xref: /freebsd/sys/net/radix.c (revision 25ecdc7d52770caf1c9b44b5ec11f468f6b636f3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1988, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)radix.c	8.5 (Berkeley) 5/19/95
32  * $FreeBSD$
33  */
34 
35 /*
36  * Routines to build and maintain radix trees for routing lookups.
37  */
38 #include <sys/param.h>
39 #ifdef	_KERNEL
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/rmlock.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/syslog.h>
46 #include <net/radix.h>
47 #else /* !_KERNEL */
48 #include <stdio.h>
49 #include <strings.h>
50 #include <stdlib.h>
51 #define log(x, arg...)	fprintf(stderr, ## arg)
52 #define panic(x)	fprintf(stderr, "PANIC: %s", x), exit(1)
53 #define min(a, b) ((a) < (b) ? (a) : (b) )
54 #include <net/radix.h>
55 #endif /* !_KERNEL */
56 
57 static struct radix_node
58 	 *rn_insert(void *, struct radix_head *, int *,
59 	     struct radix_node [2]),
60 	 *rn_newpair(void *, int, struct radix_node[2]),
61 	 *rn_search(void *, struct radix_node *),
62 	 *rn_search_m(void *, struct radix_node *, void *);
63 static struct radix_node *rn_addmask(void *, struct radix_mask_head *, int,int);
64 
65 static void rn_detachhead_internal(struct radix_head *);
66 
67 #define	RADIX_MAX_KEY_LEN	32
68 
69 static char rn_zeros[RADIX_MAX_KEY_LEN];
70 static char rn_ones[RADIX_MAX_KEY_LEN] = {
71 	-1, -1, -1, -1, -1, -1, -1, -1,
72 	-1, -1, -1, -1, -1, -1, -1, -1,
73 	-1, -1, -1, -1, -1, -1, -1, -1,
74 	-1, -1, -1, -1, -1, -1, -1, -1,
75 };
76 
77 static int	rn_lexobetter(void *m_arg, void *n_arg);
78 static struct radix_mask *
79 		rn_new_radix_mask(struct radix_node *tt,
80 		    struct radix_mask *next);
81 static int	rn_satisfies_leaf(char *trial, struct radix_node *leaf,
82 		    int skip);
83 
84 /*
85  * The data structure for the keys is a radix tree with one way
86  * branching removed.  The index rn_bit at an internal node n represents a bit
87  * position to be tested.  The tree is arranged so that all descendants
88  * of a node n have keys whose bits all agree up to position rn_bit - 1.
89  * (We say the index of n is rn_bit.)
90  *
91  * There is at least one descendant which has a one bit at position rn_bit,
92  * and at least one with a zero there.
93  *
94  * A route is determined by a pair of key and mask.  We require that the
95  * bit-wise logical and of the key and mask to be the key.
96  * We define the index of a route to associated with the mask to be
97  * the first bit number in the mask where 0 occurs (with bit number 0
98  * representing the highest order bit).
99  *
100  * We say a mask is normal if every bit is 0, past the index of the mask.
101  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
102  * and m is a normal mask, then the route applies to every descendant of n.
103  * If the index(m) < rn_bit, this implies the trailing last few bits of k
104  * before bit b are all 0, (and hence consequently true of every descendant
105  * of n), so the route applies to all descendants of the node as well.
106  *
107  * Similar logic shows that a non-normal mask m such that
108  * index(m) <= index(n) could potentially apply to many children of n.
109  * Thus, for each non-host route, we attach its mask to a list at an internal
110  * node as high in the tree as we can go.
111  *
112  * The present version of the code makes use of normal routes in short-
113  * circuiting an explict mask and compare operation when testing whether
114  * a key satisfies a normal route, and also in remembering the unique leaf
115  * that governs a subtree.
116  */
117 
118 /*
119  * Most of the functions in this code assume that the key/mask arguments
120  * are sockaddr-like structures, where the first byte is an u_char
121  * indicating the size of the entire structure.
122  *
123  * To make the assumption more explicit, we use the LEN() macro to access
124  * this field. It is safe to pass an expression with side effects
125  * to LEN() as the argument is evaluated only once.
126  * We cast the result to int as this is the dominant usage.
127  */
128 #define LEN(x) ( (int) (*(const u_char *)(x)) )
129 
130 /*
131  * XXX THIS NEEDS TO BE FIXED
132  * In the code, pointers to keys and masks are passed as either
133  * 'void *' (because callers use to pass pointers of various kinds), or
134  * 'caddr_t' (which is fine for pointer arithmetics, but not very
135  * clean when you dereference it to access data). Furthermore, caddr_t
136  * is really 'char *', while the natural type to operate on keys and
137  * masks would be 'u_char'. This mismatch require a lot of casts and
138  * intermediate variables to adapt types that clutter the code.
139  */
140 
141 /*
142  * Search a node in the tree matching the key.
143  */
144 static struct radix_node *
145 rn_search(void *v_arg, struct radix_node *head)
146 {
147 	struct radix_node *x;
148 	caddr_t v;
149 
150 	for (x = head, v = v_arg; x->rn_bit >= 0;) {
151 		if (x->rn_bmask & v[x->rn_offset])
152 			x = x->rn_right;
153 		else
154 			x = x->rn_left;
155 	}
156 	return (x);
157 }
158 
159 /*
160  * Same as above, but with an additional mask.
161  * XXX note this function is used only once.
162  */
163 static struct radix_node *
164 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
165 {
166 	struct radix_node *x;
167 	caddr_t v = v_arg, m = m_arg;
168 
169 	for (x = head; x->rn_bit >= 0;) {
170 		if ((x->rn_bmask & m[x->rn_offset]) &&
171 		    (x->rn_bmask & v[x->rn_offset]))
172 			x = x->rn_right;
173 		else
174 			x = x->rn_left;
175 	}
176 	return (x);
177 }
178 
179 int
180 rn_refines(void *m_arg, void *n_arg)
181 {
182 	caddr_t m = m_arg, n = n_arg;
183 	caddr_t lim, lim2 = lim = n + LEN(n);
184 	int longer = LEN(n++) - LEN(m++);
185 	int masks_are_equal = 1;
186 
187 	if (longer > 0)
188 		lim -= longer;
189 	while (n < lim) {
190 		if (*n & ~(*m))
191 			return (0);
192 		if (*n++ != *m++)
193 			masks_are_equal = 0;
194 	}
195 	while (n < lim2)
196 		if (*n++)
197 			return (0);
198 	if (masks_are_equal && (longer < 0))
199 		for (lim2 = m - longer; m < lim2; )
200 			if (*m++)
201 				return (1);
202 	return (!masks_are_equal);
203 }
204 
205 /*
206  * Search for exact match in given @head.
207  * Assume host bits are cleared in @v_arg if @m_arg is not NULL
208  * Note that prefixes with /32 or /128 masks are treated differently
209  * from host routes.
210  */
211 struct radix_node *
212 rn_lookup(void *v_arg, void *m_arg, struct radix_head *head)
213 {
214 	struct radix_node *x;
215 	caddr_t netmask;
216 
217 	if (m_arg != NULL) {
218 		/*
219 		 * Most common case: search exact prefix/mask
220 		 */
221 		x = rn_addmask(m_arg, head->rnh_masks, 1,
222 		    head->rnh_treetop->rn_offset);
223 		if (x == NULL)
224 			return (NULL);
225 		netmask = x->rn_key;
226 
227 		x = rn_match(v_arg, head);
228 
229 		while (x != NULL && x->rn_mask != netmask)
230 			x = x->rn_dupedkey;
231 
232 		return (x);
233 	}
234 
235 	/*
236 	 * Search for host address.
237 	 */
238 	if ((x = rn_match(v_arg, head)) == NULL)
239 		return (NULL);
240 
241 	/* Check if found key is the same */
242 	if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
243 		return (NULL);
244 
245 	/* Check if this is not host route */
246 	if (x->rn_mask != NULL)
247 		return (NULL);
248 
249 	return (x);
250 }
251 
252 static int
253 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
254 {
255 	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
256 	char *cplim;
257 	int length = min(LEN(cp), LEN(cp2));
258 
259 	if (cp3 == NULL)
260 		cp3 = rn_ones;
261 	else
262 		length = min(length, LEN(cp3));
263 	cplim = cp + length; cp3 += skip; cp2 += skip;
264 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
265 		if ((*cp ^ *cp2) & *cp3)
266 			return (0);
267 	return (1);
268 }
269 
270 /*
271  * Search for longest-prefix match in given @head
272  */
273 struct radix_node *
274 rn_match(void *v_arg, struct radix_head *head)
275 {
276 	caddr_t v = v_arg;
277 	struct radix_node *t = head->rnh_treetop, *x;
278 	caddr_t cp = v, cp2;
279 	caddr_t cplim;
280 	struct radix_node *saved_t, *top = t;
281 	int off = t->rn_offset, vlen = LEN(cp), matched_off;
282 	int test, b, rn_bit;
283 
284 	/*
285 	 * Open code rn_search(v, top) to avoid overhead of extra
286 	 * subroutine call.
287 	 */
288 	for (; t->rn_bit >= 0; ) {
289 		if (t->rn_bmask & cp[t->rn_offset])
290 			t = t->rn_right;
291 		else
292 			t = t->rn_left;
293 	}
294 	/*
295 	 * See if we match exactly as a host destination
296 	 * or at least learn how many bits match, for normal mask finesse.
297 	 *
298 	 * It doesn't hurt us to limit how many bytes to check
299 	 * to the length of the mask, since if it matches we had a genuine
300 	 * match and the leaf we have is the most specific one anyway;
301 	 * if it didn't match with a shorter length it would fail
302 	 * with a long one.  This wins big for class B&C netmasks which
303 	 * are probably the most common case...
304 	 */
305 	if (t->rn_mask)
306 		vlen = *(u_char *)t->rn_mask;
307 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
308 	for (; cp < cplim; cp++, cp2++)
309 		if (*cp != *cp2)
310 			goto on1;
311 	/*
312 	 * This extra grot is in case we are explicitly asked
313 	 * to look up the default.  Ugh!
314 	 *
315 	 * Never return the root node itself, it seems to cause a
316 	 * lot of confusion.
317 	 */
318 	if (t->rn_flags & RNF_ROOT)
319 		t = t->rn_dupedkey;
320 	return (t);
321 on1:
322 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
323 	for (b = 7; (test >>= 1) > 0;)
324 		b--;
325 	matched_off = cp - v;
326 	b += matched_off << 3;
327 	rn_bit = -1 - b;
328 	/*
329 	 * If there is a host route in a duped-key chain, it will be first.
330 	 */
331 	if ((saved_t = t)->rn_mask == 0)
332 		t = t->rn_dupedkey;
333 	for (; t; t = t->rn_dupedkey)
334 		/*
335 		 * Even if we don't match exactly as a host,
336 		 * we may match if the leaf we wound up at is
337 		 * a route to a net.
338 		 */
339 		if (t->rn_flags & RNF_NORMAL) {
340 			if (rn_bit <= t->rn_bit)
341 				return (t);
342 		} else if (rn_satisfies_leaf(v, t, matched_off))
343 				return (t);
344 	t = saved_t;
345 	/* start searching up the tree */
346 	do {
347 		struct radix_mask *m;
348 		t = t->rn_parent;
349 		m = t->rn_mklist;
350 		/*
351 		 * If non-contiguous masks ever become important
352 		 * we can restore the masking and open coding of
353 		 * the search and satisfaction test and put the
354 		 * calculation of "off" back before the "do".
355 		 */
356 		while (m) {
357 			if (m->rm_flags & RNF_NORMAL) {
358 				if (rn_bit <= m->rm_bit)
359 					return (m->rm_leaf);
360 			} else {
361 				off = min(t->rn_offset, matched_off);
362 				x = rn_search_m(v, t, m->rm_mask);
363 				while (x && x->rn_mask != m->rm_mask)
364 					x = x->rn_dupedkey;
365 				if (x && rn_satisfies_leaf(v, x, off))
366 					return (x);
367 			}
368 			m = m->rm_mklist;
369 		}
370 	} while (t != top);
371 	return (0);
372 }
373 
374 #ifdef RN_DEBUG
375 int	rn_nodenum;
376 struct	radix_node *rn_clist;
377 int	rn_saveinfo;
378 int	rn_debug =  1;
379 #endif
380 
381 /*
382  * Whenever we add a new leaf to the tree, we also add a parent node,
383  * so we allocate them as an array of two elements: the first one must be
384  * the leaf (see RNTORT() in route.c), the second one is the parent.
385  * This routine initializes the relevant fields of the nodes, so that
386  * the leaf is the left child of the parent node, and both nodes have
387  * (almost) all all fields filled as appropriate.
388  * (XXX some fields are left unset, see the '#if 0' section).
389  * The function returns a pointer to the parent node.
390  */
391 
392 static struct radix_node *
393 rn_newpair(void *v, int b, struct radix_node nodes[2])
394 {
395 	struct radix_node *tt = nodes, *t = tt + 1;
396 	t->rn_bit = b;
397 	t->rn_bmask = 0x80 >> (b & 7);
398 	t->rn_left = tt;
399 	t->rn_offset = b >> 3;
400 
401 #if 0  /* XXX perhaps we should fill these fields as well. */
402 	t->rn_parent = t->rn_right = NULL;
403 
404 	tt->rn_mask = NULL;
405 	tt->rn_dupedkey = NULL;
406 	tt->rn_bmask = 0;
407 #endif
408 	tt->rn_bit = -1;
409 	tt->rn_key = (caddr_t)v;
410 	tt->rn_parent = t;
411 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
412 	tt->rn_mklist = t->rn_mklist = 0;
413 #ifdef RN_DEBUG
414 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
415 	tt->rn_twin = t;
416 	tt->rn_ybro = rn_clist;
417 	rn_clist = tt;
418 #endif
419 	return (t);
420 }
421 
422 static struct radix_node *
423 rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
424     struct radix_node nodes[2])
425 {
426 	caddr_t v = v_arg;
427 	struct radix_node *top = head->rnh_treetop;
428 	int head_off = top->rn_offset, vlen = LEN(v);
429 	struct radix_node *t = rn_search(v_arg, top);
430 	caddr_t cp = v + head_off;
431 	unsigned b;
432 	struct radix_node *p, *tt, *x;
433     	/*
434 	 * Find first bit at which v and t->rn_key differ
435 	 */
436 	caddr_t cp2 = t->rn_key + head_off;
437 	int cmp_res;
438 	caddr_t cplim = v + vlen;
439 
440 	while (cp < cplim)
441 		if (*cp2++ != *cp++)
442 			goto on1;
443 	*dupentry = 1;
444 	return (t);
445 on1:
446 	*dupentry = 0;
447 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
448 	for (b = (cp - v) << 3; cmp_res; b--)
449 		cmp_res >>= 1;
450 
451 	x = top;
452 	cp = v;
453 	do {
454 		p = x;
455 		if (cp[x->rn_offset] & x->rn_bmask)
456 			x = x->rn_right;
457 		else
458 			x = x->rn_left;
459 	} while (b > (unsigned) x->rn_bit);
460 				/* x->rn_bit < b && x->rn_bit >= 0 */
461 #ifdef RN_DEBUG
462 	if (rn_debug)
463 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
464 #endif
465 	t = rn_newpair(v_arg, b, nodes);
466 	tt = t->rn_left;
467 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
468 		p->rn_left = t;
469 	else
470 		p->rn_right = t;
471 	x->rn_parent = t;
472 	t->rn_parent = p; /* frees x, p as temp vars below */
473 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
474 		t->rn_right = x;
475 	} else {
476 		t->rn_right = tt;
477 		t->rn_left = x;
478 	}
479 #ifdef RN_DEBUG
480 	if (rn_debug)
481 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
482 #endif
483 	return (tt);
484 }
485 
486 static struct radix_node *
487 rn_addmask(void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
488 {
489 	unsigned char *netmask = n_arg;
490 	unsigned char *cp, *cplim;
491 	struct radix_node *x;
492 	int b = 0, mlen, j;
493 	int maskduplicated, isnormal;
494 	struct radix_node *saved_x;
495 	unsigned char addmask_key[RADIX_MAX_KEY_LEN];
496 
497 	if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
498 		mlen = RADIX_MAX_KEY_LEN;
499 	if (skip == 0)
500 		skip = 1;
501 	if (mlen <= skip)
502 		return (maskhead->mask_nodes);
503 
504 	bzero(addmask_key, RADIX_MAX_KEY_LEN);
505 	if (skip > 1)
506 		bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
507 	bcopy(netmask + skip, addmask_key + skip, mlen - skip);
508 	/*
509 	 * Trim trailing zeroes.
510 	 */
511 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
512 		cp--;
513 	mlen = cp - addmask_key;
514 	if (mlen <= skip)
515 		return (maskhead->mask_nodes);
516 	*addmask_key = mlen;
517 	x = rn_search(addmask_key, maskhead->head.rnh_treetop);
518 	if (bcmp(addmask_key, x->rn_key, mlen) != 0)
519 		x = NULL;
520 	if (x || search)
521 		return (x);
522 	R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
523 	if ((saved_x = x) == NULL)
524 		return (0);
525 	netmask = cp = (unsigned char *)(x + 2);
526 	bcopy(addmask_key, cp, mlen);
527 	x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
528 	if (maskduplicated) {
529 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
530 		R_Free(saved_x);
531 		return (x);
532 	}
533 	/*
534 	 * Calculate index of mask, and check for normalcy.
535 	 * First find the first byte with a 0 bit, then if there are
536 	 * more bits left (remember we already trimmed the trailing 0's),
537 	 * the bits should be contiguous, otherwise we have got
538 	 * a non-contiguous mask.
539 	 */
540 #define	CONTIG(_c)	(((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
541 	cplim = netmask + mlen;
542 	isnormal = 1;
543 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
544 		cp++;
545 	if (cp != cplim) {
546 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
547 			b++;
548 		if (!CONTIG(*cp) || cp != (cplim - 1))
549 			isnormal = 0;
550 	}
551 	b += (cp - netmask) << 3;
552 	x->rn_bit = -1 - b;
553 	if (isnormal)
554 		x->rn_flags |= RNF_NORMAL;
555 	return (x);
556 }
557 
558 static int	/* XXX: arbitrary ordering for non-contiguous masks */
559 rn_lexobetter(void *m_arg, void *n_arg)
560 {
561 	u_char *mp = m_arg, *np = n_arg, *lim;
562 
563 	if (LEN(mp) > LEN(np))
564 		return (1);  /* not really, but need to check longer one first */
565 	if (LEN(mp) == LEN(np))
566 		for (lim = mp + LEN(mp); mp < lim;)
567 			if (*mp++ > *np++)
568 				return (1);
569 	return (0);
570 }
571 
572 static struct radix_mask *
573 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
574 {
575 	struct radix_mask *m;
576 
577 	R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
578 	if (m == NULL) {
579 		log(LOG_ERR, "Failed to allocate route mask\n");
580 		return (0);
581 	}
582 	bzero(m, sizeof(*m));
583 	m->rm_bit = tt->rn_bit;
584 	m->rm_flags = tt->rn_flags;
585 	if (tt->rn_flags & RNF_NORMAL)
586 		m->rm_leaf = tt;
587 	else
588 		m->rm_mask = tt->rn_mask;
589 	m->rm_mklist = next;
590 	tt->rn_mklist = m;
591 	return (m);
592 }
593 
594 struct radix_node *
595 rn_addroute(void *v_arg, void *n_arg, struct radix_head *head,
596     struct radix_node treenodes[2])
597 {
598 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
599 	struct radix_node *t, *x = NULL, *tt;
600 	struct radix_node *saved_tt, *top = head->rnh_treetop;
601 	short b = 0, b_leaf = 0;
602 	int keyduplicated;
603 	caddr_t mmask;
604 	struct radix_mask *m, **mp;
605 
606 	/*
607 	 * In dealing with non-contiguous masks, there may be
608 	 * many different routes which have the same mask.
609 	 * We will find it useful to have a unique pointer to
610 	 * the mask to speed avoiding duplicate references at
611 	 * nodes and possibly save time in calculating indices.
612 	 */
613 	if (netmask)  {
614 		x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset);
615 		if (x == NULL)
616 			return (0);
617 		b_leaf = x->rn_bit;
618 		b = -1 - x->rn_bit;
619 		netmask = x->rn_key;
620 	}
621 	/*
622 	 * Deal with duplicated keys: attach node to previous instance
623 	 */
624 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
625 	if (keyduplicated) {
626 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
627 			if (tt->rn_mask == netmask)
628 				return (0);
629 			if (netmask == 0 ||
630 			    (tt->rn_mask &&
631 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
632 			      || rn_refines(netmask, tt->rn_mask)
633 			      || rn_lexobetter(netmask, tt->rn_mask))))
634 				break;
635 		}
636 		/*
637 		 * If the mask is not duplicated, we wouldn't
638 		 * find it among possible duplicate key entries
639 		 * anyway, so the above test doesn't hurt.
640 		 *
641 		 * We sort the masks for a duplicated key the same way as
642 		 * in a masklist -- most specific to least specific.
643 		 * This may require the unfortunate nuisance of relocating
644 		 * the head of the list.
645 		 *
646 		 * We also reverse, or doubly link the list through the
647 		 * parent pointer.
648 		 */
649 		if (tt == saved_tt) {
650 			struct	radix_node *xx = x;
651 			/* link in at head of list */
652 			(tt = treenodes)->rn_dupedkey = t;
653 			tt->rn_flags = t->rn_flags;
654 			tt->rn_parent = x = t->rn_parent;
655 			t->rn_parent = tt;	 		/* parent */
656 			if (x->rn_left == t)
657 				x->rn_left = tt;
658 			else
659 				x->rn_right = tt;
660 			saved_tt = tt; x = xx;
661 		} else {
662 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
663 			t->rn_dupedkey = tt;
664 			tt->rn_parent = t;			/* parent */
665 			if (tt->rn_dupedkey)			/* parent */
666 				tt->rn_dupedkey->rn_parent = tt; /* parent */
667 		}
668 #ifdef RN_DEBUG
669 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
670 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
671 #endif
672 		tt->rn_key = (caddr_t) v;
673 		tt->rn_bit = -1;
674 		tt->rn_flags = RNF_ACTIVE;
675 	}
676 	/*
677 	 * Put mask in tree.
678 	 */
679 	if (netmask) {
680 		tt->rn_mask = netmask;
681 		tt->rn_bit = x->rn_bit;
682 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
683 	}
684 	t = saved_tt->rn_parent;
685 	if (keyduplicated)
686 		goto on2;
687 	b_leaf = -1 - t->rn_bit;
688 	if (t->rn_right == saved_tt)
689 		x = t->rn_left;
690 	else
691 		x = t->rn_right;
692 	/* Promote general routes from below */
693 	if (x->rn_bit < 0) {
694 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
695 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
696 			*mp = m = rn_new_radix_mask(x, 0);
697 			if (m)
698 				mp = &m->rm_mklist;
699 		}
700 	} else if (x->rn_mklist) {
701 		/*
702 		 * Skip over masks whose index is > that of new node
703 		 */
704 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
705 			if (m->rm_bit >= b_leaf)
706 				break;
707 		t->rn_mklist = m; *mp = NULL;
708 	}
709 on2:
710 	/* Add new route to highest possible ancestor's list */
711 	if ((netmask == 0) || (b > t->rn_bit ))
712 		return (tt); /* can't lift at all */
713 	b_leaf = tt->rn_bit;
714 	do {
715 		x = t;
716 		t = t->rn_parent;
717 	} while (b <= t->rn_bit && x != top);
718 	/*
719 	 * Search through routes associated with node to
720 	 * insert new route according to index.
721 	 * Need same criteria as when sorting dupedkeys to avoid
722 	 * double loop on deletion.
723 	 */
724 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
725 		if (m->rm_bit < b_leaf)
726 			continue;
727 		if (m->rm_bit > b_leaf)
728 			break;
729 		if (m->rm_flags & RNF_NORMAL) {
730 			mmask = m->rm_leaf->rn_mask;
731 			if (tt->rn_flags & RNF_NORMAL) {
732 			    log(LOG_ERR,
733 			        "Non-unique normal route, mask not entered\n");
734 				return (tt);
735 			}
736 		} else
737 			mmask = m->rm_mask;
738 		if (mmask == netmask) {
739 			m->rm_refs++;
740 			tt->rn_mklist = m;
741 			return (tt);
742 		}
743 		if (rn_refines(netmask, mmask)
744 		    || rn_lexobetter(netmask, mmask))
745 			break;
746 	}
747 	*mp = rn_new_radix_mask(tt, *mp);
748 	return (tt);
749 }
750 
751 struct radix_node *
752 rn_delete(void *v_arg, void *netmask_arg, struct radix_head *head)
753 {
754 	struct radix_node *t, *p, *x, *tt;
755 	struct radix_mask *m, *saved_m, **mp;
756 	struct radix_node *dupedkey, *saved_tt, *top;
757 	caddr_t v, netmask;
758 	int b, head_off, vlen;
759 
760 	v = v_arg;
761 	netmask = netmask_arg;
762 	x = head->rnh_treetop;
763 	tt = rn_search(v, x);
764 	head_off = x->rn_offset;
765 	vlen =  LEN(v);
766 	saved_tt = tt;
767 	top = x;
768 	if (tt == NULL ||
769 	    bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
770 		return (0);
771 	/*
772 	 * Delete our route from mask lists.
773 	 */
774 	if (netmask) {
775 		x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
776 		if (x == NULL)
777 			return (0);
778 		netmask = x->rn_key;
779 		while (tt->rn_mask != netmask)
780 			if ((tt = tt->rn_dupedkey) == NULL)
781 				return (0);
782 	}
783 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
784 		goto on1;
785 	if (tt->rn_flags & RNF_NORMAL) {
786 		if (m->rm_leaf != tt || m->rm_refs > 0) {
787 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
788 			return (0);  /* dangling ref could cause disaster */
789 		}
790 	} else {
791 		if (m->rm_mask != tt->rn_mask) {
792 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
793 			goto on1;
794 		}
795 		if (--m->rm_refs >= 0)
796 			goto on1;
797 	}
798 	b = -1 - tt->rn_bit;
799 	t = saved_tt->rn_parent;
800 	if (b > t->rn_bit)
801 		goto on1; /* Wasn't lifted at all */
802 	do {
803 		x = t;
804 		t = t->rn_parent;
805 	} while (b <= t->rn_bit && x != top);
806 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
807 		if (m == saved_m) {
808 			*mp = m->rm_mklist;
809 			R_Free(m);
810 			break;
811 		}
812 	if (m == NULL) {
813 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
814 		if (tt->rn_flags & RNF_NORMAL)
815 			return (0); /* Dangling ref to us */
816 	}
817 on1:
818 	/*
819 	 * Eliminate us from tree
820 	 */
821 	if (tt->rn_flags & RNF_ROOT)
822 		return (0);
823 #ifdef RN_DEBUG
824 	/* Get us out of the creation list */
825 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
826 	if (t) t->rn_ybro = tt->rn_ybro;
827 #endif
828 	t = tt->rn_parent;
829 	dupedkey = saved_tt->rn_dupedkey;
830 	if (dupedkey) {
831 		/*
832 		 * Here, tt is the deletion target and
833 		 * saved_tt is the head of the dupekey chain.
834 		 */
835 		if (tt == saved_tt) {
836 			/* remove from head of chain */
837 			x = dupedkey; x->rn_parent = t;
838 			if (t->rn_left == tt)
839 				t->rn_left = x;
840 			else
841 				t->rn_right = x;
842 		} else {
843 			/* find node in front of tt on the chain */
844 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
845 				p = p->rn_dupedkey;
846 			if (p) {
847 				p->rn_dupedkey = tt->rn_dupedkey;
848 				if (tt->rn_dupedkey)		/* parent */
849 					tt->rn_dupedkey->rn_parent = p;
850 								/* parent */
851 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
852 		}
853 		t = tt + 1;
854 		if  (t->rn_flags & RNF_ACTIVE) {
855 #ifndef RN_DEBUG
856 			*++x = *t;
857 			p = t->rn_parent;
858 #else
859 			b = t->rn_info;
860 			*++x = *t;
861 			t->rn_info = b;
862 			p = t->rn_parent;
863 #endif
864 			if (p->rn_left == t)
865 				p->rn_left = x;
866 			else
867 				p->rn_right = x;
868 			x->rn_left->rn_parent = x;
869 			x->rn_right->rn_parent = x;
870 		}
871 		goto out;
872 	}
873 	if (t->rn_left == tt)
874 		x = t->rn_right;
875 	else
876 		x = t->rn_left;
877 	p = t->rn_parent;
878 	if (p->rn_right == t)
879 		p->rn_right = x;
880 	else
881 		p->rn_left = x;
882 	x->rn_parent = p;
883 	/*
884 	 * Demote routes attached to us.
885 	 */
886 	if (t->rn_mklist) {
887 		if (x->rn_bit >= 0) {
888 			for (mp = &x->rn_mklist; (m = *mp);)
889 				mp = &m->rm_mklist;
890 			*mp = t->rn_mklist;
891 		} else {
892 			/* If there are any key,mask pairs in a sibling
893 			   duped-key chain, some subset will appear sorted
894 			   in the same order attached to our mklist */
895 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
896 				if (m == x->rn_mklist) {
897 					struct radix_mask *mm = m->rm_mklist;
898 					x->rn_mklist = 0;
899 					if (--(m->rm_refs) < 0)
900 						R_Free(m);
901 					m = mm;
902 				}
903 			if (m)
904 				log(LOG_ERR,
905 				    "rn_delete: Orphaned Mask %p at %p\n",
906 				    m, x);
907 		}
908 	}
909 	/*
910 	 * We may be holding an active internal node in the tree.
911 	 */
912 	x = tt + 1;
913 	if (t != x) {
914 #ifndef RN_DEBUG
915 		*t = *x;
916 #else
917 		b = t->rn_info;
918 		*t = *x;
919 		t->rn_info = b;
920 #endif
921 		t->rn_left->rn_parent = t;
922 		t->rn_right->rn_parent = t;
923 		p = x->rn_parent;
924 		if (p->rn_left == x)
925 			p->rn_left = t;
926 		else
927 			p->rn_right = t;
928 	}
929 out:
930 	tt->rn_flags &= ~RNF_ACTIVE;
931 	tt[1].rn_flags &= ~RNF_ACTIVE;
932 	return (tt);
933 }
934 
935 /*
936  * This is the same as rn_walktree() except for the parameters and the
937  * exit.
938  */
939 int
940 rn_walktree_from(struct radix_head *h, void *a, void *m,
941     walktree_f_t *f, void *w)
942 {
943 	int error;
944 	struct radix_node *base, *next;
945 	u_char *xa = (u_char *)a;
946 	u_char *xm = (u_char *)m;
947 	struct radix_node *rn, *last = NULL; /* shut up gcc */
948 	int stopping = 0;
949 	int lastb;
950 
951 	KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
952 
953 	/*
954 	 * rn_search_m is sort-of-open-coded here. We cannot use the
955 	 * function because we need to keep track of the last node seen.
956 	 */
957 	/* printf("about to search\n"); */
958 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
959 		last = rn;
960 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
961 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
962 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
963 			break;
964 		}
965 		if (rn->rn_bmask & xa[rn->rn_offset]) {
966 			rn = rn->rn_right;
967 		} else {
968 			rn = rn->rn_left;
969 		}
970 	}
971 	/* printf("done searching\n"); */
972 
973 	/*
974 	 * Two cases: either we stepped off the end of our mask,
975 	 * in which case last == rn, or we reached a leaf, in which
976 	 * case we want to start from the leaf.
977 	 */
978 	if (rn->rn_bit >= 0)
979 		rn = last;
980 	lastb = last->rn_bit;
981 
982 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
983 
984 	/*
985 	 * This gets complicated because we may delete the node
986 	 * while applying the function f to it, so we need to calculate
987 	 * the successor node in advance.
988 	 */
989 	while (rn->rn_bit >= 0)
990 		rn = rn->rn_left;
991 
992 	while (!stopping) {
993 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
994 		base = rn;
995 		/* If at right child go back up, otherwise, go right */
996 		while (rn->rn_parent->rn_right == rn
997 		       && !(rn->rn_flags & RNF_ROOT)) {
998 			rn = rn->rn_parent;
999 
1000 			/* if went up beyond last, stop */
1001 			if (rn->rn_bit <= lastb) {
1002 				stopping = 1;
1003 				/* printf("up too far\n"); */
1004 				/*
1005 				 * XXX we should jump to the 'Process leaves'
1006 				 * part, because the values of 'rn' and 'next'
1007 				 * we compute will not be used. Not a big deal
1008 				 * because this loop will terminate, but it is
1009 				 * inefficient and hard to understand!
1010 				 */
1011 			}
1012 		}
1013 
1014 		/*
1015 		 * At the top of the tree, no need to traverse the right
1016 		 * half, prevent the traversal of the entire tree in the
1017 		 * case of default route.
1018 		 */
1019 		if (rn->rn_parent->rn_flags & RNF_ROOT)
1020 			stopping = 1;
1021 
1022 		/* Find the next *leaf* since next node might vanish, too */
1023 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1024 			rn = rn->rn_left;
1025 		next = rn;
1026 		/* Process leaves */
1027 		while ((rn = base) != NULL) {
1028 			base = rn->rn_dupedkey;
1029 			/* printf("leaf %p\n", rn); */
1030 			if (!(rn->rn_flags & RNF_ROOT)
1031 			    && (error = (*f)(rn, w)))
1032 				return (error);
1033 		}
1034 		rn = next;
1035 
1036 		if (rn->rn_flags & RNF_ROOT) {
1037 			/* printf("root, stopping"); */
1038 			stopping = 1;
1039 		}
1040 	}
1041 	return (0);
1042 }
1043 
1044 int
1045 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
1046 {
1047 	int error;
1048 	struct radix_node *base, *next;
1049 	struct radix_node *rn = h->rnh_treetop;
1050 	/*
1051 	 * This gets complicated because we may delete the node
1052 	 * while applying the function f to it, so we need to calculate
1053 	 * the successor node in advance.
1054 	 */
1055 
1056 	/* First time through node, go left */
1057 	while (rn->rn_bit >= 0)
1058 		rn = rn->rn_left;
1059 	for (;;) {
1060 		base = rn;
1061 		/* If at right child go back up, otherwise, go right */
1062 		while (rn->rn_parent->rn_right == rn
1063 		       && (rn->rn_flags & RNF_ROOT) == 0)
1064 			rn = rn->rn_parent;
1065 		/* Find the next *leaf* since next node might vanish, too */
1066 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1067 			rn = rn->rn_left;
1068 		next = rn;
1069 		/* Process leaves */
1070 		while ((rn = base)) {
1071 			base = rn->rn_dupedkey;
1072 			if (!(rn->rn_flags & RNF_ROOT)
1073 			    && (error = (*f)(rn, w)))
1074 				return (error);
1075 		}
1076 		rn = next;
1077 		if (rn->rn_flags & RNF_ROOT)
1078 			return (0);
1079 	}
1080 	/* NOTREACHED */
1081 }
1082 
1083 /*
1084  * Initialize an empty tree. This has 3 nodes, which are passed
1085  * via base_nodes (in the order <left,root,right>) and are
1086  * marked RNF_ROOT so they cannot be freed.
1087  * The leaves have all-zero and all-one keys, with significant
1088  * bits starting at 'off'.
1089  */
1090 void
1091 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
1092 {
1093 	struct radix_node *t, *tt, *ttt;
1094 
1095 	t = rn_newpair(rn_zeros, off, base_nodes);
1096 	ttt = base_nodes + 2;
1097 	t->rn_right = ttt;
1098 	t->rn_parent = t;
1099 	tt = t->rn_left;	/* ... which in turn is base_nodes */
1100 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1101 	tt->rn_bit = -1 - off;
1102 	*ttt = *tt;
1103 	ttt->rn_key = rn_ones;
1104 
1105 	rh->rnh_treetop = t;
1106 }
1107 
1108 static void
1109 rn_detachhead_internal(struct radix_head *head)
1110 {
1111 
1112 	KASSERT((head != NULL),
1113 	    ("%s: head already freed", __func__));
1114 
1115 	/* Free <left,root,right> nodes. */
1116 	R_Free(head);
1117 }
1118 
1119 /* Functions used by 'struct radix_node_head' users */
1120 
1121 int
1122 rn_inithead(void **head, int off)
1123 {
1124 	struct radix_node_head *rnh;
1125 	struct radix_mask_head *rmh;
1126 
1127 	rnh = *head;
1128 	rmh = NULL;
1129 
1130 	if (*head != NULL)
1131 		return (1);
1132 
1133 	R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1134 	R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
1135 	if (rnh == NULL || rmh == NULL) {
1136 		if (rnh != NULL)
1137 			R_Free(rnh);
1138 		if (rmh != NULL)
1139 			R_Free(rmh);
1140 		return (0);
1141 	}
1142 
1143 	/* Init trees */
1144 	rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
1145 	rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
1146 	*head = rnh;
1147 	rnh->rh.rnh_masks = rmh;
1148 
1149 	/* Finally, set base callbacks */
1150 	rnh->rnh_addaddr = rn_addroute;
1151 	rnh->rnh_deladdr = rn_delete;
1152 	rnh->rnh_matchaddr = rn_match;
1153 	rnh->rnh_lookup = rn_lookup;
1154 	rnh->rnh_walktree = rn_walktree;
1155 	rnh->rnh_walktree_from = rn_walktree_from;
1156 
1157 	return (1);
1158 }
1159 
1160 static int
1161 rn_freeentry(struct radix_node *rn, void *arg)
1162 {
1163 	struct radix_head * const rnh = arg;
1164 	struct radix_node *x;
1165 
1166 	x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
1167 	if (x != NULL)
1168 		R_Free(x);
1169 	return (0);
1170 }
1171 
1172 int
1173 rn_detachhead(void **head)
1174 {
1175 	struct radix_node_head *rnh;
1176 
1177 	KASSERT((head != NULL && *head != NULL),
1178 	    ("%s: head already freed", __func__));
1179 
1180 	rnh = (struct radix_node_head *)(*head);
1181 
1182 	rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
1183 	rn_detachhead_internal(&rnh->rh.rnh_masks->head);
1184 	rn_detachhead_internal(&rnh->rh);
1185 
1186 	*head = NULL;
1187 
1188 	return (1);
1189 }
1190