1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)radix.c 8.5 (Berkeley) 5/19/95 32 * $FreeBSD$ 33 */ 34 35 /* 36 * Routines to build and maintain radix trees for routing lookups. 37 */ 38 #include <sys/param.h> 39 #ifdef _KERNEL 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/syslog.h> 46 #include <net/radix.h> 47 #else /* !_KERNEL */ 48 #include <stdio.h> 49 #include <strings.h> 50 #include <stdlib.h> 51 #define log(x, arg...) fprintf(stderr, ## arg) 52 #define panic(x) fprintf(stderr, "PANIC: %s", x), exit(1) 53 #define min(a, b) ((a) < (b) ? (a) : (b) ) 54 #include <net/radix.h> 55 #endif /* !_KERNEL */ 56 57 static struct radix_node 58 *rn_insert(void *, struct radix_head *, int *, 59 struct radix_node [2]), 60 *rn_newpair(void *, int, struct radix_node[2]), 61 *rn_search(const void *, struct radix_node *), 62 *rn_search_m(const void *, struct radix_node *, void *); 63 static struct radix_node *rn_addmask(const void *, struct radix_mask_head *, int,int); 64 65 static void rn_detachhead_internal(struct radix_head *); 66 67 #define RADIX_MAX_KEY_LEN 32 68 69 static char rn_zeros[RADIX_MAX_KEY_LEN]; 70 static char rn_ones[RADIX_MAX_KEY_LEN] = { 71 -1, -1, -1, -1, -1, -1, -1, -1, 72 -1, -1, -1, -1, -1, -1, -1, -1, 73 -1, -1, -1, -1, -1, -1, -1, -1, 74 -1, -1, -1, -1, -1, -1, -1, -1, 75 }; 76 77 static int rn_lexobetter(const void *m_arg, const void *n_arg); 78 static struct radix_mask * 79 rn_new_radix_mask(struct radix_node *tt, 80 struct radix_mask *next); 81 static int rn_satisfies_leaf(const char *trial, struct radix_node *leaf, 82 int skip); 83 84 /* 85 * The data structure for the keys is a radix tree with one way 86 * branching removed. The index rn_bit at an internal node n represents a bit 87 * position to be tested. The tree is arranged so that all descendants 88 * of a node n have keys whose bits all agree up to position rn_bit - 1. 89 * (We say the index of n is rn_bit.) 90 * 91 * There is at least one descendant which has a one bit at position rn_bit, 92 * and at least one with a zero there. 93 * 94 * A route is determined by a pair of key and mask. We require that the 95 * bit-wise logical and of the key and mask to be the key. 96 * We define the index of a route to associated with the mask to be 97 * the first bit number in the mask where 0 occurs (with bit number 0 98 * representing the highest order bit). 99 * 100 * We say a mask is normal if every bit is 0, past the index of the mask. 101 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 102 * and m is a normal mask, then the route applies to every descendant of n. 103 * If the index(m) < rn_bit, this implies the trailing last few bits of k 104 * before bit b are all 0, (and hence consequently true of every descendant 105 * of n), so the route applies to all descendants of the node as well. 106 * 107 * Similar logic shows that a non-normal mask m such that 108 * index(m) <= index(n) could potentially apply to many children of n. 109 * Thus, for each non-host route, we attach its mask to a list at an internal 110 * node as high in the tree as we can go. 111 * 112 * The present version of the code makes use of normal routes in short- 113 * circuiting an explict mask and compare operation when testing whether 114 * a key satisfies a normal route, and also in remembering the unique leaf 115 * that governs a subtree. 116 */ 117 118 /* 119 * Most of the functions in this code assume that the key/mask arguments 120 * are sockaddr-like structures, where the first byte is an u_char 121 * indicating the size of the entire structure. 122 * 123 * To make the assumption more explicit, we use the LEN() macro to access 124 * this field. It is safe to pass an expression with side effects 125 * to LEN() as the argument is evaluated only once. 126 * We cast the result to int as this is the dominant usage. 127 */ 128 #define LEN(x) ( (int) (*(const u_char *)(x)) ) 129 130 /* 131 * XXX THIS NEEDS TO BE FIXED 132 * In the code, pointers to keys and masks are passed as either 133 * 'void *' (because callers use to pass pointers of various kinds), or 134 * 'caddr_t' (which is fine for pointer arithmetics, but not very 135 * clean when you dereference it to access data). Furthermore, caddr_t 136 * is really 'char *', while the natural type to operate on keys and 137 * masks would be 'u_char'. This mismatch require a lot of casts and 138 * intermediate variables to adapt types that clutter the code. 139 */ 140 141 /* 142 * Search a node in the tree matching the key. 143 */ 144 static struct radix_node * 145 rn_search(const void *v_arg, struct radix_node *head) 146 { 147 struct radix_node *x; 148 c_caddr_t v; 149 150 for (x = head, v = v_arg; x->rn_bit >= 0;) { 151 if (x->rn_bmask & v[x->rn_offset]) 152 x = x->rn_right; 153 else 154 x = x->rn_left; 155 } 156 return (x); 157 } 158 159 /* 160 * Same as above, but with an additional mask. 161 * XXX note this function is used only once. 162 */ 163 static struct radix_node * 164 rn_search_m(const void *v_arg, struct radix_node *head, void *m_arg) 165 { 166 struct radix_node *x; 167 c_caddr_t v = v_arg, m = m_arg; 168 169 for (x = head; x->rn_bit >= 0;) { 170 if ((x->rn_bmask & m[x->rn_offset]) && 171 (x->rn_bmask & v[x->rn_offset])) 172 x = x->rn_right; 173 else 174 x = x->rn_left; 175 } 176 return (x); 177 } 178 179 int 180 rn_refines(const void *m_arg, const void *n_arg) 181 { 182 c_caddr_t m = m_arg, n = n_arg; 183 c_caddr_t lim, lim2 = lim = n + LEN(n); 184 int longer = LEN(n++) - LEN(m++); 185 int masks_are_equal = 1; 186 187 if (longer > 0) 188 lim -= longer; 189 while (n < lim) { 190 if (*n & ~(*m)) 191 return (0); 192 if (*n++ != *m++) 193 masks_are_equal = 0; 194 } 195 while (n < lim2) 196 if (*n++) 197 return (0); 198 if (masks_are_equal && (longer < 0)) 199 for (lim2 = m - longer; m < lim2; ) 200 if (*m++) 201 return (1); 202 return (!masks_are_equal); 203 } 204 205 /* 206 * Search for exact match in given @head. 207 * Assume host bits are cleared in @v_arg if @m_arg is not NULL 208 * Note that prefixes with /32 or /128 masks are treated differently 209 * from host routes. 210 */ 211 struct radix_node * 212 rn_lookup(const void *v_arg, const void *m_arg, struct radix_head *head) 213 { 214 struct radix_node *x; 215 caddr_t netmask; 216 217 if (m_arg != NULL) { 218 /* 219 * Most common case: search exact prefix/mask 220 */ 221 x = rn_addmask(m_arg, head->rnh_masks, 1, 222 head->rnh_treetop->rn_offset); 223 if (x == NULL) 224 return (NULL); 225 netmask = x->rn_key; 226 227 x = rn_match(v_arg, head); 228 229 while (x != NULL && x->rn_mask != netmask) 230 x = x->rn_dupedkey; 231 232 return (x); 233 } 234 235 /* 236 * Search for host address. 237 */ 238 if ((x = rn_match(v_arg, head)) == NULL) 239 return (NULL); 240 241 /* Check if found key is the same */ 242 if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg))) 243 return (NULL); 244 245 /* Check if this is not host route */ 246 if (x->rn_mask != NULL) 247 return (NULL); 248 249 return (x); 250 } 251 252 static int 253 rn_satisfies_leaf(const char *trial, struct radix_node *leaf, int skip) 254 { 255 const char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 256 const char *cplim; 257 int length = min(LEN(cp), LEN(cp2)); 258 259 if (cp3 == NULL) 260 cp3 = rn_ones; 261 else 262 length = min(length, LEN(cp3)); 263 cplim = cp + length; cp3 += skip; cp2 += skip; 264 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 265 if ((*cp ^ *cp2) & *cp3) 266 return (0); 267 return (1); 268 } 269 270 /* 271 * Search for longest-prefix match in given @head 272 */ 273 struct radix_node * 274 rn_match(const void *v_arg, struct radix_head *head) 275 { 276 c_caddr_t v = v_arg; 277 struct radix_node *t = head->rnh_treetop, *x; 278 c_caddr_t cp = v, cp2; 279 c_caddr_t cplim; 280 struct radix_node *saved_t, *top = t; 281 int off = t->rn_offset, vlen = LEN(cp), matched_off; 282 int test, b, rn_bit; 283 284 /* 285 * Open code rn_search(v, top) to avoid overhead of extra 286 * subroutine call. 287 */ 288 for (; t->rn_bit >= 0; ) { 289 if (t->rn_bmask & cp[t->rn_offset]) 290 t = t->rn_right; 291 else 292 t = t->rn_left; 293 } 294 /* 295 * See if we match exactly as a host destination 296 * or at least learn how many bits match, for normal mask finesse. 297 * 298 * It doesn't hurt us to limit how many bytes to check 299 * to the length of the mask, since if it matches we had a genuine 300 * match and the leaf we have is the most specific one anyway; 301 * if it didn't match with a shorter length it would fail 302 * with a long one. This wins big for class B&C netmasks which 303 * are probably the most common case... 304 */ 305 if (t->rn_mask) 306 vlen = *(u_char *)t->rn_mask; 307 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 308 for (; cp < cplim; cp++, cp2++) 309 if (*cp != *cp2) 310 goto on1; 311 /* 312 * This extra grot is in case we are explicitly asked 313 * to look up the default. Ugh! 314 * 315 * Never return the root node itself, it seems to cause a 316 * lot of confusion. 317 */ 318 if (t->rn_flags & RNF_ROOT) 319 t = t->rn_dupedkey; 320 return (t); 321 on1: 322 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 323 for (b = 7; (test >>= 1) > 0;) 324 b--; 325 matched_off = cp - v; 326 b += matched_off << 3; 327 rn_bit = -1 - b; 328 /* 329 * If there is a host route in a duped-key chain, it will be first. 330 */ 331 if ((saved_t = t)->rn_mask == 0) 332 t = t->rn_dupedkey; 333 for (; t; t = t->rn_dupedkey) 334 /* 335 * Even if we don't match exactly as a host, 336 * we may match if the leaf we wound up at is 337 * a route to a net. 338 */ 339 if (t->rn_flags & RNF_NORMAL) { 340 if (rn_bit <= t->rn_bit) 341 return (t); 342 } else if (rn_satisfies_leaf(v, t, matched_off)) 343 return (t); 344 t = saved_t; 345 /* start searching up the tree */ 346 do { 347 struct radix_mask *m; 348 t = t->rn_parent; 349 m = t->rn_mklist; 350 /* 351 * If non-contiguous masks ever become important 352 * we can restore the masking and open coding of 353 * the search and satisfaction test and put the 354 * calculation of "off" back before the "do". 355 */ 356 while (m) { 357 if (m->rm_flags & RNF_NORMAL) { 358 if (rn_bit <= m->rm_bit) 359 return (m->rm_leaf); 360 } else { 361 off = min(t->rn_offset, matched_off); 362 x = rn_search_m(v, t, m->rm_mask); 363 while (x && x->rn_mask != m->rm_mask) 364 x = x->rn_dupedkey; 365 if (x && rn_satisfies_leaf(v, x, off)) 366 return (x); 367 } 368 m = m->rm_mklist; 369 } 370 } while (t != top); 371 return (0); 372 } 373 374 /* 375 * Returns the next (wider) prefix for the key defined by @rn 376 * if exists. 377 */ 378 struct radix_node * 379 rn_nextprefix(struct radix_node *rn) 380 { 381 for (rn = rn->rn_dupedkey; rn != NULL; rn = rn->rn_dupedkey) { 382 if (!(rn->rn_flags & RNF_ROOT)) 383 return (rn); 384 } 385 return (NULL); 386 } 387 388 #ifdef RN_DEBUG 389 int rn_nodenum; 390 struct radix_node *rn_clist; 391 int rn_saveinfo; 392 int rn_debug = 1; 393 #endif 394 395 /* 396 * Whenever we add a new leaf to the tree, we also add a parent node, 397 * so we allocate them as an array of two elements: the first one must be 398 * the leaf (see RNTORT() in route.c), the second one is the parent. 399 * This routine initializes the relevant fields of the nodes, so that 400 * the leaf is the left child of the parent node, and both nodes have 401 * (almost) all all fields filled as appropriate. 402 * (XXX some fields are left unset, see the '#if 0' section). 403 * The function returns a pointer to the parent node. 404 */ 405 406 static struct radix_node * 407 rn_newpair(void *v, int b, struct radix_node nodes[2]) 408 { 409 struct radix_node *tt = nodes, *t = tt + 1; 410 t->rn_bit = b; 411 t->rn_bmask = 0x80 >> (b & 7); 412 t->rn_left = tt; 413 t->rn_offset = b >> 3; 414 415 #if 0 /* XXX perhaps we should fill these fields as well. */ 416 t->rn_parent = t->rn_right = NULL; 417 418 tt->rn_mask = NULL; 419 tt->rn_dupedkey = NULL; 420 tt->rn_bmask = 0; 421 #endif 422 tt->rn_bit = -1; 423 tt->rn_key = (caddr_t)v; 424 tt->rn_parent = t; 425 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 426 tt->rn_mklist = t->rn_mklist = 0; 427 #ifdef RN_DEBUG 428 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 429 tt->rn_twin = t; 430 tt->rn_ybro = rn_clist; 431 rn_clist = tt; 432 #endif 433 return (t); 434 } 435 436 static struct radix_node * 437 rn_insert(void *v_arg, struct radix_head *head, int *dupentry, 438 struct radix_node nodes[2]) 439 { 440 caddr_t v = v_arg; 441 struct radix_node *top = head->rnh_treetop; 442 int head_off = top->rn_offset, vlen = LEN(v); 443 struct radix_node *t = rn_search(v_arg, top); 444 caddr_t cp = v + head_off; 445 unsigned b; 446 struct radix_node *p, *tt, *x; 447 /* 448 * Find first bit at which v and t->rn_key differ 449 */ 450 caddr_t cp2 = t->rn_key + head_off; 451 int cmp_res; 452 caddr_t cplim = v + vlen; 453 454 while (cp < cplim) 455 if (*cp2++ != *cp++) 456 goto on1; 457 *dupentry = 1; 458 return (t); 459 on1: 460 *dupentry = 0; 461 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 462 for (b = (cp - v) << 3; cmp_res; b--) 463 cmp_res >>= 1; 464 465 x = top; 466 cp = v; 467 do { 468 p = x; 469 if (cp[x->rn_offset] & x->rn_bmask) 470 x = x->rn_right; 471 else 472 x = x->rn_left; 473 } while (b > (unsigned) x->rn_bit); 474 /* x->rn_bit < b && x->rn_bit >= 0 */ 475 #ifdef RN_DEBUG 476 if (rn_debug) 477 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 478 #endif 479 t = rn_newpair(v_arg, b, nodes); 480 tt = t->rn_left; 481 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 482 p->rn_left = t; 483 else 484 p->rn_right = t; 485 x->rn_parent = t; 486 t->rn_parent = p; /* frees x, p as temp vars below */ 487 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 488 t->rn_right = x; 489 } else { 490 t->rn_right = tt; 491 t->rn_left = x; 492 } 493 #ifdef RN_DEBUG 494 if (rn_debug) 495 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 496 #endif 497 return (tt); 498 } 499 500 static struct radix_node * 501 rn_addmask(const void *n_arg, struct radix_mask_head *maskhead, int search, int skip) 502 { 503 const unsigned char *netmask = n_arg; 504 const unsigned char *c, *clim; 505 unsigned char *cp; 506 struct radix_node *x; 507 int b = 0, mlen, j; 508 int maskduplicated, isnormal; 509 struct radix_node *saved_x; 510 unsigned char addmask_key[RADIX_MAX_KEY_LEN]; 511 512 if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN) 513 mlen = RADIX_MAX_KEY_LEN; 514 if (skip == 0) 515 skip = 1; 516 if (mlen <= skip) 517 return (maskhead->mask_nodes); 518 519 bzero(addmask_key, RADIX_MAX_KEY_LEN); 520 if (skip > 1) 521 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 522 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 523 /* 524 * Trim trailing zeroes. 525 */ 526 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 527 cp--; 528 mlen = cp - addmask_key; 529 if (mlen <= skip) 530 return (maskhead->mask_nodes); 531 *addmask_key = mlen; 532 x = rn_search(addmask_key, maskhead->head.rnh_treetop); 533 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 534 x = NULL; 535 if (x || search) 536 return (x); 537 R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x)); 538 if ((saved_x = x) == NULL) 539 return (0); 540 netmask = cp = (unsigned char *)(x + 2); 541 bcopy(addmask_key, cp, mlen); 542 x = rn_insert(cp, &maskhead->head, &maskduplicated, x); 543 if (maskduplicated) { 544 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 545 R_Free(saved_x); 546 return (x); 547 } 548 /* 549 * Calculate index of mask, and check for normalcy. 550 * First find the first byte with a 0 bit, then if there are 551 * more bits left (remember we already trimmed the trailing 0's), 552 * the bits should be contiguous, otherwise we have got 553 * a non-contiguous mask. 554 */ 555 #define CONTIG(_c) (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1)) 556 clim = netmask + mlen; 557 isnormal = 1; 558 for (c = netmask + skip; (c < clim) && *(const u_char *)c == 0xff;) 559 c++; 560 if (c != clim) { 561 for (j = 0x80; (j & *c) != 0; j >>= 1) 562 b++; 563 if (!CONTIG(*c) || c != (clim - 1)) 564 isnormal = 0; 565 } 566 b += (c - netmask) << 3; 567 x->rn_bit = -1 - b; 568 if (isnormal) 569 x->rn_flags |= RNF_NORMAL; 570 return (x); 571 } 572 573 static int /* XXX: arbitrary ordering for non-contiguous masks */ 574 rn_lexobetter(const void *m_arg, const void *n_arg) 575 { 576 const u_char *mp = m_arg, *np = n_arg, *lim; 577 578 if (LEN(mp) > LEN(np)) 579 return (1); /* not really, but need to check longer one first */ 580 if (LEN(mp) == LEN(np)) 581 for (lim = mp + LEN(mp); mp < lim;) 582 if (*mp++ > *np++) 583 return (1); 584 return (0); 585 } 586 587 static struct radix_mask * 588 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) 589 { 590 struct radix_mask *m; 591 592 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); 593 if (m == NULL) { 594 log(LOG_ERR, "Failed to allocate route mask\n"); 595 return (0); 596 } 597 bzero(m, sizeof(*m)); 598 m->rm_bit = tt->rn_bit; 599 m->rm_flags = tt->rn_flags; 600 if (tt->rn_flags & RNF_NORMAL) 601 m->rm_leaf = tt; 602 else 603 m->rm_mask = tt->rn_mask; 604 m->rm_mklist = next; 605 tt->rn_mklist = m; 606 return (m); 607 } 608 609 struct radix_node * 610 rn_addroute(void *v_arg, const void *n_arg, struct radix_head *head, 611 struct radix_node treenodes[2]) 612 { 613 caddr_t v = (caddr_t)v_arg, netmask = NULL; 614 struct radix_node *t, *x = NULL, *tt; 615 struct radix_node *saved_tt, *top = head->rnh_treetop; 616 short b = 0, b_leaf = 0; 617 int keyduplicated; 618 caddr_t mmask; 619 struct radix_mask *m, **mp; 620 621 /* 622 * In dealing with non-contiguous masks, there may be 623 * many different routes which have the same mask. 624 * We will find it useful to have a unique pointer to 625 * the mask to speed avoiding duplicate references at 626 * nodes and possibly save time in calculating indices. 627 */ 628 if (n_arg) { 629 x = rn_addmask(n_arg, head->rnh_masks, 0, top->rn_offset); 630 if (x == NULL) 631 return (0); 632 b_leaf = x->rn_bit; 633 b = -1 - x->rn_bit; 634 netmask = x->rn_key; 635 } 636 /* 637 * Deal with duplicated keys: attach node to previous instance 638 */ 639 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 640 if (keyduplicated) { 641 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 642 if (tt->rn_mask == netmask) 643 return (0); 644 if (netmask == 0 || 645 (tt->rn_mask && 646 ((b_leaf < tt->rn_bit) /* index(netmask) > node */ 647 || rn_refines(netmask, tt->rn_mask) 648 || rn_lexobetter(netmask, tt->rn_mask)))) 649 break; 650 } 651 /* 652 * If the mask is not duplicated, we wouldn't 653 * find it among possible duplicate key entries 654 * anyway, so the above test doesn't hurt. 655 * 656 * We sort the masks for a duplicated key the same way as 657 * in a masklist -- most specific to least specific. 658 * This may require the unfortunate nuisance of relocating 659 * the head of the list. 660 * 661 * We also reverse, or doubly link the list through the 662 * parent pointer. 663 */ 664 if (tt == saved_tt) { 665 struct radix_node *xx = x; 666 /* link in at head of list */ 667 (tt = treenodes)->rn_dupedkey = t; 668 tt->rn_flags = t->rn_flags; 669 tt->rn_parent = x = t->rn_parent; 670 t->rn_parent = tt; /* parent */ 671 if (x->rn_left == t) 672 x->rn_left = tt; 673 else 674 x->rn_right = tt; 675 saved_tt = tt; x = xx; 676 } else { 677 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 678 t->rn_dupedkey = tt; 679 tt->rn_parent = t; /* parent */ 680 if (tt->rn_dupedkey) /* parent */ 681 tt->rn_dupedkey->rn_parent = tt; /* parent */ 682 } 683 #ifdef RN_DEBUG 684 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 685 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 686 #endif 687 tt->rn_key = (caddr_t) v; 688 tt->rn_bit = -1; 689 tt->rn_flags = RNF_ACTIVE; 690 } 691 /* 692 * Put mask in tree. 693 */ 694 if (netmask) { 695 tt->rn_mask = netmask; 696 tt->rn_bit = x->rn_bit; 697 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 698 } 699 t = saved_tt->rn_parent; 700 if (keyduplicated) 701 goto on2; 702 b_leaf = -1 - t->rn_bit; 703 if (t->rn_right == saved_tt) 704 x = t->rn_left; 705 else 706 x = t->rn_right; 707 /* Promote general routes from below */ 708 if (x->rn_bit < 0) { 709 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 710 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 711 *mp = m = rn_new_radix_mask(x, 0); 712 if (m) 713 mp = &m->rm_mklist; 714 } 715 } else if (x->rn_mklist) { 716 /* 717 * Skip over masks whose index is > that of new node 718 */ 719 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 720 if (m->rm_bit >= b_leaf) 721 break; 722 t->rn_mklist = m; *mp = NULL; 723 } 724 on2: 725 /* Add new route to highest possible ancestor's list */ 726 if ((netmask == 0) || (b > t->rn_bit )) 727 return (tt); /* can't lift at all */ 728 b_leaf = tt->rn_bit; 729 do { 730 x = t; 731 t = t->rn_parent; 732 } while (b <= t->rn_bit && x != top); 733 /* 734 * Search through routes associated with node to 735 * insert new route according to index. 736 * Need same criteria as when sorting dupedkeys to avoid 737 * double loop on deletion. 738 */ 739 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 740 if (m->rm_bit < b_leaf) 741 continue; 742 if (m->rm_bit > b_leaf) 743 break; 744 if (m->rm_flags & RNF_NORMAL) { 745 mmask = m->rm_leaf->rn_mask; 746 if (tt->rn_flags & RNF_NORMAL) { 747 log(LOG_ERR, 748 "Non-unique normal route, mask not entered\n"); 749 return (tt); 750 } 751 } else 752 mmask = m->rm_mask; 753 if (mmask == netmask) { 754 m->rm_refs++; 755 tt->rn_mklist = m; 756 return (tt); 757 } 758 if (rn_refines(netmask, mmask) 759 || rn_lexobetter(netmask, mmask)) 760 break; 761 } 762 *mp = rn_new_radix_mask(tt, *mp); 763 return (tt); 764 } 765 766 struct radix_node * 767 rn_delete(const void *v_arg, const void *netmask_arg, struct radix_head *head) 768 { 769 struct radix_node *t, *p, *x, *tt; 770 struct radix_mask *m, *saved_m, **mp; 771 struct radix_node *dupedkey, *saved_tt, *top; 772 c_caddr_t v; 773 c_caddr_t netmask; 774 int b, head_off, vlen; 775 776 v = v_arg; 777 netmask = netmask_arg; 778 x = head->rnh_treetop; 779 tt = rn_search(v, x); 780 head_off = x->rn_offset; 781 vlen = LEN(v); 782 saved_tt = tt; 783 top = x; 784 if (tt == NULL || 785 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 786 return (0); 787 /* 788 * Delete our route from mask lists. 789 */ 790 if (netmask) { 791 x = rn_addmask(netmask, head->rnh_masks, 1, head_off); 792 if (x == NULL) 793 return (0); 794 netmask = x->rn_key; 795 while (tt->rn_mask != netmask) 796 if ((tt = tt->rn_dupedkey) == NULL) 797 return (0); 798 } 799 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL) 800 goto on1; 801 if (tt->rn_flags & RNF_NORMAL) { 802 if (m->rm_leaf != tt || m->rm_refs > 0) { 803 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 804 return (0); /* dangling ref could cause disaster */ 805 } 806 } else { 807 if (m->rm_mask != tt->rn_mask) { 808 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 809 goto on1; 810 } 811 if (--m->rm_refs >= 0) 812 goto on1; 813 } 814 b = -1 - tt->rn_bit; 815 t = saved_tt->rn_parent; 816 if (b > t->rn_bit) 817 goto on1; /* Wasn't lifted at all */ 818 do { 819 x = t; 820 t = t->rn_parent; 821 } while (b <= t->rn_bit && x != top); 822 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 823 if (m == saved_m) { 824 *mp = m->rm_mklist; 825 R_Free(m); 826 break; 827 } 828 if (m == NULL) { 829 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 830 if (tt->rn_flags & RNF_NORMAL) 831 return (0); /* Dangling ref to us */ 832 } 833 on1: 834 /* 835 * Eliminate us from tree 836 */ 837 if (tt->rn_flags & RNF_ROOT) 838 return (0); 839 #ifdef RN_DEBUG 840 /* Get us out of the creation list */ 841 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 842 if (t) t->rn_ybro = tt->rn_ybro; 843 #endif 844 t = tt->rn_parent; 845 dupedkey = saved_tt->rn_dupedkey; 846 if (dupedkey) { 847 /* 848 * Here, tt is the deletion target and 849 * saved_tt is the head of the dupekey chain. 850 */ 851 if (tt == saved_tt) { 852 /* remove from head of chain */ 853 x = dupedkey; x->rn_parent = t; 854 if (t->rn_left == tt) 855 t->rn_left = x; 856 else 857 t->rn_right = x; 858 } else { 859 /* find node in front of tt on the chain */ 860 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 861 p = p->rn_dupedkey; 862 if (p) { 863 p->rn_dupedkey = tt->rn_dupedkey; 864 if (tt->rn_dupedkey) /* parent */ 865 tt->rn_dupedkey->rn_parent = p; 866 /* parent */ 867 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 868 } 869 t = tt + 1; 870 if (t->rn_flags & RNF_ACTIVE) { 871 #ifndef RN_DEBUG 872 *++x = *t; 873 p = t->rn_parent; 874 #else 875 b = t->rn_info; 876 *++x = *t; 877 t->rn_info = b; 878 p = t->rn_parent; 879 #endif 880 if (p->rn_left == t) 881 p->rn_left = x; 882 else 883 p->rn_right = x; 884 x->rn_left->rn_parent = x; 885 x->rn_right->rn_parent = x; 886 } 887 goto out; 888 } 889 if (t->rn_left == tt) 890 x = t->rn_right; 891 else 892 x = t->rn_left; 893 p = t->rn_parent; 894 if (p->rn_right == t) 895 p->rn_right = x; 896 else 897 p->rn_left = x; 898 x->rn_parent = p; 899 /* 900 * Demote routes attached to us. 901 */ 902 if (t->rn_mklist) { 903 if (x->rn_bit >= 0) { 904 for (mp = &x->rn_mklist; (m = *mp);) 905 mp = &m->rm_mklist; 906 *mp = t->rn_mklist; 907 } else { 908 /* If there are any key,mask pairs in a sibling 909 duped-key chain, some subset will appear sorted 910 in the same order attached to our mklist */ 911 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 912 if (m == x->rn_mklist) { 913 struct radix_mask *mm = m->rm_mklist; 914 x->rn_mklist = 0; 915 if (--(m->rm_refs) < 0) 916 R_Free(m); 917 m = mm; 918 } 919 if (m) 920 log(LOG_ERR, 921 "rn_delete: Orphaned Mask %p at %p\n", 922 m, x); 923 } 924 } 925 /* 926 * We may be holding an active internal node in the tree. 927 */ 928 x = tt + 1; 929 if (t != x) { 930 #ifndef RN_DEBUG 931 *t = *x; 932 #else 933 b = t->rn_info; 934 *t = *x; 935 t->rn_info = b; 936 #endif 937 t->rn_left->rn_parent = t; 938 t->rn_right->rn_parent = t; 939 p = x->rn_parent; 940 if (p->rn_left == x) 941 p->rn_left = t; 942 else 943 p->rn_right = t; 944 } 945 out: 946 tt->rn_flags &= ~RNF_ACTIVE; 947 tt[1].rn_flags &= ~RNF_ACTIVE; 948 return (tt); 949 } 950 951 /* 952 * This is the same as rn_walktree() except for the parameters and the 953 * exit. 954 */ 955 int 956 rn_walktree_from(struct radix_head *h, void *a, void *m, 957 walktree_f_t *f, void *w) 958 { 959 int error; 960 struct radix_node *base, *next; 961 u_char *xa = (u_char *)a; 962 u_char *xm = (u_char *)m; 963 struct radix_node *rn, *last = NULL; /* shut up gcc */ 964 int stopping = 0; 965 int lastb; 966 967 KASSERT(m != NULL, ("%s: mask needs to be specified", __func__)); 968 969 /* 970 * rn_search_m is sort-of-open-coded here. We cannot use the 971 * function because we need to keep track of the last node seen. 972 */ 973 /* printf("about to search\n"); */ 974 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { 975 last = rn; 976 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", 977 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ 978 if (!(rn->rn_bmask & xm[rn->rn_offset])) { 979 break; 980 } 981 if (rn->rn_bmask & xa[rn->rn_offset]) { 982 rn = rn->rn_right; 983 } else { 984 rn = rn->rn_left; 985 } 986 } 987 /* printf("done searching\n"); */ 988 989 /* 990 * Two cases: either we stepped off the end of our mask, 991 * in which case last == rn, or we reached a leaf, in which 992 * case we want to start from the leaf. 993 */ 994 if (rn->rn_bit >= 0) 995 rn = last; 996 lastb = last->rn_bit; 997 998 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 999 1000 /* 1001 * This gets complicated because we may delete the node 1002 * while applying the function f to it, so we need to calculate 1003 * the successor node in advance. 1004 */ 1005 while (rn->rn_bit >= 0) 1006 rn = rn->rn_left; 1007 1008 while (!stopping) { 1009 /* printf("node %p (%d)\n", rn, rn->rn_bit); */ 1010 base = rn; 1011 /* If at right child go back up, otherwise, go right */ 1012 while (rn->rn_parent->rn_right == rn 1013 && !(rn->rn_flags & RNF_ROOT)) { 1014 rn = rn->rn_parent; 1015 1016 /* if went up beyond last, stop */ 1017 if (rn->rn_bit <= lastb) { 1018 stopping = 1; 1019 /* printf("up too far\n"); */ 1020 /* 1021 * XXX we should jump to the 'Process leaves' 1022 * part, because the values of 'rn' and 'next' 1023 * we compute will not be used. Not a big deal 1024 * because this loop will terminate, but it is 1025 * inefficient and hard to understand! 1026 */ 1027 } 1028 } 1029 1030 /* 1031 * At the top of the tree, no need to traverse the right 1032 * half, prevent the traversal of the entire tree in the 1033 * case of default route. 1034 */ 1035 if (rn->rn_parent->rn_flags & RNF_ROOT) 1036 stopping = 1; 1037 1038 /* Find the next *leaf* since next node might vanish, too */ 1039 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1040 rn = rn->rn_left; 1041 next = rn; 1042 /* Process leaves */ 1043 while ((rn = base) != NULL) { 1044 base = rn->rn_dupedkey; 1045 /* printf("leaf %p\n", rn); */ 1046 if (!(rn->rn_flags & RNF_ROOT) 1047 && (error = (*f)(rn, w))) 1048 return (error); 1049 } 1050 rn = next; 1051 1052 if (rn->rn_flags & RNF_ROOT) { 1053 /* printf("root, stopping"); */ 1054 stopping = 1; 1055 } 1056 } 1057 return (0); 1058 } 1059 1060 int 1061 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w) 1062 { 1063 int error; 1064 struct radix_node *base, *next; 1065 struct radix_node *rn = h->rnh_treetop; 1066 /* 1067 * This gets complicated because we may delete the node 1068 * while applying the function f to it, so we need to calculate 1069 * the successor node in advance. 1070 */ 1071 1072 /* First time through node, go left */ 1073 while (rn->rn_bit >= 0) 1074 rn = rn->rn_left; 1075 for (;;) { 1076 base = rn; 1077 /* If at right child go back up, otherwise, go right */ 1078 while (rn->rn_parent->rn_right == rn 1079 && (rn->rn_flags & RNF_ROOT) == 0) 1080 rn = rn->rn_parent; 1081 /* Find the next *leaf* since next node might vanish, too */ 1082 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1083 rn = rn->rn_left; 1084 next = rn; 1085 /* Process leaves */ 1086 while ((rn = base)) { 1087 base = rn->rn_dupedkey; 1088 if (!(rn->rn_flags & RNF_ROOT) 1089 && (error = (*f)(rn, w))) 1090 return (error); 1091 } 1092 rn = next; 1093 if (rn->rn_flags & RNF_ROOT) 1094 return (0); 1095 } 1096 /* NOTREACHED */ 1097 } 1098 1099 /* 1100 * Initialize an empty tree. This has 3 nodes, which are passed 1101 * via base_nodes (in the order <left,root,right>) and are 1102 * marked RNF_ROOT so they cannot be freed. 1103 * The leaves have all-zero and all-one keys, with significant 1104 * bits starting at 'off'. 1105 */ 1106 void 1107 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off) 1108 { 1109 struct radix_node *t, *tt, *ttt; 1110 1111 t = rn_newpair(rn_zeros, off, base_nodes); 1112 ttt = base_nodes + 2; 1113 t->rn_right = ttt; 1114 t->rn_parent = t; 1115 tt = t->rn_left; /* ... which in turn is base_nodes */ 1116 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1117 tt->rn_bit = -1 - off; 1118 *ttt = *tt; 1119 ttt->rn_key = rn_ones; 1120 1121 rh->rnh_treetop = t; 1122 } 1123 1124 static void 1125 rn_detachhead_internal(struct radix_head *head) 1126 { 1127 1128 KASSERT((head != NULL), 1129 ("%s: head already freed", __func__)); 1130 1131 /* Free <left,root,right> nodes. */ 1132 R_Free(head); 1133 } 1134 1135 /* Functions used by 'struct radix_node_head' users */ 1136 1137 int 1138 rn_inithead(void **head, int off) 1139 { 1140 struct radix_node_head *rnh; 1141 struct radix_mask_head *rmh; 1142 1143 rnh = *head; 1144 rmh = NULL; 1145 1146 if (*head != NULL) 1147 return (1); 1148 1149 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1150 R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh)); 1151 if (rnh == NULL || rmh == NULL) { 1152 if (rnh != NULL) 1153 R_Free(rnh); 1154 if (rmh != NULL) 1155 R_Free(rmh); 1156 return (0); 1157 } 1158 1159 /* Init trees */ 1160 rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off); 1161 rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0); 1162 *head = rnh; 1163 rnh->rh.rnh_masks = rmh; 1164 1165 /* Finally, set base callbacks */ 1166 rnh->rnh_addaddr = rn_addroute; 1167 rnh->rnh_deladdr = rn_delete; 1168 rnh->rnh_matchaddr = rn_match; 1169 rnh->rnh_lookup = rn_lookup; 1170 rnh->rnh_walktree = rn_walktree; 1171 rnh->rnh_walktree_from = rn_walktree_from; 1172 1173 return (1); 1174 } 1175 1176 static int 1177 rn_freeentry(struct radix_node *rn, void *arg) 1178 { 1179 struct radix_head * const rnh = arg; 1180 struct radix_node *x; 1181 1182 x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh); 1183 if (x != NULL) 1184 R_Free(x); 1185 return (0); 1186 } 1187 1188 int 1189 rn_detachhead(void **head) 1190 { 1191 struct radix_node_head *rnh; 1192 1193 KASSERT((head != NULL && *head != NULL), 1194 ("%s: head already freed", __func__)); 1195 1196 rnh = (struct radix_node_head *)(*head); 1197 1198 rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks); 1199 rn_detachhead_internal(&rnh->rh.rnh_masks->head); 1200 rn_detachhead_internal(&rnh->rh); 1201 1202 *head = NULL; 1203 1204 return (1); 1205 } 1206