xref: /freebsd/sys/net/radix.c (revision 4cf49a43559ed9fdad601bdcccd2c55963008675)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34  * $FreeBSD$
35  */
36 
37 /*
38  * Routines to build and maintain radix trees for routing lookups.
39  */
40 #ifndef _RADIX_H_
41 #include <sys/param.h>
42 #ifdef	KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #define	M_DONTWAIT M_NOWAIT
46 #include <sys/domain.h>
47 #else
48 #include <stdlib.h>
49 #endif
50 #include <sys/syslog.h>
51 #include <net/radix.h>
52 #endif
53 
54 static int	rn_walktree_from __P((struct radix_node_head *h, void *a,
55 				      void *m, walktree_f_t *f, void *w));
56 static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
57 static struct radix_node
58 	 *rn_insert __P((void *, struct radix_node_head *, int *,
59 			struct radix_node [2])),
60 	 *rn_newpair __P((void *, int, struct radix_node[2])),
61 	 *rn_search __P((void *, struct radix_node *)),
62 	 *rn_search_m __P((void *, struct radix_node *, void *));
63 
64 static int	max_keylen;
65 static struct radix_mask *rn_mkfreelist;
66 static struct radix_node_head *mask_rnhead;
67 static char *addmask_key;
68 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
69 static char *rn_zeros, *rn_ones;
70 
71 #define rn_masktop (mask_rnhead->rnh_treetop)
72 #undef Bcmp
73 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
74 
75 static int	rn_lexobetter __P((void *m_arg, void *n_arg));
76 static struct radix_mask *
77 		rn_new_radix_mask __P((struct radix_node *tt,
78 				       struct radix_mask *next));
79 static int	rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
80 				       int skip));
81 
82 /*
83  * The data structure for the keys is a radix tree with one way
84  * branching removed.  The index rn_b at an internal node n represents a bit
85  * position to be tested.  The tree is arranged so that all descendants
86  * of a node n have keys whose bits all agree up to position rn_b - 1.
87  * (We say the index of n is rn_b.)
88  *
89  * There is at least one descendant which has a one bit at position rn_b,
90  * and at least one with a zero there.
91  *
92  * A route is determined by a pair of key and mask.  We require that the
93  * bit-wise logical and of the key and mask to be the key.
94  * We define the index of a route to associated with the mask to be
95  * the first bit number in the mask where 0 occurs (with bit number 0
96  * representing the highest order bit).
97  *
98  * We say a mask is normal if every bit is 0, past the index of the mask.
99  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
100  * and m is a normal mask, then the route applies to every descendant of n.
101  * If the index(m) < rn_b, this implies the trailing last few bits of k
102  * before bit b are all 0, (and hence consequently true of every descendant
103  * of n), so the route applies to all descendants of the node as well.
104  *
105  * Similar logic shows that a non-normal mask m such that
106  * index(m) <= index(n) could potentially apply to many children of n.
107  * Thus, for each non-host route, we attach its mask to a list at an internal
108  * node as high in the tree as we can go.
109  *
110  * The present version of the code makes use of normal routes in short-
111  * circuiting an explict mask and compare operation when testing whether
112  * a key satisfies a normal route, and also in remembering the unique leaf
113  * that governs a subtree.
114  */
115 
116 static struct radix_node *
117 rn_search(v_arg, head)
118 	void *v_arg;
119 	struct radix_node *head;
120 {
121 	register struct radix_node *x;
122 	register caddr_t v;
123 
124 	for (x = head, v = v_arg; x->rn_b >= 0;) {
125 		if (x->rn_bmask & v[x->rn_off])
126 			x = x->rn_r;
127 		else
128 			x = x->rn_l;
129 	}
130 	return (x);
131 }
132 
133 static struct radix_node *
134 rn_search_m(v_arg, head, m_arg)
135 	struct radix_node *head;
136 	void *v_arg, *m_arg;
137 {
138 	register struct radix_node *x;
139 	register caddr_t v = v_arg, m = m_arg;
140 
141 	for (x = head; x->rn_b >= 0;) {
142 		if ((x->rn_bmask & m[x->rn_off]) &&
143 		    (x->rn_bmask & v[x->rn_off]))
144 			x = x->rn_r;
145 		else
146 			x = x->rn_l;
147 	}
148 	return x;
149 }
150 
151 int
152 rn_refines(m_arg, n_arg)
153 	void *m_arg, *n_arg;
154 {
155 	register caddr_t m = m_arg, n = n_arg;
156 	register caddr_t lim, lim2 = lim = n + *(u_char *)n;
157 	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
158 	int masks_are_equal = 1;
159 
160 	if (longer > 0)
161 		lim -= longer;
162 	while (n < lim) {
163 		if (*n & ~(*m))
164 			return 0;
165 		if (*n++ != *m++)
166 			masks_are_equal = 0;
167 	}
168 	while (n < lim2)
169 		if (*n++)
170 			return 0;
171 	if (masks_are_equal && (longer < 0))
172 		for (lim2 = m - longer; m < lim2; )
173 			if (*m++)
174 				return 1;
175 	return (!masks_are_equal);
176 }
177 
178 struct radix_node *
179 rn_lookup(v_arg, m_arg, head)
180 	void *v_arg, *m_arg;
181 	struct radix_node_head *head;
182 {
183 	register struct radix_node *x;
184 	caddr_t netmask = 0;
185 
186 	if (m_arg) {
187 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
188 			return (0);
189 		netmask = x->rn_key;
190 	}
191 	x = rn_match(v_arg, head);
192 	if (x && netmask) {
193 		while (x && x->rn_mask != netmask)
194 			x = x->rn_dupedkey;
195 	}
196 	return x;
197 }
198 
199 static int
200 rn_satsifies_leaf(trial, leaf, skip)
201 	char *trial;
202 	register struct radix_node *leaf;
203 	int skip;
204 {
205 	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
206 	char *cplim;
207 	int length = min(*(u_char *)cp, *(u_char *)cp2);
208 
209 	if (cp3 == 0)
210 		cp3 = rn_ones;
211 	else
212 		length = min(length, *(u_char *)cp3);
213 	cplim = cp + length; cp3 += skip; cp2 += skip;
214 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
215 		if ((*cp ^ *cp2) & *cp3)
216 			return 0;
217 	return 1;
218 }
219 
220 struct radix_node *
221 rn_match(v_arg, head)
222 	void *v_arg;
223 	struct radix_node_head *head;
224 {
225 	caddr_t v = v_arg;
226 	register struct radix_node *t = head->rnh_treetop, *x;
227 	register caddr_t cp = v, cp2;
228 	caddr_t cplim;
229 	struct radix_node *saved_t, *top = t;
230 	int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
231 	register int test, b, rn_b;
232 
233 	/*
234 	 * Open code rn_search(v, top) to avoid overhead of extra
235 	 * subroutine call.
236 	 */
237 	for (; t->rn_b >= 0; ) {
238 		if (t->rn_bmask & cp[t->rn_off])
239 			t = t->rn_r;
240 		else
241 			t = t->rn_l;
242 	}
243 	/*
244 	 * See if we match exactly as a host destination
245 	 * or at least learn how many bits match, for normal mask finesse.
246 	 *
247 	 * It doesn't hurt us to limit how many bytes to check
248 	 * to the length of the mask, since if it matches we had a genuine
249 	 * match and the leaf we have is the most specific one anyway;
250 	 * if it didn't match with a shorter length it would fail
251 	 * with a long one.  This wins big for class B&C netmasks which
252 	 * are probably the most common case...
253 	 */
254 	if (t->rn_mask)
255 		vlen = *(u_char *)t->rn_mask;
256 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
257 	for (; cp < cplim; cp++, cp2++)
258 		if (*cp != *cp2)
259 			goto on1;
260 	/*
261 	 * This extra grot is in case we are explicitly asked
262 	 * to look up the default.  Ugh!
263 	 *
264 	 * Never return the root node itself, it seems to cause a
265 	 * lot of confusion.
266 	 */
267 	if (t->rn_flags & RNF_ROOT)
268 		t = t->rn_dupedkey;
269 	return t;
270 on1:
271 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
272 	for (b = 7; (test >>= 1) > 0;)
273 		b--;
274 	matched_off = cp - v;
275 	b += matched_off << 3;
276 	rn_b = -1 - b;
277 	/*
278 	 * If there is a host route in a duped-key chain, it will be first.
279 	 */
280 	if ((saved_t = t)->rn_mask == 0)
281 		t = t->rn_dupedkey;
282 	for (; t; t = t->rn_dupedkey)
283 		/*
284 		 * Even if we don't match exactly as a host,
285 		 * we may match if the leaf we wound up at is
286 		 * a route to a net.
287 		 */
288 		if (t->rn_flags & RNF_NORMAL) {
289 			if (rn_b <= t->rn_b)
290 				return t;
291 		} else if (rn_satsifies_leaf(v, t, matched_off))
292 				return t;
293 	t = saved_t;
294 	/* start searching up the tree */
295 	do {
296 		register struct radix_mask *m;
297 		t = t->rn_p;
298 		m = t->rn_mklist;
299 		if (m) {
300 			/*
301 			 * If non-contiguous masks ever become important
302 			 * we can restore the masking and open coding of
303 			 * the search and satisfaction test and put the
304 			 * calculation of "off" back before the "do".
305 			 */
306 			do {
307 				if (m->rm_flags & RNF_NORMAL) {
308 					if (rn_b <= m->rm_b)
309 						return (m->rm_leaf);
310 				} else {
311 					off = min(t->rn_off, matched_off);
312 					x = rn_search_m(v, t, m->rm_mask);
313 					while (x && x->rn_mask != m->rm_mask)
314 						x = x->rn_dupedkey;
315 					if (x && rn_satsifies_leaf(v, x, off))
316 						    return x;
317 				}
318 				m = m->rm_mklist;
319 			} while (m);
320 		}
321 	} while (t != top);
322 	return 0;
323 }
324 
325 #ifdef RN_DEBUG
326 int	rn_nodenum;
327 struct	radix_node *rn_clist;
328 int	rn_saveinfo;
329 int	rn_debug =  1;
330 #endif
331 
332 static struct radix_node *
333 rn_newpair(v, b, nodes)
334 	void *v;
335 	int b;
336 	struct radix_node nodes[2];
337 {
338 	register struct radix_node *tt = nodes, *t = tt + 1;
339 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
340 	t->rn_l = tt; t->rn_off = b >> 3;
341 	tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
342 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
343 #ifdef RN_DEBUG
344 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
345 	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
346 #endif
347 	return t;
348 }
349 
350 static struct radix_node *
351 rn_insert(v_arg, head, dupentry, nodes)
352 	void *v_arg;
353 	struct radix_node_head *head;
354 	int *dupentry;
355 	struct radix_node nodes[2];
356 {
357 	caddr_t v = v_arg;
358 	struct radix_node *top = head->rnh_treetop;
359 	int head_off = top->rn_off, vlen = (int)*((u_char *)v);
360 	register struct radix_node *t = rn_search(v_arg, top);
361 	register caddr_t cp = v + head_off;
362 	register int b;
363 	struct radix_node *tt;
364     	/*
365 	 * Find first bit at which v and t->rn_key differ
366 	 */
367     {
368 	register caddr_t cp2 = t->rn_key + head_off;
369 	register int cmp_res;
370 	caddr_t cplim = v + vlen;
371 
372 	while (cp < cplim)
373 		if (*cp2++ != *cp++)
374 			goto on1;
375 	*dupentry = 1;
376 	return t;
377 on1:
378 	*dupentry = 0;
379 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
380 	for (b = (cp - v) << 3; cmp_res; b--)
381 		cmp_res >>= 1;
382     }
383     {
384 	register struct radix_node *p, *x = top;
385 	cp = v;
386 	do {
387 		p = x;
388 		if (cp[x->rn_off] & x->rn_bmask)
389 			x = x->rn_r;
390 		else x = x->rn_l;
391 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
392 #ifdef RN_DEBUG
393 	if (rn_debug)
394 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
395 #endif
396 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
397 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
398 		p->rn_l = t;
399 	else
400 		p->rn_r = t;
401 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
402 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
403 		t->rn_r = x;
404 	} else {
405 		t->rn_r = tt; t->rn_l = x;
406 	}
407 #ifdef RN_DEBUG
408 	if (rn_debug)
409 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
410 #endif
411     }
412 	return (tt);
413 }
414 
415 struct radix_node *
416 rn_addmask(n_arg, search, skip)
417 	int search, skip;
418 	void *n_arg;
419 {
420 	caddr_t netmask = (caddr_t)n_arg;
421 	register struct radix_node *x;
422 	register caddr_t cp, cplim;
423 	register int b = 0, mlen, j;
424 	int maskduplicated, m0, isnormal;
425 	struct radix_node *saved_x;
426 	static int last_zeroed = 0;
427 
428 	if ((mlen = *(u_char *)netmask) > max_keylen)
429 		mlen = max_keylen;
430 	if (skip == 0)
431 		skip = 1;
432 	if (mlen <= skip)
433 		return (mask_rnhead->rnh_nodes);
434 	if (skip > 1)
435 		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
436 	if ((m0 = mlen) > skip)
437 		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
438 	/*
439 	 * Trim trailing zeroes.
440 	 */
441 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
442 		cp--;
443 	mlen = cp - addmask_key;
444 	if (mlen <= skip) {
445 		if (m0 >= last_zeroed)
446 			last_zeroed = mlen;
447 		return (mask_rnhead->rnh_nodes);
448 	}
449 	if (m0 < last_zeroed)
450 		Bzero(addmask_key + m0, last_zeroed - m0);
451 	*addmask_key = last_zeroed = mlen;
452 	x = rn_search(addmask_key, rn_masktop);
453 	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
454 		x = 0;
455 	if (x || search)
456 		return (x);
457 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
458 	if ((saved_x = x) == 0)
459 		return (0);
460 	Bzero(x, max_keylen + 2 * sizeof (*x));
461 	netmask = cp = (caddr_t)(x + 2);
462 	Bcopy(addmask_key, cp, mlen);
463 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
464 	if (maskduplicated) {
465 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
466 		Free(saved_x);
467 		return (x);
468 	}
469 	/*
470 	 * Calculate index of mask, and check for normalcy.
471 	 */
472 	cplim = netmask + mlen; isnormal = 1;
473 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
474 		cp++;
475 	if (cp != cplim) {
476 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
477 			b++;
478 		if (*cp != normal_chars[b] || cp != (cplim - 1))
479 			isnormal = 0;
480 	}
481 	b += (cp - netmask) << 3;
482 	x->rn_b = -1 - b;
483 	if (isnormal)
484 		x->rn_flags |= RNF_NORMAL;
485 	return (x);
486 }
487 
488 static int	/* XXX: arbitrary ordering for non-contiguous masks */
489 rn_lexobetter(m_arg, n_arg)
490 	void *m_arg, *n_arg;
491 {
492 	register u_char *mp = m_arg, *np = n_arg, *lim;
493 
494 	if (*mp > *np)
495 		return 1;  /* not really, but need to check longer one first */
496 	if (*mp == *np)
497 		for (lim = mp + *mp; mp < lim;)
498 			if (*mp++ > *np++)
499 				return 1;
500 	return 0;
501 }
502 
503 static struct radix_mask *
504 rn_new_radix_mask(tt, next)
505 	register struct radix_node *tt;
506 	register struct radix_mask *next;
507 {
508 	register struct radix_mask *m;
509 
510 	MKGet(m);
511 	if (m == 0) {
512 		log(LOG_ERR, "Mask for route not entered\n");
513 		return (0);
514 	}
515 	Bzero(m, sizeof *m);
516 	m->rm_b = tt->rn_b;
517 	m->rm_flags = tt->rn_flags;
518 	if (tt->rn_flags & RNF_NORMAL)
519 		m->rm_leaf = tt;
520 	else
521 		m->rm_mask = tt->rn_mask;
522 	m->rm_mklist = next;
523 	tt->rn_mklist = m;
524 	return m;
525 }
526 
527 struct radix_node *
528 rn_addroute(v_arg, n_arg, head, treenodes)
529 	void *v_arg, *n_arg;
530 	struct radix_node_head *head;
531 	struct radix_node treenodes[2];
532 {
533 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
534 	register struct radix_node *t, *x = 0, *tt;
535 	struct radix_node *saved_tt, *top = head->rnh_treetop;
536 	short b = 0, b_leaf = 0;
537 	int keyduplicated;
538 	caddr_t mmask;
539 	struct radix_mask *m, **mp;
540 
541 	/*
542 	 * In dealing with non-contiguous masks, there may be
543 	 * many different routes which have the same mask.
544 	 * We will find it useful to have a unique pointer to
545 	 * the mask to speed avoiding duplicate references at
546 	 * nodes and possibly save time in calculating indices.
547 	 */
548 	if (netmask)  {
549 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
550 			return (0);
551 		b_leaf = x->rn_b;
552 		b = -1 - x->rn_b;
553 		netmask = x->rn_key;
554 	}
555 	/*
556 	 * Deal with duplicated keys: attach node to previous instance
557 	 */
558 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
559 	if (keyduplicated) {
560 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
561 			if (tt->rn_mask == netmask)
562 				return (0);
563 			if (netmask == 0 ||
564 			    (tt->rn_mask &&
565 			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
566 			       rn_refines(netmask, tt->rn_mask) ||
567 			       rn_lexobetter(netmask, tt->rn_mask))))
568 				break;
569 		}
570 		/*
571 		 * If the mask is not duplicated, we wouldn't
572 		 * find it among possible duplicate key entries
573 		 * anyway, so the above test doesn't hurt.
574 		 *
575 		 * We sort the masks for a duplicated key the same way as
576 		 * in a masklist -- most specific to least specific.
577 		 * This may require the unfortunate nuisance of relocating
578 		 * the head of the list.
579 		 */
580 		if (tt == saved_tt) {
581 			struct	radix_node *xx = x;
582 			/* link in at head of list */
583 			(tt = treenodes)->rn_dupedkey = t;
584 			tt->rn_flags = t->rn_flags;
585 			tt->rn_p = x = t->rn_p;
586 			t->rn_p = tt;				/* parent */
587 			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
588 			saved_tt = tt; x = xx;
589 		} else {
590 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
591 			t->rn_dupedkey = tt;
592 			tt->rn_p = t;				/* parent */
593 			if (tt->rn_dupedkey)			/* parent */
594 				tt->rn_dupedkey->rn_p = tt;	/* parent */
595 		}
596 #ifdef RN_DEBUG
597 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
598 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
599 #endif
600 		tt->rn_key = (caddr_t) v;
601 		tt->rn_b = -1;
602 		tt->rn_flags = RNF_ACTIVE;
603 	}
604 	/*
605 	 * Put mask in tree.
606 	 */
607 	if (netmask) {
608 		tt->rn_mask = netmask;
609 		tt->rn_b = x->rn_b;
610 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
611 	}
612 	t = saved_tt->rn_p;
613 	if (keyduplicated)
614 		goto on2;
615 	b_leaf = -1 - t->rn_b;
616 	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
617 	/* Promote general routes from below */
618 	if (x->rn_b < 0) {
619 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
620 		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
621 			*mp = m = rn_new_radix_mask(x, 0);
622 			if (m)
623 				mp = &m->rm_mklist;
624 		}
625 	} else if (x->rn_mklist) {
626 		/*
627 		 * Skip over masks whose index is > that of new node
628 		 */
629 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
630 			if (m->rm_b >= b_leaf)
631 				break;
632 		t->rn_mklist = m; *mp = 0;
633 	}
634 on2:
635 	/* Add new route to highest possible ancestor's list */
636 	if ((netmask == 0) || (b > t->rn_b ))
637 		return tt; /* can't lift at all */
638 	b_leaf = tt->rn_b;
639 	do {
640 		x = t;
641 		t = t->rn_p;
642 	} while (b <= t->rn_b && x != top);
643 	/*
644 	 * Search through routes associated with node to
645 	 * insert new route according to index.
646 	 * Need same criteria as when sorting dupedkeys to avoid
647 	 * double loop on deletion.
648 	 */
649 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
650 		if (m->rm_b < b_leaf)
651 			continue;
652 		if (m->rm_b > b_leaf)
653 			break;
654 		if (m->rm_flags & RNF_NORMAL) {
655 			mmask = m->rm_leaf->rn_mask;
656 			if (tt->rn_flags & RNF_NORMAL) {
657 				log(LOG_ERR,
658 				   "Non-unique normal route, mask not entered");
659 				return tt;
660 			}
661 		} else
662 			mmask = m->rm_mask;
663 		if (mmask == netmask) {
664 			m->rm_refs++;
665 			tt->rn_mklist = m;
666 			return tt;
667 		}
668 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
669 			break;
670 	}
671 	*mp = rn_new_radix_mask(tt, *mp);
672 	return tt;
673 }
674 
675 struct radix_node *
676 rn_delete(v_arg, netmask_arg, head)
677 	void *v_arg, *netmask_arg;
678 	struct radix_node_head *head;
679 {
680 	register struct radix_node *t, *p, *x, *tt;
681 	struct radix_mask *m, *saved_m, **mp;
682 	struct radix_node *dupedkey, *saved_tt, *top;
683 	caddr_t v, netmask;
684 	int b, head_off, vlen;
685 
686 	v = v_arg;
687 	netmask = netmask_arg;
688 	x = head->rnh_treetop;
689 	tt = rn_search(v, x);
690 	head_off = x->rn_off;
691 	vlen =  *(u_char *)v;
692 	saved_tt = tt;
693 	top = x;
694 	if (tt == 0 ||
695 	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
696 		return (0);
697 	/*
698 	 * Delete our route from mask lists.
699 	 */
700 	if (netmask) {
701 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
702 			return (0);
703 		netmask = x->rn_key;
704 		while (tt->rn_mask != netmask)
705 			if ((tt = tt->rn_dupedkey) == 0)
706 				return (0);
707 	}
708 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
709 		goto on1;
710 	if (tt->rn_flags & RNF_NORMAL) {
711 		if (m->rm_leaf != tt || m->rm_refs > 0) {
712 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
713 			return 0;  /* dangling ref could cause disaster */
714 		}
715 	} else {
716 		if (m->rm_mask != tt->rn_mask) {
717 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
718 			goto on1;
719 		}
720 		if (--m->rm_refs >= 0)
721 			goto on1;
722 	}
723 	b = -1 - tt->rn_b;
724 	t = saved_tt->rn_p;
725 	if (b > t->rn_b)
726 		goto on1; /* Wasn't lifted at all */
727 	do {
728 		x = t;
729 		t = t->rn_p;
730 	} while (b <= t->rn_b && x != top);
731 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
732 		if (m == saved_m) {
733 			*mp = m->rm_mklist;
734 			MKFree(m);
735 			break;
736 		}
737 	if (m == 0) {
738 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
739 		if (tt->rn_flags & RNF_NORMAL)
740 			return (0); /* Dangling ref to us */
741 	}
742 on1:
743 	/*
744 	 * Eliminate us from tree
745 	 */
746 	if (tt->rn_flags & RNF_ROOT)
747 		return (0);
748 #ifdef RN_DEBUG
749 	/* Get us out of the creation list */
750 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
751 	if (t) t->rn_ybro = tt->rn_ybro;
752 #endif
753 	t = tt->rn_p;
754 	dupedkey = saved_tt->rn_dupedkey;
755 	if (dupedkey) {
756 		/*
757 		 * at this point, tt is the deletion target and saved_tt
758 		 * is the head of the dupekey chain
759 		 */
760 		if (tt == saved_tt) {
761 			/* remove from head of chain */
762 			x = dupedkey; x->rn_p = t;
763 			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
764 		} else {
765 			/* find node in front of tt on the chain */
766 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
767 				p = p->rn_dupedkey;
768 			if (p) {
769 				p->rn_dupedkey = tt->rn_dupedkey;
770 				if (tt->rn_dupedkey)		   /* parent */
771 					tt->rn_dupedkey->rn_p = p; /* parent */
772 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
773 		}
774 		t = tt + 1;
775 		if  (t->rn_flags & RNF_ACTIVE) {
776 #ifndef RN_DEBUG
777 			*++x = *t; p = t->rn_p;
778 #else
779 			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
780 #endif
781 			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
782 			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
783 		}
784 		goto out;
785 	}
786 	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
787 	p = t->rn_p;
788 	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
789 	x->rn_p = p;
790 	/*
791 	 * Demote routes attached to us.
792 	 */
793 	if (t->rn_mklist) {
794 		if (x->rn_b >= 0) {
795 			for (mp = &x->rn_mklist; (m = *mp);)
796 				mp = &m->rm_mklist;
797 			*mp = t->rn_mklist;
798 		} else {
799 			/* If there are any key,mask pairs in a sibling
800 			   duped-key chain, some subset will appear sorted
801 			   in the same order attached to our mklist */
802 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
803 				if (m == x->rn_mklist) {
804 					struct radix_mask *mm = m->rm_mklist;
805 					x->rn_mklist = 0;
806 					if (--(m->rm_refs) < 0)
807 						MKFree(m);
808 					m = mm;
809 				}
810 			if (m)
811 				log(LOG_ERR,
812 				    "rn_delete: Orphaned Mask %p at %p\n",
813 				    (void *)m, (void *)x);
814 		}
815 	}
816 	/*
817 	 * We may be holding an active internal node in the tree.
818 	 */
819 	x = tt + 1;
820 	if (t != x) {
821 #ifndef RN_DEBUG
822 		*t = *x;
823 #else
824 		b = t->rn_info; *t = *x; t->rn_info = b;
825 #endif
826 		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
827 		p = x->rn_p;
828 		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
829 	}
830 out:
831 	tt->rn_flags &= ~RNF_ACTIVE;
832 	tt[1].rn_flags &= ~RNF_ACTIVE;
833 	return (tt);
834 }
835 
836 /*
837  * This is the same as rn_walktree() except for the parameters and the
838  * exit.
839  */
840 static int
841 rn_walktree_from(h, a, m, f, w)
842 	struct radix_node_head *h;
843 	void *a, *m;
844 	walktree_f_t *f;
845 	void *w;
846 {
847 	int error;
848 	struct radix_node *base, *next;
849 	u_char *xa = (u_char *)a;
850 	u_char *xm = (u_char *)m;
851 	register struct radix_node *rn, *last = 0 /* shut up gcc */;
852 	int stopping = 0;
853 	int lastb;
854 
855 	/*
856 	 * rn_search_m is sort-of-open-coded here.
857 	 */
858 	/* printf("about to search\n"); */
859 	for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
860 		last = rn;
861 		/* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
862 		       rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
863 		if (!(rn->rn_bmask & xm[rn->rn_off])) {
864 			break;
865 		}
866 		if (rn->rn_bmask & xa[rn->rn_off]) {
867 			rn = rn->rn_r;
868 		} else {
869 			rn = rn->rn_l;
870 		}
871 	}
872 	/* printf("done searching\n"); */
873 
874 	/*
875 	 * Two cases: either we stepped off the end of our mask,
876 	 * in which case last == rn, or we reached a leaf, in which
877 	 * case we want to start from the last node we looked at.
878 	 * Either way, last is the node we want to start from.
879 	 */
880 	rn = last;
881 	lastb = rn->rn_b;
882 
883 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
884 
885 	/*
886 	 * This gets complicated because we may delete the node
887 	 * while applying the function f to it, so we need to calculate
888 	 * the successor node in advance.
889 	 */
890 	while (rn->rn_b >= 0)
891 		rn = rn->rn_l;
892 
893 	while (!stopping) {
894 		/* printf("node %p (%d)\n", rn, rn->rn_b); */
895 		base = rn;
896 		/* If at right child go back up, otherwise, go right */
897 		while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
898 			rn = rn->rn_p;
899 
900 			/* if went up beyond last, stop */
901 			if (rn->rn_b < lastb) {
902 				stopping = 1;
903 				/* printf("up too far\n"); */
904 			}
905 		}
906 
907 		/* Find the next *leaf* since next node might vanish, too */
908 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
909 			rn = rn->rn_l;
910 		next = rn;
911 		/* Process leaves */
912 		while ((rn = base) != 0) {
913 			base = rn->rn_dupedkey;
914 			/* printf("leaf %p\n", rn); */
915 			if (!(rn->rn_flags & RNF_ROOT)
916 			    && (error = (*f)(rn, w)))
917 				return (error);
918 		}
919 		rn = next;
920 
921 		if (rn->rn_flags & RNF_ROOT) {
922 			/* printf("root, stopping"); */
923 			stopping = 1;
924 		}
925 
926 	}
927 	return 0;
928 }
929 
930 static int
931 rn_walktree(h, f, w)
932 	struct radix_node_head *h;
933 	walktree_f_t *f;
934 	void *w;
935 {
936 	int error;
937 	struct radix_node *base, *next;
938 	register struct radix_node *rn = h->rnh_treetop;
939 	/*
940 	 * This gets complicated because we may delete the node
941 	 * while applying the function f to it, so we need to calculate
942 	 * the successor node in advance.
943 	 */
944 	/* First time through node, go left */
945 	while (rn->rn_b >= 0)
946 		rn = rn->rn_l;
947 	for (;;) {
948 		base = rn;
949 		/* If at right child go back up, otherwise, go right */
950 		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
951 			rn = rn->rn_p;
952 		/* Find the next *leaf* since next node might vanish, too */
953 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
954 			rn = rn->rn_l;
955 		next = rn;
956 		/* Process leaves */
957 		while ((rn = base)) {
958 			base = rn->rn_dupedkey;
959 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
960 				return (error);
961 		}
962 		rn = next;
963 		if (rn->rn_flags & RNF_ROOT)
964 			return (0);
965 	}
966 	/* NOTREACHED */
967 }
968 
969 int
970 rn_inithead(head, off)
971 	void **head;
972 	int off;
973 {
974 	register struct radix_node_head *rnh;
975 	register struct radix_node *t, *tt, *ttt;
976 	if (*head)
977 		return (1);
978 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
979 	if (rnh == 0)
980 		return (0);
981 	Bzero(rnh, sizeof (*rnh));
982 	*head = rnh;
983 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
984 	ttt = rnh->rnh_nodes + 2;
985 	t->rn_r = ttt;
986 	t->rn_p = t;
987 	tt = t->rn_l;
988 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
989 	tt->rn_b = -1 - off;
990 	*ttt = *tt;
991 	ttt->rn_key = rn_ones;
992 	rnh->rnh_addaddr = rn_addroute;
993 	rnh->rnh_deladdr = rn_delete;
994 	rnh->rnh_matchaddr = rn_match;
995 	rnh->rnh_lookup = rn_lookup;
996 	rnh->rnh_walktree = rn_walktree;
997 	rnh->rnh_walktree_from = rn_walktree_from;
998 	rnh->rnh_treetop = t;
999 	return (1);
1000 }
1001 
1002 void
1003 rn_init()
1004 {
1005 	char *cp, *cplim;
1006 #ifdef KERNEL
1007 	struct domain *dom;
1008 
1009 	for (dom = domains; dom; dom = dom->dom_next)
1010 		if (dom->dom_maxrtkey > max_keylen)
1011 			max_keylen = dom->dom_maxrtkey;
1012 #endif
1013 	if (max_keylen == 0) {
1014 		log(LOG_ERR,
1015 		    "rn_init: radix functions require max_keylen be set\n");
1016 		return;
1017 	}
1018 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1019 	if (rn_zeros == NULL)
1020 		panic("rn_init");
1021 	Bzero(rn_zeros, 3 * max_keylen);
1022 	rn_ones = cp = rn_zeros + max_keylen;
1023 	addmask_key = cplim = rn_ones + max_keylen;
1024 	while (cp < cplim)
1025 		*cp++ = -1;
1026 	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1027 		panic("rn_init 2");
1028 }
1029