xref: /freebsd/sys/net/radix.c (revision 23f282aa31e9b6fceacd449020e936e98d6f2298)
1 /*
2  * Copyright (c) 1988, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)radix.c	8.4 (Berkeley) 11/2/94
34  * $FreeBSD$
35  */
36 
37 /*
38  * Routines to build and maintain radix trees for routing lookups.
39  */
40 #ifndef _RADIX_H_
41 #include <sys/param.h>
42 #ifdef	_KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #define	M_DONTWAIT M_NOWAIT
46 #include <sys/domain.h>
47 #else
48 #include <stdlib.h>
49 #endif
50 #include <sys/syslog.h>
51 #include <net/radix.h>
52 #endif
53 
54 static int	rn_walktree_from __P((struct radix_node_head *h, void *a,
55 				      void *m, walktree_f_t *f, void *w));
56 static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
57 static struct radix_node
58 	 *rn_insert __P((void *, struct radix_node_head *, int *,
59 			struct radix_node [2])),
60 	 *rn_newpair __P((void *, int, struct radix_node[2])),
61 	 *rn_search __P((void *, struct radix_node *)),
62 	 *rn_search_m __P((void *, struct radix_node *, void *));
63 
64 static int	max_keylen;
65 static struct radix_mask *rn_mkfreelist;
66 static struct radix_node_head *mask_rnhead;
67 static char *addmask_key;
68 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
69 static char *rn_zeros, *rn_ones;
70 
71 #define rn_masktop (mask_rnhead->rnh_treetop)
72 #undef Bcmp
73 #define Bcmp(a, b, l) \
74 	(l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
75 
76 static int	rn_lexobetter __P((void *m_arg, void *n_arg));
77 static struct radix_mask *
78 		rn_new_radix_mask __P((struct radix_node *tt,
79 				       struct radix_mask *next));
80 static int	rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
81 				       int skip));
82 
83 /*
84  * The data structure for the keys is a radix tree with one way
85  * branching removed.  The index rn_bit at an internal node n represents a bit
86  * position to be tested.  The tree is arranged so that all descendants
87  * of a node n have keys whose bits all agree up to position rn_bit - 1.
88  * (We say the index of n is rn_bit.)
89  *
90  * There is at least one descendant which has a one bit at position rn_bit,
91  * and at least one with a zero there.
92  *
93  * A route is determined by a pair of key and mask.  We require that the
94  * bit-wise logical and of the key and mask to be the key.
95  * We define the index of a route to associated with the mask to be
96  * the first bit number in the mask where 0 occurs (with bit number 0
97  * representing the highest order bit).
98  *
99  * We say a mask is normal if every bit is 0, past the index of the mask.
100  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
101  * and m is a normal mask, then the route applies to every descendant of n.
102  * If the index(m) < rn_bit, this implies the trailing last few bits of k
103  * before bit b are all 0, (and hence consequently true of every descendant
104  * of n), so the route applies to all descendants of the node as well.
105  *
106  * Similar logic shows that a non-normal mask m such that
107  * index(m) <= index(n) could potentially apply to many children of n.
108  * Thus, for each non-host route, we attach its mask to a list at an internal
109  * node as high in the tree as we can go.
110  *
111  * The present version of the code makes use of normal routes in short-
112  * circuiting an explict mask and compare operation when testing whether
113  * a key satisfies a normal route, and also in remembering the unique leaf
114  * that governs a subtree.
115  */
116 
117 static struct radix_node *
118 rn_search(v_arg, head)
119 	void *v_arg;
120 	struct radix_node *head;
121 {
122 	register struct radix_node *x;
123 	register caddr_t v;
124 
125 	for (x = head, v = v_arg; x->rn_bit >= 0;) {
126 		if (x->rn_bmask & v[x->rn_offset])
127 			x = x->rn_right;
128 		else
129 			x = x->rn_left;
130 	}
131 	return (x);
132 }
133 
134 static struct radix_node *
135 rn_search_m(v_arg, head, m_arg)
136 	struct radix_node *head;
137 	void *v_arg, *m_arg;
138 {
139 	register struct radix_node *x;
140 	register caddr_t v = v_arg, m = m_arg;
141 
142 	for (x = head; x->rn_bit >= 0;) {
143 		if ((x->rn_bmask & m[x->rn_offset]) &&
144 		    (x->rn_bmask & v[x->rn_offset]))
145 			x = x->rn_right;
146 		else
147 			x = x->rn_left;
148 	}
149 	return x;
150 }
151 
152 int
153 rn_refines(m_arg, n_arg)
154 	void *m_arg, *n_arg;
155 {
156 	register caddr_t m = m_arg, n = n_arg;
157 	register caddr_t lim, lim2 = lim = n + *(u_char *)n;
158 	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
159 	int masks_are_equal = 1;
160 
161 	if (longer > 0)
162 		lim -= longer;
163 	while (n < lim) {
164 		if (*n & ~(*m))
165 			return 0;
166 		if (*n++ != *m++)
167 			masks_are_equal = 0;
168 	}
169 	while (n < lim2)
170 		if (*n++)
171 			return 0;
172 	if (masks_are_equal && (longer < 0))
173 		for (lim2 = m - longer; m < lim2; )
174 			if (*m++)
175 				return 1;
176 	return (!masks_are_equal);
177 }
178 
179 struct radix_node *
180 rn_lookup(v_arg, m_arg, head)
181 	void *v_arg, *m_arg;
182 	struct radix_node_head *head;
183 {
184 	register struct radix_node *x;
185 	caddr_t netmask = 0;
186 
187 	if (m_arg) {
188 		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
189 		if (x == 0)
190 			return (0);
191 		netmask = x->rn_key;
192 	}
193 	x = rn_match(v_arg, head);
194 	if (x && netmask) {
195 		while (x && x->rn_mask != netmask)
196 			x = x->rn_dupedkey;
197 	}
198 	return x;
199 }
200 
201 static int
202 rn_satsifies_leaf(trial, leaf, skip)
203 	char *trial;
204 	register struct radix_node *leaf;
205 	int skip;
206 {
207 	register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
208 	char *cplim;
209 	int length = min(*(u_char *)cp, *(u_char *)cp2);
210 
211 	if (cp3 == 0)
212 		cp3 = rn_ones;
213 	else
214 		length = min(length, *(u_char *)cp3);
215 	cplim = cp + length; cp3 += skip; cp2 += skip;
216 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
217 		if ((*cp ^ *cp2) & *cp3)
218 			return 0;
219 	return 1;
220 }
221 
222 struct radix_node *
223 rn_match(v_arg, head)
224 	void *v_arg;
225 	struct radix_node_head *head;
226 {
227 	caddr_t v = v_arg;
228 	register struct radix_node *t = head->rnh_treetop, *x;
229 	register caddr_t cp = v, cp2;
230 	caddr_t cplim;
231 	struct radix_node *saved_t, *top = t;
232 	int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
233 	register int test, b, rn_bit;
234 
235 	/*
236 	 * Open code rn_search(v, top) to avoid overhead of extra
237 	 * subroutine call.
238 	 */
239 	for (; t->rn_bit >= 0; ) {
240 		if (t->rn_bmask & cp[t->rn_offset])
241 			t = t->rn_right;
242 		else
243 			t = t->rn_left;
244 	}
245 	/*
246 	 * See if we match exactly as a host destination
247 	 * or at least learn how many bits match, for normal mask finesse.
248 	 *
249 	 * It doesn't hurt us to limit how many bytes to check
250 	 * to the length of the mask, since if it matches we had a genuine
251 	 * match and the leaf we have is the most specific one anyway;
252 	 * if it didn't match with a shorter length it would fail
253 	 * with a long one.  This wins big for class B&C netmasks which
254 	 * are probably the most common case...
255 	 */
256 	if (t->rn_mask)
257 		vlen = *(u_char *)t->rn_mask;
258 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
259 	for (; cp < cplim; cp++, cp2++)
260 		if (*cp != *cp2)
261 			goto on1;
262 	/*
263 	 * This extra grot is in case we are explicitly asked
264 	 * to look up the default.  Ugh!
265 	 *
266 	 * Never return the root node itself, it seems to cause a
267 	 * lot of confusion.
268 	 */
269 	if (t->rn_flags & RNF_ROOT)
270 		t = t->rn_dupedkey;
271 	return t;
272 on1:
273 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
274 	for (b = 7; (test >>= 1) > 0;)
275 		b--;
276 	matched_off = cp - v;
277 	b += matched_off << 3;
278 	rn_bit = -1 - b;
279 	/*
280 	 * If there is a host route in a duped-key chain, it will be first.
281 	 */
282 	if ((saved_t = t)->rn_mask == 0)
283 		t = t->rn_dupedkey;
284 	for (; t; t = t->rn_dupedkey)
285 		/*
286 		 * Even if we don't match exactly as a host,
287 		 * we may match if the leaf we wound up at is
288 		 * a route to a net.
289 		 */
290 		if (t->rn_flags & RNF_NORMAL) {
291 			if (rn_bit <= t->rn_bit)
292 				return t;
293 		} else if (rn_satsifies_leaf(v, t, matched_off))
294 				return t;
295 	t = saved_t;
296 	/* start searching up the tree */
297 	do {
298 		register struct radix_mask *m;
299 		t = t->rn_parent;
300 		m = t->rn_mklist;
301 		/*
302 		 * If non-contiguous masks ever become important
303 		 * we can restore the masking and open coding of
304 		 * the search and satisfaction test and put the
305 		 * calculation of "off" back before the "do".
306 		 */
307 		while (m) {
308 			if (m->rm_flags & RNF_NORMAL) {
309 				if (rn_bit <= m->rm_bit)
310 					return (m->rm_leaf);
311 			} else {
312 				off = min(t->rn_offset, matched_off);
313 				x = rn_search_m(v, t, m->rm_mask);
314 				while (x && x->rn_mask != m->rm_mask)
315 					x = x->rn_dupedkey;
316 				if (x && rn_satsifies_leaf(v, x, off))
317 					return x;
318 			}
319 			m = m->rm_mklist;
320 		}
321 	} while (t != top);
322 	return 0;
323 }
324 
325 #ifdef RN_DEBUG
326 int	rn_nodenum;
327 struct	radix_node *rn_clist;
328 int	rn_saveinfo;
329 int	rn_debug =  1;
330 #endif
331 
332 static struct radix_node *
333 rn_newpair(v, b, nodes)
334 	void *v;
335 	int b;
336 	struct radix_node nodes[2];
337 {
338 	register struct radix_node *tt = nodes, *t = tt + 1;
339 	t->rn_bit = b;
340 	t->rn_bmask = 0x80 >> (b & 7);
341 	t->rn_left = tt;
342 	t->rn_offset = b >> 3;
343 	tt->rn_bit = -1;
344 	tt->rn_key = (caddr_t)v;
345 	tt->rn_parent = t;
346 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
347 #ifdef RN_DEBUG
348 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
349 	tt->rn_twin = t;
350 	tt->rn_ybro = rn_clist;
351 	rn_clist = tt;
352 #endif
353 	return t;
354 }
355 
356 static struct radix_node *
357 rn_insert(v_arg, head, dupentry, nodes)
358 	void *v_arg;
359 	struct radix_node_head *head;
360 	int *dupentry;
361 	struct radix_node nodes[2];
362 {
363 	caddr_t v = v_arg;
364 	struct radix_node *top = head->rnh_treetop;
365 	int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
366 	register struct radix_node *t = rn_search(v_arg, top);
367 	register caddr_t cp = v + head_off;
368 	register int b;
369 	struct radix_node *tt;
370     	/*
371 	 * Find first bit at which v and t->rn_key differ
372 	 */
373     {
374 	register caddr_t cp2 = t->rn_key + head_off;
375 	register int cmp_res;
376 	caddr_t cplim = v + vlen;
377 
378 	while (cp < cplim)
379 		if (*cp2++ != *cp++)
380 			goto on1;
381 	*dupentry = 1;
382 	return t;
383 on1:
384 	*dupentry = 0;
385 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
386 	for (b = (cp - v) << 3; cmp_res; b--)
387 		cmp_res >>= 1;
388     }
389     {
390 	register struct radix_node *p, *x = top;
391 	cp = v;
392 	do {
393 		p = x;
394 		if (cp[x->rn_offset] & x->rn_bmask)
395 			x = x->rn_right;
396 		else
397 			x = x->rn_left;
398 	} while (b > (unsigned) x->rn_bit);
399 				/* x->rn_bit < b && x->rn_bit >= 0 */
400 #ifdef RN_DEBUG
401 	if (rn_debug)
402 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
403 #endif
404 	t = rn_newpair(v_arg, b, nodes);
405 	tt = t->rn_left;
406 	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
407 		p->rn_left = t;
408 	else
409 		p->rn_right = t;
410 	x->rn_parent = t;
411 	t->rn_parent = p; /* frees x, p as temp vars below */
412 	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
413 		t->rn_right = x;
414 	} else {
415 		t->rn_right = tt;
416 		t->rn_left = x;
417 	}
418 #ifdef RN_DEBUG
419 	if (rn_debug)
420 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
421 #endif
422     }
423 	return (tt);
424 }
425 
426 struct radix_node *
427 rn_addmask(n_arg, search, skip)
428 	int search, skip;
429 	void *n_arg;
430 {
431 	caddr_t netmask = (caddr_t)n_arg;
432 	register struct radix_node *x;
433 	register caddr_t cp, cplim;
434 	register int b = 0, mlen, j;
435 	int maskduplicated, m0, isnormal;
436 	struct radix_node *saved_x;
437 	static int last_zeroed = 0;
438 
439 	if ((mlen = *(u_char *)netmask) > max_keylen)
440 		mlen = max_keylen;
441 	if (skip == 0)
442 		skip = 1;
443 	if (mlen <= skip)
444 		return (mask_rnhead->rnh_nodes);
445 	if (skip > 1)
446 		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
447 	if ((m0 = mlen) > skip)
448 		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
449 	/*
450 	 * Trim trailing zeroes.
451 	 */
452 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
453 		cp--;
454 	mlen = cp - addmask_key;
455 	if (mlen <= skip) {
456 		if (m0 >= last_zeroed)
457 			last_zeroed = mlen;
458 		return (mask_rnhead->rnh_nodes);
459 	}
460 	if (m0 < last_zeroed)
461 		Bzero(addmask_key + m0, last_zeroed - m0);
462 	*addmask_key = last_zeroed = mlen;
463 	x = rn_search(addmask_key, rn_masktop);
464 	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
465 		x = 0;
466 	if (x || search)
467 		return (x);
468 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
469 	if ((saved_x = x) == 0)
470 		return (0);
471 	Bzero(x, max_keylen + 2 * sizeof (*x));
472 	netmask = cp = (caddr_t)(x + 2);
473 	Bcopy(addmask_key, cp, mlen);
474 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
475 	if (maskduplicated) {
476 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
477 		Free(saved_x);
478 		return (x);
479 	}
480 	/*
481 	 * Calculate index of mask, and check for normalcy.
482 	 */
483 	cplim = netmask + mlen; isnormal = 1;
484 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
485 		cp++;
486 	if (cp != cplim) {
487 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
488 			b++;
489 		if (*cp != normal_chars[b] || cp != (cplim - 1))
490 			isnormal = 0;
491 	}
492 	b += (cp - netmask) << 3;
493 	x->rn_bit = -1 - b;
494 	if (isnormal)
495 		x->rn_flags |= RNF_NORMAL;
496 	return (x);
497 }
498 
499 static int	/* XXX: arbitrary ordering for non-contiguous masks */
500 rn_lexobetter(m_arg, n_arg)
501 	void *m_arg, *n_arg;
502 {
503 	register u_char *mp = m_arg, *np = n_arg, *lim;
504 
505 	if (*mp > *np)
506 		return 1;  /* not really, but need to check longer one first */
507 	if (*mp == *np)
508 		for (lim = mp + *mp; mp < lim;)
509 			if (*mp++ > *np++)
510 				return 1;
511 	return 0;
512 }
513 
514 static struct radix_mask *
515 rn_new_radix_mask(tt, next)
516 	register struct radix_node *tt;
517 	register struct radix_mask *next;
518 {
519 	register struct radix_mask *m;
520 
521 	MKGet(m);
522 	if (m == 0) {
523 		log(LOG_ERR, "Mask for route not entered\n");
524 		return (0);
525 	}
526 	Bzero(m, sizeof *m);
527 	m->rm_bit = tt->rn_bit;
528 	m->rm_flags = tt->rn_flags;
529 	if (tt->rn_flags & RNF_NORMAL)
530 		m->rm_leaf = tt;
531 	else
532 		m->rm_mask = tt->rn_mask;
533 	m->rm_mklist = next;
534 	tt->rn_mklist = m;
535 	return m;
536 }
537 
538 struct radix_node *
539 rn_addroute(v_arg, n_arg, head, treenodes)
540 	void *v_arg, *n_arg;
541 	struct radix_node_head *head;
542 	struct radix_node treenodes[2];
543 {
544 	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
545 	register struct radix_node *t, *x = 0, *tt;
546 	struct radix_node *saved_tt, *top = head->rnh_treetop;
547 	short b = 0, b_leaf = 0;
548 	int keyduplicated;
549 	caddr_t mmask;
550 	struct radix_mask *m, **mp;
551 
552 	/*
553 	 * In dealing with non-contiguous masks, there may be
554 	 * many different routes which have the same mask.
555 	 * We will find it useful to have a unique pointer to
556 	 * the mask to speed avoiding duplicate references at
557 	 * nodes and possibly save time in calculating indices.
558 	 */
559 	if (netmask)  {
560 		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
561 			return (0);
562 		b_leaf = x->rn_bit;
563 		b = -1 - x->rn_bit;
564 		netmask = x->rn_key;
565 	}
566 	/*
567 	 * Deal with duplicated keys: attach node to previous instance
568 	 */
569 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
570 	if (keyduplicated) {
571 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
572 			if (tt->rn_mask == netmask)
573 				return (0);
574 			if (netmask == 0 ||
575 			    (tt->rn_mask &&
576 			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
577 			      || rn_refines(netmask, tt->rn_mask)
578 			      || rn_lexobetter(netmask, tt->rn_mask))))
579 				break;
580 		}
581 		/*
582 		 * If the mask is not duplicated, we wouldn't
583 		 * find it among possible duplicate key entries
584 		 * anyway, so the above test doesn't hurt.
585 		 *
586 		 * We sort the masks for a duplicated key the same way as
587 		 * in a masklist -- most specific to least specific.
588 		 * This may require the unfortunate nuisance of relocating
589 		 * the head of the list.
590 		 */
591 		if (tt == saved_tt) {
592 			struct	radix_node *xx = x;
593 			/* link in at head of list */
594 			(tt = treenodes)->rn_dupedkey = t;
595 			tt->rn_flags = t->rn_flags;
596 			tt->rn_parent = x = t->rn_parent;
597 			t->rn_parent = tt;	 		/* parent */
598 			if (x->rn_left == t)
599 				x->rn_left = tt;
600 			else
601 				x->rn_right = tt;
602 			saved_tt = tt; x = xx;
603 		} else {
604 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
605 			t->rn_dupedkey = tt;
606 			tt->rn_parent = t;			/* parent */
607 			if (tt->rn_dupedkey)			/* parent */
608 				tt->rn_dupedkey->rn_parent = tt; /* parent */
609 		}
610 #ifdef RN_DEBUG
611 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
612 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
613 #endif
614 		tt->rn_key = (caddr_t) v;
615 		tt->rn_bit = -1;
616 		tt->rn_flags = RNF_ACTIVE;
617 	}
618 	/*
619 	 * Put mask in tree.
620 	 */
621 	if (netmask) {
622 		tt->rn_mask = netmask;
623 		tt->rn_bit = x->rn_bit;
624 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
625 	}
626 	t = saved_tt->rn_parent;
627 	if (keyduplicated)
628 		goto on2;
629 	b_leaf = -1 - t->rn_bit;
630 	if (t->rn_right == saved_tt)
631 		x = t->rn_left;
632 	else
633 		x = t->rn_right;
634 	/* Promote general routes from below */
635 	if (x->rn_bit < 0) {
636 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
637 		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
638 			*mp = m = rn_new_radix_mask(x, 0);
639 			if (m)
640 				mp = &m->rm_mklist;
641 		}
642 	} else if (x->rn_mklist) {
643 		/*
644 		 * Skip over masks whose index is > that of new node
645 		 */
646 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
647 			if (m->rm_bit >= b_leaf)
648 				break;
649 		t->rn_mklist = m; *mp = 0;
650 	}
651 on2:
652 	/* Add new route to highest possible ancestor's list */
653 	if ((netmask == 0) || (b > t->rn_bit ))
654 		return tt; /* can't lift at all */
655 	b_leaf = tt->rn_bit;
656 	do {
657 		x = t;
658 		t = t->rn_parent;
659 	} while (b <= t->rn_bit && x != top);
660 	/*
661 	 * Search through routes associated with node to
662 	 * insert new route according to index.
663 	 * Need same criteria as when sorting dupedkeys to avoid
664 	 * double loop on deletion.
665 	 */
666 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
667 		if (m->rm_bit < b_leaf)
668 			continue;
669 		if (m->rm_bit > b_leaf)
670 			break;
671 		if (m->rm_flags & RNF_NORMAL) {
672 			mmask = m->rm_leaf->rn_mask;
673 			if (tt->rn_flags & RNF_NORMAL) {
674 			    log(LOG_ERR,
675 			        "Non-unique normal route, mask not entered");
676 				return tt;
677 			}
678 		} else
679 			mmask = m->rm_mask;
680 		if (mmask == netmask) {
681 			m->rm_refs++;
682 			tt->rn_mklist = m;
683 			return tt;
684 		}
685 		if (rn_refines(netmask, mmask)
686 		    || rn_lexobetter(netmask, mmask))
687 			break;
688 	}
689 	*mp = rn_new_radix_mask(tt, *mp);
690 	return tt;
691 }
692 
693 struct radix_node *
694 rn_delete(v_arg, netmask_arg, head)
695 	void *v_arg, *netmask_arg;
696 	struct radix_node_head *head;
697 {
698 	register struct radix_node *t, *p, *x, *tt;
699 	struct radix_mask *m, *saved_m, **mp;
700 	struct radix_node *dupedkey, *saved_tt, *top;
701 	caddr_t v, netmask;
702 	int b, head_off, vlen;
703 
704 	v = v_arg;
705 	netmask = netmask_arg;
706 	x = head->rnh_treetop;
707 	tt = rn_search(v, x);
708 	head_off = x->rn_offset;
709 	vlen =  *(u_char *)v;
710 	saved_tt = tt;
711 	top = x;
712 	if (tt == 0 ||
713 	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
714 		return (0);
715 	/*
716 	 * Delete our route from mask lists.
717 	 */
718 	if (netmask) {
719 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
720 			return (0);
721 		netmask = x->rn_key;
722 		while (tt->rn_mask != netmask)
723 			if ((tt = tt->rn_dupedkey) == 0)
724 				return (0);
725 	}
726 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
727 		goto on1;
728 	if (tt->rn_flags & RNF_NORMAL) {
729 		if (m->rm_leaf != tt || m->rm_refs > 0) {
730 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
731 			return 0;  /* dangling ref could cause disaster */
732 		}
733 	} else {
734 		if (m->rm_mask != tt->rn_mask) {
735 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
736 			goto on1;
737 		}
738 		if (--m->rm_refs >= 0)
739 			goto on1;
740 	}
741 	b = -1 - tt->rn_bit;
742 	t = saved_tt->rn_parent;
743 	if (b > t->rn_bit)
744 		goto on1; /* Wasn't lifted at all */
745 	do {
746 		x = t;
747 		t = t->rn_parent;
748 	} while (b <= t->rn_bit && x != top);
749 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
750 		if (m == saved_m) {
751 			*mp = m->rm_mklist;
752 			MKFree(m);
753 			break;
754 		}
755 	if (m == 0) {
756 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
757 		if (tt->rn_flags & RNF_NORMAL)
758 			return (0); /* Dangling ref to us */
759 	}
760 on1:
761 	/*
762 	 * Eliminate us from tree
763 	 */
764 	if (tt->rn_flags & RNF_ROOT)
765 		return (0);
766 #ifdef RN_DEBUG
767 	/* Get us out of the creation list */
768 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
769 	if (t) t->rn_ybro = tt->rn_ybro;
770 #endif
771 	t = tt->rn_parent;
772 	dupedkey = saved_tt->rn_dupedkey;
773 	if (dupedkey) {
774 		/*
775 		 * at this point, tt is the deletion target and saved_tt
776 		 * is the head of the dupekey chain
777 		 */
778 		if (tt == saved_tt) {
779 			/* remove from head of chain */
780 			x = dupedkey; x->rn_parent = t;
781 			if (t->rn_left == tt)
782 				t->rn_left = x;
783 			else
784 				t->rn_right = x;
785 		} else {
786 			/* find node in front of tt on the chain */
787 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
788 				p = p->rn_dupedkey;
789 			if (p) {
790 				p->rn_dupedkey = tt->rn_dupedkey;
791 				if (tt->rn_dupedkey)		/* parent */
792 					tt->rn_dupedkey->rn_parent = p;
793 								/* parent */
794 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
795 		}
796 		t = tt + 1;
797 		if  (t->rn_flags & RNF_ACTIVE) {
798 #ifndef RN_DEBUG
799 			*++x = *t;
800 			p = t->rn_parent;
801 #else
802 			b = t->rn_info;
803 			*++x = *t;
804 			t->rn_info = b;
805 			p = t->rn_parent;
806 #endif
807 			if (p->rn_left == t)
808 				p->rn_left = x;
809 			else
810 				p->rn_right = x;
811 			x->rn_left->rn_parent = x;
812 			x->rn_right->rn_parent = x;
813 		}
814 		goto out;
815 	}
816 	if (t->rn_left == tt)
817 		x = t->rn_right;
818 	else
819 		x = t->rn_left;
820 	p = t->rn_parent;
821 	if (p->rn_right == t)
822 		p->rn_right = x;
823 	else
824 		p->rn_left = x;
825 	x->rn_parent = p;
826 	/*
827 	 * Demote routes attached to us.
828 	 */
829 	if (t->rn_mklist) {
830 		if (x->rn_bit >= 0) {
831 			for (mp = &x->rn_mklist; (m = *mp);)
832 				mp = &m->rm_mklist;
833 			*mp = t->rn_mklist;
834 		} else {
835 			/* If there are any key,mask pairs in a sibling
836 			   duped-key chain, some subset will appear sorted
837 			   in the same order attached to our mklist */
838 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
839 				if (m == x->rn_mklist) {
840 					struct radix_mask *mm = m->rm_mklist;
841 					x->rn_mklist = 0;
842 					if (--(m->rm_refs) < 0)
843 						MKFree(m);
844 					m = mm;
845 				}
846 			if (m)
847 				log(LOG_ERR,
848 				    "rn_delete: Orphaned Mask %p at %p\n",
849 				    (void *)m, (void *)x);
850 		}
851 	}
852 	/*
853 	 * We may be holding an active internal node in the tree.
854 	 */
855 	x = tt + 1;
856 	if (t != x) {
857 #ifndef RN_DEBUG
858 		*t = *x;
859 #else
860 		b = t->rn_info;
861 		*t = *x;
862 		t->rn_info = b;
863 #endif
864 		t->rn_left->rn_parent = t;
865 		t->rn_right->rn_parent = t;
866 		p = x->rn_parent;
867 		if (p->rn_left == x)
868 			p->rn_left = t;
869 		else
870 			p->rn_right = t;
871 	}
872 out:
873 	tt->rn_flags &= ~RNF_ACTIVE;
874 	tt[1].rn_flags &= ~RNF_ACTIVE;
875 	return (tt);
876 }
877 
878 /*
879  * This is the same as rn_walktree() except for the parameters and the
880  * exit.
881  */
882 static int
883 rn_walktree_from(h, a, m, f, w)
884 	struct radix_node_head *h;
885 	void *a, *m;
886 	walktree_f_t *f;
887 	void *w;
888 {
889 	int error;
890 	struct radix_node *base, *next;
891 	u_char *xa = (u_char *)a;
892 	u_char *xm = (u_char *)m;
893 	register struct radix_node *rn, *last = 0 /* shut up gcc */;
894 	int stopping = 0;
895 	int lastb;
896 
897 	/*
898 	 * rn_search_m is sort-of-open-coded here.
899 	 */
900 	/* printf("about to search\n"); */
901 	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
902 		last = rn;
903 		/* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
904 		       rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
905 		if (!(rn->rn_bmask & xm[rn->rn_offset])) {
906 			break;
907 		}
908 		if (rn->rn_bmask & xa[rn->rn_offset]) {
909 			rn = rn->rn_right;
910 		} else {
911 			rn = rn->rn_left;
912 		}
913 	}
914 	/* printf("done searching\n"); */
915 
916 	/*
917 	 * Two cases: either we stepped off the end of our mask,
918 	 * in which case last == rn, or we reached a leaf, in which
919 	 * case we want to start from the last node we looked at.
920 	 * Either way, last is the node we want to start from.
921 	 */
922 	rn = last;
923 	lastb = rn->rn_bit;
924 
925 	/* printf("rn %p, lastb %d\n", rn, lastb);*/
926 
927 	/*
928 	 * This gets complicated because we may delete the node
929 	 * while applying the function f to it, so we need to calculate
930 	 * the successor node in advance.
931 	 */
932 	while (rn->rn_bit >= 0)
933 		rn = rn->rn_left;
934 
935 	while (!stopping) {
936 		/* printf("node %p (%d)\n", rn, rn->rn_bit); */
937 		base = rn;
938 		/* If at right child go back up, otherwise, go right */
939 		while (rn->rn_parent->rn_right == rn
940 		       && !(rn->rn_flags & RNF_ROOT)) {
941 			rn = rn->rn_parent;
942 
943 			/* if went up beyond last, stop */
944 			if (rn->rn_bit < lastb) {
945 				stopping = 1;
946 				/* printf("up too far\n"); */
947 			}
948 		}
949 
950 		/* Find the next *leaf* since next node might vanish, too */
951 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
952 			rn = rn->rn_left;
953 		next = rn;
954 		/* Process leaves */
955 		while ((rn = base) != 0) {
956 			base = rn->rn_dupedkey;
957 			/* printf("leaf %p\n", rn); */
958 			if (!(rn->rn_flags & RNF_ROOT)
959 			    && (error = (*f)(rn, w)))
960 				return (error);
961 		}
962 		rn = next;
963 
964 		if (rn->rn_flags & RNF_ROOT) {
965 			/* printf("root, stopping"); */
966 			stopping = 1;
967 		}
968 
969 	}
970 	return 0;
971 }
972 
973 static int
974 rn_walktree(h, f, w)
975 	struct radix_node_head *h;
976 	walktree_f_t *f;
977 	void *w;
978 {
979 	int error;
980 	struct radix_node *base, *next;
981 	register struct radix_node *rn = h->rnh_treetop;
982 	/*
983 	 * This gets complicated because we may delete the node
984 	 * while applying the function f to it, so we need to calculate
985 	 * the successor node in advance.
986 	 */
987 	/* First time through node, go left */
988 	while (rn->rn_bit >= 0)
989 		rn = rn->rn_left;
990 	for (;;) {
991 		base = rn;
992 		/* If at right child go back up, otherwise, go right */
993 		while (rn->rn_parent->rn_right == rn
994 		       && (rn->rn_flags & RNF_ROOT) == 0)
995 			rn = rn->rn_parent;
996 		/* Find the next *leaf* since next node might vanish, too */
997 		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
998 			rn = rn->rn_left;
999 		next = rn;
1000 		/* Process leaves */
1001 		while ((rn = base)) {
1002 			base = rn->rn_dupedkey;
1003 			if (!(rn->rn_flags & RNF_ROOT)
1004 			    && (error = (*f)(rn, w)))
1005 				return (error);
1006 		}
1007 		rn = next;
1008 		if (rn->rn_flags & RNF_ROOT)
1009 			return (0);
1010 	}
1011 	/* NOTREACHED */
1012 }
1013 
1014 int
1015 rn_inithead(head, off)
1016 	void **head;
1017 	int off;
1018 {
1019 	register struct radix_node_head *rnh;
1020 	register struct radix_node *t, *tt, *ttt;
1021 	if (*head)
1022 		return (1);
1023 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1024 	if (rnh == 0)
1025 		return (0);
1026 	Bzero(rnh, sizeof (*rnh));
1027 	*head = rnh;
1028 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1029 	ttt = rnh->rnh_nodes + 2;
1030 	t->rn_right = ttt;
1031 	t->rn_parent = t;
1032 	tt = t->rn_left;
1033 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1034 	tt->rn_bit = -1 - off;
1035 	*ttt = *tt;
1036 	ttt->rn_key = rn_ones;
1037 	rnh->rnh_addaddr = rn_addroute;
1038 	rnh->rnh_deladdr = rn_delete;
1039 	rnh->rnh_matchaddr = rn_match;
1040 	rnh->rnh_lookup = rn_lookup;
1041 	rnh->rnh_walktree = rn_walktree;
1042 	rnh->rnh_walktree_from = rn_walktree_from;
1043 	rnh->rnh_treetop = t;
1044 	return (1);
1045 }
1046 
1047 void
1048 rn_init()
1049 {
1050 	char *cp, *cplim;
1051 #ifdef _KERNEL
1052 	struct domain *dom;
1053 
1054 	for (dom = domains; dom; dom = dom->dom_next)
1055 		if (dom->dom_maxrtkey > max_keylen)
1056 			max_keylen = dom->dom_maxrtkey;
1057 #endif
1058 	if (max_keylen == 0) {
1059 		log(LOG_ERR,
1060 		    "rn_init: radix functions require max_keylen be set\n");
1061 		return;
1062 	}
1063 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1064 	if (rn_zeros == NULL)
1065 		panic("rn_init");
1066 	Bzero(rn_zeros, 3 * max_keylen);
1067 	rn_ones = cp = rn_zeros + max_keylen;
1068 	addmask_key = cplim = rn_ones + max_keylen;
1069 	while (cp < cplim)
1070 		*cp++ = -1;
1071 	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1072 		panic("rn_init 2");
1073 }
1074