1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1988, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Routines to build and maintain radix trees for routing lookups. 34 */ 35 #include <sys/param.h> 36 #ifdef _KERNEL 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/rmlock.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/syslog.h> 43 #include <net/radix.h> 44 #else /* !_KERNEL */ 45 #include <stdio.h> 46 #include <strings.h> 47 #include <stdlib.h> 48 #define log(x, arg...) fprintf(stderr, ## arg) 49 #define panic(x) fprintf(stderr, "PANIC: %s", x), exit(1) 50 #define min(a, b) ((a) < (b) ? (a) : (b) ) 51 #include <net/radix.h> 52 #endif /* !_KERNEL */ 53 54 static struct radix_node 55 *rn_insert(void *, struct radix_head *, int *, 56 struct radix_node [2]), 57 *rn_newpair(void *, int, struct radix_node[2]), 58 *rn_search(const void *, struct radix_node *), 59 *rn_search_m(const void *, struct radix_node *, void *); 60 static struct radix_node *rn_addmask(const void *, struct radix_mask_head *, int,int); 61 62 static void rn_detachhead_internal(struct radix_head *); 63 64 #define RADIX_MAX_KEY_LEN 32 65 66 static char rn_zeros[RADIX_MAX_KEY_LEN]; 67 static char rn_ones[RADIX_MAX_KEY_LEN] = { 68 -1, -1, -1, -1, -1, -1, -1, -1, 69 -1, -1, -1, -1, -1, -1, -1, -1, 70 -1, -1, -1, -1, -1, -1, -1, -1, 71 -1, -1, -1, -1, -1, -1, -1, -1, 72 }; 73 74 static int rn_lexobetter(const void *m_arg, const void *n_arg); 75 static struct radix_mask * 76 rn_new_radix_mask(struct radix_node *tt, 77 struct radix_mask *next); 78 static int rn_satisfies_leaf(const char *trial, struct radix_node *leaf, 79 int skip); 80 81 /* 82 * The data structure for the keys is a radix tree with one way 83 * branching removed. The index rn_bit at an internal node n represents a bit 84 * position to be tested. The tree is arranged so that all descendants 85 * of a node n have keys whose bits all agree up to position rn_bit - 1. 86 * (We say the index of n is rn_bit.) 87 * 88 * There is at least one descendant which has a one bit at position rn_bit, 89 * and at least one with a zero there. 90 * 91 * A route is determined by a pair of key and mask. We require that the 92 * bit-wise logical and of the key and mask to be the key. 93 * We define the index of a route to associated with the mask to be 94 * the first bit number in the mask where 0 occurs (with bit number 0 95 * representing the highest order bit). 96 * 97 * We say a mask is normal if every bit is 0, past the index of the mask. 98 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 99 * and m is a normal mask, then the route applies to every descendant of n. 100 * If the index(m) < rn_bit, this implies the trailing last few bits of k 101 * before bit b are all 0, (and hence consequently true of every descendant 102 * of n), so the route applies to all descendants of the node as well. 103 * 104 * Similar logic shows that a non-normal mask m such that 105 * index(m) <= index(n) could potentially apply to many children of n. 106 * Thus, for each non-host route, we attach its mask to a list at an internal 107 * node as high in the tree as we can go. 108 * 109 * The present version of the code makes use of normal routes in short- 110 * circuiting an explict mask and compare operation when testing whether 111 * a key satisfies a normal route, and also in remembering the unique leaf 112 * that governs a subtree. 113 */ 114 115 /* 116 * Most of the functions in this code assume that the key/mask arguments 117 * are sockaddr-like structures, where the first byte is an u_char 118 * indicating the size of the entire structure. 119 * 120 * To make the assumption more explicit, we use the LEN() macro to access 121 * this field. It is safe to pass an expression with side effects 122 * to LEN() as the argument is evaluated only once. 123 * We cast the result to int as this is the dominant usage. 124 */ 125 #define LEN(x) ( (int) (*(const u_char *)(x)) ) 126 127 /* 128 * XXX THIS NEEDS TO BE FIXED 129 * In the code, pointers to keys and masks are passed as either 130 * 'void *' (because callers use to pass pointers of various kinds), or 131 * 'caddr_t' (which is fine for pointer arithmetics, but not very 132 * clean when you dereference it to access data). Furthermore, caddr_t 133 * is really 'char *', while the natural type to operate on keys and 134 * masks would be 'u_char'. This mismatch require a lot of casts and 135 * intermediate variables to adapt types that clutter the code. 136 */ 137 138 /* 139 * Search a node in the tree matching the key. 140 */ 141 static struct radix_node * 142 rn_search(const void *v_arg, struct radix_node *head) 143 { 144 struct radix_node *x; 145 c_caddr_t v; 146 147 for (x = head, v = v_arg; x->rn_bit >= 0;) { 148 if (x->rn_bmask & v[x->rn_offset]) 149 x = x->rn_right; 150 else 151 x = x->rn_left; 152 } 153 return (x); 154 } 155 156 /* 157 * Same as above, but with an additional mask. 158 * XXX note this function is used only once. 159 */ 160 static struct radix_node * 161 rn_search_m(const void *v_arg, struct radix_node *head, void *m_arg) 162 { 163 struct radix_node *x; 164 c_caddr_t v = v_arg, m = m_arg; 165 166 for (x = head; x->rn_bit >= 0;) { 167 if ((x->rn_bmask & m[x->rn_offset]) && 168 (x->rn_bmask & v[x->rn_offset])) 169 x = x->rn_right; 170 else 171 x = x->rn_left; 172 } 173 return (x); 174 } 175 176 int 177 rn_refines(const void *m_arg, const void *n_arg) 178 { 179 c_caddr_t m = m_arg, n = n_arg; 180 c_caddr_t lim, lim2 = lim = n + LEN(n); 181 int longer = LEN(n++) - LEN(m++); 182 int masks_are_equal = 1; 183 184 if (longer > 0) 185 lim -= longer; 186 while (n < lim) { 187 if (*n & ~(*m)) 188 return (0); 189 if (*n++ != *m++) 190 masks_are_equal = 0; 191 } 192 while (n < lim2) 193 if (*n++) 194 return (0); 195 if (masks_are_equal && (longer < 0)) 196 for (lim2 = m - longer; m < lim2; ) 197 if (*m++) 198 return (1); 199 return (!masks_are_equal); 200 } 201 202 /* 203 * Search for exact match in given @head. 204 * Assume host bits are cleared in @v_arg if @m_arg is not NULL 205 * Note that prefixes with /32 or /128 masks are treated differently 206 * from host routes. 207 */ 208 struct radix_node * 209 rn_lookup(const void *v_arg, const void *m_arg, struct radix_head *head) 210 { 211 struct radix_node *x; 212 caddr_t netmask; 213 214 if (m_arg != NULL) { 215 /* 216 * Most common case: search exact prefix/mask 217 */ 218 x = rn_addmask(m_arg, head->rnh_masks, 1, 219 head->rnh_treetop->rn_offset); 220 if (x == NULL) 221 return (NULL); 222 netmask = x->rn_key; 223 224 x = rn_match(v_arg, head); 225 226 while (x != NULL && x->rn_mask != netmask) 227 x = x->rn_dupedkey; 228 229 return (x); 230 } 231 232 /* 233 * Search for host address. 234 */ 235 if ((x = rn_match(v_arg, head)) == NULL) 236 return (NULL); 237 238 /* Check if found key is the same */ 239 if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg))) 240 return (NULL); 241 242 /* Check if this is not host route */ 243 if (x->rn_mask != NULL) 244 return (NULL); 245 246 return (x); 247 } 248 249 static int 250 rn_satisfies_leaf(const char *trial, struct radix_node *leaf, int skip) 251 { 252 const char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 253 const char *cplim; 254 int length = min(LEN(cp), LEN(cp2)); 255 256 if (cp3 == NULL) 257 cp3 = rn_ones; 258 else 259 length = min(length, LEN(cp3)); 260 cplim = cp + length; cp3 += skip; cp2 += skip; 261 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 262 if ((*cp ^ *cp2) & *cp3) 263 return (0); 264 return (1); 265 } 266 267 /* 268 * Search for longest-prefix match in given @head 269 */ 270 struct radix_node * 271 rn_match(const void *v_arg, struct radix_head *head) 272 { 273 c_caddr_t v = v_arg; 274 struct radix_node *t = head->rnh_treetop, *x; 275 c_caddr_t cp = v, cp2; 276 c_caddr_t cplim; 277 struct radix_node *saved_t, *top = t; 278 int off = t->rn_offset, vlen = LEN(cp), matched_off; 279 int test, b, rn_bit; 280 281 /* 282 * Open code rn_search(v, top) to avoid overhead of extra 283 * subroutine call. 284 */ 285 for (; t->rn_bit >= 0; ) { 286 if (t->rn_bmask & cp[t->rn_offset]) 287 t = t->rn_right; 288 else 289 t = t->rn_left; 290 } 291 /* 292 * See if we match exactly as a host destination 293 * or at least learn how many bits match, for normal mask finesse. 294 * 295 * It doesn't hurt us to limit how many bytes to check 296 * to the length of the mask, since if it matches we had a genuine 297 * match and the leaf we have is the most specific one anyway; 298 * if it didn't match with a shorter length it would fail 299 * with a long one. This wins big for class B&C netmasks which 300 * are probably the most common case... 301 */ 302 if (t->rn_mask) 303 vlen = *(u_char *)t->rn_mask; 304 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 305 for (; cp < cplim; cp++, cp2++) 306 if (*cp != *cp2) 307 goto on1; 308 /* 309 * This extra grot is in case we are explicitly asked 310 * to look up the default. Ugh! 311 * 312 * Never return the root node itself, it seems to cause a 313 * lot of confusion. 314 */ 315 if (t->rn_flags & RNF_ROOT) 316 t = t->rn_dupedkey; 317 return (t); 318 on1: 319 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 320 for (b = 7; (test >>= 1) > 0;) 321 b--; 322 matched_off = cp - v; 323 b += matched_off << 3; 324 rn_bit = -1 - b; 325 /* 326 * If there is a host route in a duped-key chain, it will be first. 327 */ 328 if ((saved_t = t)->rn_mask == 0) 329 t = t->rn_dupedkey; 330 for (; t; t = t->rn_dupedkey) 331 /* 332 * Even if we don't match exactly as a host, 333 * we may match if the leaf we wound up at is 334 * a route to a net. 335 */ 336 if (t->rn_flags & RNF_NORMAL) { 337 if (rn_bit <= t->rn_bit) 338 return (t); 339 } else if (rn_satisfies_leaf(v, t, matched_off)) 340 return (t); 341 t = saved_t; 342 /* start searching up the tree */ 343 do { 344 struct radix_mask *m; 345 t = t->rn_parent; 346 m = t->rn_mklist; 347 /* 348 * If non-contiguous masks ever become important 349 * we can restore the masking and open coding of 350 * the search and satisfaction test and put the 351 * calculation of "off" back before the "do". 352 */ 353 while (m) { 354 if (m->rm_flags & RNF_NORMAL) { 355 if (rn_bit <= m->rm_bit) 356 return (m->rm_leaf); 357 } else { 358 off = min(t->rn_offset, matched_off); 359 x = rn_search_m(v, t, m->rm_mask); 360 while (x && x->rn_mask != m->rm_mask) 361 x = x->rn_dupedkey; 362 if (x && rn_satisfies_leaf(v, x, off)) 363 return (x); 364 } 365 m = m->rm_mklist; 366 } 367 } while (t != top); 368 return (0); 369 } 370 371 /* 372 * Returns the next (wider) prefix for the key defined by @rn 373 * if exists. 374 */ 375 struct radix_node * 376 rn_nextprefix(struct radix_node *rn) 377 { 378 for (rn = rn->rn_dupedkey; rn != NULL; rn = rn->rn_dupedkey) { 379 if (!(rn->rn_flags & RNF_ROOT)) 380 return (rn); 381 } 382 return (NULL); 383 } 384 385 #ifdef RN_DEBUG 386 int rn_nodenum; 387 struct radix_node *rn_clist; 388 int rn_saveinfo; 389 int rn_debug = 1; 390 #endif 391 392 /* 393 * Whenever we add a new leaf to the tree, we also add a parent node, 394 * so we allocate them as an array of two elements: the first one must be 395 * the leaf (see RNTORT() in route.c), the second one is the parent. 396 * This routine initializes the relevant fields of the nodes, so that 397 * the leaf is the left child of the parent node, and both nodes have 398 * (almost) all all fields filled as appropriate. 399 * (XXX some fields are left unset, see the '#if 0' section). 400 * The function returns a pointer to the parent node. 401 */ 402 403 static struct radix_node * 404 rn_newpair(void *v, int b, struct radix_node nodes[2]) 405 { 406 struct radix_node *tt = nodes, *t = tt + 1; 407 t->rn_bit = b; 408 t->rn_bmask = 0x80 >> (b & 7); 409 t->rn_left = tt; 410 t->rn_offset = b >> 3; 411 412 #if 0 /* XXX perhaps we should fill these fields as well. */ 413 t->rn_parent = t->rn_right = NULL; 414 415 tt->rn_mask = NULL; 416 tt->rn_dupedkey = NULL; 417 tt->rn_bmask = 0; 418 #endif 419 tt->rn_bit = -1; 420 tt->rn_key = (caddr_t)v; 421 tt->rn_parent = t; 422 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 423 tt->rn_mklist = t->rn_mklist = 0; 424 #ifdef RN_DEBUG 425 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 426 tt->rn_twin = t; 427 tt->rn_ybro = rn_clist; 428 rn_clist = tt; 429 #endif 430 return (t); 431 } 432 433 static struct radix_node * 434 rn_insert(void *v_arg, struct radix_head *head, int *dupentry, 435 struct radix_node nodes[2]) 436 { 437 caddr_t v = v_arg; 438 struct radix_node *top = head->rnh_treetop; 439 int head_off = top->rn_offset, vlen = LEN(v); 440 struct radix_node *t = rn_search(v_arg, top); 441 caddr_t cp = v + head_off; 442 unsigned b; 443 struct radix_node *p, *tt, *x; 444 /* 445 * Find first bit at which v and t->rn_key differ 446 */ 447 caddr_t cp2 = t->rn_key + head_off; 448 int cmp_res; 449 caddr_t cplim = v + vlen; 450 451 while (cp < cplim) 452 if (*cp2++ != *cp++) 453 goto on1; 454 *dupentry = 1; 455 return (t); 456 on1: 457 *dupentry = 0; 458 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 459 for (b = (cp - v) << 3; cmp_res; b--) 460 cmp_res >>= 1; 461 462 x = top; 463 cp = v; 464 do { 465 p = x; 466 if (cp[x->rn_offset] & x->rn_bmask) 467 x = x->rn_right; 468 else 469 x = x->rn_left; 470 } while (b > (unsigned) x->rn_bit); 471 /* x->rn_bit < b && x->rn_bit >= 0 */ 472 #ifdef RN_DEBUG 473 if (rn_debug) 474 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); 475 #endif 476 t = rn_newpair(v_arg, b, nodes); 477 tt = t->rn_left; 478 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 479 p->rn_left = t; 480 else 481 p->rn_right = t; 482 x->rn_parent = t; 483 t->rn_parent = p; /* frees x, p as temp vars below */ 484 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 485 t->rn_right = x; 486 } else { 487 t->rn_right = tt; 488 t->rn_left = x; 489 } 490 #ifdef RN_DEBUG 491 if (rn_debug) 492 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); 493 #endif 494 return (tt); 495 } 496 497 static struct radix_node * 498 rn_addmask(const void *n_arg, struct radix_mask_head *maskhead, int search, int skip) 499 { 500 const unsigned char *netmask = n_arg; 501 const unsigned char *c, *clim; 502 unsigned char *cp; 503 struct radix_node *x; 504 int b = 0, mlen, j; 505 int maskduplicated, isnormal; 506 struct radix_node *saved_x; 507 unsigned char addmask_key[RADIX_MAX_KEY_LEN]; 508 509 if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN) 510 mlen = RADIX_MAX_KEY_LEN; 511 if (skip == 0) 512 skip = 1; 513 if (mlen <= skip) 514 return (maskhead->mask_nodes); 515 516 bzero(addmask_key, RADIX_MAX_KEY_LEN); 517 if (skip > 1) 518 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 519 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 520 /* 521 * Trim trailing zeroes. 522 */ 523 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 524 cp--; 525 mlen = cp - addmask_key; 526 if (mlen <= skip) 527 return (maskhead->mask_nodes); 528 *addmask_key = mlen; 529 x = rn_search(addmask_key, maskhead->head.rnh_treetop); 530 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 531 x = NULL; 532 if (x || search) 533 return (x); 534 R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x)); 535 if ((saved_x = x) == NULL) 536 return (0); 537 netmask = cp = (unsigned char *)(x + 2); 538 bcopy(addmask_key, cp, mlen); 539 x = rn_insert(cp, &maskhead->head, &maskduplicated, x); 540 if (maskduplicated) { 541 log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 542 R_Free(saved_x); 543 return (x); 544 } 545 /* 546 * Calculate index of mask, and check for normalcy. 547 * First find the first byte with a 0 bit, then if there are 548 * more bits left (remember we already trimmed the trailing 0's), 549 * the bits should be contiguous, otherwise we have got 550 * a non-contiguous mask. 551 */ 552 #define CONTIG(_c) (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1)) 553 clim = netmask + mlen; 554 isnormal = 1; 555 for (c = netmask + skip; (c < clim) && *(const u_char *)c == 0xff;) 556 c++; 557 if (c != clim) { 558 for (j = 0x80; (j & *c) != 0; j >>= 1) 559 b++; 560 if (!CONTIG(*c) || c != (clim - 1)) 561 isnormal = 0; 562 } 563 b += (c - netmask) << 3; 564 x->rn_bit = -1 - b; 565 if (isnormal) 566 x->rn_flags |= RNF_NORMAL; 567 return (x); 568 } 569 570 static int /* XXX: arbitrary ordering for non-contiguous masks */ 571 rn_lexobetter(const void *m_arg, const void *n_arg) 572 { 573 const u_char *mp = m_arg, *np = n_arg, *lim; 574 575 if (LEN(mp) > LEN(np)) 576 return (1); /* not really, but need to check longer one first */ 577 if (LEN(mp) == LEN(np)) 578 for (lim = mp + LEN(mp); mp < lim;) 579 if (*mp++ > *np++) 580 return (1); 581 return (0); 582 } 583 584 static struct radix_mask * 585 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) 586 { 587 struct radix_mask *m; 588 589 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask)); 590 if (m == NULL) { 591 log(LOG_ERR, "Failed to allocate route mask\n"); 592 return (0); 593 } 594 bzero(m, sizeof(*m)); 595 m->rm_bit = tt->rn_bit; 596 m->rm_flags = tt->rn_flags; 597 if (tt->rn_flags & RNF_NORMAL) 598 m->rm_leaf = tt; 599 else 600 m->rm_mask = tt->rn_mask; 601 m->rm_mklist = next; 602 tt->rn_mklist = m; 603 return (m); 604 } 605 606 struct radix_node * 607 rn_addroute(void *v_arg, const void *n_arg, struct radix_head *head, 608 struct radix_node treenodes[2]) 609 { 610 caddr_t v = (caddr_t)v_arg, netmask = NULL; 611 struct radix_node *t, *x = NULL, *tt; 612 struct radix_node *saved_tt, *top = head->rnh_treetop; 613 short b = 0, b_leaf = 0; 614 int keyduplicated; 615 caddr_t mmask; 616 struct radix_mask *m, **mp; 617 618 /* 619 * In dealing with non-contiguous masks, there may be 620 * many different routes which have the same mask. 621 * We will find it useful to have a unique pointer to 622 * the mask to speed avoiding duplicate references at 623 * nodes and possibly save time in calculating indices. 624 */ 625 if (n_arg) { 626 x = rn_addmask(n_arg, head->rnh_masks, 0, top->rn_offset); 627 if (x == NULL) 628 return (0); 629 b_leaf = x->rn_bit; 630 b = -1 - x->rn_bit; 631 netmask = x->rn_key; 632 } 633 /* 634 * Deal with duplicated keys: attach node to previous instance 635 */ 636 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 637 if (keyduplicated) { 638 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 639 if (tt->rn_mask == netmask) 640 return (0); 641 if (netmask == 0 || 642 (tt->rn_mask && 643 ((b_leaf < tt->rn_bit) /* index(netmask) > node */ 644 || rn_refines(netmask, tt->rn_mask) 645 || rn_lexobetter(netmask, tt->rn_mask)))) 646 break; 647 } 648 /* 649 * If the mask is not duplicated, we wouldn't 650 * find it among possible duplicate key entries 651 * anyway, so the above test doesn't hurt. 652 * 653 * We sort the masks for a duplicated key the same way as 654 * in a masklist -- most specific to least specific. 655 * This may require the unfortunate nuisance of relocating 656 * the head of the list. 657 * 658 * We also reverse, or doubly link the list through the 659 * parent pointer. 660 */ 661 if (tt == saved_tt) { 662 struct radix_node *xx = x; 663 /* link in at head of list */ 664 (tt = treenodes)->rn_dupedkey = t; 665 tt->rn_flags = t->rn_flags; 666 tt->rn_parent = x = t->rn_parent; 667 t->rn_parent = tt; /* parent */ 668 if (x->rn_left == t) 669 x->rn_left = tt; 670 else 671 x->rn_right = tt; 672 saved_tt = tt; x = xx; 673 } else { 674 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 675 t->rn_dupedkey = tt; 676 tt->rn_parent = t; /* parent */ 677 if (tt->rn_dupedkey) /* parent */ 678 tt->rn_dupedkey->rn_parent = tt; /* parent */ 679 } 680 #ifdef RN_DEBUG 681 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; 682 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; 683 #endif 684 tt->rn_key = (caddr_t) v; 685 tt->rn_bit = -1; 686 tt->rn_flags = RNF_ACTIVE; 687 } 688 /* 689 * Put mask in tree. 690 */ 691 if (netmask) { 692 tt->rn_mask = netmask; 693 tt->rn_bit = x->rn_bit; 694 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 695 } 696 t = saved_tt->rn_parent; 697 if (keyduplicated) 698 goto on2; 699 b_leaf = -1 - t->rn_bit; 700 if (t->rn_right == saved_tt) 701 x = t->rn_left; 702 else 703 x = t->rn_right; 704 /* Promote general routes from below */ 705 if (x->rn_bit < 0) { 706 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 707 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 708 *mp = m = rn_new_radix_mask(x, 0); 709 if (m) 710 mp = &m->rm_mklist; 711 } 712 } else if (x->rn_mklist) { 713 /* 714 * Skip over masks whose index is > that of new node 715 */ 716 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 717 if (m->rm_bit >= b_leaf) 718 break; 719 t->rn_mklist = m; *mp = NULL; 720 } 721 on2: 722 /* Add new route to highest possible ancestor's list */ 723 if ((netmask == 0) || (b > t->rn_bit )) 724 return (tt); /* can't lift at all */ 725 b_leaf = tt->rn_bit; 726 do { 727 x = t; 728 t = t->rn_parent; 729 } while (b <= t->rn_bit && x != top); 730 /* 731 * Search through routes associated with node to 732 * insert new route according to index. 733 * Need same criteria as when sorting dupedkeys to avoid 734 * double loop on deletion. 735 */ 736 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { 737 if (m->rm_bit < b_leaf) 738 continue; 739 if (m->rm_bit > b_leaf) 740 break; 741 if (m->rm_flags & RNF_NORMAL) { 742 mmask = m->rm_leaf->rn_mask; 743 if (tt->rn_flags & RNF_NORMAL) { 744 log(LOG_ERR, 745 "Non-unique normal route, mask not entered\n"); 746 return (tt); 747 } 748 } else 749 mmask = m->rm_mask; 750 if (mmask == netmask) { 751 m->rm_refs++; 752 tt->rn_mklist = m; 753 return (tt); 754 } 755 if (rn_refines(netmask, mmask) 756 || rn_lexobetter(netmask, mmask)) 757 break; 758 } 759 *mp = rn_new_radix_mask(tt, *mp); 760 return (tt); 761 } 762 763 struct radix_node * 764 rn_delete(const void *v_arg, const void *netmask_arg, struct radix_head *head) 765 { 766 struct radix_node *t, *p, *x, *tt; 767 struct radix_mask *m, *saved_m, **mp; 768 struct radix_node *dupedkey, *saved_tt, *top; 769 c_caddr_t v; 770 c_caddr_t netmask; 771 int b, head_off, vlen; 772 773 v = v_arg; 774 netmask = netmask_arg; 775 x = head->rnh_treetop; 776 tt = rn_search(v, x); 777 head_off = x->rn_offset; 778 vlen = LEN(v); 779 saved_tt = tt; 780 top = x; 781 if (tt == NULL || 782 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 783 return (0); 784 /* 785 * Delete our route from mask lists. 786 */ 787 if (netmask) { 788 x = rn_addmask(netmask, head->rnh_masks, 1, head_off); 789 if (x == NULL) 790 return (0); 791 netmask = x->rn_key; 792 while (tt->rn_mask != netmask) 793 if ((tt = tt->rn_dupedkey) == NULL) 794 return (0); 795 } 796 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL) 797 goto on1; 798 if (tt->rn_flags & RNF_NORMAL) { 799 if (m->rm_leaf != tt || m->rm_refs > 0) { 800 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 801 return (0); /* dangling ref could cause disaster */ 802 } 803 } else { 804 if (m->rm_mask != tt->rn_mask) { 805 log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 806 goto on1; 807 } 808 if (--m->rm_refs >= 0) 809 goto on1; 810 } 811 b = -1 - tt->rn_bit; 812 t = saved_tt->rn_parent; 813 if (b > t->rn_bit) 814 goto on1; /* Wasn't lifted at all */ 815 do { 816 x = t; 817 t = t->rn_parent; 818 } while (b <= t->rn_bit && x != top); 819 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) 820 if (m == saved_m) { 821 *mp = m->rm_mklist; 822 R_Free(m); 823 break; 824 } 825 if (m == NULL) { 826 log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 827 if (tt->rn_flags & RNF_NORMAL) 828 return (0); /* Dangling ref to us */ 829 } 830 on1: 831 /* 832 * Eliminate us from tree 833 */ 834 if (tt->rn_flags & RNF_ROOT) 835 return (0); 836 #ifdef RN_DEBUG 837 /* Get us out of the creation list */ 838 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} 839 if (t) t->rn_ybro = tt->rn_ybro; 840 #endif 841 t = tt->rn_parent; 842 dupedkey = saved_tt->rn_dupedkey; 843 if (dupedkey) { 844 /* 845 * Here, tt is the deletion target and 846 * saved_tt is the head of the dupekey chain. 847 */ 848 if (tt == saved_tt) { 849 /* remove from head of chain */ 850 x = dupedkey; x->rn_parent = t; 851 if (t->rn_left == tt) 852 t->rn_left = x; 853 else 854 t->rn_right = x; 855 } else { 856 /* find node in front of tt on the chain */ 857 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) 858 p = p->rn_dupedkey; 859 if (p) { 860 p->rn_dupedkey = tt->rn_dupedkey; 861 if (tt->rn_dupedkey) /* parent */ 862 tt->rn_dupedkey->rn_parent = p; 863 /* parent */ 864 } else log(LOG_ERR, "rn_delete: couldn't find us\n"); 865 } 866 t = tt + 1; 867 if (t->rn_flags & RNF_ACTIVE) { 868 #ifndef RN_DEBUG 869 *++x = *t; 870 p = t->rn_parent; 871 #else 872 b = t->rn_info; 873 *++x = *t; 874 t->rn_info = b; 875 p = t->rn_parent; 876 #endif 877 if (p->rn_left == t) 878 p->rn_left = x; 879 else 880 p->rn_right = x; 881 x->rn_left->rn_parent = x; 882 x->rn_right->rn_parent = x; 883 } 884 goto out; 885 } 886 if (t->rn_left == tt) 887 x = t->rn_right; 888 else 889 x = t->rn_left; 890 p = t->rn_parent; 891 if (p->rn_right == t) 892 p->rn_right = x; 893 else 894 p->rn_left = x; 895 x->rn_parent = p; 896 /* 897 * Demote routes attached to us. 898 */ 899 if (t->rn_mklist) { 900 if (x->rn_bit >= 0) { 901 for (mp = &x->rn_mklist; (m = *mp);) 902 mp = &m->rm_mklist; 903 *mp = t->rn_mklist; 904 } else { 905 /* If there are any key,mask pairs in a sibling 906 duped-key chain, some subset will appear sorted 907 in the same order attached to our mklist */ 908 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 909 if (m == x->rn_mklist) { 910 struct radix_mask *mm = m->rm_mklist; 911 x->rn_mklist = 0; 912 if (--(m->rm_refs) < 0) 913 R_Free(m); 914 m = mm; 915 } 916 if (m) 917 log(LOG_ERR, 918 "rn_delete: Orphaned Mask %p at %p\n", 919 m, x); 920 } 921 } 922 /* 923 * We may be holding an active internal node in the tree. 924 */ 925 x = tt + 1; 926 if (t != x) { 927 #ifndef RN_DEBUG 928 *t = *x; 929 #else 930 b = t->rn_info; 931 *t = *x; 932 t->rn_info = b; 933 #endif 934 t->rn_left->rn_parent = t; 935 t->rn_right->rn_parent = t; 936 p = x->rn_parent; 937 if (p->rn_left == x) 938 p->rn_left = t; 939 else 940 p->rn_right = t; 941 } 942 out: 943 tt->rn_flags &= ~RNF_ACTIVE; 944 tt[1].rn_flags &= ~RNF_ACTIVE; 945 return (tt); 946 } 947 948 /* 949 * This is the same as rn_walktree() except for the parameters and the 950 * exit. 951 */ 952 int 953 rn_walktree_from(struct radix_head *h, void *a, void *m, 954 walktree_f_t *f, void *w) 955 { 956 int error; 957 struct radix_node *base, *next; 958 u_char *xa = (u_char *)a; 959 u_char *xm = (u_char *)m; 960 struct radix_node *rn, *last = NULL; /* shut up gcc */ 961 int stopping = 0; 962 int lastb; 963 964 KASSERT(m != NULL, ("%s: mask needs to be specified", __func__)); 965 966 /* 967 * rn_search_m is sort-of-open-coded here. We cannot use the 968 * function because we need to keep track of the last node seen. 969 */ 970 /* printf("about to search\n"); */ 971 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { 972 last = rn; 973 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", 974 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ 975 if (!(rn->rn_bmask & xm[rn->rn_offset])) { 976 break; 977 } 978 if (rn->rn_bmask & xa[rn->rn_offset]) { 979 rn = rn->rn_right; 980 } else { 981 rn = rn->rn_left; 982 } 983 } 984 /* printf("done searching\n"); */ 985 986 /* 987 * Two cases: either we stepped off the end of our mask, 988 * in which case last == rn, or we reached a leaf, in which 989 * case we want to start from the leaf. 990 */ 991 if (rn->rn_bit >= 0) 992 rn = last; 993 lastb = last->rn_bit; 994 995 /* printf("rn %p, lastb %d\n", rn, lastb);*/ 996 997 /* 998 * This gets complicated because we may delete the node 999 * while applying the function f to it, so we need to calculate 1000 * the successor node in advance. 1001 */ 1002 while (rn->rn_bit >= 0) 1003 rn = rn->rn_left; 1004 1005 while (!stopping) { 1006 /* printf("node %p (%d)\n", rn, rn->rn_bit); */ 1007 base = rn; 1008 /* If at right child go back up, otherwise, go right */ 1009 while (rn->rn_parent->rn_right == rn 1010 && !(rn->rn_flags & RNF_ROOT)) { 1011 rn = rn->rn_parent; 1012 1013 /* if went up beyond last, stop */ 1014 if (rn->rn_bit <= lastb) { 1015 stopping = 1; 1016 /* printf("up too far\n"); */ 1017 /* 1018 * XXX we should jump to the 'Process leaves' 1019 * part, because the values of 'rn' and 'next' 1020 * we compute will not be used. Not a big deal 1021 * because this loop will terminate, but it is 1022 * inefficient and hard to understand! 1023 */ 1024 } 1025 } 1026 1027 /* 1028 * At the top of the tree, no need to traverse the right 1029 * half, prevent the traversal of the entire tree in the 1030 * case of default route. 1031 */ 1032 if (rn->rn_parent->rn_flags & RNF_ROOT) 1033 stopping = 1; 1034 1035 /* Find the next *leaf* since next node might vanish, too */ 1036 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1037 rn = rn->rn_left; 1038 next = rn; 1039 /* Process leaves */ 1040 while ((rn = base) != NULL) { 1041 base = rn->rn_dupedkey; 1042 /* printf("leaf %p\n", rn); */ 1043 if (!(rn->rn_flags & RNF_ROOT) 1044 && (error = (*f)(rn, w))) 1045 return (error); 1046 } 1047 rn = next; 1048 1049 if (rn->rn_flags & RNF_ROOT) { 1050 /* printf("root, stopping"); */ 1051 stopping = 1; 1052 } 1053 } 1054 return (0); 1055 } 1056 1057 int 1058 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w) 1059 { 1060 int error; 1061 struct radix_node *base, *next; 1062 struct radix_node *rn = h->rnh_treetop; 1063 /* 1064 * This gets complicated because we may delete the node 1065 * while applying the function f to it, so we need to calculate 1066 * the successor node in advance. 1067 */ 1068 1069 /* First time through node, go left */ 1070 while (rn->rn_bit >= 0) 1071 rn = rn->rn_left; 1072 for (;;) { 1073 base = rn; 1074 /* If at right child go back up, otherwise, go right */ 1075 while (rn->rn_parent->rn_right == rn 1076 && (rn->rn_flags & RNF_ROOT) == 0) 1077 rn = rn->rn_parent; 1078 /* Find the next *leaf* since next node might vanish, too */ 1079 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) 1080 rn = rn->rn_left; 1081 next = rn; 1082 /* Process leaves */ 1083 while ((rn = base)) { 1084 base = rn->rn_dupedkey; 1085 if (!(rn->rn_flags & RNF_ROOT) 1086 && (error = (*f)(rn, w))) 1087 return (error); 1088 } 1089 rn = next; 1090 if (rn->rn_flags & RNF_ROOT) 1091 return (0); 1092 } 1093 /* NOTREACHED */ 1094 } 1095 1096 /* 1097 * Initialize an empty tree. This has 3 nodes, which are passed 1098 * via base_nodes (in the order <left,root,right>) and are 1099 * marked RNF_ROOT so they cannot be freed. 1100 * The leaves have all-zero and all-one keys, with significant 1101 * bits starting at 'off'. 1102 */ 1103 void 1104 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off) 1105 { 1106 struct radix_node *t, *tt, *ttt; 1107 1108 t = rn_newpair(rn_zeros, off, base_nodes); 1109 ttt = base_nodes + 2; 1110 t->rn_right = ttt; 1111 t->rn_parent = t; 1112 tt = t->rn_left; /* ... which in turn is base_nodes */ 1113 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1114 tt->rn_bit = -1 - off; 1115 *ttt = *tt; 1116 ttt->rn_key = rn_ones; 1117 1118 rh->rnh_treetop = t; 1119 } 1120 1121 static void 1122 rn_detachhead_internal(struct radix_head *head) 1123 { 1124 1125 KASSERT((head != NULL), 1126 ("%s: head already freed", __func__)); 1127 1128 /* Free <left,root,right> nodes. */ 1129 R_Free(head); 1130 } 1131 1132 /* Functions used by 'struct radix_node_head' users */ 1133 1134 int 1135 rn_inithead(void **head, int off) 1136 { 1137 struct radix_node_head *rnh; 1138 struct radix_mask_head *rmh; 1139 1140 rnh = *head; 1141 rmh = NULL; 1142 1143 if (*head != NULL) 1144 return (1); 1145 1146 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1147 R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh)); 1148 if (rnh == NULL || rmh == NULL) { 1149 if (rnh != NULL) 1150 R_Free(rnh); 1151 if (rmh != NULL) 1152 R_Free(rmh); 1153 return (0); 1154 } 1155 1156 /* Init trees */ 1157 rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off); 1158 rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0); 1159 *head = rnh; 1160 rnh->rh.rnh_masks = rmh; 1161 1162 /* Finally, set base callbacks */ 1163 rnh->rnh_addaddr = rn_addroute; 1164 rnh->rnh_deladdr = rn_delete; 1165 rnh->rnh_matchaddr = rn_match; 1166 rnh->rnh_lookup = rn_lookup; 1167 rnh->rnh_walktree = rn_walktree; 1168 rnh->rnh_walktree_from = rn_walktree_from; 1169 1170 return (1); 1171 } 1172 1173 static int 1174 rn_freeentry(struct radix_node *rn, void *arg) 1175 { 1176 struct radix_head * const rnh = arg; 1177 struct radix_node *x; 1178 1179 x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh); 1180 if (x != NULL) 1181 R_Free(x); 1182 return (0); 1183 } 1184 1185 int 1186 rn_detachhead(void **head) 1187 { 1188 struct radix_node_head *rnh; 1189 1190 KASSERT((head != NULL && *head != NULL), 1191 ("%s: head already freed", __func__)); 1192 1193 rnh = (struct radix_node_head *)(*head); 1194 1195 rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks); 1196 rn_detachhead_internal(&rnh->rh.rnh_masks->head); 1197 rn_detachhead_internal(&rnh->rh); 1198 1199 *head = NULL; 1200 1201 return (1); 1202 } 1203