1, 74 }; 75 76 static int rn_lexobetter(const void *m_arg, const void *n_arg); 77 static struct radix_mask * 78 rn_new_radix_mask(struct radix_node *tt, 79 struct radix_mask *next); 80 static int rn_satisfies_leaf(const char *trial, struct radix_node *leaf, 81 int skip); 82 83 /* 84 * The data structure for the keys is a radix tree with one way 85 * branching removed. The index rn_bit at an internal node n represents a bit 86 * position to be tested. The tree is arranged so that all descendants 87 * of a node n have keys whose bits all agree up to position rn_bit - 1. 88 * (We say the index of n is rn_bit.) 89 * 90 * There is at least one descendant which has a one bit at position rn_bit, 91 * and at least one with a zero there. 92 * 93 * A route is determined by a pair of key and mask. We require that the 94 * bit-wise logical and of the key and mask to be the key. 95 * We define the index of a route to associated with the mask to be 96 * the first bit number in the mask where 0 occurs (with bit number 0 97 * representing the highest order bit). 98 * 99 * We say a mask is normal if every bit is 0, past the index of the mask. 100 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 101 * and m is a normal mask, then the route applies to every descendant of n. 102 * If the index(m) < rn_bit, this implies the trailing last few bits of k 103 * before bit b are all 0, (and hence consequently true of every descendant 104 * of n), so the route applies to all descendants of the node as well. 105 * 106 * Similar logic shows that a non-normal mask m such that 107 * index(m) <= index(n) could potentially apply to many children of n. 108 * Thus, for each non-host route, we attach its mask to a list at an internal 109 * node as high in the tree as we can go. 110 * 111 * The present version of the code makes use of normal routes in short- 112 * circuiting an explict mask and compare operation when testing whether 113 * a key satisfies a normal route, and also in remembering the unique leaf 114 * that governs a subtree. 115 */ 116 117 /* 118 * Most of the functions in this code assume that the key/mask arguments 119 * are sockaddr-like structures, where the first byte is an u_char 120 * indicating the size of the entire structure. 121 * 122 * To make the assumption more explicit, we use the LEN() macro to access 123 * this field. It is safe to pass an expression with side effects 124 * to LEN() as the argument is evaluated only once. 125 * We cast the result to int as this is the dominant usage. 126 */ 127 #define LEN(x) ( (int) (*(const u_char *)(x)) ) 128 129 /* 130 * XXX THIS NEEDS TO BE FIXED 131 * In the code, pointers to keys and masks are passed as either 132 * 'void *' (because callers use to pass pointers of various kinds), or 133 * 'caddr_t' (which is fine for pointer arithmetics, but not very 134 * clean when you dereference it to access data). Furthermore, caddr_t 135 * is really 'char *', while the natural type to operate on keys and 136 * masks would be 'u_char'. This mismatch require a lot of casts and 137 * intermediate variables to adapt types that clutter the code. 138 */ 139 140 /* 141 * Search a node in the tree matching the key. 142 */ 143 static struct radix_node * 144 rn_search(const void *v_arg, struct radix_node *head) 145 { 146 struct radix_node *x; 147 c_caddr_t v; 148 149 for (x = head, v = v_arg; x->rn_bit >= 0;) { 150 if (x->rn_bmask & v[x->rn_offset]) 151 x = x->rn_right; 152 else 153 x = x->rn_left; 154 } 155 return (x); 156 } 157 158 /* 159 * Same as above, but with an additional mask. 160 * XXX note this function is used only once. 161 */ 162 static struct radix_node * 163 rn_search_m(const void *v_arg, struct radix_node *head, void *m_arg) 164 { 165 struct radix_node *x; 166 c_caddr_t v = v_arg, m = m_arg; 167 168 for (x = head; x->rn_bit >= 0;) { 169 if ((x->rn_bmask & m[x->rn_offset]) && 170 (x->rn_bmask & v[x->rn_offset])) 171 x = x->rn_right; 172 else 173 x = x->rn_left; 174 } 175 return (x); 176 } 177 178 int 179 rn_refines(const void *m_arg, const void *n_arg) 180 { 181 c_caddr_t m = m_arg, n = n_arg; 182 c_caddr_t lim, lim2 = lim = n + LEN(n); 183 int longer = LEN(n++) - LEN(m++); 184 int masks_are_equal = 1; 185 186 if (longer > 0) 187 lim -= longer; 188 while (n < lim) { 189 if (*n & ~(*m)) 190 return (0); 191 if (*n++ != *m++) 192 masks_are_equal = 0; 193 } 194 while (n < lim2) 195 if (*n++) 196 return (0); 197 if (masks_are_equal && (longer < 0)) 198 for (lim2 = m - longer; m < lim2; ) 199 if (*m++) 200 return (1); 201 return (!masks_are_equal); 202 } 203 204 /* 205 * Search for exact match in given @head. 206 * Assume host bits are cleared in @v_arg if @m_arg is not NULL 207 * Note that prefixes with /32 or /128 masks are treated differently 208 * from host routes. 209 */ 210 struct radix_node * 211 rn_lookup(const void *v_arg, const void *m_arg, struct radix_head *head) 212 { 213 struct radix_node *x; 214 caddr_t netmask; 215 216 if (m_arg != NULL) { 217 /* 218 * Most common case: search exact prefix/mask 219 */ 220 x = rn_addmask(m_arg, head->rnh_masks, 1, 221 head->rnh_treetop->rn_offset); 222 if (x == NULL) 223 return (NULL); 224 netmask = x->rn_key; 225 226 x = rn_match(v_arg, head); 227 228 while (x != NULL && x->rn_mask != netmask) 229 x = x->rn_dupedkey; 230 231 return (x); 232 } 233 234 /* 235 * Search for host address. 236 */ 237 if ((x = rn_match(v_arg, head)) == NULL) 238 return (NULL); 239 240 /* Check if found key is the same */ 241 if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg))) 242 return (NULL); 243 244 /* Check if this is not host route */ 245 if (x->rn_mask != NULL) 246 return (NULL); 247 248 return (x); 249 } 250 251 static int 252 rn_satisfies_leaf(const char *trial, struct radix_node *leaf, int skip) 253 { 254 const char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 255 const char *cplim; 256 int length = min(LEN(cp), LEN(cp2)); 257 258 if (cp3 == NULL) 259 cp3 = rn_ones; 260 else 261 length = min(length, LEN(cp3)); 262 cplim = cp + length; cp3 += skip; cp2 += skip; 263 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 264 if ((*cp ^ *cp2) & *cp3) 265 return (0); 266 return (1); 267 } 268 269 /* 270 * Search for longest-prefix match in given @head 271 */ 272 struct radix_node * 273 rn_match(const void *v_arg, struct radix_head *head) 274 { 275 c_caddr_t v = v_arg; 276 struct radix_node *t = head->rnh_treetop, *x; 277 c_caddr_t cp = v, cp2; 278 c_caddr_t cplim; 279 struct radix_node *saved_t, *top = t; 280 int off = t->rn_offset, vlen = LEN(cp), matched_off; 281 int test, b, rn_bit; 282 283 /* 284 * Open code rn_search(v, top) to avoid overhead of extra 285 * subroutine call. 286 */ 287 for (; t->rn_bit >= 0; ) { 288 if (t->rn_bmask & cp[t->rn_offset]) 289 t = t->rn_right; 290 else 291 t = t->rn_left; 292 } 293 /* 294 * See if we match exactly as a host destination 295 * or at least learn how many bits match, for normal mask finesse. 296 * 297 * It doesn't hurt us to limit how many bytes to check 298 * to the length of the mask, since if it matches we had a genuine 299 * match and the leaf we have is the most specific one anyway; 300 * if it didn't match with a shorter length it would fail 301 * with a long one. This wins big for class B&C netmasks which 302 * are probably the most common case... 303 */ 304 if (t->rn_mask) 305 vlen = *(u_char *)t->rn_mask; 306 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 307 for (; cp < cplim; cp++, cp2++) 308 if (*cp != *cp2) 309 goto on1; 310 /* 311 * This extra grot is in case we are explicitly asked 312 * to look up the default. Ugh! 313 * 314 * Never return the root node itself, it seems to cause a 315 * lot of confusion. 316 */ 317 if (t->rn_flags & RNF_ROOT) 318 t = t->rn_dupedkey; 319 return (t); 320 on1: 321 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 322 for (b = 7; (test >>= 1) > 0;) 323 b--; 324 matched_off = cp - v; 325 b += matched_off << 3; 326 rn_bit = -1 - b; 327 /* 328 * If there is a host route in a duped-key chain, it will be first. 329 */ 330 if ((saved_t = t)->rn_mask == 0) 331 t = t->rn_dupedkey; 332 for (; t; t = t->rn_dupedkey) 333 /* 334 * Even if we don't match exactly as a host, 335 * we may match if the leaf we wound up at is 336 * a route to a net. 337 */ 338 if (t->rn_flags & RNF_NORMAL) { 339 if (rn_bit <= t->rn_bit) 340 return (t); 341 } else if (rn_satisfies_leaf(v, t, matched_off)) 342 return (t); 343 t = saved_t; 344 /* start searching up the tree */ 345 do { 346 struct radix_mask *m; 347 t = t->rn_parent; 348 m = t->rn_mklist; 349 /* 350 * If non-contiguous masks ever become important 351 * we can restore the masking and open coding of 352 * the search and satisfaction test and put the 353 * calculation of "off" back before the "do". 354 */ 355 while (m) { 356 if (m->rm_flags & RNF_NORMAL) { 357 if (rn_bit <= m->rm_bit) 358 return (m->rm_leaf); 359 } else { 360 off = min(t->rn_offset, matched_off); 361 x = rn_search_m(v, t, m->rm_mask); 362 while (x && x->rn_mask != m->rm_mask) 363 x = x->rn_dupedkey; 364 if (x && rn_satisfies_leaf(v, x, off)) 365 return (x); 366 } 367 m = m->rm_mklist; 368 } 369 } while (t != top); 370 return (0); 371 } 372 373 /* 374 * Returns the next (wider) prefix for the key defined by @rn 375 * if exists. 376 */ 377 struct radix_node * 378 rn_nextprefix(struct radix_node *rn) 379 { 380 for (rn = rn->rn_dupedkey; rn != NULL; rn = rn->rn_dupedkey) { 381 if (!(rn->rn_flags & RNF_ROOT)) 382 return (rn); 383 } 384 return (NULL); 385 } 386 387 #ifdef RN_DEBUG 388 int rn_nodenum; 389 struct radix_node *rn_clist; 390 int rn_saveinfo; 391 int rn_debug = 1; 392 #endif 393 394 /* 395 * Whenever we add a new leaf to the tree, we also add a parent node, 396 * so we allocate them as an array of two elements: the first one must be 397 * the leaf (see RNTORT() in route.c), the second one is the parent. 398 * This routine initializes the relevant fields of the nodes, so that 399 * the leaf is the left child of the parent node, and both nodes have 400 * (almost) all all fields filled as appropriate. 401 * (XXX some fields are left unset, see the '#if 0' section). 402 * The function returns a pointer to the parent node. 403 */ 404 405 static struct radix_node * 406 rn_newpair(void *v, int b, struct radix_node nodes[2]) 407 { 408 struct radix_node *tt = nodes, *t = tt + 1; 409 t->rn_bit = b; 410 t->rn_bmask = 0x80 >> (b & 7); 411 t->rn_left = tt; 412 t->rn_offset = b >> 3; 413 414 #if 0 /* XXX perhaps we should fill these fields as well. */ 415 t->rn_parent = t->rn_right = NULL; 416 417 tt->rn_mask = NULL; 418 tt->rn_dupedkey = NULL; 419 tt->rn_bmask = 0; 420 #endif 421 tt->rn_bit = -1; 422 tt->rn_key = (caddr_t)v; 423 tt->rn_parent = t; 424 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 425 tt->rn_mklist = t->rn_mklist = 0; 426 #ifdef RN_DEBUG 427 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 428 tt->rn_twin = t; 429 tt->rn_ybro = rn_clist; 430 rn_clist = tt; 431 #endif 432 return (t); 433 } 434 435 static struct radix_node * 436 rn_insert(void *v_arg, struct radix_head *head, int *dupentry, 437 struct radix_node nodes[2]) 438 { 439 caddr_t v = v_arg; 440 struct radix_node *top = head->rnh_treetop; 441 int head_off = top->rn_offset, vlen = LEN(v); 442 struct radix_node *t = rn_search(v_arg, top); 443 caddr_t cp = v + head_off; 444 unsigned b; 445 struct radix_node *p, *tt, *x; 446 /* 447 * Find first bit at which v and t->rn_key differ 448 */ 449 caddr_t cp2 = t->rn_key + head_off; 450 int cmp_res; 451 caddr_t cplim = v + vlen; 452 453 while (cp < cplim) 454 if (*cp2++ != *cp++) 455 goto on1; 456 *dupentry = 1; 457 return (t); 458 on1: 459 *dupentry = 0; 460 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 461 for (b = (cp - v) << 3; cmp_res; b--) 462 cmp_res >>= 1; 463 464 x = top; 465 cp = v; 466 do { 467 p = x; 468 if (cp[x->rn_offset] & x->rn_bmask) 469 x = x->rn_right; 470 else 471 x = x->rn_left; 472 } while (b > (unsigned) x->rn_bit); 473 /* x->rn_bit < b && x->rn_bit >= 0 */ 474 #ifdef RN_DEBUG 475 if (rn_debug) 476 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 477 #endif 478 t = rn_newpair(v_arg, b, nodes); 479 tt = t->rn_left; 480 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 481 p->rn_left = t; 482 else 483 p->rn_right = t; 484 x->rn_parent = t; 485 t->rn_parent = p; /* frees x, p as temp vars below */ 486 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 487 t->rn_right = x; 488 } else { 489 t->rn_right = tt; 490 t->rn_left = x; 491 } 492 #ifdef RN_DEBUG 493 if (rn_debug) 494 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 495 #endif 496 return (tt); 497 } 498 499 static struct radix_node * 500 rn_addmask(const void *n_arg, struct radix_mask_head *maskhead, int search, int skip) 501 { 502 const unsigned char *netmask = n_arg; 503 const unsigned char *c, *clim; 504 unsigned char *cp; 505 struct radix_node *x; 506 int b = 0, mlen, j; 507 int maskduplicated, isnormal; 508 struct radix_node *saved_x; 509 unsigned char addmask_key[RADIX_MAX_KEY_LEN]; 510 511 if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN) 512 mlen = RADIX_MAX_KEY_LEN; 513 if (skip == 0) 514 skip = 1; 515 if (mlen <= skip) 516 return (maskhead->mask_nodes); 517 518 bzero(addmask_key, RADIX_MAX_KEY_LEN); 519 if (skip > 1) 520 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 521 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 522 /* 523 * Trim trailing zeroes. 524 */ 525 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 526 cp--; 527 mlen = cp - addmask_key; 528 if (mlen <= skip) 529 return (maskhead->mask_nodes); 530 *addmask_key = mlen; 531 x = rn_search(addmask_key, maskhead->head.rnh_treetop); 532 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 533 x = NULL; 534 if (x || search) 535 return (x); 536 R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x)); 537 if ((saved_x = x) == NULL) 538 return (0); 539 netmask = cp = (unsigned char *)(x + 2); 540 bcopy(addmask_key, cp, mlen); 541 x = rn_insert(cp, &maskhead->head, &maskduplicated, x); 542 if (maskduplicated) { 543 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 544 R_Free(saved_x); 545 return (x); 546 } 547 /* 548 * Calculate index of mask, and check for normalcy. 549 * First find the first byte with a 0 bit, then if there are 550 * more bits left (remember we already trimmed the trailing 0's), 551 * the bits should be contiguous, otherwise we have got 552 * a non-contiguous mask. 553 */ 554 #define CONTIG(_c) (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1)) 555 clim = netmask + mlen; 556 isnormal = 1; 557 for (c = netmask + skip; (c < clim) && *(const u_char *)c == 0xff;) 558 c++; 559 if (c != clim) { 560 for (j = 0x80; (j & *c) != 0; j >>= 1) 561 b++; 562 if (!CONTIG(*c) || c != (clim - 1)) 563 isnormal = 0; 564 } 565 b += (c - netmask) << 3; 566 x->rn_bit = -1 - b; 567 if (isnormal) 568 x->rn_flags |= RNF_NORMAL; 569 return (x); 570 } 571 572 static int /* XXX: arbitrary ordering for non-contiguous masks */ 573 rn_lexobetter(const void *m_arg, const void *n_arg) 574 { 575 const u_char *mp = m_arg, *np = n_arg, *lim; 576 577 if (LEN(mp) > LEN(np)) 578 return (1); /* not really, but need to check longer one first */ 579 if (LEN(mp) == LEN(np)) 580 for (lim = mp + LEN(mp); mp < lim;) 581 if (*mp++ > *np++) 582 return (1); 583 return (0); 584 } 585 586 static struct radix_mask * 587 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) 588 { 589 struct radix_mask *m; 590 591 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); 592 if (m == NULL) { 593 log(LOG_ERR, "Failed to allocate route mask\n"); 594 return (0); 595 } 596 bzero(m, sizeof(*m)); 597 m->rm_bit = tt->rn_bit; 598 m->rm_flags = tt->rn_flags; 599 if (tt->rn_flags & RNF_NORMAL) 600 m->rm_leaf = tt; 601 else 602 m->rm_mask = tt->rn_mask; 603 m->rm_mklist = next; 604 tt->rn_mklist = m; 605 return (m); 606 } 607 608 struct radix_node * 609 rn_addroute(void *v_arg, const void *n_arg, struct radix_head *head, 610 struct radix_node treenodes[2]) 611 { 612 caddr_t v = (caddr_t)v_arg, netmask = NULL; 613 struct radix_node *t, *x = NULL, *tt; 614 struct radix_node *saved_tt, *top = head->rnh_treetop; 615 short b = 0, b_leaf = 0; 616 int keyduplicated; 617 caddr_t mmask; 618 struct radix_mask *m, **mp; 619 620 /* 621 * In dealing with non-contiguous masks, there may be 622 * many different routes which have the same mask. 623 * We will find it useful to have a unique pointer to 624 * the mask to speed avoiding duplicate references at 625 * nodes and possibly save time in calculating indices. 626 */ 627 if (n_arg) { 628 x = rn_addmask(n_arg, head->rnh_masks, 0, top->rn_offset); 629 if (x == NULL) 630 return (0); 631 b_leaf = x->rn_bit; 632 b = -1 - x->rn_bit; 633 netmask = x->rn_key; 634 } 635 /* 636 * Deal with duplicated keys: attach node to previous instance 637 */ 638 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 639 if (keyduplicated) { 640 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 641 if (tt->rn_mask == netmask) 642 return (0); 643 if (netmask == 0 || 644 (tt->rn_mask && 645 ((b_leaf < tt->rn_bit) /* index(netmask) > node */ 646 || rn_refines(netmask, tt->rn_mask) 647 || rn_lexobetter(netmask, tt->rn_mask)))) 648 break; 649 } 650 /* 651 * If the mask is not duplicated, we wouldn't 652 * find it among possible duplicate key entries 653 * anyway, so the above test doesn't hurt. 654 * 655 * We sort the masks for a duplicated key the same way as 656 * in a masklist -- most specific to least specific. 657 * This may require the unfortunate nuisance of relocating 658 * the head of the list. 659 * 660 * We also reverse, or doubly link the list through the 661 * parent pointer. 662 */ 663 if (tt == saved_tt) { 664 struct radix_node *xx = x; 665 /* link in at head of list */ 666 (tt = treenodes)->rn_dupedkey = t; 667 tt->rn_flags = t->rn_flags; 668 tt->rn_parent = x = t->rn_parent; 669 t->rn_parent = tt; /* parent */ 670 if (x->rn_left == t) 671 x->rn_left = tt; 672 else 673 x->rn_right = tt; 674 saved_tt = tt; x = xx; 675 } else { 676 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 677 t->rn_dupedkey = tt; 678 tt->rn_parent = t; /* parent */ 679 if (tt->rn_dupedkey) /* parent */ 680 tt->rn_dupedkey->rn_parent = tt; /* parent */ 681 } 682 #ifdef RN_DEBUG 683 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 684 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 685 #endif 686 tt->rn_key = (caddr_t) v; 687 tt->rn_bit = -1; 688 tt->rn_flags = RNF_ACTIVE; 689 } 690 /* 691 * Put mask in tree. 692 */ 693 if (netmask) { 694 tt->rn_mask = netmask; 695 tt->rn_bit = x->rn_bit; 696 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 697 } 698 t = saved_tt->rn_parent; 699 if (keyduplicated) 700 goto on2; 701 b_leaf = -1 - t->rn_bit; 702 if (t->rn_right == saved_tt) 703 x = t->rn_left; 704 else 705 x = t->rn_right; 706 /* Promote general routes from below */ 707 if (x->rn_bit < 0) { 708 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 709 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 710 *mp = m = rn_new_radix_mask(x, 0); 711 if (m) 712 mp = &m->rm_mklist; 713 } 714 } else if (x->rn_mklist) { 715 /* 716 * Skip over masks whose index is > that of new node 717 */ 718 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 719 if (m->rm_bit >= b_leaf) 720 break; 721 t->rn_mklist = m; *mp = NULL; 722 } 723 on2: 724 /* Add new route to highest possible ancestor's list */ 725 if ((netmask == 0) || (b > t->rn_bit )) 726 return (tt); /* can't lift at all */ 727 b_leaf = tt->rn_bit; 728 do { 729 x = t; 730 t = t->rn_parent; 731 } while (b <= t->rn_bit && x != top); 732 /* 733 * Search through routes associated with node to 734 * insert new route according to index. 735 * Need same criteria as when sorting dupedkeys to avoid 736 * double loop on deletion. 737 */ 738 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 739 if (m->rm_bit < b_leaf) 740 continue; 741 if (m->rm_bit > b_leaf) 742 break; 743 if (m->rm_flags & RNF_NORMAL) { 744 mmask = m->rm_leaf->rn_mask; 745 if (tt->rn_flags & RNF_NORMAL) { 746 log(LOG_ERR, 747 "Non-unique normal route, mask not entered\n"); 748 return (tt); 749 } 750 } else 751 mmask = m->rm_mask; 752 if (mmask == netmask) { 753 m->rm_refs++; 754 tt->rn_mklist = m; 755 return (tt); 756 } 757 if (rn_refines(netmask, mmask) 758 || rn_lexobetter(netmask, mmask)) 759 break; 760 } 761 *mp = rn_new_radix_mask(tt, *mp); 762 return (tt); 763 } 764 765 struct radix_node * 766 rn_delete(const void *v_arg, const void *netmask_arg, struct radix_head *head) 767 { 768 struct radix_node *t, *p, *x, *tt; 769 struct radix_mask *m, *saved_m, **mp; 770 struct radix_node *dupedkey, *saved_tt, *top; 771 c_caddr_t v; 772 c_caddr_t netmask; 773 int b, head_off, vlen; 774 775 v = v_arg; 776 netmask = netmask_arg; 777 x = head->rnh_treetop; 778 tt = rn_search(v, x); 779 head_off = x->rn_offset; 780 vlen = LEN(v); 781 saved_tt = tt; 782 top = x; 783 if (tt == NULL || 784 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 785 return (0); 786 /* 787 * Delete our route from mask lists. 788 */ 789 if (netmask) { 790 x = rn_addmask(netmask, head->rnh_masks, 1, head_off); 791 if (x == NULL) 792 return (0); 793 netmask = x->rn_key; 794 while (tt->rn_mask != netmask) 795 if ((tt = tt->rn_dupedkey) == NULL) 796 return (0); 797 } 798 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL) 799 goto on1; 800 if (tt->rn_flags & RNF_NORMAL) { 801 if (m->rm_leaf != tt || m->rm_refs > 0) { 802 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 803 return (0); /* dangling ref could cause disaster */ 804 } 805 } else { 806 if (m->rm_mask != tt->rn_mask) { 807 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 808 goto on1; 809 } 810 if (--m->rm_refs >= 0) 811 goto on1; 812 } 813 b = -1 - tt->rn_bit; 814 t = saved_tt->rn_parent; 815 if (b > t->rn_bit) 816 goto on1; /* Wasn't lifted at all */ 817 do { 818 x = t; 819 t = t->rn_parent; 820 } while (b <= t->rn_bit && x != top); 821 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 822 if (m == saved_m) { 823 *mp = m->rm_mklist; 824 R_Free(m); 825 break; 826 } 827 if (m == NULL) { 828 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 829 if (tt->rn_flags & RNF_NORMAL) 830 return (0); /* Dangling ref to us */ 831 } 832 on1: 833 /* 834 * Eliminate us from tree 835 */ 836 if (tt->rn_flags & RNF_ROOT) 837 return (0); 838 #ifdef RN_DEBUG 839 /* Get us out of the creation list */ 840 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 841 if (t) t->rn_ybro = tt->rn_ybro; 842 #endif 843 t = tt->rn_parent; 844 dupedkey = saved_tt->rn_dupedkey; 845 if (dupedkey) { 846 /* 847 * Here, tt is the deletion target and 848 * saved_tt is the head of the dupekey chain. 849 */ 850 if (tt == saved_tt) { 851 /* remove from head of chain */ 852 x = dupedkey; x->rn_parent = t; 853 if (t->rn_left == tt) 854 t->rn_left = x; 855 else 856 t->rn_right = x; 857 } else { 858 /* find node in front of tt on the chain */ 859 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 860 p = p->rn_dupedkey; 861 if (p) { 862 p->rn_dupedkey = tt->rn_dupedkey; 863 if (tt->rn_dupedkey) /* parent */ 864 tt->rn_dupedkey->rn_parent = p; 865 /* parent */ 866 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 867 } 868 t = tt + 1; 869 if (t->rn_flags & RNF_ACTIVE) { 870 #ifndef RN_DEBUG 871 *++x = *t; 872 p = t->rn_parent; 873 #else 874 b = t->rn_info; 875 *++x = *t; 876 t->rn_info = b; 877 p = t->rn_parent; 878 #endif 879 if (p->rn_left == t) 880 p->rn_left = x; 881 else 882 p->rn_right = x; 883 x->rn_left->rn_parent = x; 884 x->rn_right->rn_parent = x; 885 } 886 goto out; 887 } 888 if (t->rn_left == tt) 889 x = t->rn_right; 890 else 891 x = t->rn_left; 892 p = t->rn_parent; 893 if (p->rn_right == t) 894 p->rn_right = x; 895 else 896 p->rn_left = x; 897 x->rn_parent = p; 898 /* 899 * Demote routes attached to us. 900 */ 901 if (t->rn_mklist) { 902 if (x->rn_bit >= 0) { 903 for (mp = &x->rn_mklist; (m = *mp);) 904 mp = &m->rm_mklist; 905 *mp = t->rn_mklist; 906 } else { 907 /* If there are any key,mask pairs in a sibling 908 duped-key chain, some subset will appear sorted 909 in the same order attached to our mklist */ 910 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 911 if (m == x->rn_mklist) { 912 struct radix_mask *mm = m->rm_mklist; 913 x->rn_mklist = 0; 914 if (--(m->rm_refs) < 0) 915 R_Free(m); 916 m = mm; 917 } 918 if (m) 919 log(LOG_ERR, 920 "rn_delete: Orphaned Mask %p at %p\n", 921 m, x); 922 } 923 } 924 /* 925 * We may be holding an active internal node in the tree. 926 */ 927 x = tt + 1; 928 if (t != x) { 929 #ifndef RN_DEBUG 930 *t = *x; 931 #else 932 b = t->rn_info; 933 *t = *x; 934 t->rn_info = b; 935 #endif 936 t->rn_left->rn_parent = t; 937 t->rn_right->rn_parent = t; 938 p = x->rn_parent; 939 if (p->rn_left == x) 940 p->rn_left = t; 941 else 942 p->rn_right = t; 943 } 944 out: 945 tt->rn_flags &= ~RNF_ACTIVE; 946 tt[1].rn_flags &= ~RNF_ACTIVE; 947 return (tt); 948 } 949 950 /* 951 * This is the same as rn_walktree() except for the parameters and the 952 * exit. 953 */ 954 int 955 rn_walktree_from(struct radix_head *h, void *a, void *m, 956 walktree_f_t *f, void *w) 957 { 958 int error; 959 struct radix_node *base, *next; 960 u_char *xa = (u_char *)a; 961 u_char *xm = (u_char *)m; 962 struct radix_node *rn, *last = NULL; /* shut up gcc */ 963 int stopping = 0; 964 int lastb; 965 966 KASSERT(m != NULL, ("%s: mask needs to be specified", __func__)); 967 968 /* 969 * rn_search_m is sort-of-open-coded here. We cannot use the 970 * function because we need to keep track of the last node seen. 971 */ 972 /* printf("about to search\n"); */ 973 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { 974 last = rn; 975 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", 976 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ 977 if (!(rn->rn_bmask & xm[rn->rn_offset])) { 978 break; 979 } 980 if (rn->rn_bmask & xa[rn->rn_offset]) { 981 rn = rn->rn_right; 982 } else { 983 rn = rn->rn_left; 984 } 985 } 986 /* printf("done searching\n"); */ 987 988 /* 989 * Two cases: either we stepped off the end of our mask, 990 * in which case last == rn, or we reached a leaf, in which 991 * case we want to start from the leaf. 992 */ 993 if (rn->rn_bit >= 0) 994 rn = last; 995 lastb = last->rn_bit; 996 997 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 998 999 /* 1000 * This gets complicated because we may delete the node 1001 * while applying the function f to it, so we need to calculate 1002 * the successor node in advance. 1003 */ 1004 while (rn->rn_bit >= 0) 1005 rn = rn->rn_left; 1006 1007 while (!stopping) { 1008 /* printf("node %p (%d)\n", rn, rn->rn_bit); */ 1009 base = rn; 1010 /* If at right child go back up, otherwise, go right */ 1011 while (rn->rn_parent->rn_right == rn 1012 && !(rn->rn_flags & RNF_ROOT)) { 1013 rn = rn->rn_parent; 1014 1015 /* if went up beyond last, stop */ 1016 if (rn->rn_bit <= lastb) { 1017 stopping = 1; 1018 /* printf("up too far\n"); */ 1019 /* 1020 * XXX we should jump to the 'Process leaves' 1021 * part, because the values of 'rn' and 'next' 1022 * we compute will not be used. Not a big deal 1023 * because this loop will terminate, but it is 1024 * inefficient and hard to understand! 1025 */ 1026 } 1027 } 1028 1029 /* 1030 * At the top of the tree, no need to traverse the right 1031 * half, prevent the traversal of the entire tree in the 1032 * case of default route. 1033 */ 1034 if (rn->rn_parent->rn_flags & RNF_ROOT) 1035 stopping = 1; 1036 1037 /* Find the next *leaf* since next node might vanish, too */ 1038 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1039 rn = rn->rn_left; 1040 next = rn; 1041 /* Process leaves */ 1042 while ((rn = base) != NULL) { 1043 base = rn->rn_dupedkey; 1044 /* printf("leaf %p\n", rn); */ 1045 if (!(rn->rn_flags & RNF_ROOT) 1046 && (error = (*f)(rn, w))) 1047 return (error); 1048 } 1049 rn = next; 1050 1051 if (rn->rn_flags & RNF_ROOT) { 1052 /* printf("root, stopping"); */ 1053 stopping = 1; 1054 } 1055 } 1056 return (0); 1057 } 1058 1059 int 1060 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w) 1061 { 1062 int error; 1063 struct radix_node *base, *next; 1064 struct radix_node *rn = h->rnh_treetop; 1065 /* 1066 * This gets complicated because we may delete the node 1067 * while applying the function f to it, so we need to calculate 1068 * the successor node in advance. 1069 */ 1070 1071 /* First time through node, go left */ 1072 while (rn->rn_bit >= 0) 1073 rn = rn->rn_left; 1074 for (;;) { 1075 base = rn; 1076 /* If at right child go back up, otherwise, go right */ 1077 while (rn->rn_parent->rn_right == rn 1078 && (rn->rn_flags & RNF_ROOT) == 0) 1079 rn = rn->rn_parent; 1080 /* Find the next *leaf* since next node might vanish, too */ 1081 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1082 rn = rn->rn_left; 1083 next = rn; 1084 /* Process leaves */ 1085 while ((rn = base)) { 1086 base = rn->rn_dupedkey; 1087 if (!(rn->rn_flags & RNF_ROOT) 1088 && (error = (*f)(rn, w))) 1089 return (error); 1090 } 1091 rn = next; 1092 if (rn->rn_flags & RNF_ROOT) 1093 return (0); 1094 } 1095 /* NOTREACHED */ 1096 } 1097 1098 /* 1099 * Initialize an empty tree. This has 3 nodes, which are passed 1100 * via base_nodes (in the order <left,root,right>) and are 1101 * marked RNF_ROOT so they cannot be freed. 1102 * The leaves have all-zero and all-one keys, with significant 1103 * bits starting at 'off'. 1104 */ 1105 void 1106 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off) 1107 { 1108 struct radix_node *t, *tt, *ttt; 1109 1110 t = rn_newpair(rn_zeros, off, base_nodes); 1111 ttt = base_nodes + 2; 1112 t->rn_right = ttt; 1113 t->rn_parent = t; 1114 tt = t->rn_left; /* ... which in turn is base_nodes */ 1115 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1116 tt->rn_bit = -1 - off; 1117 *ttt = *tt; 1118 ttt->rn_key = rn_ones; 1119 1120 rh->rnh_treetop = t; 1121 } 1122 1123 static void 1124 rn_detachhead_internal(struct radix_head *head) 1125 { 1126 1127 KASSERT((head != NULL), 1128 ("%s: head already freed", __func__)); 1129 1130 /* Free <left,root,right> nodes. */ 1131 R_Free(head); 1132 } 1133 1134 /* Functions used by 'struct radix_node_head' users */ 1135 1136 int 1137 rn_inithead(void **head, int off) 1138 { 1139 struct radix_node_head *rnh; 1140 struct radix_mask_head *rmh; 1141 1142 rnh = *head; 1143 rmh = NULL; 1144 1145 if (*head != NULL) 1146 return (1); 1147 1148 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1149 R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh)); 1150 if (rnh == NULL || rmh == NULL) { 1151 if (rnh != NULL) 1152 R_Free(rnh); 1153 if (rmh != NULL) 1154 R_Free(rmh); 1155 return (0); 1156 } 1157 1158 /* Init trees */ 1159 rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off); 1160 rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0); 1161 *head = rnh; 1162 rnh->rh.rnh_masks = rmh; 1163 1164 /* Finally, set base callbacks */ 1165 rnh->rnh_addaddr = rn_addroute; 1166 rnh->rnh_deladdr = rn_delete; 1167 rnh->rnh_matchaddr = rn_match; 1168 rnh->rnh_lookup = rn_lookup; 1169 rnh->rnh_walktree = rn_walktree; 1170 rnh->rnh_walktree_from = rn_walktree_from; 1171 1172 return (1); 1173 } 1174 1175 static int 1176 rn_freeentry(struct radix_node *rn, void *arg) 1177 { 1178 struct radix_head * const rnh = arg; 1179 struct radix_node *x; 1180 1181 x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh); 1182 if (x != NULL) 1183 R_Free(x); 1184 return (0); 1185 } 1186 1187 int 1188 rn_detachhead(void **head) 1189 { 1190 struct radix_node_head *rnh; 1191 1192 KASSERT((head != NULL && *head != NULL), 1193 ("%s: head already freed", __func__)); 1194 1195 rnh = (struct radix_node_head *)(*head); 1196 1197 rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks); 1198 rn_detachhead_internal(&rnh->rh.rnh_masks->head); 1199 rn_detachhead_internal(&rnh->rh); 1200 1201 *head = NULL; 1202 1203 return (1); 1204 } 1205