1 /*- 2 * Copyright (c) 1988, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)radix.c 8.5 (Berkeley) 5/19/95 30 * $FreeBSD$ 31 */ 32 33 /* 34 * Routines to build and maintain radix trees for routing lookups. 35 */ 36 #include <sys/param.h> 37 #ifdef _KERNEL 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/rwlock.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/syslog.h> 44 #include <net/radix.h> 45 #include "opt_mpath.h" 46 #ifdef RADIX_MPATH 47 #include <net/radix_mpath.h> 48 #endif 49 #else /* !_KERNEL */ 50 #include <stdio.h> 51 #include <strings.h> 52 #include <stdlib.h> 53 #define log(x, arg...) fprintf(stderr, ## arg) 54 #define panic(x) fprintf(stderr, "PANIC: %s", x), exit(1) 55 #define min(a, b) ((a) < (b) ? (a) : (b) ) 56 #include <net/radix.h> 57 #endif /* !_KERNEL */ 58 59 static struct radix_node 60 *rn_insert(void *, struct radix_head *, int *, 61 struct radix_node [2]), 62 *rn_newpair(void *, int, struct radix_node[2]), 63 *rn_search(void *, struct radix_node *), 64 *rn_search_m(void *, struct radix_node *, void *); 65 static struct radix_node *rn_addmask(void *, struct radix_mask_head *, int,int); 66 67 static void rn_detachhead_internal(struct radix_head *); 68 69 #define RADIX_MAX_KEY_LEN 32 70 71 static char rn_zeros[RADIX_MAX_KEY_LEN]; 72 static char rn_ones[RADIX_MAX_KEY_LEN] = { 73 -1, -1, -1, -1, -1, -1, -1, -1, 74 -1, -1, -1, -1, -1, -1, -1, -1, 75 -1, -1, -1, -1, -1, -1, -1, -1, 76 -1, -1, -1, -1, -1, -1, -1, -1, 77 }; 78 79 80 static int rn_lexobetter(void *m_arg, void *n_arg); 81 static struct radix_mask * 82 rn_new_radix_mask(struct radix_node *tt, 83 struct radix_mask *next); 84 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, 85 int skip); 86 87 /* 88 * The data structure for the keys is a radix tree with one way 89 * branching removed. The index rn_bit at an internal node n represents a bit 90 * position to be tested. The tree is arranged so that all descendants 91 * of a node n have keys whose bits all agree up to position rn_bit - 1. 92 * (We say the index of n is rn_bit.) 93 * 94 * There is at least one descendant which has a one bit at position rn_bit, 95 * and at least one with a zero there. 96 * 97 * A route is determined by a pair of key and mask. We require that the 98 * bit-wise logical and of the key and mask to be the key. 99 * We define the index of a route to associated with the mask to be 100 * the first bit number in the mask where 0 occurs (with bit number 0 101 * representing the highest order bit). 102 * 103 * We say a mask is normal if every bit is 0, past the index of the mask. 104 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 105 * and m is a normal mask, then the route applies to every descendant of n. 106 * If the index(m) < rn_bit, this implies the trailing last few bits of k 107 * before bit b are all 0, (and hence consequently true of every descendant 108 * of n), so the route applies to all descendants of the node as well. 109 * 110 * Similar logic shows that a non-normal mask m such that 111 * index(m) <= index(n) could potentially apply to many children of n. 112 * Thus, for each non-host route, we attach its mask to a list at an internal 113 * node as high in the tree as we can go. 114 * 115 * The present version of the code makes use of normal routes in short- 116 * circuiting an explict mask and compare operation when testing whether 117 * a key satisfies a normal route, and also in remembering the unique leaf 118 * that governs a subtree. 119 */ 120 121 /* 122 * Most of the functions in this code assume that the key/mask arguments 123 * are sockaddr-like structures, where the first byte is an u_char 124 * indicating the size of the entire structure. 125 * 126 * To make the assumption more explicit, we use the LEN() macro to access 127 * this field. It is safe to pass an expression with side effects 128 * to LEN() as the argument is evaluated only once. 129 * We cast the result to int as this is the dominant usage. 130 */ 131 #define LEN(x) ( (int) (*(const u_char *)(x)) ) 132 133 /* 134 * XXX THIS NEEDS TO BE FIXED 135 * In the code, pointers to keys and masks are passed as either 136 * 'void *' (because callers use to pass pointers of various kinds), or 137 * 'caddr_t' (which is fine for pointer arithmetics, but not very 138 * clean when you dereference it to access data). Furthermore, caddr_t 139 * is really 'char *', while the natural type to operate on keys and 140 * masks would be 'u_char'. This mismatch require a lot of casts and 141 * intermediate variables to adapt types that clutter the code. 142 */ 143 144 /* 145 * Search a node in the tree matching the key. 146 */ 147 static struct radix_node * 148 rn_search(void *v_arg, struct radix_node *head) 149 { 150 struct radix_node *x; 151 caddr_t v; 152 153 for (x = head, v = v_arg; x->rn_bit >= 0;) { 154 if (x->rn_bmask & v[x->rn_offset]) 155 x = x->rn_right; 156 else 157 x = x->rn_left; 158 } 159 return (x); 160 } 161 162 /* 163 * Same as above, but with an additional mask. 164 * XXX note this function is used only once. 165 */ 166 static struct radix_node * 167 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg) 168 { 169 struct radix_node *x; 170 caddr_t v = v_arg, m = m_arg; 171 172 for (x = head; x->rn_bit >= 0;) { 173 if ((x->rn_bmask & m[x->rn_offset]) && 174 (x->rn_bmask & v[x->rn_offset])) 175 x = x->rn_right; 176 else 177 x = x->rn_left; 178 } 179 return (x); 180 } 181 182 int 183 rn_refines(void *m_arg, void *n_arg) 184 { 185 caddr_t m = m_arg, n = n_arg; 186 caddr_t lim, lim2 = lim = n + LEN(n); 187 int longer = LEN(n++) - LEN(m++); 188 int masks_are_equal = 1; 189 190 if (longer > 0) 191 lim -= longer; 192 while (n < lim) { 193 if (*n & ~(*m)) 194 return (0); 195 if (*n++ != *m++) 196 masks_are_equal = 0; 197 } 198 while (n < lim2) 199 if (*n++) 200 return (0); 201 if (masks_are_equal && (longer < 0)) 202 for (lim2 = m - longer; m < lim2; ) 203 if (*m++) 204 return (1); 205 return (!masks_are_equal); 206 } 207 208 /* 209 * Search for exact match in given @head. 210 * Assume host bits are cleared in @v_arg if @m_arg is not NULL 211 * Note that prefixes with /32 or /128 masks are treated differently 212 * from host routes. 213 */ 214 struct radix_node * 215 rn_lookup(void *v_arg, void *m_arg, struct radix_head *head) 216 { 217 struct radix_node *x; 218 caddr_t netmask; 219 220 if (m_arg != NULL) { 221 /* 222 * Most common case: search exact prefix/mask 223 */ 224 x = rn_addmask(m_arg, head->rnh_masks, 1, 225 head->rnh_treetop->rn_offset); 226 if (x == NULL) 227 return (NULL); 228 netmask = x->rn_key; 229 230 x = rn_match(v_arg, head); 231 232 while (x != NULL && x->rn_mask != netmask) 233 x = x->rn_dupedkey; 234 235 return (x); 236 } 237 238 /* 239 * Search for host address. 240 */ 241 if ((x = rn_match(v_arg, head)) == NULL) 242 return (NULL); 243 244 /* Check if found key is the same */ 245 if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg))) 246 return (NULL); 247 248 /* Check if this is not host route */ 249 if (x->rn_mask != NULL) 250 return (NULL); 251 252 return (x); 253 } 254 255 static int 256 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip) 257 { 258 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 259 char *cplim; 260 int length = min(LEN(cp), LEN(cp2)); 261 262 if (cp3 == NULL) 263 cp3 = rn_ones; 264 else 265 length = min(length, LEN(cp3)); 266 cplim = cp + length; cp3 += skip; cp2 += skip; 267 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 268 if ((*cp ^ *cp2) & *cp3) 269 return (0); 270 return (1); 271 } 272 273 /* 274 * Search for longest-prefix match in given @head 275 */ 276 struct radix_node * 277 rn_match(void *v_arg, struct radix_head *head) 278 { 279 caddr_t v = v_arg; 280 struct radix_node *t = head->rnh_treetop, *x; 281 caddr_t cp = v, cp2; 282 caddr_t cplim; 283 struct radix_node *saved_t, *top = t; 284 int off = t->rn_offset, vlen = LEN(cp), matched_off; 285 int test, b, rn_bit; 286 287 /* 288 * Open code rn_search(v, top) to avoid overhead of extra 289 * subroutine call. 290 */ 291 for (; t->rn_bit >= 0; ) { 292 if (t->rn_bmask & cp[t->rn_offset]) 293 t = t->rn_right; 294 else 295 t = t->rn_left; 296 } 297 /* 298 * See if we match exactly as a host destination 299 * or at least learn how many bits match, for normal mask finesse. 300 * 301 * It doesn't hurt us to limit how many bytes to check 302 * to the length of the mask, since if it matches we had a genuine 303 * match and the leaf we have is the most specific one anyway; 304 * if it didn't match with a shorter length it would fail 305 * with a long one. This wins big for class B&C netmasks which 306 * are probably the most common case... 307 */ 308 if (t->rn_mask) 309 vlen = *(u_char *)t->rn_mask; 310 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 311 for (; cp < cplim; cp++, cp2++) 312 if (*cp != *cp2) 313 goto on1; 314 /* 315 * This extra grot is in case we are explicitly asked 316 * to look up the default. Ugh! 317 * 318 * Never return the root node itself, it seems to cause a 319 * lot of confusion. 320 */ 321 if (t->rn_flags & RNF_ROOT) 322 t = t->rn_dupedkey; 323 return (t); 324 on1: 325 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 326 for (b = 7; (test >>= 1) > 0;) 327 b--; 328 matched_off = cp - v; 329 b += matched_off << 3; 330 rn_bit = -1 - b; 331 /* 332 * If there is a host route in a duped-key chain, it will be first. 333 */ 334 if ((saved_t = t)->rn_mask == 0) 335 t = t->rn_dupedkey; 336 for (; t; t = t->rn_dupedkey) 337 /* 338 * Even if we don't match exactly as a host, 339 * we may match if the leaf we wound up at is 340 * a route to a net. 341 */ 342 if (t->rn_flags & RNF_NORMAL) { 343 if (rn_bit <= t->rn_bit) 344 return (t); 345 } else if (rn_satisfies_leaf(v, t, matched_off)) 346 return (t); 347 t = saved_t; 348 /* start searching up the tree */ 349 do { 350 struct radix_mask *m; 351 t = t->rn_parent; 352 m = t->rn_mklist; 353 /* 354 * If non-contiguous masks ever become important 355 * we can restore the masking and open coding of 356 * the search and satisfaction test and put the 357 * calculation of "off" back before the "do". 358 */ 359 while (m) { 360 if (m->rm_flags & RNF_NORMAL) { 361 if (rn_bit <= m->rm_bit) 362 return (m->rm_leaf); 363 } else { 364 off = min(t->rn_offset, matched_off); 365 x = rn_search_m(v, t, m->rm_mask); 366 while (x && x->rn_mask != m->rm_mask) 367 x = x->rn_dupedkey; 368 if (x && rn_satisfies_leaf(v, x, off)) 369 return (x); 370 } 371 m = m->rm_mklist; 372 } 373 } while (t != top); 374 return (0); 375 } 376 377 #ifdef RN_DEBUG 378 int rn_nodenum; 379 struct radix_node *rn_clist; 380 int rn_saveinfo; 381 int rn_debug = 1; 382 #endif 383 384 /* 385 * Whenever we add a new leaf to the tree, we also add a parent node, 386 * so we allocate them as an array of two elements: the first one must be 387 * the leaf (see RNTORT() in route.c), the second one is the parent. 388 * This routine initializes the relevant fields of the nodes, so that 389 * the leaf is the left child of the parent node, and both nodes have 390 * (almost) all all fields filled as appropriate. 391 * (XXX some fields are left unset, see the '#if 0' section). 392 * The function returns a pointer to the parent node. 393 */ 394 395 static struct radix_node * 396 rn_newpair(void *v, int b, struct radix_node nodes[2]) 397 { 398 struct radix_node *tt = nodes, *t = tt + 1; 399 t->rn_bit = b; 400 t->rn_bmask = 0x80 >> (b & 7); 401 t->rn_left = tt; 402 t->rn_offset = b >> 3; 403 404 #if 0 /* XXX perhaps we should fill these fields as well. */ 405 t->rn_parent = t->rn_right = NULL; 406 407 tt->rn_mask = NULL; 408 tt->rn_dupedkey = NULL; 409 tt->rn_bmask = 0; 410 #endif 411 tt->rn_bit = -1; 412 tt->rn_key = (caddr_t)v; 413 tt->rn_parent = t; 414 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 415 tt->rn_mklist = t->rn_mklist = 0; 416 #ifdef RN_DEBUG 417 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 418 tt->rn_twin = t; 419 tt->rn_ybro = rn_clist; 420 rn_clist = tt; 421 #endif 422 return (t); 423 } 424 425 static struct radix_node * 426 rn_insert(void *v_arg, struct radix_head *head, int *dupentry, 427 struct radix_node nodes[2]) 428 { 429 caddr_t v = v_arg; 430 struct radix_node *top = head->rnh_treetop; 431 int head_off = top->rn_offset, vlen = LEN(v); 432 struct radix_node *t = rn_search(v_arg, top); 433 caddr_t cp = v + head_off; 434 int b; 435 struct radix_node *p, *tt, *x; 436 /* 437 * Find first bit at which v and t->rn_key differ 438 */ 439 caddr_t cp2 = t->rn_key + head_off; 440 int cmp_res; 441 caddr_t cplim = v + vlen; 442 443 while (cp < cplim) 444 if (*cp2++ != *cp++) 445 goto on1; 446 *dupentry = 1; 447 return (t); 448 on1: 449 *dupentry = 0; 450 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 451 for (b = (cp - v) << 3; cmp_res; b--) 452 cmp_res >>= 1; 453 454 x = top; 455 cp = v; 456 do { 457 p = x; 458 if (cp[x->rn_offset] & x->rn_bmask) 459 x = x->rn_right; 460 else 461 x = x->rn_left; 462 } while (b > (unsigned) x->rn_bit); 463 /* x->rn_bit < b && x->rn_bit >= 0 */ 464 #ifdef RN_DEBUG 465 if (rn_debug) 466 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 467 #endif 468 t = rn_newpair(v_arg, b, nodes); 469 tt = t->rn_left; 470 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 471 p->rn_left = t; 472 else 473 p->rn_right = t; 474 x->rn_parent = t; 475 t->rn_parent = p; /* frees x, p as temp vars below */ 476 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 477 t->rn_right = x; 478 } else { 479 t->rn_right = tt; 480 t->rn_left = x; 481 } 482 #ifdef RN_DEBUG 483 if (rn_debug) 484 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 485 #endif 486 return (tt); 487 } 488 489 struct radix_node * 490 rn_addmask(void *n_arg, struct radix_mask_head *maskhead, int search, int skip) 491 { 492 unsigned char *netmask = n_arg; 493 unsigned char *cp, *cplim; 494 struct radix_node *x; 495 int b = 0, mlen, j; 496 int maskduplicated, isnormal; 497 struct radix_node *saved_x; 498 unsigned char addmask_key[RADIX_MAX_KEY_LEN]; 499 500 if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN) 501 mlen = RADIX_MAX_KEY_LEN; 502 if (skip == 0) 503 skip = 1; 504 if (mlen <= skip) 505 return (maskhead->mask_nodes); 506 507 bzero(addmask_key, RADIX_MAX_KEY_LEN); 508 if (skip > 1) 509 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 510 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 511 /* 512 * Trim trailing zeroes. 513 */ 514 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 515 cp--; 516 mlen = cp - addmask_key; 517 if (mlen <= skip) 518 return (maskhead->mask_nodes); 519 *addmask_key = mlen; 520 x = rn_search(addmask_key, maskhead->head.rnh_treetop); 521 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 522 x = 0; 523 if (x || search) 524 return (x); 525 R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x)); 526 if ((saved_x = x) == 0) 527 return (0); 528 netmask = cp = (unsigned char *)(x + 2); 529 bcopy(addmask_key, cp, mlen); 530 x = rn_insert(cp, &maskhead->head, &maskduplicated, x); 531 if (maskduplicated) { 532 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 533 R_Free(saved_x); 534 return (x); 535 } 536 /* 537 * Calculate index of mask, and check for normalcy. 538 * First find the first byte with a 0 bit, then if there are 539 * more bits left (remember we already trimmed the trailing 0's), 540 * the bits should be contiguous, otherwise we have got 541 * a non-contiguous mask. 542 */ 543 #define CONTIG(_c) (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1)) 544 cplim = netmask + mlen; 545 isnormal = 1; 546 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) 547 cp++; 548 if (cp != cplim) { 549 for (j = 0x80; (j & *cp) != 0; j >>= 1) 550 b++; 551 if (!CONTIG(*cp) || cp != (cplim - 1)) 552 isnormal = 0; 553 } 554 b += (cp - netmask) << 3; 555 x->rn_bit = -1 - b; 556 if (isnormal) 557 x->rn_flags |= RNF_NORMAL; 558 return (x); 559 } 560 561 static int /* XXX: arbitrary ordering for non-contiguous masks */ 562 rn_lexobetter(void *m_arg, void *n_arg) 563 { 564 u_char *mp = m_arg, *np = n_arg, *lim; 565 566 if (LEN(mp) > LEN(np)) 567 return (1); /* not really, but need to check longer one first */ 568 if (LEN(mp) == LEN(np)) 569 for (lim = mp + LEN(mp); mp < lim;) 570 if (*mp++ > *np++) 571 return (1); 572 return (0); 573 } 574 575 static struct radix_mask * 576 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) 577 { 578 struct radix_mask *m; 579 580 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); 581 if (m == NULL) { 582 log(LOG_ERR, "Failed to allocate route mask\n"); 583 return (0); 584 } 585 bzero(m, sizeof(*m)); 586 m->rm_bit = tt->rn_bit; 587 m->rm_flags = tt->rn_flags; 588 if (tt->rn_flags & RNF_NORMAL) 589 m->rm_leaf = tt; 590 else 591 m->rm_mask = tt->rn_mask; 592 m->rm_mklist = next; 593 tt->rn_mklist = m; 594 return (m); 595 } 596 597 struct radix_node * 598 rn_addroute(void *v_arg, void *n_arg, struct radix_head *head, 599 struct radix_node treenodes[2]) 600 { 601 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 602 struct radix_node *t, *x = 0, *tt; 603 struct radix_node *saved_tt, *top = head->rnh_treetop; 604 short b = 0, b_leaf = 0; 605 int keyduplicated; 606 caddr_t mmask; 607 struct radix_mask *m, **mp; 608 609 /* 610 * In dealing with non-contiguous masks, there may be 611 * many different routes which have the same mask. 612 * We will find it useful to have a unique pointer to 613 * the mask to speed avoiding duplicate references at 614 * nodes and possibly save time in calculating indices. 615 */ 616 if (netmask) { 617 x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset); 618 if (x == NULL) 619 return (0); 620 b_leaf = x->rn_bit; 621 b = -1 - x->rn_bit; 622 netmask = x->rn_key; 623 } 624 /* 625 * Deal with duplicated keys: attach node to previous instance 626 */ 627 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 628 if (keyduplicated) { 629 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 630 #ifdef RADIX_MPATH 631 /* permit multipath, if enabled for the family */ 632 if (rn_mpath_capable(head) && netmask == tt->rn_mask) { 633 /* 634 * go down to the end of multipaths, so that 635 * new entry goes into the end of rn_dupedkey 636 * chain. 637 */ 638 do { 639 t = tt; 640 tt = tt->rn_dupedkey; 641 } while (tt && t->rn_mask == tt->rn_mask); 642 break; 643 } 644 #endif 645 if (tt->rn_mask == netmask) 646 return (0); 647 if (netmask == 0 || 648 (tt->rn_mask && 649 ((b_leaf < tt->rn_bit) /* index(netmask) > node */ 650 || rn_refines(netmask, tt->rn_mask) 651 || rn_lexobetter(netmask, tt->rn_mask)))) 652 break; 653 } 654 /* 655 * If the mask is not duplicated, we wouldn't 656 * find it among possible duplicate key entries 657 * anyway, so the above test doesn't hurt. 658 * 659 * We sort the masks for a duplicated key the same way as 660 * in a masklist -- most specific to least specific. 661 * This may require the unfortunate nuisance of relocating 662 * the head of the list. 663 * 664 * We also reverse, or doubly link the list through the 665 * parent pointer. 666 */ 667 if (tt == saved_tt) { 668 struct radix_node *xx = x; 669 /* link in at head of list */ 670 (tt = treenodes)->rn_dupedkey = t; 671 tt->rn_flags = t->rn_flags; 672 tt->rn_parent = x = t->rn_parent; 673 t->rn_parent = tt; /* parent */ 674 if (x->rn_left == t) 675 x->rn_left = tt; 676 else 677 x->rn_right = tt; 678 saved_tt = tt; x = xx; 679 } else { 680 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 681 t->rn_dupedkey = tt; 682 tt->rn_parent = t; /* parent */ 683 if (tt->rn_dupedkey) /* parent */ 684 tt->rn_dupedkey->rn_parent = tt; /* parent */ 685 } 686 #ifdef RN_DEBUG 687 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 688 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 689 #endif 690 tt->rn_key = (caddr_t) v; 691 tt->rn_bit = -1; 692 tt->rn_flags = RNF_ACTIVE; 693 } 694 /* 695 * Put mask in tree. 696 */ 697 if (netmask) { 698 tt->rn_mask = netmask; 699 tt->rn_bit = x->rn_bit; 700 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 701 } 702 t = saved_tt->rn_parent; 703 if (keyduplicated) 704 goto on2; 705 b_leaf = -1 - t->rn_bit; 706 if (t->rn_right == saved_tt) 707 x = t->rn_left; 708 else 709 x = t->rn_right; 710 /* Promote general routes from below */ 711 if (x->rn_bit < 0) { 712 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 713 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 714 *mp = m = rn_new_radix_mask(x, 0); 715 if (m) 716 mp = &m->rm_mklist; 717 } 718 } else if (x->rn_mklist) { 719 /* 720 * Skip over masks whose index is > that of new node 721 */ 722 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 723 if (m->rm_bit >= b_leaf) 724 break; 725 t->rn_mklist = m; *mp = 0; 726 } 727 on2: 728 /* Add new route to highest possible ancestor's list */ 729 if ((netmask == 0) || (b > t->rn_bit )) 730 return (tt); /* can't lift at all */ 731 b_leaf = tt->rn_bit; 732 do { 733 x = t; 734 t = t->rn_parent; 735 } while (b <= t->rn_bit && x != top); 736 /* 737 * Search through routes associated with node to 738 * insert new route according to index. 739 * Need same criteria as when sorting dupedkeys to avoid 740 * double loop on deletion. 741 */ 742 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 743 if (m->rm_bit < b_leaf) 744 continue; 745 if (m->rm_bit > b_leaf) 746 break; 747 if (m->rm_flags & RNF_NORMAL) { 748 mmask = m->rm_leaf->rn_mask; 749 if (tt->rn_flags & RNF_NORMAL) { 750 #if !defined(RADIX_MPATH) 751 log(LOG_ERR, 752 "Non-unique normal route, mask not entered\n"); 753 #endif 754 return (tt); 755 } 756 } else 757 mmask = m->rm_mask; 758 if (mmask == netmask) { 759 m->rm_refs++; 760 tt->rn_mklist = m; 761 return (tt); 762 } 763 if (rn_refines(netmask, mmask) 764 || rn_lexobetter(netmask, mmask)) 765 break; 766 } 767 *mp = rn_new_radix_mask(tt, *mp); 768 return (tt); 769 } 770 771 struct radix_node * 772 rn_delete(void *v_arg, void *netmask_arg, struct radix_head *head) 773 { 774 struct radix_node *t, *p, *x, *tt; 775 struct radix_mask *m, *saved_m, **mp; 776 struct radix_node *dupedkey, *saved_tt, *top; 777 caddr_t v, netmask; 778 int b, head_off, vlen; 779 780 v = v_arg; 781 netmask = netmask_arg; 782 x = head->rnh_treetop; 783 tt = rn_search(v, x); 784 head_off = x->rn_offset; 785 vlen = LEN(v); 786 saved_tt = tt; 787 top = x; 788 if (tt == 0 || 789 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 790 return (0); 791 /* 792 * Delete our route from mask lists. 793 */ 794 if (netmask) { 795 x = rn_addmask(netmask, head->rnh_masks, 1, head_off); 796 if (x == NULL) 797 return (0); 798 netmask = x->rn_key; 799 while (tt->rn_mask != netmask) 800 if ((tt = tt->rn_dupedkey) == 0) 801 return (0); 802 } 803 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) 804 goto on1; 805 if (tt->rn_flags & RNF_NORMAL) { 806 if (m->rm_leaf != tt || m->rm_refs > 0) { 807 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 808 return (0); /* dangling ref could cause disaster */ 809 } 810 } else { 811 if (m->rm_mask != tt->rn_mask) { 812 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 813 goto on1; 814 } 815 if (--m->rm_refs >= 0) 816 goto on1; 817 } 818 b = -1 - tt->rn_bit; 819 t = saved_tt->rn_parent; 820 if (b > t->rn_bit) 821 goto on1; /* Wasn't lifted at all */ 822 do { 823 x = t; 824 t = t->rn_parent; 825 } while (b <= t->rn_bit && x != top); 826 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 827 if (m == saved_m) { 828 *mp = m->rm_mklist; 829 R_Free(m); 830 break; 831 } 832 if (m == 0) { 833 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 834 if (tt->rn_flags & RNF_NORMAL) 835 return (0); /* Dangling ref to us */ 836 } 837 on1: 838 /* 839 * Eliminate us from tree 840 */ 841 if (tt->rn_flags & RNF_ROOT) 842 return (0); 843 #ifdef RN_DEBUG 844 /* Get us out of the creation list */ 845 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 846 if (t) t->rn_ybro = tt->rn_ybro; 847 #endif 848 t = tt->rn_parent; 849 dupedkey = saved_tt->rn_dupedkey; 850 if (dupedkey) { 851 /* 852 * Here, tt is the deletion target and 853 * saved_tt is the head of the dupekey chain. 854 */ 855 if (tt == saved_tt) { 856 /* remove from head of chain */ 857 x = dupedkey; x->rn_parent = t; 858 if (t->rn_left == tt) 859 t->rn_left = x; 860 else 861 t->rn_right = x; 862 } else { 863 /* find node in front of tt on the chain */ 864 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 865 p = p->rn_dupedkey; 866 if (p) { 867 p->rn_dupedkey = tt->rn_dupedkey; 868 if (tt->rn_dupedkey) /* parent */ 869 tt->rn_dupedkey->rn_parent = p; 870 /* parent */ 871 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 872 } 873 t = tt + 1; 874 if (t->rn_flags & RNF_ACTIVE) { 875 #ifndef RN_DEBUG 876 *++x = *t; 877 p = t->rn_parent; 878 #else 879 b = t->rn_info; 880 *++x = *t; 881 t->rn_info = b; 882 p = t->rn_parent; 883 #endif 884 if (p->rn_left == t) 885 p->rn_left = x; 886 else 887 p->rn_right = x; 888 x->rn_left->rn_parent = x; 889 x->rn_right->rn_parent = x; 890 } 891 goto out; 892 } 893 if (t->rn_left == tt) 894 x = t->rn_right; 895 else 896 x = t->rn_left; 897 p = t->rn_parent; 898 if (p->rn_right == t) 899 p->rn_right = x; 900 else 901 p->rn_left = x; 902 x->rn_parent = p; 903 /* 904 * Demote routes attached to us. 905 */ 906 if (t->rn_mklist) { 907 if (x->rn_bit >= 0) { 908 for (mp = &x->rn_mklist; (m = *mp);) 909 mp = &m->rm_mklist; 910 *mp = t->rn_mklist; 911 } else { 912 /* If there are any key,mask pairs in a sibling 913 duped-key chain, some subset will appear sorted 914 in the same order attached to our mklist */ 915 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 916 if (m == x->rn_mklist) { 917 struct radix_mask *mm = m->rm_mklist; 918 x->rn_mklist = 0; 919 if (--(m->rm_refs) < 0) 920 R_Free(m); 921 m = mm; 922 } 923 if (m) 924 log(LOG_ERR, 925 "rn_delete: Orphaned Mask %p at %p\n", 926 m, x); 927 } 928 } 929 /* 930 * We may be holding an active internal node in the tree. 931 */ 932 x = tt + 1; 933 if (t != x) { 934 #ifndef RN_DEBUG 935 *t = *x; 936 #else 937 b = t->rn_info; 938 *t = *x; 939 t->rn_info = b; 940 #endif 941 t->rn_left->rn_parent = t; 942 t->rn_right->rn_parent = t; 943 p = x->rn_parent; 944 if (p->rn_left == x) 945 p->rn_left = t; 946 else 947 p->rn_right = t; 948 } 949 out: 950 tt->rn_flags &= ~RNF_ACTIVE; 951 tt[1].rn_flags &= ~RNF_ACTIVE; 952 return (tt); 953 } 954 955 /* 956 * This is the same as rn_walktree() except for the parameters and the 957 * exit. 958 */ 959 int 960 rn_walktree_from(struct radix_head *h, void *a, void *m, 961 walktree_f_t *f, void *w) 962 { 963 int error; 964 struct radix_node *base, *next; 965 u_char *xa = (u_char *)a; 966 u_char *xm = (u_char *)m; 967 struct radix_node *rn, *last = NULL; /* shut up gcc */ 968 int stopping = 0; 969 int lastb; 970 971 KASSERT(m != NULL, ("%s: mask needs to be specified", __func__)); 972 973 /* 974 * rn_search_m is sort-of-open-coded here. We cannot use the 975 * function because we need to keep track of the last node seen. 976 */ 977 /* printf("about to search\n"); */ 978 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { 979 last = rn; 980 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", 981 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ 982 if (!(rn->rn_bmask & xm[rn->rn_offset])) { 983 break; 984 } 985 if (rn->rn_bmask & xa[rn->rn_offset]) { 986 rn = rn->rn_right; 987 } else { 988 rn = rn->rn_left; 989 } 990 } 991 /* printf("done searching\n"); */ 992 993 /* 994 * Two cases: either we stepped off the end of our mask, 995 * in which case last == rn, or we reached a leaf, in which 996 * case we want to start from the leaf. 997 */ 998 if (rn->rn_bit >= 0) 999 rn = last; 1000 lastb = last->rn_bit; 1001 1002 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 1003 1004 /* 1005 * This gets complicated because we may delete the node 1006 * while applying the function f to it, so we need to calculate 1007 * the successor node in advance. 1008 */ 1009 while (rn->rn_bit >= 0) 1010 rn = rn->rn_left; 1011 1012 while (!stopping) { 1013 /* printf("node %p (%d)\n", rn, rn->rn_bit); */ 1014 base = rn; 1015 /* If at right child go back up, otherwise, go right */ 1016 while (rn->rn_parent->rn_right == rn 1017 && !(rn->rn_flags & RNF_ROOT)) { 1018 rn = rn->rn_parent; 1019 1020 /* if went up beyond last, stop */ 1021 if (rn->rn_bit <= lastb) { 1022 stopping = 1; 1023 /* printf("up too far\n"); */ 1024 /* 1025 * XXX we should jump to the 'Process leaves' 1026 * part, because the values of 'rn' and 'next' 1027 * we compute will not be used. Not a big deal 1028 * because this loop will terminate, but it is 1029 * inefficient and hard to understand! 1030 */ 1031 } 1032 } 1033 1034 /* 1035 * At the top of the tree, no need to traverse the right 1036 * half, prevent the traversal of the entire tree in the 1037 * case of default route. 1038 */ 1039 if (rn->rn_parent->rn_flags & RNF_ROOT) 1040 stopping = 1; 1041 1042 /* Find the next *leaf* since next node might vanish, too */ 1043 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1044 rn = rn->rn_left; 1045 next = rn; 1046 /* Process leaves */ 1047 while ((rn = base) != 0) { 1048 base = rn->rn_dupedkey; 1049 /* printf("leaf %p\n", rn); */ 1050 if (!(rn->rn_flags & RNF_ROOT) 1051 && (error = (*f)(rn, w))) 1052 return (error); 1053 } 1054 rn = next; 1055 1056 if (rn->rn_flags & RNF_ROOT) { 1057 /* printf("root, stopping"); */ 1058 stopping = 1; 1059 } 1060 1061 } 1062 return (0); 1063 } 1064 1065 int 1066 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w) 1067 { 1068 int error; 1069 struct radix_node *base, *next; 1070 struct radix_node *rn = h->rnh_treetop; 1071 /* 1072 * This gets complicated because we may delete the node 1073 * while applying the function f to it, so we need to calculate 1074 * the successor node in advance. 1075 */ 1076 1077 /* First time through node, go left */ 1078 while (rn->rn_bit >= 0) 1079 rn = rn->rn_left; 1080 for (;;) { 1081 base = rn; 1082 /* If at right child go back up, otherwise, go right */ 1083 while (rn->rn_parent->rn_right == rn 1084 && (rn->rn_flags & RNF_ROOT) == 0) 1085 rn = rn->rn_parent; 1086 /* Find the next *leaf* since next node might vanish, too */ 1087 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1088 rn = rn->rn_left; 1089 next = rn; 1090 /* Process leaves */ 1091 while ((rn = base)) { 1092 base = rn->rn_dupedkey; 1093 if (!(rn->rn_flags & RNF_ROOT) 1094 && (error = (*f)(rn, w))) 1095 return (error); 1096 } 1097 rn = next; 1098 if (rn->rn_flags & RNF_ROOT) 1099 return (0); 1100 } 1101 /* NOTREACHED */ 1102 } 1103 1104 /* 1105 * Initialize an empty tree. This has 3 nodes, which are passed 1106 * via base_nodes (in the order <left,root,right>) and are 1107 * marked RNF_ROOT so they cannot be freed. 1108 * The leaves have all-zero and all-one keys, with significant 1109 * bits starting at 'off'. 1110 */ 1111 void 1112 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off) 1113 { 1114 struct radix_node *t, *tt, *ttt; 1115 1116 t = rn_newpair(rn_zeros, off, base_nodes); 1117 ttt = base_nodes + 2; 1118 t->rn_right = ttt; 1119 t->rn_parent = t; 1120 tt = t->rn_left; /* ... which in turn is base_nodes */ 1121 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1122 tt->rn_bit = -1 - off; 1123 *ttt = *tt; 1124 ttt->rn_key = rn_ones; 1125 1126 rh->rnh_treetop = t; 1127 } 1128 1129 static void 1130 rn_detachhead_internal(struct radix_head *head) 1131 { 1132 1133 KASSERT((head != NULL), 1134 ("%s: head already freed", __func__)); 1135 1136 /* Free <left,root,right> nodes. */ 1137 R_Free(head); 1138 } 1139 1140 /* Functions used by 'struct radix_node_head' users */ 1141 1142 int 1143 rn_inithead(void **head, int off) 1144 { 1145 struct radix_node_head *rnh; 1146 struct radix_mask_head *rmh; 1147 1148 rnh = *head; 1149 rmh = NULL; 1150 1151 if (*head != NULL) 1152 return (1); 1153 1154 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1155 R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh)); 1156 if (rnh == NULL || rmh == NULL) { 1157 if (rnh != NULL) 1158 R_Free(rnh); 1159 return (0); 1160 } 1161 1162 /* Init trees */ 1163 rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off); 1164 rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0); 1165 *head = rnh; 1166 rnh->rh.rnh_masks = rmh; 1167 1168 /* Finally, set base callbacks */ 1169 rnh->rnh_addaddr = rn_addroute; 1170 rnh->rnh_deladdr = rn_delete; 1171 rnh->rnh_matchaddr = rn_match; 1172 rnh->rnh_lookup = rn_lookup; 1173 rnh->rnh_walktree = rn_walktree; 1174 rnh->rnh_walktree_from = rn_walktree_from; 1175 1176 return (1); 1177 } 1178 1179 static int 1180 rn_freeentry(struct radix_node *rn, void *arg) 1181 { 1182 struct radix_head * const rnh = arg; 1183 struct radix_node *x; 1184 1185 x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh); 1186 if (x != NULL) 1187 R_Free(x); 1188 return (0); 1189 } 1190 1191 int 1192 rn_detachhead(void **head) 1193 { 1194 struct radix_node_head *rnh; 1195 1196 KASSERT((head != NULL && *head != NULL), 1197 ("%s: head already freed", __func__)); 1198 1199 rnh = (struct radix_node_head *)(*head); 1200 1201 rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks); 1202 rn_detachhead_internal(&rnh->rh.rnh_masks->head); 1203 rn_detachhead_internal(&rnh->rh); 1204 1205 *head = NULL; 1206 1207 return (1); 1208 } 1209 1210