1 /*- 2 * Copyright (c) 2014-2018, Matthew Macy <mmacy@mattmacy.io> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 11 * 2. Neither the name of Matthew Macy nor the names of its 12 * contributors may be used to endorse or promote products derived from 13 * this software without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 25 * POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_acpi.h" 32 #include "opt_sched.h" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/bus.h> 37 #include <sys/eventhandler.h> 38 #include <sys/kernel.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/module.h> 42 #include <sys/kobj.h> 43 #include <sys/rman.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/sockio.h> 48 #include <sys/sysctl.h> 49 #include <sys/syslog.h> 50 #include <sys/taskqueue.h> 51 #include <sys/limits.h> 52 53 #include <net/if.h> 54 #include <net/if_var.h> 55 #include <net/if_private.h> 56 #include <net/if_types.h> 57 #include <net/if_media.h> 58 #include <net/bpf.h> 59 #include <net/ethernet.h> 60 #include <net/mp_ring.h> 61 #include <net/debugnet.h> 62 #include <net/pfil.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_pcb.h> 67 #include <netinet/tcp_lro.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/if_ether.h> 70 #include <netinet/ip.h> 71 #include <netinet/ip6.h> 72 #include <netinet/tcp.h> 73 #include <netinet/udp.h> 74 #include <netinet/ip_var.h> 75 #include <netinet6/ip6_var.h> 76 77 #include <machine/bus.h> 78 #include <machine/in_cksum.h> 79 80 #include <vm/vm.h> 81 #include <vm/pmap.h> 82 83 #include <dev/led/led.h> 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 #include <dev/pci/pci_private.h> 87 88 #include <net/iflib.h> 89 90 #include "ifdi_if.h" 91 92 #ifdef PCI_IOV 93 #include <dev/pci/pci_iov.h> 94 #endif 95 96 #include <sys/bitstring.h> 97 /* 98 * enable accounting of every mbuf as it comes in to and goes out of 99 * iflib's software descriptor references 100 */ 101 #define MEMORY_LOGGING 0 102 /* 103 * Enable mbuf vectors for compressing long mbuf chains 104 */ 105 106 /* 107 * NB: 108 * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead 109 * we prefetch needs to be determined by the time spent in m_free vis a vis 110 * the cost of a prefetch. This will of course vary based on the workload: 111 * - NFLX's m_free path is dominated by vm-based M_EXT manipulation which 112 * is quite expensive, thus suggesting very little prefetch. 113 * - small packet forwarding which is just returning a single mbuf to 114 * UMA will typically be very fast vis a vis the cost of a memory 115 * access. 116 */ 117 118 /* 119 * File organization: 120 * - private structures 121 * - iflib private utility functions 122 * - ifnet functions 123 * - vlan registry and other exported functions 124 * - iflib public core functions 125 * 126 * 127 */ 128 static MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library"); 129 130 #define IFLIB_RXEOF_MORE (1U << 0) 131 #define IFLIB_RXEOF_EMPTY (2U << 0) 132 133 struct iflib_txq; 134 typedef struct iflib_txq *iflib_txq_t; 135 struct iflib_rxq; 136 typedef struct iflib_rxq *iflib_rxq_t; 137 struct iflib_fl; 138 typedef struct iflib_fl *iflib_fl_t; 139 140 struct iflib_ctx; 141 142 static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid); 143 static void iflib_timer(void *arg); 144 static void iflib_tqg_detach(if_ctx_t ctx); 145 #ifndef ALTQ 146 static int iflib_simple_transmit(if_t ifp, struct mbuf *m); 147 #endif 148 149 typedef struct iflib_filter_info { 150 driver_filter_t *ifi_filter; 151 void *ifi_filter_arg; 152 struct grouptask *ifi_task; 153 void *ifi_ctx; 154 } *iflib_filter_info_t; 155 156 struct iflib_ctx { 157 KOBJ_FIELDS; 158 /* 159 * Pointer to hardware driver's softc 160 */ 161 void *ifc_softc; 162 device_t ifc_dev; 163 if_t ifc_ifp; 164 165 cpuset_t ifc_cpus; 166 if_shared_ctx_t ifc_sctx; 167 struct if_softc_ctx ifc_softc_ctx; 168 169 struct sx ifc_ctx_sx; 170 struct mtx ifc_state_mtx; 171 172 iflib_txq_t ifc_txqs; 173 iflib_rxq_t ifc_rxqs; 174 uint32_t ifc_if_flags; 175 uint32_t ifc_flags; 176 uint32_t ifc_max_fl_buf_size; 177 uint32_t ifc_rx_mbuf_sz; 178 179 int ifc_link_state; 180 int ifc_watchdog_events; 181 struct cdev *ifc_led_dev; 182 struct resource *ifc_msix_mem; 183 184 struct if_irq ifc_legacy_irq; 185 struct task ifc_admin_task; 186 struct task ifc_vflr_task; 187 struct taskqueue *ifc_tq; 188 struct iflib_filter_info ifc_filter_info; 189 struct ifmedia ifc_media; 190 struct ifmedia *ifc_mediap; 191 192 struct sysctl_oid *ifc_sysctl_node; 193 uint16_t ifc_sysctl_ntxqs; 194 uint16_t ifc_sysctl_nrxqs; 195 uint16_t ifc_sysctl_qs_eq_override; 196 uint16_t ifc_sysctl_rx_budget; 197 uint16_t ifc_sysctl_tx_abdicate; 198 uint16_t ifc_sysctl_core_offset; 199 #define CORE_OFFSET_UNSPECIFIED 0xffff 200 uint8_t ifc_sysctl_separate_txrx; 201 uint8_t ifc_sysctl_use_logical_cores; 202 uint16_t ifc_sysctl_extra_msix_vectors; 203 bool ifc_cpus_are_physical_cores; 204 bool ifc_sysctl_simple_tx; 205 bool ifc_sysctl_tx_defer_mfree; 206 uint16_t ifc_sysctl_tx_reclaim_thresh; 207 uint16_t ifc_sysctl_tx_reclaim_ticks; 208 209 qidx_t ifc_sysctl_ntxds[8]; 210 qidx_t ifc_sysctl_nrxds[8]; 211 struct if_txrx ifc_txrx; 212 #define isc_txd_encap ifc_txrx.ift_txd_encap 213 #define isc_txd_flush ifc_txrx.ift_txd_flush 214 #define isc_txd_credits_update ifc_txrx.ift_txd_credits_update 215 #define isc_rxd_available ifc_txrx.ift_rxd_available 216 #define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get 217 #define isc_rxd_refill ifc_txrx.ift_rxd_refill 218 #define isc_rxd_flush ifc_txrx.ift_rxd_flush 219 #define isc_legacy_intr ifc_txrx.ift_legacy_intr 220 #define isc_txq_select ifc_txrx.ift_txq_select 221 #define isc_txq_select_v2 ifc_txrx.ift_txq_select_v2 222 223 eventhandler_tag ifc_vlan_attach_event; 224 eventhandler_tag ifc_vlan_detach_event; 225 struct ether_addr ifc_mac; 226 }; 227 228 void * 229 iflib_get_softc(if_ctx_t ctx) 230 { 231 232 return (ctx->ifc_softc); 233 } 234 235 device_t 236 iflib_get_dev(if_ctx_t ctx) 237 { 238 239 return (ctx->ifc_dev); 240 } 241 242 if_t 243 iflib_get_ifp(if_ctx_t ctx) 244 { 245 246 return (ctx->ifc_ifp); 247 } 248 249 struct ifmedia * 250 iflib_get_media(if_ctx_t ctx) 251 { 252 253 return (ctx->ifc_mediap); 254 } 255 256 void 257 iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN]) 258 { 259 260 bcopy(mac, ctx->ifc_mac.octet, ETHER_ADDR_LEN); 261 } 262 263 if_softc_ctx_t 264 iflib_get_softc_ctx(if_ctx_t ctx) 265 { 266 267 return (&ctx->ifc_softc_ctx); 268 } 269 270 if_shared_ctx_t 271 iflib_get_sctx(if_ctx_t ctx) 272 { 273 274 return (ctx->ifc_sctx); 275 } 276 277 uint16_t 278 iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx) 279 { 280 281 return (ctx->ifc_sysctl_extra_msix_vectors); 282 } 283 284 #define IP_ALIGNED(m) ((((uintptr_t)(m)->m_data) & 0x3) == 0x2) 285 #define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE / sizeof(void *)) 286 #define CACHE_PTR_NEXT(ptr) ((void *)(roundup2(ptr, CACHE_LINE_SIZE))) 287 288 #define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP) 289 #define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF) 290 291 typedef struct iflib_sw_rx_desc_array { 292 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */ 293 struct mbuf **ifsd_m; /* pkthdr mbufs */ 294 caddr_t *ifsd_cl; /* direct cluster pointer for rx */ 295 bus_addr_t *ifsd_ba; /* bus addr of cluster for rx */ 296 } iflib_rxsd_array_t; 297 298 typedef struct iflib_sw_tx_desc_array { 299 bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */ 300 bus_dmamap_t *ifsd_tso_map; /* bus_dma maps for TSO packet */ 301 struct mbuf **ifsd_m; /* pkthdr mbufs */ 302 struct mbuf **ifsd_m_defer; /* deferred mbuf ptr */ 303 struct mbuf **ifsd_m_deferb;/* deferred mbuf backing ptr */ 304 } if_txsd_vec_t; 305 306 /* magic number that should be high enough for any hardware */ 307 #define IFLIB_MAX_TX_SEGS 128 308 #define IFLIB_RX_COPY_THRESH 128 309 #define IFLIB_MAX_RX_REFRESH 32 310 /* The minimum descriptors per second before we start coalescing */ 311 #define IFLIB_MIN_DESC_SEC 16384 312 #define IFLIB_DEFAULT_TX_UPDATE_FREQ 16 313 #define IFLIB_QUEUE_IDLE 0 314 #define IFLIB_QUEUE_HUNG 1 315 #define IFLIB_QUEUE_WORKING 2 316 /* maximum number of txqs that can share an rx interrupt */ 317 #define IFLIB_MAX_TX_SHARED_INTR 4 318 319 /* this should really scale with ring size - this is a fairly arbitrary value */ 320 #define TX_BATCH_SIZE 32 321 322 #define IFLIB_RESTART_BUDGET 8 323 324 325 /* 326 * Encode TSO or !TSO in the low bits of the tx ifsd_m pointer so as 327 * to avoid defref'ing the mbuf to determine the correct busdma resources 328 * to release 329 */ 330 #define IFLIB_TSO (1ULL << 0) 331 #define IFLIB_NO_TSO (2ULL << 0) 332 #define IFLIB_FLAGS_MASK (0x3ULL) 333 #define IFLIB_SAVE_MBUF(mbuf, flags) ((void *)(((uintptr_t)mbuf) | flags)) 334 #define IFLIB_GET_FLAGS(a) ((uintptr_t)a & IFLIB_FLAGS_MASK) 335 #define IFLIB_GET_MBUF(a) ((struct mbuf *)((uintptr_t)a & ~IFLIB_FLAGS_MASK)) 336 337 338 #define IFC_LEGACY 0x001 339 #define IFC_QFLUSH 0x002 340 #define IFC_MULTISEG 0x004 341 #define IFC_SPARE1 0x008 342 #define IFC_SC_ALLOCATED 0x010 343 #define IFC_INIT_DONE 0x020 344 #define IFC_PREFETCH 0x040 345 #define IFC_DO_RESET 0x080 346 #define IFC_DO_WATCHDOG 0x100 347 #define IFC_SPARE0 0x200 348 #define IFC_SPARE2 0x400 349 #define IFC_IN_DETACH 0x800 350 351 #define IFC_NETMAP_TX_IRQ 0x80000000 352 353 #define CSUM_OFFLOAD (CSUM_IP_TSO | CSUM_IP6_TSO | CSUM_IP | \ 354 CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \ 355 CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP) 356 357 struct iflib_txq { 358 qidx_t ift_in_use; 359 qidx_t ift_cidx; 360 qidx_t ift_cidx_processed; 361 qidx_t ift_pidx; 362 uint8_t ift_gen; 363 uint8_t ift_br_offset:1, 364 ift_defer_mfree:1, 365 ift_spare_bits0:6; 366 uint16_t ift_npending; 367 uint16_t ift_db_pending; 368 uint16_t ift_rs_pending; 369 uint32_t ift_last_reclaim; 370 uint16_t ift_reclaim_thresh; 371 uint16_t ift_reclaim_ticks; 372 uint8_t ift_txd_size[8]; 373 uint64_t ift_processed; 374 uint64_t ift_cleaned; 375 uint64_t ift_cleaned_prev; 376 #if MEMORY_LOGGING 377 uint64_t ift_enqueued; 378 uint64_t ift_dequeued; 379 #endif 380 uint64_t ift_no_tx_dma_setup; 381 uint64_t ift_no_desc_avail; 382 uint64_t ift_mbuf_defrag_failed; 383 uint64_t ift_mbuf_defrag; 384 uint64_t ift_map_failed; 385 uint64_t ift_txd_encap_efbig; 386 uint64_t ift_pullups; 387 uint64_t ift_last_timer_tick; 388 389 struct mtx ift_mtx; 390 struct mtx ift_db_mtx; 391 392 /* constant values */ 393 if_ctx_t ift_ctx; 394 struct ifmp_ring *ift_br; 395 struct grouptask ift_task; 396 qidx_t ift_size; 397 qidx_t ift_pad; 398 uint16_t ift_id; 399 struct callout ift_timer; 400 #ifdef DEV_NETMAP 401 struct callout ift_netmap_timer; 402 #endif /* DEV_NETMAP */ 403 404 if_txsd_vec_t ift_sds; 405 uint8_t ift_qstatus; 406 uint8_t ift_closed; 407 uint8_t ift_update_freq; 408 struct iflib_filter_info ift_filter_info; 409 bus_dma_tag_t ift_buf_tag; 410 bus_dma_tag_t ift_tso_buf_tag; 411 iflib_dma_info_t ift_ifdi; 412 #define MTX_NAME_LEN 32 413 char ift_mtx_name[MTX_NAME_LEN]; 414 bus_dma_segment_t ift_segs[IFLIB_MAX_TX_SEGS] __aligned(CACHE_LINE_SIZE); 415 #ifdef IFLIB_DIAGNOSTICS 416 uint64_t ift_cpu_exec_count[256]; 417 #endif 418 } __aligned(CACHE_LINE_SIZE); 419 420 struct iflib_fl { 421 qidx_t ifl_cidx; 422 qidx_t ifl_pidx; 423 qidx_t ifl_credits; 424 uint8_t ifl_gen; 425 uint8_t ifl_rxd_size; 426 #if MEMORY_LOGGING 427 uint64_t ifl_m_enqueued; 428 uint64_t ifl_m_dequeued; 429 uint64_t ifl_cl_enqueued; 430 uint64_t ifl_cl_dequeued; 431 #endif 432 /* implicit pad */ 433 bitstr_t *ifl_rx_bitmap; 434 qidx_t ifl_fragidx; 435 /* constant */ 436 qidx_t ifl_size; 437 uint16_t ifl_buf_size; 438 uint16_t ifl_cltype; 439 uma_zone_t ifl_zone; 440 iflib_rxsd_array_t ifl_sds; 441 iflib_rxq_t ifl_rxq; 442 uint8_t ifl_id; 443 bus_dma_tag_t ifl_buf_tag; 444 iflib_dma_info_t ifl_ifdi; 445 uint64_t ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE); 446 qidx_t ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH]; 447 } __aligned(CACHE_LINE_SIZE); 448 449 static inline qidx_t 450 get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen) 451 { 452 qidx_t used; 453 454 if (pidx > cidx) 455 used = pidx - cidx; 456 else if (pidx < cidx) 457 used = size - cidx + pidx; 458 else if (gen == 0 && pidx == cidx) 459 used = 0; 460 else if (gen == 1 && pidx == cidx) 461 used = size; 462 else 463 panic("bad state"); 464 465 return (used); 466 } 467 468 #define TXQ_AVAIL(txq) ((txq->ift_size - txq->ift_pad) -\ 469 get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen)) 470 471 #define IDXDIFF(head, tail, wrap) \ 472 ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head)) 473 474 struct iflib_rxq { 475 if_ctx_t ifr_ctx; 476 iflib_fl_t ifr_fl; 477 uint64_t ifr_rx_irq; 478 struct pfil_head *pfil; 479 /* 480 * If there is a separate completion queue (IFLIB_HAS_RXCQ), this is 481 * the completion queue consumer index. Otherwise it's unused. 482 */ 483 qidx_t ifr_cq_cidx; 484 uint16_t ifr_id; 485 uint8_t ifr_nfl; 486 uint8_t ifr_ntxqirq; 487 uint8_t ifr_txqid[IFLIB_MAX_TX_SHARED_INTR]; 488 uint8_t ifr_fl_offset; 489 struct lro_ctrl ifr_lc; 490 struct grouptask ifr_task; 491 struct callout ifr_watchdog; 492 struct iflib_filter_info ifr_filter_info; 493 iflib_dma_info_t ifr_ifdi; 494 495 /* dynamically allocate if any drivers need a value substantially larger than this */ 496 struct if_rxd_frag ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE); 497 #ifdef IFLIB_DIAGNOSTICS 498 uint64_t ifr_cpu_exec_count[256]; 499 #endif 500 } __aligned(CACHE_LINE_SIZE); 501 502 typedef struct if_rxsd { 503 caddr_t *ifsd_cl; 504 iflib_fl_t ifsd_fl; 505 } *if_rxsd_t; 506 507 /* 508 * Only allow a single packet to take up most 1/nth of the tx ring 509 */ 510 #define MAX_SINGLE_PACKET_FRACTION 12 511 #define IF_BAD_DMA ((bus_addr_t)-1) 512 513 #define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING)) 514 515 #define CTX_LOCK_INIT(_sc) sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock") 516 #define CTX_LOCK(ctx) sx_xlock(&(ctx)->ifc_ctx_sx) 517 #define CTX_UNLOCK(ctx) sx_xunlock(&(ctx)->ifc_ctx_sx) 518 #define CTX_LOCK_DESTROY(ctx) sx_destroy(&(ctx)->ifc_ctx_sx) 519 520 #define STATE_LOCK_INIT(_sc, _name) mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF) 521 #define STATE_LOCK(ctx) mtx_lock(&(ctx)->ifc_state_mtx) 522 #define STATE_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_state_mtx) 523 #define STATE_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_state_mtx) 524 525 #define CALLOUT_LOCK(txq) mtx_lock(&txq->ift_mtx) 526 #define CALLOUT_UNLOCK(txq) mtx_unlock(&txq->ift_mtx) 527 528 /* Our boot-time initialization hook */ 529 static int iflib_module_event_handler(module_t, int, void *); 530 531 static moduledata_t iflib_moduledata = { 532 "iflib", 533 iflib_module_event_handler, 534 NULL 535 }; 536 537 DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY); 538 MODULE_VERSION(iflib, 1); 539 540 MODULE_DEPEND(iflib, pci, 1, 1, 1); 541 MODULE_DEPEND(iflib, ether, 1, 1, 1); 542 543 TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1); 544 TASKQGROUP_DEFINE(if_config_tqg, 1, 1); 545 546 #ifndef IFLIB_DEBUG_COUNTERS 547 #ifdef INVARIANTS 548 #define IFLIB_DEBUG_COUNTERS 1 549 #else 550 #define IFLIB_DEBUG_COUNTERS 0 551 #endif /* !INVARIANTS */ 552 #endif 553 554 static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 555 "iflib driver parameters"); 556 557 /* 558 * XXX need to ensure that this can't accidentally cause the head to be moved backwards 559 */ 560 static int iflib_min_tx_latency = 0; 561 SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW, 562 &iflib_min_tx_latency, 0, 563 "minimize transmit latency at the possible expense of throughput"); 564 static int iflib_no_tx_batch = 0; 565 SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW, 566 &iflib_no_tx_batch, 0, 567 "minimize transmit latency at the possible expense of throughput"); 568 static int iflib_timer_default = 1000; 569 SYSCTL_INT(_net_iflib, OID_AUTO, timer_default, CTLFLAG_RW, 570 &iflib_timer_default, 0, "number of ticks between iflib_timer calls"); 571 572 573 #if IFLIB_DEBUG_COUNTERS 574 575 static int iflib_tx_seen; 576 static int iflib_tx_sent; 577 static int iflib_tx_encap; 578 static int iflib_rx_allocs; 579 static int iflib_fl_refills; 580 static int iflib_fl_refills_large; 581 static int iflib_tx_frees; 582 583 SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD, &iflib_tx_seen, 0, 584 "# TX mbufs seen"); 585 SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD, &iflib_tx_sent, 0, 586 "# TX mbufs sent"); 587 SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD, &iflib_tx_encap, 0, 588 "# TX mbufs encapped"); 589 SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD, &iflib_tx_frees, 0, 590 "# TX frees"); 591 SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD, &iflib_rx_allocs, 0, 592 "# RX allocations"); 593 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD, &iflib_fl_refills, 0, 594 "# refills"); 595 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD, 596 &iflib_fl_refills_large, 0, "# large refills"); 597 598 static int iflib_txq_drain_flushing; 599 static int iflib_txq_drain_oactive; 600 static int iflib_txq_drain_notready; 601 602 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD, 603 &iflib_txq_drain_flushing, 0, "# drain flushes"); 604 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD, 605 &iflib_txq_drain_oactive, 0, "# drain oactives"); 606 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD, 607 &iflib_txq_drain_notready, 0, "# drain notready"); 608 609 static int iflib_encap_load_mbuf_fail; 610 static int iflib_encap_pad_mbuf_fail; 611 static int iflib_encap_txq_avail_fail; 612 static int iflib_encap_txd_encap_fail; 613 614 SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD, 615 &iflib_encap_load_mbuf_fail, 0, "# busdma load failures"); 616 SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD, 617 &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures"); 618 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD, 619 &iflib_encap_txq_avail_fail, 0, "# txq avail failures"); 620 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD, 621 &iflib_encap_txd_encap_fail, 0, "# driver encap failures"); 622 623 static int iflib_task_fn_rxs; 624 static int iflib_rx_intr_enables; 625 static int iflib_fast_intrs; 626 static int iflib_rx_unavail; 627 static int iflib_rx_ctx_inactive; 628 static int iflib_rx_if_input; 629 static int iflib_rxd_flush; 630 631 static int iflib_verbose_debug; 632 633 SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD, &iflib_task_fn_rxs, 0, 634 "# task_fn_rx calls"); 635 SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD, 636 &iflib_rx_intr_enables, 0, "# RX intr enables"); 637 SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD, &iflib_fast_intrs, 0, 638 "# fast_intr calls"); 639 SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD, &iflib_rx_unavail, 0, 640 "# times rxeof called with no available data"); 641 SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD, 642 &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context"); 643 SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD, &iflib_rx_if_input, 644 0, "# times rxeof called if_input"); 645 SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD, &iflib_rxd_flush, 0, 646 "# times rxd_flush called"); 647 SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW, 648 &iflib_verbose_debug, 0, "enable verbose debugging"); 649 650 #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1) 651 static void 652 iflib_debug_reset(void) 653 { 654 iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs = 655 iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees = 656 iflib_txq_drain_flushing = iflib_txq_drain_oactive = 657 iflib_txq_drain_notready = 658 iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail = 659 iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail = 660 iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs = 661 iflib_rx_unavail = 662 iflib_rx_ctx_inactive = iflib_rx_if_input = 663 iflib_rxd_flush = 0; 664 } 665 666 #else 667 #define DBG_COUNTER_INC(name) 668 static void iflib_debug_reset(void) {} 669 #endif 670 671 #define IFLIB_DEBUG 0 672 673 static void iflib_tx_structures_free(if_ctx_t ctx); 674 static void iflib_rx_structures_free(if_ctx_t ctx); 675 static int iflib_queues_alloc(if_ctx_t ctx); 676 static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq); 677 static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget); 678 static int iflib_qset_structures_setup(if_ctx_t ctx); 679 static int iflib_msix_init(if_ctx_t ctx); 680 static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str); 681 static void iflib_txq_check_drain(iflib_txq_t txq, int budget); 682 static uint32_t iflib_txq_can_drain(struct ifmp_ring *); 683 #ifdef ALTQ 684 static void iflib_altq_if_start(if_t ifp); 685 static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m); 686 #endif 687 static void iflib_register(if_ctx_t); 688 static void iflib_deregister(if_ctx_t); 689 static void iflib_unregister_vlan_handlers(if_ctx_t ctx); 690 static uint16_t iflib_get_mbuf_size_for(unsigned int size); 691 static void iflib_init_locked(if_ctx_t ctx); 692 static void iflib_add_device_sysctl_pre(if_ctx_t ctx); 693 static void iflib_add_device_sysctl_post(if_ctx_t ctx); 694 static void iflib_ifmp_purge(iflib_txq_t txq); 695 static void _iflib_pre_assert(if_softc_ctx_t scctx); 696 static void iflib_stop(if_ctx_t ctx); 697 static void iflib_if_init_locked(if_ctx_t ctx); 698 static void iflib_free_intr_mem(if_ctx_t ctx); 699 #ifndef __NO_STRICT_ALIGNMENT 700 static struct mbuf *iflib_fixup_rx(struct mbuf *m); 701 #endif 702 static __inline int iflib_completed_tx_reclaim(iflib_txq_t txq, 703 struct mbuf **m_defer); 704 705 static SLIST_HEAD(cpu_offset_list, cpu_offset) cpu_offsets = 706 SLIST_HEAD_INITIALIZER(cpu_offsets); 707 struct cpu_offset { 708 SLIST_ENTRY(cpu_offset) entries; 709 cpuset_t set; 710 unsigned int refcount; 711 uint16_t next_cpuid; 712 }; 713 static struct mtx cpu_offset_mtx; 714 MTX_SYSINIT(iflib_cpu_offset, &cpu_offset_mtx, "iflib_cpu_offset lock", 715 MTX_DEF); 716 717 DEBUGNET_DEFINE(iflib); 718 719 static int 720 iflib_num_rx_descs(if_ctx_t ctx) 721 { 722 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 723 if_shared_ctx_t sctx = ctx->ifc_sctx; 724 uint16_t first_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0; 725 726 return (scctx->isc_nrxd[first_rxq]); 727 } 728 729 static int 730 iflib_num_tx_descs(if_ctx_t ctx) 731 { 732 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 733 if_shared_ctx_t sctx = ctx->ifc_sctx; 734 uint16_t first_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0; 735 736 return (scctx->isc_ntxd[first_txq]); 737 } 738 739 #ifdef DEV_NETMAP 740 #include <sys/selinfo.h> 741 #include <net/netmap.h> 742 #include <dev/netmap/netmap_kern.h> 743 744 MODULE_DEPEND(iflib, netmap, 1, 1, 1); 745 746 static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init); 747 static void iflib_netmap_timer(void *arg); 748 749 /* 750 * device-specific sysctl variables: 751 * 752 * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it. 753 * During regular operations the CRC is stripped, but on some 754 * hardware reception of frames not multiple of 64 is slower, 755 * so using crcstrip=0 helps in benchmarks. 756 * 757 * iflib_rx_miss, iflib_rx_miss_bufs: 758 * count packets that might be missed due to lost interrupts. 759 */ 760 SYSCTL_DECL(_dev_netmap); 761 /* 762 * The xl driver by default strips CRCs and we do not override it. 763 */ 764 765 int iflib_crcstrip = 1; 766 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip, 767 CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on RX frames"); 768 769 int iflib_rx_miss, iflib_rx_miss_bufs; 770 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss, 771 CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed RX intr"); 772 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs, 773 CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed RX intr bufs"); 774 775 /* 776 * Register/unregister. We are already under netmap lock. 777 * Only called on the first register or the last unregister. 778 */ 779 static int 780 iflib_netmap_register(struct netmap_adapter *na, int onoff) 781 { 782 if_t ifp = na->ifp; 783 if_ctx_t ctx = if_getsoftc(ifp); 784 int status; 785 786 CTX_LOCK(ctx); 787 if (!CTX_IS_VF(ctx)) 788 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); 789 790 iflib_stop(ctx); 791 792 /* 793 * Enable (or disable) netmap flags, and intercept (or restore) 794 * ifp->if_transmit. This is done once the device has been stopped 795 * to prevent race conditions. Also, this must be done after 796 * calling netmap_disable_all_rings() and before calling 797 * netmap_enable_all_rings(), so that these two functions see the 798 * updated state of the NAF_NETMAP_ON bit. 799 */ 800 if (onoff) { 801 nm_set_native_flags(na); 802 } else { 803 nm_clear_native_flags(na); 804 } 805 806 iflib_init_locked(ctx); 807 IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ? 808 status = if_getdrvflags(ifp) & IFF_DRV_RUNNING ? 0 : 1; 809 if (status) 810 nm_clear_native_flags(na); 811 CTX_UNLOCK(ctx); 812 return (status); 813 } 814 815 static int 816 iflib_netmap_config(struct netmap_adapter *na, struct nm_config_info *info) 817 { 818 if_t ifp = na->ifp; 819 if_ctx_t ctx = if_getsoftc(ifp); 820 iflib_rxq_t rxq = &ctx->ifc_rxqs[0]; 821 iflib_fl_t fl = &rxq->ifr_fl[0]; 822 823 info->num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets; 824 info->num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets; 825 info->num_tx_descs = iflib_num_tx_descs(ctx); 826 info->num_rx_descs = iflib_num_rx_descs(ctx); 827 info->rx_buf_maxsize = fl->ifl_buf_size; 828 nm_prinf("txr %u rxr %u txd %u rxd %u rbufsz %u", 829 info->num_tx_rings, info->num_rx_rings, info->num_tx_descs, 830 info->num_rx_descs, info->rx_buf_maxsize); 831 832 return (0); 833 } 834 835 static int 836 netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init) 837 { 838 struct netmap_adapter *na = kring->na; 839 u_int const lim = kring->nkr_num_slots - 1; 840 struct netmap_ring *ring = kring->ring; 841 bus_dmamap_t *map; 842 struct if_rxd_update iru; 843 if_ctx_t ctx = rxq->ifr_ctx; 844 iflib_fl_t fl = &rxq->ifr_fl[0]; 845 u_int nic_i_first, nic_i; 846 u_int nm_i; 847 int i, n; 848 #if IFLIB_DEBUG_COUNTERS 849 int rf_count = 0; 850 #endif 851 852 /* 853 * This function is used both at initialization and in rxsync. 854 * At initialization we need to prepare (with isc_rxd_refill()) 855 * all the netmap buffers currently owned by the kernel, in 856 * such a way to keep fl->ifl_pidx and kring->nr_hwcur in sync 857 * (except for kring->nkr_hwofs). These may be less than 858 * kring->nkr_num_slots if netmap_reset() was called while 859 * an application using the kring that still owned some 860 * buffers. 861 * At rxsync time, both indexes point to the next buffer to be 862 * refilled. 863 * In any case we publish (with isc_rxd_flush()) up to 864 * (fl->ifl_pidx - 1) % N (included), to avoid the NIC tail/prod 865 * pointer to overrun the head/cons pointer, although this is 866 * not necessary for some NICs (e.g. vmx). 867 */ 868 if (__predict_false(init)) { 869 n = kring->nkr_num_slots - nm_kr_rxspace(kring); 870 } else { 871 n = kring->rhead - kring->nr_hwcur; 872 if (n == 0) 873 return (0); /* Nothing to do. */ 874 if (n < 0) 875 n += kring->nkr_num_slots; 876 } 877 878 iru_init(&iru, rxq, 0 /* flid */); 879 map = fl->ifl_sds.ifsd_map; 880 nic_i = fl->ifl_pidx; 881 nm_i = netmap_idx_n2k(kring, nic_i); 882 if (__predict_false(init)) { 883 /* 884 * On init/reset, nic_i must be 0, and we must 885 * start to refill from hwtail (see netmap_reset()). 886 */ 887 MPASS(nic_i == 0); 888 MPASS(nm_i == kring->nr_hwtail); 889 } else 890 MPASS(nm_i == kring->nr_hwcur); 891 DBG_COUNTER_INC(fl_refills); 892 while (n > 0) { 893 #if IFLIB_DEBUG_COUNTERS 894 if (++rf_count == 9) 895 DBG_COUNTER_INC(fl_refills_large); 896 #endif 897 nic_i_first = nic_i; 898 for (i = 0; n > 0 && i < IFLIB_MAX_RX_REFRESH; n--, i++) { 899 struct netmap_slot *slot = &ring->slot[nm_i]; 900 uint64_t paddr; 901 void *addr = PNMB(na, slot, &paddr); 902 903 MPASS(i < IFLIB_MAX_RX_REFRESH); 904 905 if (addr == NETMAP_BUF_BASE(na)) /* bad buf */ 906 return (netmap_ring_reinit(kring)); 907 908 fl->ifl_bus_addrs[i] = paddr + 909 nm_get_offset(kring, slot); 910 fl->ifl_rxd_idxs[i] = nic_i; 911 912 if (__predict_false(init)) { 913 netmap_load_map(na, fl->ifl_buf_tag, 914 map[nic_i], addr); 915 } else if (slot->flags & NS_BUF_CHANGED) { 916 /* buffer has changed, reload map */ 917 netmap_reload_map(na, fl->ifl_buf_tag, 918 map[nic_i], addr); 919 } 920 bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i], 921 BUS_DMASYNC_PREREAD); 922 slot->flags &= ~NS_BUF_CHANGED; 923 924 nm_i = nm_next(nm_i, lim); 925 nic_i = nm_next(nic_i, lim); 926 } 927 928 iru.iru_pidx = nic_i_first; 929 iru.iru_count = i; 930 ctx->isc_rxd_refill(ctx->ifc_softc, &iru); 931 } 932 fl->ifl_pidx = nic_i; 933 /* 934 * At the end of the loop we must have refilled everything 935 * we could possibly refill. 936 */ 937 MPASS(nm_i == kring->rhead); 938 kring->nr_hwcur = nm_i; 939 940 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 941 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 942 ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id, 943 nm_prev(nic_i, lim)); 944 DBG_COUNTER_INC(rxd_flush); 945 946 return (0); 947 } 948 949 #define NETMAP_TX_TIMER_US 90 950 951 /* 952 * Reconcile kernel and user view of the transmit ring. 953 * 954 * All information is in the kring. 955 * Userspace wants to send packets up to the one before kring->rhead, 956 * kernel knows kring->nr_hwcur is the first unsent packet. 957 * 958 * Here we push packets out (as many as possible), and possibly 959 * reclaim buffers from previously completed transmission. 960 * 961 * The caller (netmap) guarantees that there is only one instance 962 * running at any time. Any interference with other driver 963 * methods should be handled by the individual drivers. 964 */ 965 static int 966 iflib_netmap_txsync(struct netmap_kring *kring, int flags) 967 { 968 struct netmap_adapter *na = kring->na; 969 if_t ifp = na->ifp; 970 struct netmap_ring *ring = kring->ring; 971 u_int nm_i; /* index into the netmap kring */ 972 u_int nic_i; /* index into the NIC ring */ 973 u_int const lim = kring->nkr_num_slots - 1; 974 u_int const head = kring->rhead; 975 struct if_pkt_info pi; 976 int tx_pkts = 0, tx_bytes = 0; 977 978 /* 979 * interrupts on every tx packet are expensive so request 980 * them every half ring, or where NS_REPORT is set 981 */ 982 u_int report_frequency = kring->nkr_num_slots >> 1; 983 /* device-specific */ 984 if_ctx_t ctx = if_getsoftc(ifp); 985 iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id]; 986 987 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 988 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 989 990 /* 991 * First part: process new packets to send. 992 * nm_i is the current index in the netmap kring, 993 * nic_i is the corresponding index in the NIC ring. 994 * 995 * If we have packets to send (nm_i != head) 996 * iterate over the netmap ring, fetch length and update 997 * the corresponding slot in the NIC ring. Some drivers also 998 * need to update the buffer's physical address in the NIC slot 999 * even NS_BUF_CHANGED is not set (PNMB computes the addresses). 1000 * 1001 * The netmap_reload_map() calls is especially expensive, 1002 * even when (as in this case) the tag is 0, so do only 1003 * when the buffer has actually changed. 1004 * 1005 * If possible do not set the report/intr bit on all slots, 1006 * but only a few times per ring or when NS_REPORT is set. 1007 * 1008 * Finally, on 10G and faster drivers, it might be useful 1009 * to prefetch the next slot and txr entry. 1010 */ 1011 1012 nm_i = kring->nr_hwcur; 1013 if (nm_i != head) { /* we have new packets to send */ 1014 uint32_t pkt_len = 0, seg_idx = 0; 1015 int nic_i_start = -1, flags = 0; 1016 memset(&pi, 0, sizeof(pi)); 1017 pi.ipi_segs = txq->ift_segs; 1018 pi.ipi_qsidx = kring->ring_id; 1019 nic_i = netmap_idx_k2n(kring, nm_i); 1020 1021 __builtin_prefetch(&ring->slot[nm_i]); 1022 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]); 1023 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]); 1024 1025 while (nm_i != head) { 1026 struct netmap_slot *slot = &ring->slot[nm_i]; 1027 uint64_t offset = nm_get_offset(kring, slot); 1028 u_int len = slot->len; 1029 uint64_t paddr; 1030 void *addr = PNMB(na, slot, &paddr); 1031 1032 flags |= (slot->flags & NS_REPORT || 1033 nic_i == 0 || nic_i == report_frequency) ? 1034 IPI_TX_INTR : 0; 1035 1036 /* 1037 * If this is the first packet fragment, save the 1038 * index of the first NIC slot for later. 1039 */ 1040 if (nic_i_start < 0) 1041 nic_i_start = nic_i; 1042 1043 pi.ipi_segs[seg_idx].ds_addr = paddr + offset; 1044 pi.ipi_segs[seg_idx].ds_len = len; 1045 if (len) { 1046 pkt_len += len; 1047 seg_idx++; 1048 } 1049 1050 if (!(slot->flags & NS_MOREFRAG)) { 1051 pi.ipi_len = pkt_len; 1052 pi.ipi_nsegs = seg_idx; 1053 pi.ipi_pidx = nic_i_start; 1054 pi.ipi_ndescs = 0; 1055 pi.ipi_flags = flags; 1056 1057 /* Prepare the NIC TX ring. */ 1058 ctx->isc_txd_encap(ctx->ifc_softc, &pi); 1059 DBG_COUNTER_INC(tx_encap); 1060 1061 /* Update transmit counters */ 1062 tx_bytes += pi.ipi_len; 1063 tx_pkts++; 1064 1065 /* Reinit per-packet info for the next one. */ 1066 flags = seg_idx = pkt_len = 0; 1067 nic_i_start = -1; 1068 } 1069 1070 /* prefetch for next round */ 1071 __builtin_prefetch(&ring->slot[nm_i + 1]); 1072 __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]); 1073 __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]); 1074 1075 NM_CHECK_ADDR_LEN_OFF(na, len, offset); 1076 1077 if (slot->flags & NS_BUF_CHANGED) { 1078 /* buffer has changed, reload map */ 1079 netmap_reload_map(na, txq->ift_buf_tag, 1080 txq->ift_sds.ifsd_map[nic_i], addr); 1081 } 1082 /* make sure changes to the buffer are synced */ 1083 bus_dmamap_sync(txq->ift_buf_tag, 1084 txq->ift_sds.ifsd_map[nic_i], 1085 BUS_DMASYNC_PREWRITE); 1086 1087 slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED | NS_MOREFRAG); 1088 nm_i = nm_next(nm_i, lim); 1089 nic_i = nm_next(nic_i, lim); 1090 } 1091 kring->nr_hwcur = nm_i; 1092 1093 /* synchronize the NIC ring */ 1094 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 1095 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1096 1097 /* (re)start the tx unit up to slot nic_i (excluded) */ 1098 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i); 1099 } 1100 1101 /* 1102 * Second part: reclaim buffers for completed transmissions. 1103 * 1104 * If there are unclaimed buffers, attempt to reclaim them. 1105 * If we don't manage to reclaim them all, and TX IRQs are not in use, 1106 * trigger a per-tx-queue timer to try again later. 1107 */ 1108 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) { 1109 if (iflib_tx_credits_update(ctx, txq)) { 1110 /* some tx completed, increment avail */ 1111 nic_i = txq->ift_cidx_processed; 1112 kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim); 1113 } 1114 } 1115 1116 if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ)) 1117 if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) { 1118 callout_reset_sbt_on(&txq->ift_netmap_timer, 1119 NETMAP_TX_TIMER_US * SBT_1US, SBT_1US, 1120 iflib_netmap_timer, txq, 1121 txq->ift_netmap_timer.c_cpu, 0); 1122 } 1123 1124 if_inc_counter(ifp, IFCOUNTER_OBYTES, tx_bytes); 1125 if_inc_counter(ifp, IFCOUNTER_OPACKETS, tx_pkts); 1126 1127 return (0); 1128 } 1129 1130 /* 1131 * Reconcile kernel and user view of the receive ring. 1132 * Same as for the txsync, this routine must be efficient. 1133 * The caller guarantees a single invocations, but races against 1134 * the rest of the driver should be handled here. 1135 * 1136 * On call, kring->rhead is the first packet that userspace wants 1137 * to keep, and kring->rcur is the wakeup point. 1138 * The kernel has previously reported packets up to kring->rtail. 1139 * 1140 * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective 1141 * of whether or not we received an interrupt. 1142 */ 1143 static int 1144 iflib_netmap_rxsync(struct netmap_kring *kring, int flags) 1145 { 1146 struct netmap_adapter *na = kring->na; 1147 struct netmap_ring *ring = kring->ring; 1148 if_t ifp = na->ifp; 1149 uint32_t nm_i; /* index into the netmap ring */ 1150 uint32_t nic_i; /* index into the NIC ring */ 1151 u_int n; 1152 u_int const lim = kring->nkr_num_slots - 1; 1153 int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; 1154 int i = 0, rx_bytes = 0, rx_pkts = 0; 1155 1156 if_ctx_t ctx = if_getsoftc(ifp); 1157 if_shared_ctx_t sctx = ctx->ifc_sctx; 1158 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 1159 iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id]; 1160 iflib_fl_t fl = &rxq->ifr_fl[0]; 1161 struct if_rxd_info ri; 1162 qidx_t *cidxp; 1163 1164 /* 1165 * netmap only uses free list 0, to avoid out of order consumption 1166 * of receive buffers 1167 */ 1168 1169 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 1170 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1171 1172 /* 1173 * First part: import newly received packets. 1174 * 1175 * nm_i is the index of the next free slot in the netmap ring, 1176 * nic_i is the index of the next received packet in the NIC ring 1177 * (or in the free list 0 if IFLIB_HAS_RXCQ is set), and they may 1178 * differ in case if_init() has been called while 1179 * in netmap mode. For the receive ring we have 1180 * 1181 * nic_i = fl->ifl_cidx; 1182 * nm_i = kring->nr_hwtail (previous) 1183 * and 1184 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size 1185 * 1186 * fl->ifl_cidx is set to 0 on a ring reinit 1187 */ 1188 if (netmap_no_pendintr || force_update) { 1189 uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim); 1190 bool have_rxcq = sctx->isc_flags & IFLIB_HAS_RXCQ; 1191 int crclen = iflib_crcstrip ? 0 : 4; 1192 int error, avail; 1193 1194 /* 1195 * For the free list consumer index, we use the same 1196 * logic as in iflib_rxeof(). 1197 */ 1198 if (have_rxcq) 1199 cidxp = &rxq->ifr_cq_cidx; 1200 else 1201 cidxp = &fl->ifl_cidx; 1202 avail = ctx->isc_rxd_available(ctx->ifc_softc, 1203 rxq->ifr_id, *cidxp, USHRT_MAX); 1204 1205 nic_i = fl->ifl_cidx; 1206 nm_i = netmap_idx_n2k(kring, nic_i); 1207 MPASS(nm_i == kring->nr_hwtail); 1208 for (n = 0; avail > 0 && nm_i != hwtail_lim; n++, avail--) { 1209 memset(&ri, 0, sizeof(ri)); 1210 ri.iri_frags = rxq->ifr_frags; 1211 ri.iri_qsidx = kring->ring_id; 1212 ri.iri_ifp = ctx->ifc_ifp; 1213 ri.iri_cidx = *cidxp; 1214 1215 error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri); 1216 for (i = 0; i < ri.iri_nfrags; i++) { 1217 if (error) { 1218 ring->slot[nm_i].len = 0; 1219 ring->slot[nm_i].flags = 0; 1220 } else { 1221 ring->slot[nm_i].len = ri.iri_frags[i].irf_len; 1222 if (i == (ri.iri_nfrags - 1)) { 1223 ring->slot[nm_i].len -= crclen; 1224 ring->slot[nm_i].flags = 0; 1225 1226 /* Update receive counters */ 1227 rx_bytes += ri.iri_len; 1228 rx_pkts++; 1229 } else 1230 ring->slot[nm_i].flags = NS_MOREFRAG; 1231 } 1232 1233 bus_dmamap_sync(fl->ifl_buf_tag, 1234 fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD); 1235 nm_i = nm_next(nm_i, lim); 1236 fl->ifl_cidx = nic_i = nm_next(nic_i, lim); 1237 } 1238 1239 if (have_rxcq) { 1240 *cidxp = ri.iri_cidx; 1241 while (*cidxp >= scctx->isc_nrxd[0]) 1242 *cidxp -= scctx->isc_nrxd[0]; 1243 } 1244 1245 } 1246 if (n) { /* update the state variables */ 1247 if (netmap_no_pendintr && !force_update) { 1248 /* diagnostics */ 1249 iflib_rx_miss++; 1250 iflib_rx_miss_bufs += n; 1251 } 1252 kring->nr_hwtail = nm_i; 1253 } 1254 kring->nr_kflags &= ~NKR_PENDINTR; 1255 } 1256 /* 1257 * Second part: skip past packets that userspace has released. 1258 * (kring->nr_hwcur to head excluded), 1259 * and make the buffers available for reception. 1260 * As usual nm_i is the index in the netmap ring, 1261 * nic_i is the index in the NIC ring, and 1262 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size 1263 */ 1264 netmap_fl_refill(rxq, kring, false); 1265 1266 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes); 1267 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts); 1268 1269 return (0); 1270 } 1271 1272 static void 1273 iflib_netmap_intr(struct netmap_adapter *na, int onoff) 1274 { 1275 if_ctx_t ctx = if_getsoftc(na->ifp); 1276 1277 CTX_LOCK(ctx); 1278 if (onoff) { 1279 IFDI_INTR_ENABLE(ctx); 1280 } else { 1281 IFDI_INTR_DISABLE(ctx); 1282 } 1283 CTX_UNLOCK(ctx); 1284 } 1285 1286 static int 1287 iflib_netmap_attach(if_ctx_t ctx) 1288 { 1289 struct netmap_adapter na; 1290 1291 bzero(&na, sizeof(na)); 1292 1293 na.ifp = ctx->ifc_ifp; 1294 na.na_flags = NAF_BDG_MAYSLEEP | NAF_MOREFRAG | NAF_OFFSETS; 1295 MPASS(ctx->ifc_softc_ctx.isc_ntxqsets); 1296 MPASS(ctx->ifc_softc_ctx.isc_nrxqsets); 1297 1298 na.num_tx_desc = iflib_num_tx_descs(ctx); 1299 na.num_rx_desc = iflib_num_rx_descs(ctx); 1300 na.nm_txsync = iflib_netmap_txsync; 1301 na.nm_rxsync = iflib_netmap_rxsync; 1302 na.nm_register = iflib_netmap_register; 1303 na.nm_intr = iflib_netmap_intr; 1304 na.nm_config = iflib_netmap_config; 1305 na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets; 1306 na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets; 1307 return (netmap_attach(&na)); 1308 } 1309 1310 static int 1311 iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq) 1312 { 1313 struct netmap_adapter *na = NA(ctx->ifc_ifp); 1314 struct netmap_slot *slot; 1315 1316 slot = netmap_reset(na, NR_TX, txq->ift_id, 0); 1317 if (slot == NULL) 1318 return (0); 1319 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) { 1320 /* 1321 * In netmap mode, set the map for the packet buffer. 1322 * NOTE: Some drivers (not this one) also need to set 1323 * the physical buffer address in the NIC ring. 1324 * netmap_idx_n2k() maps a nic index, i, into the corresponding 1325 * netmap slot index, si 1326 */ 1327 int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i); 1328 netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i], 1329 NMB(na, slot + si)); 1330 } 1331 return (1); 1332 } 1333 1334 static int 1335 iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq) 1336 { 1337 struct netmap_adapter *na = NA(ctx->ifc_ifp); 1338 struct netmap_kring *kring; 1339 struct netmap_slot *slot; 1340 1341 slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0); 1342 if (slot == NULL) 1343 return (0); 1344 kring = na->rx_rings[rxq->ifr_id]; 1345 netmap_fl_refill(rxq, kring, true); 1346 return (1); 1347 } 1348 1349 static void 1350 iflib_netmap_timer(void *arg) 1351 { 1352 iflib_txq_t txq = arg; 1353 if_ctx_t ctx = txq->ift_ctx; 1354 1355 /* 1356 * Wake up the netmap application, to give it a chance to 1357 * call txsync and reclaim more completed TX buffers. 1358 */ 1359 netmap_tx_irq(ctx->ifc_ifp, txq->ift_id); 1360 } 1361 1362 #define iflib_netmap_detach(ifp) netmap_detach(ifp) 1363 1364 #else 1365 #define iflib_netmap_txq_init(ctx, txq) (0) 1366 #define iflib_netmap_rxq_init(ctx, rxq) (0) 1367 #define iflib_netmap_detach(ifp) 1368 #define netmap_enable_all_rings(ifp) 1369 #define netmap_disable_all_rings(ifp) 1370 1371 #define iflib_netmap_attach(ctx) (0) 1372 #define netmap_rx_irq(ifp, qid, budget) (0) 1373 #endif 1374 1375 #if defined(__i386__) || defined(__amd64__) 1376 static __inline void 1377 prefetch(void *x) 1378 { 1379 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); 1380 } 1381 1382 static __inline void 1383 prefetch2cachelines(void *x) 1384 { 1385 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); 1386 #if (CACHE_LINE_SIZE < 128) 1387 __asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x) + CACHE_LINE_SIZE / (sizeof(unsigned long))))); 1388 #endif 1389 } 1390 #else 1391 static __inline void 1392 prefetch(void *x) 1393 { 1394 } 1395 1396 static __inline void 1397 prefetch2cachelines(void *x) 1398 { 1399 } 1400 #endif 1401 1402 static void 1403 iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid) 1404 { 1405 iflib_fl_t fl; 1406 1407 fl = &rxq->ifr_fl[flid]; 1408 iru->iru_paddrs = fl->ifl_bus_addrs; 1409 iru->iru_idxs = fl->ifl_rxd_idxs; 1410 iru->iru_qsidx = rxq->ifr_id; 1411 iru->iru_buf_size = fl->ifl_buf_size; 1412 iru->iru_flidx = fl->ifl_id; 1413 } 1414 1415 static void 1416 _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err) 1417 { 1418 if (err) 1419 return; 1420 *(bus_addr_t *) arg = segs[0].ds_addr; 1421 } 1422 1423 #define DMA_WIDTH_TO_BUS_LOWADDR(width) \ 1424 (((width) == 0) || (width) == flsll(BUS_SPACE_MAXADDR) ? \ 1425 BUS_SPACE_MAXADDR : (1ULL << (width)) - 1ULL) 1426 1427 int 1428 iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags) 1429 { 1430 int err; 1431 device_t dev = ctx->ifc_dev; 1432 bus_addr_t lowaddr; 1433 1434 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(ctx->ifc_softc_ctx.isc_dma_width); 1435 1436 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1437 align, 0, /* alignment, bounds */ 1438 lowaddr, /* lowaddr */ 1439 BUS_SPACE_MAXADDR, /* highaddr */ 1440 NULL, NULL, /* filter, filterarg */ 1441 size, /* maxsize */ 1442 1, /* nsegments */ 1443 size, /* maxsegsize */ 1444 BUS_DMA_ALLOCNOW, /* flags */ 1445 NULL, /* lockfunc */ 1446 NULL, /* lockarg */ 1447 &dma->idi_tag); 1448 if (err) { 1449 device_printf(dev, 1450 "%s: bus_dma_tag_create failed: %d (size=%d, align=%d)\n", 1451 __func__, err, size, align); 1452 goto fail_0; 1453 } 1454 1455 err = bus_dmamem_alloc(dma->idi_tag, (void **)&dma->idi_vaddr, 1456 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map); 1457 if (err) { 1458 device_printf(dev, 1459 "%s: bus_dmamem_alloc(%ju) failed: %d\n", 1460 __func__, (uintmax_t)size, err); 1461 goto fail_1; 1462 } 1463 1464 dma->idi_paddr = IF_BAD_DMA; 1465 err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr, 1466 size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT); 1467 if (err || dma->idi_paddr == IF_BAD_DMA) { 1468 device_printf(dev, 1469 "%s: bus_dmamap_load failed: %d\n", 1470 __func__, err); 1471 goto fail_2; 1472 } 1473 1474 dma->idi_size = size; 1475 return (0); 1476 1477 fail_2: 1478 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map); 1479 fail_1: 1480 bus_dma_tag_destroy(dma->idi_tag); 1481 fail_0: 1482 dma->idi_tag = NULL; 1483 1484 return (err); 1485 } 1486 1487 int 1488 iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags) 1489 { 1490 if_shared_ctx_t sctx = ctx->ifc_sctx; 1491 1492 KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized")); 1493 1494 return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags)); 1495 } 1496 1497 int 1498 iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count) 1499 { 1500 int i, err; 1501 iflib_dma_info_t *dmaiter; 1502 1503 dmaiter = dmalist; 1504 for (i = 0; i < count; i++, dmaiter++) { 1505 if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0) 1506 break; 1507 } 1508 if (err) 1509 iflib_dma_free_multi(dmalist, i); 1510 return (err); 1511 } 1512 1513 void 1514 iflib_dma_free(iflib_dma_info_t dma) 1515 { 1516 if (dma->idi_tag == NULL) 1517 return; 1518 if (dma->idi_paddr != IF_BAD_DMA) { 1519 bus_dmamap_sync(dma->idi_tag, dma->idi_map, 1520 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1521 bus_dmamap_unload(dma->idi_tag, dma->idi_map); 1522 dma->idi_paddr = IF_BAD_DMA; 1523 } 1524 if (dma->idi_vaddr != NULL) { 1525 bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map); 1526 dma->idi_vaddr = NULL; 1527 } 1528 bus_dma_tag_destroy(dma->idi_tag); 1529 dma->idi_tag = NULL; 1530 } 1531 1532 void 1533 iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count) 1534 { 1535 int i; 1536 iflib_dma_info_t *dmaiter = dmalist; 1537 1538 for (i = 0; i < count; i++, dmaiter++) 1539 iflib_dma_free(*dmaiter); 1540 } 1541 1542 static int 1543 iflib_fast_intr(void *arg) 1544 { 1545 iflib_filter_info_t info = arg; 1546 struct grouptask *gtask = info->ifi_task; 1547 int result; 1548 1549 DBG_COUNTER_INC(fast_intrs); 1550 if (info->ifi_filter != NULL) { 1551 result = info->ifi_filter(info->ifi_filter_arg); 1552 if ((result & FILTER_SCHEDULE_THREAD) == 0) 1553 return (result); 1554 } 1555 1556 GROUPTASK_ENQUEUE(gtask); 1557 return (FILTER_HANDLED); 1558 } 1559 1560 static int 1561 iflib_fast_intr_rxtx(void *arg) 1562 { 1563 iflib_filter_info_t info = arg; 1564 struct grouptask *gtask = info->ifi_task; 1565 if_ctx_t ctx; 1566 iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx; 1567 iflib_txq_t txq; 1568 void *sc; 1569 int i, cidx, result; 1570 qidx_t txqid; 1571 bool intr_enable, intr_legacy; 1572 1573 DBG_COUNTER_INC(fast_intrs); 1574 if (info->ifi_filter != NULL) { 1575 result = info->ifi_filter(info->ifi_filter_arg); 1576 if ((result & FILTER_SCHEDULE_THREAD) == 0) 1577 return (result); 1578 } 1579 1580 ctx = rxq->ifr_ctx; 1581 sc = ctx->ifc_softc; 1582 intr_enable = false; 1583 intr_legacy = !!(ctx->ifc_flags & IFC_LEGACY); 1584 MPASS(rxq->ifr_ntxqirq); 1585 for (i = 0; i < rxq->ifr_ntxqirq; i++) { 1586 txqid = rxq->ifr_txqid[i]; 1587 txq = &ctx->ifc_txqs[txqid]; 1588 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 1589 BUS_DMASYNC_POSTREAD); 1590 if (!ctx->isc_txd_credits_update(sc, txqid, false)) { 1591 if (intr_legacy) 1592 intr_enable = true; 1593 else 1594 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid); 1595 continue; 1596 } 1597 GROUPTASK_ENQUEUE(&txq->ift_task); 1598 } 1599 if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ) 1600 cidx = rxq->ifr_cq_cidx; 1601 else 1602 cidx = rxq->ifr_fl[0].ifl_cidx; 1603 if (iflib_rxd_avail(ctx, rxq, cidx, 1)) 1604 GROUPTASK_ENQUEUE(gtask); 1605 else { 1606 if (intr_legacy) 1607 intr_enable = true; 1608 else 1609 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id); 1610 DBG_COUNTER_INC(rx_intr_enables); 1611 } 1612 if (intr_enable) 1613 IFDI_INTR_ENABLE(ctx); 1614 return (FILTER_HANDLED); 1615 } 1616 1617 static int 1618 iflib_fast_intr_ctx(void *arg) 1619 { 1620 iflib_filter_info_t info = arg; 1621 if_ctx_t ctx = info->ifi_ctx; 1622 int result; 1623 1624 DBG_COUNTER_INC(fast_intrs); 1625 if (info->ifi_filter != NULL) { 1626 result = info->ifi_filter(info->ifi_filter_arg); 1627 if ((result & FILTER_SCHEDULE_THREAD) == 0) 1628 return (result); 1629 } 1630 1631 taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task); 1632 return (FILTER_HANDLED); 1633 } 1634 1635 static int 1636 _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid, 1637 driver_filter_t filter, driver_intr_t handler, void *arg, 1638 const char *name) 1639 { 1640 struct resource *res; 1641 void *tag = NULL; 1642 device_t dev = ctx->ifc_dev; 1643 int flags, i, rc; 1644 1645 flags = RF_ACTIVE; 1646 if (ctx->ifc_flags & IFC_LEGACY) 1647 flags |= RF_SHAREABLE; 1648 MPASS(rid < 512); 1649 i = rid; 1650 res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, flags); 1651 if (res == NULL) { 1652 device_printf(dev, 1653 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 1654 return (ENOMEM); 1655 } 1656 irq->ii_res = res; 1657 KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL")); 1658 rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET, 1659 filter, handler, arg, &tag); 1660 if (rc != 0) { 1661 device_printf(dev, 1662 "failed to setup interrupt for rid %d, name %s: %d\n", 1663 rid, name ? name : "unknown", rc); 1664 return (rc); 1665 } else if (name) 1666 bus_describe_intr(dev, res, tag, "%s", name); 1667 1668 irq->ii_tag = tag; 1669 return (0); 1670 } 1671 1672 /********************************************************************* 1673 * 1674 * Allocate DMA resources for TX buffers as well as memory for the TX 1675 * mbuf map. TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a 1676 * iflib_sw_tx_desc_array structure, storing all the information that 1677 * is needed to transmit a packet on the wire. This is called only 1678 * once at attach, setup is done every reset. 1679 * 1680 **********************************************************************/ 1681 static int 1682 iflib_txsd_alloc(iflib_txq_t txq) 1683 { 1684 if_ctx_t ctx = txq->ift_ctx; 1685 if_shared_ctx_t sctx = ctx->ifc_sctx; 1686 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 1687 device_t dev = ctx->ifc_dev; 1688 bus_size_t tsomaxsize; 1689 bus_addr_t lowaddr; 1690 int err, nsegments, ntsosegments; 1691 bool tso; 1692 1693 nsegments = scctx->isc_tx_nsegments; 1694 ntsosegments = scctx->isc_tx_tso_segments_max; 1695 tsomaxsize = scctx->isc_tx_tso_size_max; 1696 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU) 1697 tsomaxsize += sizeof(struct ether_vlan_header); 1698 MPASS(scctx->isc_ntxd[0] > 0); 1699 MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0); 1700 MPASS(nsegments > 0); 1701 if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) { 1702 MPASS(ntsosegments > 0); 1703 MPASS(sctx->isc_tso_maxsize >= tsomaxsize); 1704 } 1705 1706 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width); 1707 1708 /* 1709 * Set up DMA tags for TX buffers. 1710 */ 1711 if ((err = bus_dma_tag_create(bus_get_dma_tag(dev), 1712 1, 0, /* alignment, bounds */ 1713 lowaddr, /* lowaddr */ 1714 BUS_SPACE_MAXADDR, /* highaddr */ 1715 NULL, NULL, /* filter, filterarg */ 1716 sctx->isc_tx_maxsize, /* maxsize */ 1717 nsegments, /* nsegments */ 1718 sctx->isc_tx_maxsegsize, /* maxsegsize */ 1719 0, /* flags */ 1720 NULL, /* lockfunc */ 1721 NULL, /* lockfuncarg */ 1722 &txq->ift_buf_tag))) { 1723 device_printf(dev, "Unable to allocate TX DMA tag: %d\n", err); 1724 device_printf(dev, "maxsize: %ju nsegments: %d maxsegsize: %ju\n", 1725 (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize); 1726 goto fail; 1727 } 1728 tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0; 1729 if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev), 1730 1, 0, /* alignment, bounds */ 1731 lowaddr, /* lowaddr */ 1732 BUS_SPACE_MAXADDR, /* highaddr */ 1733 NULL, NULL, /* filter, filterarg */ 1734 tsomaxsize, /* maxsize */ 1735 ntsosegments, /* nsegments */ 1736 sctx->isc_tso_maxsegsize, /* maxsegsize */ 1737 0, /* flags */ 1738 NULL, /* lockfunc */ 1739 NULL, /* lockfuncarg */ 1740 &txq->ift_tso_buf_tag))) { 1741 device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n", 1742 err); 1743 goto fail; 1744 } 1745 1746 /* Allocate memory for the TX mbuf map. */ 1747 if (!(txq->ift_sds.ifsd_m = 1748 (struct mbuf **) malloc(sizeof(struct mbuf *) * 1749 scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 1750 device_printf(dev, "Unable to allocate TX mbuf map memory\n"); 1751 err = ENOMEM; 1752 goto fail; 1753 } 1754 if (ctx->ifc_sysctl_simple_tx) { 1755 if (!(txq->ift_sds.ifsd_m_defer = 1756 (struct mbuf **) malloc(sizeof(struct mbuf *) * 1757 scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 1758 device_printf(dev, "Unable to allocate TX mbuf map memory\n"); 1759 err = ENOMEM; 1760 goto fail; 1761 } 1762 } 1763 txq->ift_sds.ifsd_m_deferb = txq->ift_sds.ifsd_m_defer; 1764 /* 1765 * Create the DMA maps for TX buffers. 1766 */ 1767 if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc( 1768 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset], 1769 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { 1770 device_printf(dev, 1771 "Unable to allocate TX buffer DMA map memory\n"); 1772 err = ENOMEM; 1773 goto fail; 1774 } 1775 if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc( 1776 sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset], 1777 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { 1778 device_printf(dev, 1779 "Unable to allocate TSO TX buffer map memory\n"); 1780 err = ENOMEM; 1781 goto fail; 1782 } 1783 for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) { 1784 err = bus_dmamap_create(txq->ift_buf_tag, 0, 1785 &txq->ift_sds.ifsd_map[i]); 1786 if (err != 0) { 1787 device_printf(dev, "Unable to create TX DMA map\n"); 1788 goto fail; 1789 } 1790 if (!tso) 1791 continue; 1792 err = bus_dmamap_create(txq->ift_tso_buf_tag, 0, 1793 &txq->ift_sds.ifsd_tso_map[i]); 1794 if (err != 0) { 1795 device_printf(dev, "Unable to create TSO TX DMA map\n"); 1796 goto fail; 1797 } 1798 } 1799 return (0); 1800 fail: 1801 /* We free all, it handles case where we are in the middle */ 1802 iflib_tx_structures_free(ctx); 1803 return (err); 1804 } 1805 1806 static void 1807 iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i) 1808 { 1809 bus_dmamap_t map; 1810 1811 if (txq->ift_sds.ifsd_map != NULL) { 1812 map = txq->ift_sds.ifsd_map[i]; 1813 bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE); 1814 bus_dmamap_unload(txq->ift_buf_tag, map); 1815 bus_dmamap_destroy(txq->ift_buf_tag, map); 1816 txq->ift_sds.ifsd_map[i] = NULL; 1817 } 1818 1819 if (txq->ift_sds.ifsd_tso_map != NULL) { 1820 map = txq->ift_sds.ifsd_tso_map[i]; 1821 bus_dmamap_sync(txq->ift_tso_buf_tag, map, 1822 BUS_DMASYNC_POSTWRITE); 1823 bus_dmamap_unload(txq->ift_tso_buf_tag, map); 1824 bus_dmamap_destroy(txq->ift_tso_buf_tag, map); 1825 txq->ift_sds.ifsd_tso_map[i] = NULL; 1826 } 1827 } 1828 1829 static void 1830 iflib_txq_destroy(iflib_txq_t txq) 1831 { 1832 if_ctx_t ctx = txq->ift_ctx; 1833 1834 for (int i = 0; i < txq->ift_size; i++) 1835 iflib_txsd_destroy(ctx, txq, i); 1836 1837 if (txq->ift_br != NULL) { 1838 ifmp_ring_free(txq->ift_br); 1839 txq->ift_br = NULL; 1840 } 1841 1842 mtx_destroy(&txq->ift_mtx); 1843 1844 if (txq->ift_sds.ifsd_map != NULL) { 1845 free(txq->ift_sds.ifsd_map, M_IFLIB); 1846 txq->ift_sds.ifsd_map = NULL; 1847 } 1848 if (txq->ift_sds.ifsd_tso_map != NULL) { 1849 free(txq->ift_sds.ifsd_tso_map, M_IFLIB); 1850 txq->ift_sds.ifsd_tso_map = NULL; 1851 } 1852 if (txq->ift_sds.ifsd_m != NULL) { 1853 free(txq->ift_sds.ifsd_m, M_IFLIB); 1854 txq->ift_sds.ifsd_m = NULL; 1855 } 1856 if (txq->ift_sds.ifsd_m_defer != NULL) { 1857 free(txq->ift_sds.ifsd_m_defer, M_IFLIB); 1858 txq->ift_sds.ifsd_m_defer = NULL; 1859 } 1860 if (txq->ift_buf_tag != NULL) { 1861 bus_dma_tag_destroy(txq->ift_buf_tag); 1862 txq->ift_buf_tag = NULL; 1863 } 1864 if (txq->ift_tso_buf_tag != NULL) { 1865 bus_dma_tag_destroy(txq->ift_tso_buf_tag); 1866 txq->ift_tso_buf_tag = NULL; 1867 } 1868 if (txq->ift_ifdi != NULL) { 1869 free(txq->ift_ifdi, M_IFLIB); 1870 } 1871 } 1872 1873 static void 1874 iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i) 1875 { 1876 struct mbuf *m; 1877 1878 m = IFLIB_GET_MBUF(txq->ift_sds.ifsd_m[i]); 1879 if (m == NULL) 1880 return; 1881 1882 if (txq->ift_sds.ifsd_map != NULL) { 1883 bus_dmamap_sync(txq->ift_buf_tag, 1884 txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE); 1885 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]); 1886 } 1887 if (txq->ift_sds.ifsd_tso_map != NULL) { 1888 bus_dmamap_sync(txq->ift_tso_buf_tag, 1889 txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE); 1890 bus_dmamap_unload(txq->ift_tso_buf_tag, 1891 txq->ift_sds.ifsd_tso_map[i]); 1892 } 1893 m_freem(m); 1894 DBG_COUNTER_INC(tx_frees); 1895 } 1896 1897 static int 1898 iflib_txq_setup(iflib_txq_t txq) 1899 { 1900 if_ctx_t ctx = txq->ift_ctx; 1901 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 1902 if_shared_ctx_t sctx = ctx->ifc_sctx; 1903 iflib_dma_info_t di; 1904 int i; 1905 1906 /* Set number of descriptors available */ 1907 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 1908 /* XXX make configurable */ 1909 txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ; 1910 1911 /* Reset indices */ 1912 txq->ift_cidx_processed = 0; 1913 txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0; 1914 txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset]; 1915 txq->ift_pad = scctx->isc_tx_pad; 1916 1917 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++) 1918 bzero((void *)di->idi_vaddr, di->idi_size); 1919 1920 IFDI_TXQ_SETUP(ctx, txq->ift_id); 1921 for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++) 1922 bus_dmamap_sync(di->idi_tag, di->idi_map, 1923 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1924 return (0); 1925 } 1926 1927 /********************************************************************* 1928 * 1929 * Allocate DMA resources for RX buffers as well as memory for the RX 1930 * mbuf map, direct RX cluster pointer map and RX cluster bus address 1931 * map. RX DMA map, RX mbuf map, direct RX cluster pointer map and 1932 * RX cluster map are kept in a iflib_sw_rx_desc_array structure. 1933 * Since we use use one entry in iflib_sw_rx_desc_array per received 1934 * packet, the maximum number of entries we'll need is equal to the 1935 * number of hardware receive descriptors that we've allocated. 1936 * 1937 **********************************************************************/ 1938 static int 1939 iflib_rxsd_alloc(iflib_rxq_t rxq) 1940 { 1941 if_ctx_t ctx = rxq->ifr_ctx; 1942 if_shared_ctx_t sctx = ctx->ifc_sctx; 1943 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 1944 device_t dev = ctx->ifc_dev; 1945 iflib_fl_t fl; 1946 bus_addr_t lowaddr; 1947 int err; 1948 1949 MPASS(scctx->isc_nrxd[0] > 0); 1950 MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0); 1951 1952 lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width); 1953 1954 fl = rxq->ifr_fl; 1955 for (int i = 0; i < rxq->ifr_nfl; i++, fl++) { 1956 fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */ 1957 /* Set up DMA tag for RX buffers. */ 1958 err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1959 1, 0, /* alignment, bounds */ 1960 lowaddr, /* lowaddr */ 1961 BUS_SPACE_MAXADDR, /* highaddr */ 1962 NULL, NULL, /* filter, filterarg */ 1963 sctx->isc_rx_maxsize, /* maxsize */ 1964 sctx->isc_rx_nsegments, /* nsegments */ 1965 sctx->isc_rx_maxsegsize, /* maxsegsize */ 1966 0, /* flags */ 1967 NULL, /* lockfunc */ 1968 NULL, /* lockarg */ 1969 &fl->ifl_buf_tag); 1970 if (err) { 1971 device_printf(dev, 1972 "Unable to allocate RX DMA tag: %d\n", err); 1973 goto fail; 1974 } 1975 1976 /* Allocate memory for the RX mbuf map. */ 1977 if (!(fl->ifl_sds.ifsd_m = 1978 (struct mbuf **) malloc(sizeof(struct mbuf *) * 1979 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 1980 device_printf(dev, 1981 "Unable to allocate RX mbuf map memory\n"); 1982 err = ENOMEM; 1983 goto fail; 1984 } 1985 1986 /* Allocate memory for the direct RX cluster pointer map. */ 1987 if (!(fl->ifl_sds.ifsd_cl = 1988 (caddr_t *) malloc(sizeof(caddr_t) * 1989 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 1990 device_printf(dev, 1991 "Unable to allocate RX cluster map memory\n"); 1992 err = ENOMEM; 1993 goto fail; 1994 } 1995 1996 /* Allocate memory for the RX cluster bus address map. */ 1997 if (!(fl->ifl_sds.ifsd_ba = 1998 (bus_addr_t *) malloc(sizeof(bus_addr_t) * 1999 scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 2000 device_printf(dev, 2001 "Unable to allocate RX bus address map memory\n"); 2002 err = ENOMEM; 2003 goto fail; 2004 } 2005 2006 /* 2007 * Create the DMA maps for RX buffers. 2008 */ 2009 if (!(fl->ifl_sds.ifsd_map = 2010 (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { 2011 device_printf(dev, 2012 "Unable to allocate RX buffer DMA map memory\n"); 2013 err = ENOMEM; 2014 goto fail; 2015 } 2016 for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) { 2017 err = bus_dmamap_create(fl->ifl_buf_tag, 0, 2018 &fl->ifl_sds.ifsd_map[i]); 2019 if (err != 0) { 2020 device_printf(dev, "Unable to create RX buffer DMA map\n"); 2021 goto fail; 2022 } 2023 } 2024 } 2025 return (0); 2026 2027 fail: 2028 iflib_rx_structures_free(ctx); 2029 return (err); 2030 } 2031 2032 /* 2033 * Internal service routines 2034 */ 2035 2036 struct rxq_refill_cb_arg { 2037 int error; 2038 bus_dma_segment_t seg; 2039 int nseg; 2040 }; 2041 2042 static void 2043 _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 2044 { 2045 struct rxq_refill_cb_arg *cb_arg = arg; 2046 2047 cb_arg->error = error; 2048 cb_arg->seg = segs[0]; 2049 cb_arg->nseg = nseg; 2050 } 2051 2052 /** 2053 * iflib_fl_refill - refill an rxq free-buffer list 2054 * @ctx: the iflib context 2055 * @fl: the free list to refill 2056 * @count: the number of new buffers to allocate 2057 * 2058 * (Re)populate an rxq free-buffer list with up to @count new packet buffers. 2059 * The caller must assure that @count does not exceed the queue's capacity 2060 * minus one (since we always leave a descriptor unavailable). 2061 */ 2062 static uint8_t 2063 iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count) 2064 { 2065 struct if_rxd_update iru; 2066 struct rxq_refill_cb_arg cb_arg; 2067 struct mbuf *m; 2068 caddr_t cl, *sd_cl; 2069 struct mbuf **sd_m; 2070 bus_dmamap_t *sd_map; 2071 bus_addr_t bus_addr, *sd_ba; 2072 int err, frag_idx, i, idx, n, pidx; 2073 qidx_t credits; 2074 2075 MPASS(count <= fl->ifl_size - fl->ifl_credits - 1); 2076 2077 sd_m = fl->ifl_sds.ifsd_m; 2078 sd_map = fl->ifl_sds.ifsd_map; 2079 sd_cl = fl->ifl_sds.ifsd_cl; 2080 sd_ba = fl->ifl_sds.ifsd_ba; 2081 pidx = fl->ifl_pidx; 2082 idx = pidx; 2083 frag_idx = fl->ifl_fragidx; 2084 credits = fl->ifl_credits; 2085 2086 i = 0; 2087 n = count; 2088 MPASS(n > 0); 2089 MPASS(credits + n <= fl->ifl_size); 2090 2091 if (pidx < fl->ifl_cidx) 2092 MPASS(pidx + n <= fl->ifl_cidx); 2093 if (pidx == fl->ifl_cidx && (credits < fl->ifl_size)) 2094 MPASS(fl->ifl_gen == 0); 2095 if (pidx > fl->ifl_cidx) 2096 MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx); 2097 2098 DBG_COUNTER_INC(fl_refills); 2099 if (n > 8) 2100 DBG_COUNTER_INC(fl_refills_large); 2101 iru_init(&iru, fl->ifl_rxq, fl->ifl_id); 2102 while (n-- > 0) { 2103 /* 2104 * We allocate an uninitialized mbuf + cluster, mbuf is 2105 * initialized after rx. 2106 * 2107 * If the cluster is still set then we know a minimum sized 2108 * packet was received 2109 */ 2110 bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size, 2111 &frag_idx); 2112 if (frag_idx < 0) 2113 bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx); 2114 MPASS(frag_idx >= 0); 2115 if ((cl = sd_cl[frag_idx]) == NULL) { 2116 cl = uma_zalloc(fl->ifl_zone, M_NOWAIT); 2117 if (__predict_false(cl == NULL)) 2118 break; 2119 2120 cb_arg.error = 0; 2121 MPASS(sd_map != NULL); 2122 err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx], 2123 cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg, 2124 BUS_DMA_NOWAIT); 2125 if (__predict_false(err != 0 || cb_arg.error)) { 2126 uma_zfree(fl->ifl_zone, cl); 2127 break; 2128 } 2129 2130 sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr; 2131 sd_cl[frag_idx] = cl; 2132 #if MEMORY_LOGGING 2133 fl->ifl_cl_enqueued++; 2134 #endif 2135 } else { 2136 bus_addr = sd_ba[frag_idx]; 2137 } 2138 bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx], 2139 BUS_DMASYNC_PREREAD); 2140 2141 if (sd_m[frag_idx] == NULL) { 2142 m = m_gethdr_raw(M_NOWAIT, 0); 2143 if (__predict_false(m == NULL)) 2144 break; 2145 sd_m[frag_idx] = m; 2146 } 2147 bit_set(fl->ifl_rx_bitmap, frag_idx); 2148 #if MEMORY_LOGGING 2149 fl->ifl_m_enqueued++; 2150 #endif 2151 2152 DBG_COUNTER_INC(rx_allocs); 2153 fl->ifl_rxd_idxs[i] = frag_idx; 2154 fl->ifl_bus_addrs[i] = bus_addr; 2155 credits++; 2156 i++; 2157 MPASS(credits <= fl->ifl_size); 2158 if (++idx == fl->ifl_size) { 2159 #ifdef INVARIANTS 2160 fl->ifl_gen = 1; 2161 #endif 2162 idx = 0; 2163 } 2164 if (n == 0 || i == IFLIB_MAX_RX_REFRESH) { 2165 iru.iru_pidx = pidx; 2166 iru.iru_count = i; 2167 ctx->isc_rxd_refill(ctx->ifc_softc, &iru); 2168 fl->ifl_pidx = idx; 2169 fl->ifl_credits = credits; 2170 pidx = idx; 2171 i = 0; 2172 } 2173 } 2174 2175 if (n < count - 1) { 2176 if (i != 0) { 2177 iru.iru_pidx = pidx; 2178 iru.iru_count = i; 2179 ctx->isc_rxd_refill(ctx->ifc_softc, &iru); 2180 fl->ifl_pidx = idx; 2181 fl->ifl_credits = credits; 2182 } 2183 DBG_COUNTER_INC(rxd_flush); 2184 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 2185 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2186 ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id, 2187 fl->ifl_id, fl->ifl_pidx); 2188 if (__predict_true(bit_test(fl->ifl_rx_bitmap, frag_idx))) { 2189 fl->ifl_fragidx = frag_idx + 1; 2190 if (fl->ifl_fragidx == fl->ifl_size) 2191 fl->ifl_fragidx = 0; 2192 } else { 2193 fl->ifl_fragidx = frag_idx; 2194 } 2195 } 2196 2197 return (n == -1 ? 0 : IFLIB_RXEOF_EMPTY); 2198 } 2199 2200 static inline uint8_t 2201 iflib_fl_refill_all(if_ctx_t ctx, iflib_fl_t fl) 2202 { 2203 /* 2204 * We leave an unused descriptor to avoid pidx to catch up with cidx. 2205 * This is important as it confuses most NICs. For instance, 2206 * Intel NICs have (per receive ring) RDH and RDT registers, where 2207 * RDH points to the next receive descriptor to be used by the NIC, 2208 * and RDT for the next receive descriptor to be published by the 2209 * driver to the NIC (RDT - 1 is thus the last valid one). 2210 * The condition RDH == RDT means no descriptors are available to 2211 * the NIC, and thus it would be ambiguous if it also meant that 2212 * all the descriptors are available to the NIC. 2213 */ 2214 int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1; 2215 #ifdef INVARIANTS 2216 int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1; 2217 #endif 2218 2219 MPASS(fl->ifl_credits <= fl->ifl_size); 2220 MPASS(reclaimable == delta); 2221 2222 if (reclaimable > 0) 2223 return (iflib_fl_refill(ctx, fl, reclaimable)); 2224 return (0); 2225 } 2226 2227 uint8_t 2228 iflib_in_detach(if_ctx_t ctx) 2229 { 2230 bool in_detach; 2231 2232 STATE_LOCK(ctx); 2233 in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH); 2234 STATE_UNLOCK(ctx); 2235 return (in_detach); 2236 } 2237 2238 static void 2239 iflib_fl_bufs_free(iflib_fl_t fl) 2240 { 2241 iflib_dma_info_t idi = fl->ifl_ifdi; 2242 bus_dmamap_t sd_map; 2243 uint32_t i; 2244 2245 for (i = 0; i < fl->ifl_size; i++) { 2246 struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i]; 2247 caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i]; 2248 2249 if (*sd_cl != NULL) { 2250 sd_map = fl->ifl_sds.ifsd_map[i]; 2251 bus_dmamap_sync(fl->ifl_buf_tag, sd_map, 2252 BUS_DMASYNC_POSTREAD); 2253 bus_dmamap_unload(fl->ifl_buf_tag, sd_map); 2254 uma_zfree(fl->ifl_zone, *sd_cl); 2255 *sd_cl = NULL; 2256 if (*sd_m != NULL) { 2257 m_init(*sd_m, M_NOWAIT, MT_DATA, 0); 2258 m_free_raw(*sd_m); 2259 *sd_m = NULL; 2260 } 2261 } else { 2262 MPASS(*sd_m == NULL); 2263 } 2264 #if MEMORY_LOGGING 2265 fl->ifl_m_dequeued++; 2266 fl->ifl_cl_dequeued++; 2267 #endif 2268 } 2269 #ifdef INVARIANTS 2270 for (i = 0; i < fl->ifl_size; i++) { 2271 MPASS(fl->ifl_sds.ifsd_cl[i] == NULL); 2272 MPASS(fl->ifl_sds.ifsd_m[i] == NULL); 2273 } 2274 #endif 2275 /* 2276 * Reset free list values 2277 */ 2278 fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0; 2279 bzero(idi->idi_vaddr, idi->idi_size); 2280 } 2281 2282 /********************************************************************* 2283 * 2284 * Initialize a free list and its buffers. 2285 * 2286 **********************************************************************/ 2287 static int 2288 iflib_fl_setup(iflib_fl_t fl) 2289 { 2290 iflib_rxq_t rxq = fl->ifl_rxq; 2291 if_ctx_t ctx = rxq->ifr_ctx; 2292 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 2293 int qidx; 2294 2295 bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1); 2296 /* 2297 * Free current RX buffer structs and their mbufs 2298 */ 2299 iflib_fl_bufs_free(fl); 2300 /* Now replenish the mbufs */ 2301 MPASS(fl->ifl_credits == 0); 2302 qidx = rxq->ifr_fl_offset + fl->ifl_id; 2303 if (scctx->isc_rxd_buf_size[qidx] != 0) 2304 fl->ifl_buf_size = scctx->isc_rxd_buf_size[qidx]; 2305 else 2306 fl->ifl_buf_size = ctx->ifc_rx_mbuf_sz; 2307 /* 2308 * ifl_buf_size may be a driver-supplied value, so pull it up 2309 * to the selected mbuf size. 2310 */ 2311 fl->ifl_buf_size = iflib_get_mbuf_size_for(fl->ifl_buf_size); 2312 if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size) 2313 ctx->ifc_max_fl_buf_size = fl->ifl_buf_size; 2314 fl->ifl_cltype = m_gettype(fl->ifl_buf_size); 2315 fl->ifl_zone = m_getzone(fl->ifl_buf_size); 2316 2317 /* 2318 * Avoid pre-allocating zillions of clusters to an idle card 2319 * potentially speeding up attach. In any case make sure 2320 * to leave a descriptor unavailable. See the comment in 2321 * iflib_fl_refill_all(). 2322 */ 2323 MPASS(fl->ifl_size > 0); 2324 (void)iflib_fl_refill(ctx, fl, min(128, fl->ifl_size - 1)); 2325 if (min(128, fl->ifl_size - 1) != fl->ifl_credits) 2326 return (ENOBUFS); 2327 /* 2328 * handle failure 2329 */ 2330 MPASS(rxq != NULL); 2331 MPASS(fl->ifl_ifdi != NULL); 2332 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 2333 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2334 return (0); 2335 } 2336 2337 /********************************************************************* 2338 * 2339 * Free receive ring data structures 2340 * 2341 **********************************************************************/ 2342 static void 2343 iflib_rx_sds_free(iflib_rxq_t rxq) 2344 { 2345 iflib_fl_t fl; 2346 int i, j; 2347 2348 if (rxq->ifr_fl != NULL) { 2349 for (i = 0; i < rxq->ifr_nfl; i++) { 2350 fl = &rxq->ifr_fl[i]; 2351 if (fl->ifl_buf_tag != NULL) { 2352 if (fl->ifl_sds.ifsd_map != NULL) { 2353 for (j = 0; j < fl->ifl_size; j++) { 2354 bus_dmamap_sync( 2355 fl->ifl_buf_tag, 2356 fl->ifl_sds.ifsd_map[j], 2357 BUS_DMASYNC_POSTREAD); 2358 bus_dmamap_unload( 2359 fl->ifl_buf_tag, 2360 fl->ifl_sds.ifsd_map[j]); 2361 bus_dmamap_destroy( 2362 fl->ifl_buf_tag, 2363 fl->ifl_sds.ifsd_map[j]); 2364 } 2365 } 2366 bus_dma_tag_destroy(fl->ifl_buf_tag); 2367 fl->ifl_buf_tag = NULL; 2368 } 2369 free(fl->ifl_sds.ifsd_m, M_IFLIB); 2370 free(fl->ifl_sds.ifsd_cl, M_IFLIB); 2371 free(fl->ifl_sds.ifsd_ba, M_IFLIB); 2372 free(fl->ifl_sds.ifsd_map, M_IFLIB); 2373 free(fl->ifl_rx_bitmap, M_IFLIB); 2374 fl->ifl_sds.ifsd_m = NULL; 2375 fl->ifl_sds.ifsd_cl = NULL; 2376 fl->ifl_sds.ifsd_ba = NULL; 2377 fl->ifl_sds.ifsd_map = NULL; 2378 fl->ifl_rx_bitmap = NULL; 2379 } 2380 free(rxq->ifr_fl, M_IFLIB); 2381 rxq->ifr_fl = NULL; 2382 free(rxq->ifr_ifdi, M_IFLIB); 2383 rxq->ifr_ifdi = NULL; 2384 rxq->ifr_cq_cidx = 0; 2385 } 2386 } 2387 2388 /* 2389 * Timer routine 2390 */ 2391 static void 2392 iflib_timer(void *arg) 2393 { 2394 iflib_txq_t txq = arg; 2395 if_ctx_t ctx = txq->ift_ctx; 2396 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; 2397 uint64_t this_tick = ticks; 2398 2399 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)) 2400 return; 2401 2402 /* 2403 ** Check on the state of the TX queue(s), this 2404 ** can be done without the lock because its RO 2405 ** and the HUNG state will be static if set. 2406 */ 2407 if (this_tick - txq->ift_last_timer_tick >= iflib_timer_default) { 2408 txq->ift_last_timer_tick = this_tick; 2409 IFDI_TIMER(ctx, txq->ift_id); 2410 if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) && 2411 ((txq->ift_cleaned_prev == txq->ift_cleaned) || 2412 (sctx->isc_pause_frames == 0))) 2413 goto hung; 2414 2415 if (txq->ift_qstatus != IFLIB_QUEUE_IDLE && 2416 ifmp_ring_is_stalled(txq->ift_br)) { 2417 KASSERT(ctx->ifc_link_state == LINK_STATE_UP, 2418 ("queue can't be marked as hung if interface is down")); 2419 txq->ift_qstatus = IFLIB_QUEUE_HUNG; 2420 } 2421 txq->ift_cleaned_prev = txq->ift_cleaned; 2422 } 2423 /* handle any laggards */ 2424 if (txq->ift_db_pending) 2425 GROUPTASK_ENQUEUE(&txq->ift_task); 2426 2427 sctx->isc_pause_frames = 0; 2428 if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) 2429 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, 2430 txq, txq->ift_timer.c_cpu); 2431 return; 2432 2433 hung: 2434 device_printf(ctx->ifc_dev, 2435 "Watchdog timeout (TX: %d desc avail: %d pidx: %d) -- resetting\n", 2436 txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx); 2437 STATE_LOCK(ctx); 2438 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); 2439 ctx->ifc_flags |= (IFC_DO_WATCHDOG | IFC_DO_RESET); 2440 iflib_admin_intr_deferred(ctx); 2441 STATE_UNLOCK(ctx); 2442 } 2443 2444 static uint16_t 2445 iflib_get_mbuf_size_for(unsigned int size) 2446 { 2447 2448 if (size <= MCLBYTES) 2449 return (MCLBYTES); 2450 else 2451 return (MJUMPAGESIZE); 2452 } 2453 2454 static void 2455 iflib_calc_rx_mbuf_sz(if_ctx_t ctx) 2456 { 2457 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; 2458 2459 /* 2460 * XXX don't set the max_frame_size to larger 2461 * than the hardware can handle 2462 */ 2463 ctx->ifc_rx_mbuf_sz = 2464 iflib_get_mbuf_size_for(sctx->isc_max_frame_size); 2465 } 2466 2467 uint32_t 2468 iflib_get_rx_mbuf_sz(if_ctx_t ctx) 2469 { 2470 2471 return (ctx->ifc_rx_mbuf_sz); 2472 } 2473 2474 static void 2475 iflib_init_locked(if_ctx_t ctx) 2476 { 2477 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 2478 if_t ifp = ctx->ifc_ifp; 2479 iflib_fl_t fl; 2480 iflib_txq_t txq; 2481 iflib_rxq_t rxq; 2482 int i, j, tx_ip_csum_flags, tx_ip6_csum_flags; 2483 2484 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); 2485 IFDI_INTR_DISABLE(ctx); 2486 2487 /* 2488 * See iflib_stop(). Useful in case iflib_init_locked() is 2489 * called without first calling iflib_stop(). 2490 */ 2491 netmap_disable_all_rings(ifp); 2492 2493 tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP); 2494 tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP); 2495 /* Set hardware offload abilities */ 2496 if_clearhwassist(ifp); 2497 if (if_getcapenable(ifp) & IFCAP_TXCSUM) 2498 if_sethwassistbits(ifp, tx_ip_csum_flags, 0); 2499 if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6) 2500 if_sethwassistbits(ifp, tx_ip6_csum_flags, 0); 2501 if (if_getcapenable(ifp) & IFCAP_TSO4) 2502 if_sethwassistbits(ifp, CSUM_IP_TSO, 0); 2503 if (if_getcapenable(ifp) & IFCAP_TSO6) 2504 if_sethwassistbits(ifp, CSUM_IP6_TSO, 0); 2505 2506 for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) { 2507 CALLOUT_LOCK(txq); 2508 callout_stop(&txq->ift_timer); 2509 #ifdef DEV_NETMAP 2510 callout_stop(&txq->ift_netmap_timer); 2511 #endif /* DEV_NETMAP */ 2512 CALLOUT_UNLOCK(txq); 2513 (void)iflib_netmap_txq_init(ctx, txq); 2514 } 2515 2516 /* 2517 * Calculate a suitable Rx mbuf size prior to calling IFDI_INIT, so 2518 * that drivers can use the value when setting up the hardware receive 2519 * buffers. 2520 */ 2521 iflib_calc_rx_mbuf_sz(ctx); 2522 2523 #ifdef INVARIANTS 2524 i = if_getdrvflags(ifp); 2525 #endif 2526 IFDI_INIT(ctx); 2527 MPASS(if_getdrvflags(ifp) == i); 2528 for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) { 2529 if (iflib_netmap_rxq_init(ctx, rxq) > 0) { 2530 /* This rxq is in netmap mode. Skip normal init. */ 2531 continue; 2532 } 2533 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) { 2534 if (iflib_fl_setup(fl)) { 2535 device_printf(ctx->ifc_dev, 2536 "setting up free list %d failed - " 2537 "check cluster settings\n", j); 2538 goto done; 2539 } 2540 } 2541 } 2542 done: 2543 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); 2544 IFDI_INTR_ENABLE(ctx); 2545 txq = ctx->ifc_txqs; 2546 for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) 2547 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq, 2548 txq->ift_timer.c_cpu); 2549 2550 /* Re-enable txsync/rxsync. */ 2551 netmap_enable_all_rings(ifp); 2552 } 2553 2554 static int 2555 iflib_media_change(if_t ifp) 2556 { 2557 if_ctx_t ctx = if_getsoftc(ifp); 2558 int err; 2559 2560 CTX_LOCK(ctx); 2561 if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0) 2562 iflib_if_init_locked(ctx); 2563 CTX_UNLOCK(ctx); 2564 return (err); 2565 } 2566 2567 static void 2568 iflib_media_status(if_t ifp, struct ifmediareq *ifmr) 2569 { 2570 if_ctx_t ctx = if_getsoftc(ifp); 2571 2572 CTX_LOCK(ctx); 2573 IFDI_UPDATE_ADMIN_STATUS(ctx); 2574 IFDI_MEDIA_STATUS(ctx, ifmr); 2575 CTX_UNLOCK(ctx); 2576 } 2577 2578 static void 2579 iflib_stop(if_ctx_t ctx) 2580 { 2581 iflib_txq_t txq = ctx->ifc_txqs; 2582 iflib_rxq_t rxq = ctx->ifc_rxqs; 2583 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 2584 if_shared_ctx_t sctx = ctx->ifc_sctx; 2585 iflib_dma_info_t di; 2586 iflib_fl_t fl; 2587 int i, j; 2588 2589 /* Tell the stack that the interface is no longer active */ 2590 if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); 2591 2592 IFDI_INTR_DISABLE(ctx); 2593 DELAY(1000); 2594 IFDI_STOP(ctx); 2595 DELAY(1000); 2596 2597 /* 2598 * Stop any pending txsync/rxsync and prevent new ones 2599 * form starting. Processes blocked in poll() will get 2600 * POLLERR. 2601 */ 2602 netmap_disable_all_rings(ctx->ifc_ifp); 2603 2604 iflib_debug_reset(); 2605 /* Wait for current tx queue users to exit to disarm watchdog timer. */ 2606 for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) { 2607 /* make sure all transmitters have completed before proceeding XXX */ 2608 2609 CALLOUT_LOCK(txq); 2610 callout_stop(&txq->ift_timer); 2611 #ifdef DEV_NETMAP 2612 callout_stop(&txq->ift_netmap_timer); 2613 #endif /* DEV_NETMAP */ 2614 CALLOUT_UNLOCK(txq); 2615 2616 if (!ctx->ifc_sysctl_simple_tx) { 2617 /* clean any enqueued buffers */ 2618 iflib_ifmp_purge(txq); 2619 } 2620 /* Free any existing tx buffers. */ 2621 for (j = 0; j < txq->ift_size; j++) { 2622 iflib_txsd_free(ctx, txq, j); 2623 } 2624 txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0; 2625 txq->ift_in_use = txq->ift_gen = txq->ift_no_desc_avail = 0; 2626 if (sctx->isc_flags & IFLIB_PRESERVE_TX_INDICES) 2627 txq->ift_cidx = txq->ift_pidx; 2628 else 2629 txq->ift_cidx = txq->ift_pidx = 0; 2630 2631 txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0; 2632 txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0; 2633 txq->ift_pullups = 0; 2634 ifmp_ring_reset_stats(txq->ift_br); 2635 for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++) 2636 bzero((void *)di->idi_vaddr, di->idi_size); 2637 } 2638 for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) { 2639 if (rxq->ifr_task.gt_taskqueue != NULL) 2640 gtaskqueue_drain(rxq->ifr_task.gt_taskqueue, 2641 &rxq->ifr_task.gt_task); 2642 2643 rxq->ifr_cq_cidx = 0; 2644 for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++) 2645 bzero((void *)di->idi_vaddr, di->idi_size); 2646 /* also resets the free lists pidx/cidx */ 2647 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) 2648 iflib_fl_bufs_free(fl); 2649 } 2650 } 2651 2652 static inline caddr_t 2653 calc_next_rxd(iflib_fl_t fl, int cidx) 2654 { 2655 qidx_t size; 2656 int nrxd; 2657 caddr_t start, end, cur, next; 2658 2659 nrxd = fl->ifl_size; 2660 size = fl->ifl_rxd_size; 2661 start = fl->ifl_ifdi->idi_vaddr; 2662 2663 if (__predict_false(size == 0)) 2664 return (start); 2665 cur = start + size * cidx; 2666 end = start + size * nrxd; 2667 next = CACHE_PTR_NEXT(cur); 2668 return (next < end ? next : start); 2669 } 2670 2671 static inline void 2672 prefetch_pkts(iflib_fl_t fl, int cidx) 2673 { 2674 int nextptr; 2675 int nrxd = fl->ifl_size; 2676 caddr_t next_rxd; 2677 2678 nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd - 1); 2679 prefetch(&fl->ifl_sds.ifsd_m[nextptr]); 2680 prefetch(&fl->ifl_sds.ifsd_cl[nextptr]); 2681 next_rxd = calc_next_rxd(fl, cidx); 2682 prefetch(next_rxd); 2683 prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd - 1)]); 2684 prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd - 1)]); 2685 prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd - 1)]); 2686 prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd - 1)]); 2687 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd - 1)]); 2688 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd - 1)]); 2689 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd - 1)]); 2690 prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd - 1)]); 2691 } 2692 2693 static struct mbuf * 2694 rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, bool unload, if_rxsd_t sd, 2695 int *pf_rv, if_rxd_info_t ri) 2696 { 2697 bus_dmamap_t map; 2698 iflib_fl_t fl; 2699 caddr_t payload; 2700 struct mbuf *m; 2701 int flid, cidx, len, next; 2702 2703 map = NULL; 2704 flid = irf->irf_flid; 2705 cidx = irf->irf_idx; 2706 fl = &rxq->ifr_fl[flid]; 2707 sd->ifsd_fl = fl; 2708 sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx]; 2709 fl->ifl_credits--; 2710 #if MEMORY_LOGGING 2711 fl->ifl_m_dequeued++; 2712 #endif 2713 if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH) 2714 prefetch_pkts(fl, cidx); 2715 next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size - 1); 2716 prefetch(&fl->ifl_sds.ifsd_map[next]); 2717 map = fl->ifl_sds.ifsd_map[cidx]; 2718 2719 bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD); 2720 2721 if (rxq->pfil != NULL && PFIL_HOOKED_IN(rxq->pfil) && pf_rv != NULL && 2722 irf->irf_len != 0) { 2723 payload = *sd->ifsd_cl; 2724 payload += ri->iri_pad; 2725 len = ri->iri_len - ri->iri_pad; 2726 *pf_rv = pfil_mem_in(rxq->pfil, payload, len, ri->iri_ifp, &m); 2727 switch (*pf_rv) { 2728 case PFIL_DROPPED: 2729 case PFIL_CONSUMED: 2730 /* 2731 * The filter ate it. Everything is recycled. 2732 */ 2733 m = NULL; 2734 unload = 0; 2735 break; 2736 case PFIL_REALLOCED: 2737 /* 2738 * The filter copied it. Everything is recycled. 2739 * 'm' points at new mbuf. 2740 */ 2741 unload = 0; 2742 break; 2743 case PFIL_PASS: 2744 /* 2745 * Filter said it was OK, so receive like 2746 * normal 2747 */ 2748 m = fl->ifl_sds.ifsd_m[cidx]; 2749 fl->ifl_sds.ifsd_m[cidx] = NULL; 2750 break; 2751 default: 2752 MPASS(0); 2753 } 2754 } else { 2755 m = fl->ifl_sds.ifsd_m[cidx]; 2756 fl->ifl_sds.ifsd_m[cidx] = NULL; 2757 if (pf_rv != NULL) 2758 *pf_rv = PFIL_PASS; 2759 } 2760 2761 if (unload && irf->irf_len != 0) 2762 bus_dmamap_unload(fl->ifl_buf_tag, map); 2763 fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size - 1); 2764 if (__predict_false(fl->ifl_cidx == 0)) 2765 fl->ifl_gen = 0; 2766 bit_clear(fl->ifl_rx_bitmap, cidx); 2767 return (m); 2768 } 2769 2770 static struct mbuf * 2771 assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd, int *pf_rv) 2772 { 2773 struct mbuf *m, *mh, *mt; 2774 caddr_t cl; 2775 int *pf_rv_ptr, flags, i, padlen; 2776 bool consumed; 2777 2778 i = 0; 2779 mh = NULL; 2780 consumed = false; 2781 *pf_rv = PFIL_PASS; 2782 pf_rv_ptr = pf_rv; 2783 do { 2784 m = rxd_frag_to_sd(rxq, &ri->iri_frags[i], !consumed, sd, 2785 pf_rv_ptr, ri); 2786 2787 MPASS(*sd->ifsd_cl != NULL); 2788 2789 /* 2790 * Exclude zero-length frags & frags from 2791 * packets the filter has consumed or dropped 2792 */ 2793 if (ri->iri_frags[i].irf_len == 0 || consumed || 2794 *pf_rv == PFIL_CONSUMED || *pf_rv == PFIL_DROPPED) { 2795 if (mh == NULL) { 2796 /* everything saved here */ 2797 consumed = true; 2798 pf_rv_ptr = NULL; 2799 continue; 2800 } 2801 /* XXX we can save the cluster here, but not the mbuf */ 2802 m_init(m, M_NOWAIT, MT_DATA, 0); 2803 m_free(m); 2804 continue; 2805 } 2806 if (mh == NULL) { 2807 flags = M_PKTHDR | M_EXT; 2808 mh = mt = m; 2809 padlen = ri->iri_pad; 2810 } else { 2811 flags = M_EXT; 2812 mt->m_next = m; 2813 mt = m; 2814 /* assuming padding is only on the first fragment */ 2815 padlen = 0; 2816 } 2817 cl = *sd->ifsd_cl; 2818 *sd->ifsd_cl = NULL; 2819 2820 /* Can these two be made one ? */ 2821 m_init(m, M_NOWAIT, MT_DATA, flags); 2822 m_cljset(m, cl, sd->ifsd_fl->ifl_cltype); 2823 /* 2824 * These must follow m_init and m_cljset 2825 */ 2826 m->m_data += padlen; 2827 ri->iri_len -= padlen; 2828 m->m_len = ri->iri_frags[i].irf_len; 2829 } while (++i < ri->iri_nfrags); 2830 2831 return (mh); 2832 } 2833 2834 /* 2835 * Process one software descriptor 2836 */ 2837 static struct mbuf * 2838 iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri) 2839 { 2840 struct if_rxsd sd; 2841 struct mbuf *m; 2842 int pf_rv; 2843 2844 /* should I merge this back in now that the two paths are basically duplicated? */ 2845 if (ri->iri_nfrags == 1 && 2846 ri->iri_frags[0].irf_len != 0 && 2847 ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) { 2848 m = rxd_frag_to_sd(rxq, &ri->iri_frags[0], false, &sd, 2849 &pf_rv, ri); 2850 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED) 2851 return (m); 2852 if (pf_rv == PFIL_PASS) { 2853 m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR); 2854 #ifndef __NO_STRICT_ALIGNMENT 2855 if (!IP_ALIGNED(m) && ri->iri_pad == 0) 2856 m->m_data += 2; 2857 #endif 2858 memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len); 2859 m->m_len = ri->iri_frags[0].irf_len; 2860 m->m_data += ri->iri_pad; 2861 ri->iri_len -= ri->iri_pad; 2862 } 2863 } else { 2864 m = assemble_segments(rxq, ri, &sd, &pf_rv); 2865 if (m == NULL) 2866 return (NULL); 2867 if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED) 2868 return (m); 2869 } 2870 m->m_pkthdr.len = ri->iri_len; 2871 m->m_pkthdr.rcvif = ri->iri_ifp; 2872 m->m_flags |= ri->iri_flags; 2873 m->m_pkthdr.ether_vtag = ri->iri_vtag; 2874 m->m_pkthdr.flowid = ri->iri_flowid; 2875 #ifdef NUMA 2876 m->m_pkthdr.numa_domain = if_getnumadomain(ri->iri_ifp); 2877 #endif 2878 M_HASHTYPE_SET(m, ri->iri_rsstype); 2879 m->m_pkthdr.csum_flags = ri->iri_csum_flags; 2880 m->m_pkthdr.csum_data = ri->iri_csum_data; 2881 return (m); 2882 } 2883 2884 static void 2885 _task_fn_rx_watchdog(void *context) 2886 { 2887 iflib_rxq_t rxq = context; 2888 2889 GROUPTASK_ENQUEUE(&rxq->ifr_task); 2890 } 2891 2892 static uint8_t 2893 iflib_rxeof(iflib_rxq_t rxq, qidx_t budget) 2894 { 2895 if_t ifp; 2896 if_ctx_t ctx = rxq->ifr_ctx; 2897 if_shared_ctx_t sctx = ctx->ifc_sctx; 2898 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 2899 int avail, i; 2900 qidx_t *cidxp; 2901 struct if_rxd_info ri; 2902 int err, budget_left, rx_bytes, rx_pkts; 2903 iflib_fl_t fl; 2904 #if defined(INET6) || defined(INET) 2905 int lro_enabled; 2906 #endif 2907 uint8_t retval = 0; 2908 2909 /* 2910 * XXX early demux data packets so that if_input processing only handles 2911 * acks in interrupt context 2912 */ 2913 struct mbuf *m, *mh, *mt; 2914 2915 NET_EPOCH_ASSERT(); 2916 2917 ifp = ctx->ifc_ifp; 2918 mh = mt = NULL; 2919 MPASS(budget > 0); 2920 rx_pkts = rx_bytes = 0; 2921 if (sctx->isc_flags & IFLIB_HAS_RXCQ) 2922 cidxp = &rxq->ifr_cq_cidx; 2923 else 2924 cidxp = &rxq->ifr_fl[0].ifl_cidx; 2925 if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) { 2926 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++) 2927 retval |= iflib_fl_refill_all(ctx, fl); 2928 DBG_COUNTER_INC(rx_unavail); 2929 return (retval); 2930 } 2931 2932 #if defined(INET6) || defined(INET) 2933 lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO); 2934 #endif 2935 2936 /* pfil needs the vnet to be set */ 2937 CURVNET_SET_QUIET(if_getvnet(ifp)); 2938 for (budget_left = budget; budget_left > 0 && avail > 0;) { 2939 if (__predict_false(!CTX_ACTIVE(ctx))) { 2940 DBG_COUNTER_INC(rx_ctx_inactive); 2941 break; 2942 } 2943 /* 2944 * Reset client set fields to their default values 2945 */ 2946 memset(&ri, 0, sizeof(ri)); 2947 ri.iri_qsidx = rxq->ifr_id; 2948 ri.iri_cidx = *cidxp; 2949 ri.iri_ifp = ifp; 2950 ri.iri_frags = rxq->ifr_frags; 2951 err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri); 2952 2953 if (err) 2954 goto err; 2955 rx_pkts += 1; 2956 rx_bytes += ri.iri_len; 2957 if (sctx->isc_flags & IFLIB_HAS_RXCQ) { 2958 *cidxp = ri.iri_cidx; 2959 /* Update our consumer index */ 2960 /* XXX NB: shurd - check if this is still safe */ 2961 while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0]) 2962 rxq->ifr_cq_cidx -= scctx->isc_nrxd[0]; 2963 /* was this only a completion queue message? */ 2964 if (__predict_false(ri.iri_nfrags == 0)) 2965 continue; 2966 } 2967 MPASS(ri.iri_nfrags != 0); 2968 MPASS(ri.iri_len != 0); 2969 2970 /* will advance the cidx on the corresponding free lists */ 2971 m = iflib_rxd_pkt_get(rxq, &ri); 2972 avail--; 2973 budget_left--; 2974 if (avail == 0 && budget_left) 2975 avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left); 2976 2977 if (__predict_false(m == NULL)) 2978 continue; 2979 2980 #ifndef __NO_STRICT_ALIGNMENT 2981 if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL) 2982 continue; 2983 #endif 2984 #if defined(INET6) || defined(INET) 2985 if (lro_enabled) { 2986 tcp_lro_queue_mbuf(&rxq->ifr_lc, m); 2987 continue; 2988 } 2989 #endif 2990 2991 if (mh == NULL) 2992 mh = mt = m; 2993 else { 2994 mt->m_nextpkt = m; 2995 mt = m; 2996 } 2997 } 2998 CURVNET_RESTORE(); 2999 /* make sure that we can refill faster than drain */ 3000 for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++) 3001 retval |= iflib_fl_refill_all(ctx, fl); 3002 3003 if (mh != NULL) { 3004 if_input(ifp, mh); 3005 DBG_COUNTER_INC(rx_if_input); 3006 } 3007 3008 if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes); 3009 if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts); 3010 3011 /* 3012 * Flush any outstanding LRO work 3013 */ 3014 #if defined(INET6) || defined(INET) 3015 tcp_lro_flush_all(&rxq->ifr_lc); 3016 #endif 3017 if (avail != 0 || iflib_rxd_avail(ctx, rxq, *cidxp, 1) != 0) 3018 retval |= IFLIB_RXEOF_MORE; 3019 return (retval); 3020 err: 3021 STATE_LOCK(ctx); 3022 ctx->ifc_flags |= IFC_DO_RESET; 3023 iflib_admin_intr_deferred(ctx); 3024 STATE_UNLOCK(ctx); 3025 return (0); 3026 } 3027 3028 #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq) - 1) 3029 static inline qidx_t 3030 txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use) 3031 { 3032 qidx_t notify_count = TXD_NOTIFY_COUNT(txq); 3033 qidx_t minthresh = txq->ift_size / 8; 3034 if (in_use > 4 * minthresh) 3035 return (notify_count); 3036 if (in_use > 2 * minthresh) 3037 return (notify_count >> 1); 3038 if (in_use > minthresh) 3039 return (notify_count >> 3); 3040 return (0); 3041 } 3042 3043 static inline qidx_t 3044 txq_max_rs_deferred(iflib_txq_t txq) 3045 { 3046 qidx_t notify_count = TXD_NOTIFY_COUNT(txq); 3047 qidx_t minthresh = txq->ift_size / 8; 3048 if (txq->ift_in_use > 4 * minthresh) 3049 return (notify_count); 3050 if (txq->ift_in_use > 2 * minthresh) 3051 return (notify_count >> 1); 3052 if (txq->ift_in_use > minthresh) 3053 return (notify_count >> 2); 3054 return (2); 3055 } 3056 3057 #define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags) 3058 #define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG) 3059 3060 #define TXQ_MAX_DB_DEFERRED(txq, in_use) txq_max_db_deferred((txq), (in_use)) 3061 #define TXQ_MAX_RS_DEFERRED(txq) txq_max_rs_deferred(txq) 3062 #define TXQ_MAX_DB_CONSUMED(size) (size >> 4) 3063 3064 /* forward compatibility for cxgb */ 3065 #define FIRST_QSET(ctx) 0 3066 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets) 3067 #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets) 3068 #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx)) 3069 #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments)) 3070 3071 #define MAX_TX_DESC(ctx) MAX((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \ 3072 (ctx)->ifc_softc_ctx.isc_tx_nsegments) 3073 3074 static inline bool 3075 iflib_txd_db_check(iflib_txq_t txq, int ring) 3076 { 3077 if_ctx_t ctx = txq->ift_ctx; 3078 qidx_t dbval, max; 3079 3080 max = TXQ_MAX_DB_DEFERRED(txq, txq->ift_in_use); 3081 3082 /* force || threshold exceeded || at the edge of the ring */ 3083 if (ring || (txq->ift_db_pending >= max) || (TXQ_AVAIL(txq) <= MAX_TX_DESC(ctx))) { 3084 3085 /* 3086 * 'npending' is used if the card's doorbell is in terms of the number of descriptors 3087 * pending flush (BRCM). 'pidx' is used in cases where the card's doorbeel uses the 3088 * producer index explicitly (INTC). 3089 */ 3090 dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx; 3091 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 3092 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3093 ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval); 3094 3095 /* 3096 * Absent bugs there are zero packets pending so reset pending counts to zero. 3097 */ 3098 txq->ift_db_pending = txq->ift_npending = 0; 3099 return (true); 3100 } 3101 return (false); 3102 } 3103 3104 #ifdef PKT_DEBUG 3105 static void 3106 print_pkt(if_pkt_info_t pi) 3107 { 3108 printf("pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n", 3109 pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx); 3110 printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n", 3111 pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag); 3112 printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n", 3113 pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto); 3114 } 3115 #endif 3116 3117 #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO) 3118 #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO)) 3119 #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO) 3120 #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO)) 3121 3122 /** 3123 * Parses out ethernet header information in the given mbuf. 3124 * Returns in pi: ipi_etype (EtherType) and ipi_ehdrlen (Ethernet header length) 3125 * 3126 * This will account for the VLAN header if present. 3127 * 3128 * XXX: This doesn't handle QinQ, which could prevent TX offloads for those 3129 * types of packets. 3130 */ 3131 static int 3132 iflib_parse_ether_header(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups) 3133 { 3134 struct ether_vlan_header *eh; 3135 struct mbuf *m; 3136 3137 m = *mp; 3138 if (__predict_false(m->m_len < sizeof(*eh))) { 3139 (*pullups)++; 3140 if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL)) 3141 return (ENOMEM); 3142 } 3143 eh = mtod(m, struct ether_vlan_header *); 3144 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 3145 pi->ipi_etype = ntohs(eh->evl_proto); 3146 pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 3147 } else { 3148 pi->ipi_etype = ntohs(eh->evl_encap_proto); 3149 pi->ipi_ehdrlen = ETHER_HDR_LEN; 3150 } 3151 *mp = m; 3152 3153 return (0); 3154 } 3155 3156 /** 3157 * Parse up to the L3 header and extract IPv4/IPv6 header information into pi. 3158 * Currently this information includes: IP ToS value, IP header version/presence 3159 * 3160 * This is missing some checks and doesn't edit the packet content as it goes, 3161 * unlike iflib_parse_header(), in order to keep the amount of code here minimal. 3162 */ 3163 static int 3164 iflib_parse_header_partial(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups) 3165 { 3166 struct mbuf *m; 3167 int err; 3168 3169 *pullups = 0; 3170 m = *mp; 3171 if (!M_WRITABLE(m)) { 3172 if ((m = m_dup(m, M_NOWAIT)) == NULL) { 3173 return (ENOMEM); 3174 } else { 3175 m_freem(*mp); 3176 DBG_COUNTER_INC(tx_frees); 3177 *mp = m; 3178 } 3179 } 3180 3181 /* Fills out pi->ipi_etype */ 3182 err = iflib_parse_ether_header(pi, mp, pullups); 3183 if (err) 3184 return (err); 3185 m = *mp; 3186 3187 switch (pi->ipi_etype) { 3188 #ifdef INET 3189 case ETHERTYPE_IP: 3190 { 3191 struct mbuf *n; 3192 struct ip *ip = NULL; 3193 int miniplen; 3194 3195 miniplen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip)); 3196 if (__predict_false(m->m_len < miniplen)) { 3197 /* 3198 * Check for common case where the first mbuf only contains 3199 * the Ethernet header 3200 */ 3201 if (m->m_len == pi->ipi_ehdrlen) { 3202 n = m->m_next; 3203 MPASS(n); 3204 /* If next mbuf contains at least the minimal IP header, then stop */ 3205 if (n->m_len >= sizeof(*ip)) { 3206 ip = (struct ip *)n->m_data; 3207 } else { 3208 (*pullups)++; 3209 if (__predict_false((m = m_pullup(m, miniplen)) == NULL)) 3210 return (ENOMEM); 3211 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3212 } 3213 } else { 3214 (*pullups)++; 3215 if (__predict_false((m = m_pullup(m, miniplen)) == NULL)) 3216 return (ENOMEM); 3217 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3218 } 3219 } else { 3220 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3221 } 3222 3223 /* Have the IPv4 header w/ no options here */ 3224 pi->ipi_ip_hlen = ip->ip_hl << 2; 3225 pi->ipi_ipproto = ip->ip_p; 3226 pi->ipi_ip_tos = ip->ip_tos; 3227 pi->ipi_flags |= IPI_TX_IPV4; 3228 3229 break; 3230 } 3231 #endif 3232 #ifdef INET6 3233 case ETHERTYPE_IPV6: 3234 { 3235 struct ip6_hdr *ip6; 3236 3237 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) { 3238 (*pullups)++; 3239 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL)) 3240 return (ENOMEM); 3241 } 3242 ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen); 3243 3244 /* Have the IPv6 fixed header here */ 3245 pi->ipi_ip_hlen = sizeof(struct ip6_hdr); 3246 pi->ipi_ipproto = ip6->ip6_nxt; 3247 pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6); 3248 pi->ipi_flags |= IPI_TX_IPV6; 3249 3250 break; 3251 } 3252 #endif 3253 default: 3254 pi->ipi_csum_flags &= ~CSUM_OFFLOAD; 3255 pi->ipi_ip_hlen = 0; 3256 break; 3257 } 3258 *mp = m; 3259 3260 return (0); 3261 3262 } 3263 3264 static int 3265 iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp) 3266 { 3267 if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx; 3268 struct mbuf *m; 3269 int err; 3270 3271 m = *mp; 3272 if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) && 3273 M_WRITABLE(m) == 0) { 3274 if ((m = m_dup(m, M_NOWAIT)) == NULL) { 3275 return (ENOMEM); 3276 } else { 3277 m_freem(*mp); 3278 DBG_COUNTER_INC(tx_frees); 3279 *mp = m; 3280 } 3281 } 3282 3283 /* Fills out pi->ipi_etype */ 3284 err = iflib_parse_ether_header(pi, mp, &txq->ift_pullups); 3285 if (__predict_false(err)) 3286 return (err); 3287 m = *mp; 3288 3289 switch (pi->ipi_etype) { 3290 #ifdef INET 3291 case ETHERTYPE_IP: 3292 { 3293 struct ip *ip; 3294 struct tcphdr *th; 3295 uint8_t hlen; 3296 3297 hlen = pi->ipi_ehdrlen + sizeof(*ip); 3298 if (__predict_false(m->m_len < hlen)) { 3299 txq->ift_pullups++; 3300 if (__predict_false((m = m_pullup(m, hlen)) == NULL)) 3301 return (ENOMEM); 3302 } 3303 ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); 3304 hlen = pi->ipi_ehdrlen + (ip->ip_hl << 2); 3305 if (ip->ip_p == IPPROTO_TCP) { 3306 hlen += sizeof(*th); 3307 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2)); 3308 } else if (ip->ip_p == IPPROTO_UDP) { 3309 hlen += sizeof(struct udphdr); 3310 } 3311 if (__predict_false(m->m_len < hlen)) { 3312 txq->ift_pullups++; 3313 if ((m = m_pullup(m, hlen)) == NULL) 3314 return (ENOMEM); 3315 } 3316 pi->ipi_ip_hlen = ip->ip_hl << 2; 3317 pi->ipi_ipproto = ip->ip_p; 3318 pi->ipi_ip_tos = ip->ip_tos; 3319 pi->ipi_flags |= IPI_TX_IPV4; 3320 3321 /* TCP checksum offload may require TCP header length */ 3322 if (IS_TX_OFFLOAD4(pi)) { 3323 if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) { 3324 pi->ipi_tcp_hflags = tcp_get_flags(th); 3325 pi->ipi_tcp_hlen = th->th_off << 2; 3326 pi->ipi_tcp_seq = th->th_seq; 3327 } 3328 if (IS_TSO4(pi)) { 3329 if (__predict_false(ip->ip_p != IPPROTO_TCP)) 3330 return (ENXIO); 3331 /* 3332 * TSO always requires hardware checksum offload. 3333 */ 3334 pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP); 3335 th->th_sum = in_pseudo(ip->ip_src.s_addr, 3336 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 3337 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz; 3338 if (sctx->isc_flags & IFLIB_TSO_INIT_IP) { 3339 ip->ip_sum = 0; 3340 ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz); 3341 } 3342 } 3343 } 3344 if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP)) 3345 ip->ip_sum = 0; 3346 3347 break; 3348 } 3349 #endif 3350 #ifdef INET6 3351 case ETHERTYPE_IPV6: 3352 { 3353 struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen); 3354 struct tcphdr *th; 3355 pi->ipi_ip_hlen = sizeof(struct ip6_hdr); 3356 3357 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) { 3358 txq->ift_pullups++; 3359 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL)) 3360 return (ENOMEM); 3361 } 3362 th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen); 3363 3364 /* XXX-BZ this will go badly in case of ext hdrs. */ 3365 pi->ipi_ipproto = ip6->ip6_nxt; 3366 pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6); 3367 pi->ipi_flags |= IPI_TX_IPV6; 3368 3369 /* TCP checksum offload may require TCP header length */ 3370 if (IS_TX_OFFLOAD6(pi)) { 3371 if (pi->ipi_ipproto == IPPROTO_TCP) { 3372 if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) { 3373 txq->ift_pullups++; 3374 if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL)) 3375 return (ENOMEM); 3376 } 3377 pi->ipi_tcp_hflags = tcp_get_flags(th); 3378 pi->ipi_tcp_hlen = th->th_off << 2; 3379 pi->ipi_tcp_seq = th->th_seq; 3380 } 3381 if (IS_TSO6(pi)) { 3382 if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP)) 3383 return (ENXIO); 3384 /* 3385 * TSO always requires hardware checksum offload. 3386 */ 3387 pi->ipi_csum_flags |= CSUM_IP6_TCP; 3388 th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0); 3389 pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz; 3390 } 3391 } 3392 break; 3393 } 3394 #endif 3395 default: 3396 pi->ipi_csum_flags &= ~CSUM_OFFLOAD; 3397 pi->ipi_ip_hlen = 0; 3398 break; 3399 } 3400 *mp = m; 3401 3402 return (0); 3403 } 3404 3405 /* 3406 * If dodgy hardware rejects the scatter gather chain we've handed it 3407 * we'll need to remove the mbuf chain from ifsg_m[] before we can add the 3408 * m_defrag'd mbufs 3409 */ 3410 static __noinline struct mbuf * 3411 iflib_remove_mbuf(iflib_txq_t txq) 3412 { 3413 int ntxd, pidx; 3414 struct mbuf *m, **ifsd_m; 3415 3416 ifsd_m = txq->ift_sds.ifsd_m; 3417 ntxd = txq->ift_size; 3418 pidx = txq->ift_pidx & (ntxd - 1); 3419 ifsd_m = txq->ift_sds.ifsd_m; 3420 m = IFLIB_GET_MBUF(ifsd_m[pidx]); 3421 ifsd_m[pidx] = NULL; 3422 bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]); 3423 if (txq->ift_sds.ifsd_tso_map != NULL) 3424 bus_dmamap_unload(txq->ift_tso_buf_tag, 3425 txq->ift_sds.ifsd_tso_map[pidx]); 3426 #if MEMORY_LOGGING 3427 txq->ift_dequeued++; 3428 #endif 3429 return (m); 3430 } 3431 3432 /* 3433 * Pad an mbuf to ensure a minimum ethernet frame size. 3434 * min_frame_size is the frame size (less CRC) to pad the mbuf to 3435 */ 3436 static __noinline int 3437 iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size) 3438 { 3439 /* 3440 * 18 is enough bytes to pad an ARP packet to 46 bytes, and 3441 * and ARP message is the smallest common payload I can think of 3442 */ 3443 static char pad[18]; /* just zeros */ 3444 int n; 3445 struct mbuf *new_head; 3446 3447 if (!M_WRITABLE(*m_head)) { 3448 new_head = m_dup(*m_head, M_NOWAIT); 3449 if (new_head == NULL) { 3450 m_freem(*m_head); 3451 device_printf(dev, "cannot pad short frame, m_dup() failed"); 3452 DBG_COUNTER_INC(encap_pad_mbuf_fail); 3453 DBG_COUNTER_INC(tx_frees); 3454 return (ENOMEM); 3455 } 3456 m_freem(*m_head); 3457 *m_head = new_head; 3458 } 3459 3460 for (n = min_frame_size - (*m_head)->m_pkthdr.len; 3461 n > 0; n -= sizeof(pad)) 3462 if (!m_append(*m_head, min(n, sizeof(pad)), pad)) 3463 break; 3464 3465 if (n > 0) { 3466 m_freem(*m_head); 3467 device_printf(dev, "cannot pad short frame\n"); 3468 DBG_COUNTER_INC(encap_pad_mbuf_fail); 3469 DBG_COUNTER_INC(tx_frees); 3470 return (ENOBUFS); 3471 } 3472 3473 return (0); 3474 } 3475 3476 static int 3477 iflib_encap(iflib_txq_t txq, struct mbuf **m_headp) 3478 { 3479 if_ctx_t ctx; 3480 if_shared_ctx_t sctx; 3481 if_softc_ctx_t scctx; 3482 bus_dma_tag_t buf_tag; 3483 bus_dma_segment_t *segs; 3484 struct mbuf *m_head, **ifsd_m; 3485 bus_dmamap_t map; 3486 struct if_pkt_info pi; 3487 uintptr_t flags; 3488 int remap = 0; 3489 int err, nsegs, ndesc, max_segs, pidx; 3490 3491 ctx = txq->ift_ctx; 3492 sctx = ctx->ifc_sctx; 3493 scctx = &ctx->ifc_softc_ctx; 3494 segs = txq->ift_segs; 3495 m_head = *m_headp; 3496 map = NULL; 3497 3498 /* 3499 * If we're doing TSO the next descriptor to clean may be quite far ahead 3500 */ 3501 pidx = txq->ift_pidx; 3502 map = txq->ift_sds.ifsd_map[pidx]; 3503 ifsd_m = txq->ift_sds.ifsd_m; 3504 3505 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { 3506 buf_tag = txq->ift_tso_buf_tag; 3507 max_segs = scctx->isc_tx_tso_segments_max; 3508 map = txq->ift_sds.ifsd_tso_map[pidx]; 3509 MPASS(buf_tag != NULL); 3510 MPASS(max_segs > 0); 3511 flags = IFLIB_TSO; 3512 } else { 3513 buf_tag = txq->ift_buf_tag; 3514 max_segs = scctx->isc_tx_nsegments; 3515 map = txq->ift_sds.ifsd_map[pidx]; 3516 flags = IFLIB_NO_TSO; 3517 } 3518 if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) && 3519 __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) { 3520 err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size); 3521 if (err) { 3522 DBG_COUNTER_INC(encap_txd_encap_fail); 3523 return (err); 3524 } 3525 } 3526 m_head = *m_headp; 3527 3528 memset(&pi, 0, sizeof(pi)); 3529 pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG | M_BCAST | M_MCAST)); 3530 pi.ipi_pidx = pidx; 3531 pi.ipi_qsidx = txq->ift_id; 3532 pi.ipi_len = m_head->m_pkthdr.len; 3533 pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags; 3534 pi.ipi_vtag = M_HAS_VLANTAG(m_head) ? m_head->m_pkthdr.ether_vtag : 0; 3535 3536 /* deliberate bitwise OR to make one condition */ 3537 if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) { 3538 if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) { 3539 DBG_COUNTER_INC(encap_txd_encap_fail); 3540 return (err); 3541 } 3542 m_head = *m_headp; 3543 } 3544 3545 retry: 3546 err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs, 3547 BUS_DMA_NOWAIT); 3548 defrag: 3549 if (__predict_false(err)) { 3550 switch (err) { 3551 case EFBIG: 3552 /* try collapse once and defrag once */ 3553 if (remap == 0) { 3554 m_head = m_collapse(*m_headp, M_NOWAIT, max_segs); 3555 /* try defrag if collapsing fails */ 3556 if (m_head == NULL) 3557 remap++; 3558 } 3559 if (remap == 1) { 3560 txq->ift_mbuf_defrag++; 3561 m_head = m_defrag(*m_headp, M_NOWAIT); 3562 } 3563 /* 3564 * remap should never be >1 unless bus_dmamap_load_mbuf_sg 3565 * failed to map an mbuf that was run through m_defrag 3566 */ 3567 MPASS(remap <= 1); 3568 if (__predict_false(m_head == NULL || remap > 1)) 3569 goto defrag_failed; 3570 remap++; 3571 *m_headp = m_head; 3572 goto retry; 3573 break; 3574 case ENOMEM: 3575 txq->ift_no_tx_dma_setup++; 3576 break; 3577 default: 3578 txq->ift_no_tx_dma_setup++; 3579 m_freem(*m_headp); 3580 DBG_COUNTER_INC(tx_frees); 3581 *m_headp = NULL; 3582 break; 3583 } 3584 txq->ift_map_failed++; 3585 DBG_COUNTER_INC(encap_load_mbuf_fail); 3586 DBG_COUNTER_INC(encap_txd_encap_fail); 3587 return (err); 3588 } 3589 ifsd_m[pidx] = IFLIB_SAVE_MBUF(m_head, flags); 3590 if (m_head->m_pkthdr.csum_flags & CSUM_SND_TAG) 3591 pi.ipi_mbuf = m_head; 3592 else 3593 pi.ipi_mbuf = NULL; 3594 /* 3595 * XXX assumes a 1 to 1 relationship between segments and 3596 * descriptors - this does not hold true on all drivers, e.g. 3597 * cxgb 3598 */ 3599 if (__predict_false(nsegs > TXQ_AVAIL(txq))) { 3600 (void)iflib_completed_tx_reclaim(txq, NULL); 3601 if (__predict_false(nsegs > TXQ_AVAIL(txq))) { 3602 txq->ift_no_desc_avail++; 3603 bus_dmamap_unload(buf_tag, map); 3604 DBG_COUNTER_INC(encap_txq_avail_fail); 3605 DBG_COUNTER_INC(encap_txd_encap_fail); 3606 if (ctx->ifc_sysctl_simple_tx) { 3607 *m_headp = m_head = iflib_remove_mbuf(txq); 3608 m_freem(*m_headp); 3609 DBG_COUNTER_INC(tx_frees); 3610 *m_headp = NULL; 3611 } 3612 if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0) 3613 GROUPTASK_ENQUEUE(&txq->ift_task); 3614 return (ENOBUFS); 3615 } 3616 } 3617 /* 3618 * On Intel cards we can greatly reduce the number of TX interrupts 3619 * we see by only setting report status on every Nth descriptor. 3620 * However, this also means that the driver will need to keep track 3621 * of the descriptors that RS was set on to check them for the DD bit. 3622 */ 3623 txq->ift_rs_pending += nsegs + 1; 3624 if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) || 3625 iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx)) { 3626 pi.ipi_flags |= IPI_TX_INTR; 3627 txq->ift_rs_pending = 0; 3628 } 3629 3630 pi.ipi_segs = segs; 3631 pi.ipi_nsegs = nsegs; 3632 3633 MPASS(pidx >= 0 && pidx < txq->ift_size); 3634 #ifdef PKT_DEBUG 3635 print_pkt(&pi); 3636 #endif 3637 if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) { 3638 bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE); 3639 DBG_COUNTER_INC(tx_encap); 3640 MPASS(pi.ipi_new_pidx < txq->ift_size); 3641 3642 ndesc = pi.ipi_new_pidx - pi.ipi_pidx; 3643 if (pi.ipi_new_pidx < pi.ipi_pidx) { 3644 ndesc += txq->ift_size; 3645 txq->ift_gen = 1; 3646 } 3647 /* 3648 * drivers can need up to ift_pad sentinels 3649 */ 3650 MPASS(ndesc <= pi.ipi_nsegs + txq->ift_pad); 3651 MPASS(pi.ipi_new_pidx != pidx); 3652 MPASS(ndesc > 0); 3653 txq->ift_in_use += ndesc; 3654 txq->ift_db_pending += ndesc; 3655 3656 /* 3657 * We update the last software descriptor again here because there may 3658 * be a sentinel and/or there may be more mbufs than segments 3659 */ 3660 txq->ift_pidx = pi.ipi_new_pidx; 3661 txq->ift_npending += pi.ipi_ndescs; 3662 } else { 3663 *m_headp = m_head = iflib_remove_mbuf(txq); 3664 if (err == EFBIG) { 3665 txq->ift_txd_encap_efbig++; 3666 if (remap < 2) { 3667 remap = 1; 3668 goto defrag; 3669 } 3670 } 3671 goto defrag_failed; 3672 } 3673 /* 3674 * err can't possibly be non-zero here, so we don't neet to test it 3675 * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail). 3676 */ 3677 return (err); 3678 3679 defrag_failed: 3680 txq->ift_mbuf_defrag_failed++; 3681 txq->ift_map_failed++; 3682 m_freem(*m_headp); 3683 DBG_COUNTER_INC(tx_frees); 3684 *m_headp = NULL; 3685 DBG_COUNTER_INC(encap_txd_encap_fail); 3686 return (ENOMEM); 3687 } 3688 3689 static void 3690 iflib_tx_desc_free(iflib_txq_t txq, int n, struct mbuf **m_defer) 3691 { 3692 uint32_t qsize, cidx, gen; 3693 struct mbuf *m, **ifsd_m; 3694 uintptr_t flags; 3695 3696 cidx = txq->ift_cidx; 3697 gen = txq->ift_gen; 3698 qsize = txq->ift_size; 3699 ifsd_m =txq->ift_sds.ifsd_m; 3700 3701 while (n-- > 0) { 3702 if ((m = IFLIB_GET_MBUF(ifsd_m[cidx])) != NULL) { 3703 flags = IFLIB_GET_FLAGS(ifsd_m[cidx]); 3704 MPASS(flags != 0); 3705 if (flags & IFLIB_TSO) { 3706 bus_dmamap_sync(txq->ift_tso_buf_tag, 3707 txq->ift_sds.ifsd_tso_map[cidx], 3708 BUS_DMASYNC_POSTWRITE); 3709 bus_dmamap_unload(txq->ift_tso_buf_tag, 3710 txq->ift_sds.ifsd_tso_map[cidx]); 3711 } else { 3712 bus_dmamap_sync(txq->ift_buf_tag, 3713 txq->ift_sds.ifsd_map[cidx], 3714 BUS_DMASYNC_POSTWRITE); 3715 bus_dmamap_unload(txq->ift_buf_tag, 3716 txq->ift_sds.ifsd_map[cidx]); 3717 } 3718 /* XXX we don't support any drivers that batch packets yet */ 3719 MPASS(m->m_nextpkt == NULL); 3720 if (m_defer == NULL) { 3721 m_freem(m); 3722 } else if (m != NULL) { 3723 *m_defer = m; 3724 m_defer++; 3725 } 3726 ifsd_m[cidx] = NULL; 3727 #if MEMORY_LOGGING 3728 txq->ift_dequeued++; 3729 #endif 3730 DBG_COUNTER_INC(tx_frees); 3731 } 3732 if (__predict_false(++cidx == qsize)) { 3733 cidx = 0; 3734 gen = 0; 3735 } 3736 } 3737 txq->ift_cidx = cidx; 3738 txq->ift_gen = gen; 3739 } 3740 3741 static __inline int 3742 iflib_txq_can_reclaim(iflib_txq_t txq) 3743 { 3744 int reclaim, thresh; 3745 3746 thresh = txq->ift_reclaim_thresh; 3747 KASSERT(thresh >= 0, ("invalid threshold to reclaim")); 3748 MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size); 3749 3750 if (ticks <= (txq->ift_last_reclaim + txq->ift_reclaim_ticks) && 3751 txq->ift_in_use < thresh) 3752 return (false); 3753 iflib_tx_credits_update(txq->ift_ctx, txq); 3754 reclaim = DESC_RECLAIMABLE(txq); 3755 if (reclaim <= thresh) { 3756 #ifdef INVARIANTS 3757 if (iflib_verbose_debug) { 3758 printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __func__, 3759 txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments, 3760 reclaim, thresh); 3761 } 3762 #endif 3763 return (0); 3764 } 3765 return (reclaim); 3766 } 3767 3768 static __inline void 3769 _iflib_completed_tx_reclaim(iflib_txq_t txq, struct mbuf **m_defer, int reclaim) 3770 { 3771 txq->ift_last_reclaim = ticks; 3772 iflib_tx_desc_free(txq, reclaim, m_defer); 3773 txq->ift_cleaned += reclaim; 3774 txq->ift_in_use -= reclaim; 3775 } 3776 3777 static __inline int 3778 iflib_completed_tx_reclaim(iflib_txq_t txq, struct mbuf **m_defer) 3779 { 3780 int reclaim; 3781 3782 reclaim = iflib_txq_can_reclaim(txq); 3783 if (reclaim == 0) 3784 return (0); 3785 _iflib_completed_tx_reclaim(txq, m_defer, reclaim); 3786 return (reclaim); 3787 } 3788 3789 static struct mbuf ** 3790 _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining) 3791 { 3792 int next, size; 3793 struct mbuf **items; 3794 3795 size = r->size; 3796 next = (cidx + CACHE_PTR_INCREMENT) & (size - 1); 3797 items = __DEVOLATILE(struct mbuf **, &r->items[0]); 3798 3799 prefetch(items[(cidx + offset) & (size - 1)]); 3800 if (remaining > 1) { 3801 prefetch2cachelines(&items[next]); 3802 prefetch2cachelines(items[(cidx + offset + 1) & (size - 1)]); 3803 prefetch2cachelines(items[(cidx + offset + 2) & (size - 1)]); 3804 prefetch2cachelines(items[(cidx + offset + 3) & (size - 1)]); 3805 } 3806 return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size - 1)])); 3807 } 3808 3809 static void 3810 iflib_txq_check_drain(iflib_txq_t txq, int budget) 3811 { 3812 3813 ifmp_ring_check_drainage(txq->ift_br, budget); 3814 } 3815 3816 static uint32_t 3817 iflib_txq_can_drain(struct ifmp_ring *r) 3818 { 3819 iflib_txq_t txq = r->cookie; 3820 if_ctx_t ctx = txq->ift_ctx; 3821 3822 if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx)) 3823 return (1); 3824 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 3825 BUS_DMASYNC_POSTREAD); 3826 return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, 3827 false)); 3828 } 3829 3830 static uint32_t 3831 iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx) 3832 { 3833 iflib_txq_t txq = r->cookie; 3834 if_ctx_t ctx = txq->ift_ctx; 3835 if_t ifp = ctx->ifc_ifp; 3836 struct mbuf *m, **mp; 3837 int avail, bytes_sent, skipped, count, err, i; 3838 int mcast_sent, pkt_sent, reclaimed; 3839 bool do_prefetch, rang, ring; 3840 3841 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) || 3842 !LINK_ACTIVE(ctx))) { 3843 DBG_COUNTER_INC(txq_drain_notready); 3844 return (0); 3845 } 3846 reclaimed = iflib_completed_tx_reclaim(txq, NULL); 3847 rang = iflib_txd_db_check(txq, reclaimed && txq->ift_db_pending); 3848 avail = IDXDIFF(pidx, cidx, r->size); 3849 3850 if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) { 3851 /* 3852 * The driver is unloading so we need to free all pending packets. 3853 */ 3854 DBG_COUNTER_INC(txq_drain_flushing); 3855 for (i = 0; i < avail; i++) { 3856 if (__predict_true(r->items[(cidx + i) & (r->size - 1)] != (void *)txq)) 3857 m_freem(r->items[(cidx + i) & (r->size - 1)]); 3858 r->items[(cidx + i) & (r->size - 1)] = NULL; 3859 } 3860 return (avail); 3861 } 3862 3863 if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) { 3864 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 3865 CALLOUT_LOCK(txq); 3866 callout_stop(&txq->ift_timer); 3867 CALLOUT_UNLOCK(txq); 3868 DBG_COUNTER_INC(txq_drain_oactive); 3869 return (0); 3870 } 3871 3872 /* 3873 * If we've reclaimed any packets this queue cannot be hung. 3874 */ 3875 if (reclaimed) 3876 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 3877 skipped = mcast_sent = bytes_sent = pkt_sent = 0; 3878 count = MIN(avail, TX_BATCH_SIZE); 3879 #ifdef INVARIANTS 3880 if (iflib_verbose_debug) 3881 printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __func__, 3882 avail, ctx->ifc_flags, TXQ_AVAIL(txq)); 3883 #endif 3884 do_prefetch = (ctx->ifc_flags & IFC_PREFETCH); 3885 err = 0; 3886 for (i = 0; i < count && TXQ_AVAIL(txq) >= MAX_TX_DESC(ctx); i++) { 3887 int rem = do_prefetch ? count - i : 0; 3888 3889 mp = _ring_peek_one(r, cidx, i, rem); 3890 MPASS(mp != NULL && *mp != NULL); 3891 3892 /* 3893 * Completion interrupts will use the address of the txq 3894 * as a sentinel to enqueue _something_ in order to acquire 3895 * the lock on the mp_ring (there's no direct lock call). 3896 * We obviously whave to check for these sentinel cases 3897 * and skip them. 3898 */ 3899 if (__predict_false(*mp == (struct mbuf *)txq)) { 3900 skipped++; 3901 continue; 3902 } 3903 err = iflib_encap(txq, mp); 3904 if (__predict_false(err)) { 3905 /* no room - bail out */ 3906 if (err == ENOBUFS) 3907 break; 3908 skipped++; 3909 /* we can't send this packet - skip it */ 3910 continue; 3911 } 3912 pkt_sent++; 3913 m = *mp; 3914 DBG_COUNTER_INC(tx_sent); 3915 bytes_sent += m->m_pkthdr.len; 3916 mcast_sent += !!(m->m_flags & M_MCAST); 3917 3918 if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))) 3919 break; 3920 ETHER_BPF_MTAP(ifp, m); 3921 rang = iflib_txd_db_check(txq, false); 3922 } 3923 3924 /* deliberate use of bitwise or to avoid gratuitous short-circuit */ 3925 ring = rang ? false : (iflib_min_tx_latency | err | (!!txq->ift_reclaim_thresh)); 3926 iflib_txd_db_check(txq, ring); 3927 if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent); 3928 if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent); 3929 if (mcast_sent) 3930 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent); 3931 #ifdef INVARIANTS 3932 if (iflib_verbose_debug) 3933 printf("consumed=%d\n", skipped + pkt_sent); 3934 #endif 3935 return (skipped + pkt_sent); 3936 } 3937 3938 static uint32_t 3939 iflib_txq_drain_always(struct ifmp_ring *r) 3940 { 3941 return (1); 3942 } 3943 3944 static uint32_t 3945 iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx) 3946 { 3947 int i, avail; 3948 struct mbuf **mp; 3949 iflib_txq_t txq; 3950 3951 txq = r->cookie; 3952 3953 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 3954 CALLOUT_LOCK(txq); 3955 callout_stop(&txq->ift_timer); 3956 CALLOUT_UNLOCK(txq); 3957 3958 avail = IDXDIFF(pidx, cidx, r->size); 3959 for (i = 0; i < avail; i++) { 3960 mp = _ring_peek_one(r, cidx, i, avail - i); 3961 if (__predict_false(*mp == (struct mbuf *)txq)) 3962 continue; 3963 m_freem(*mp); 3964 DBG_COUNTER_INC(tx_frees); 3965 } 3966 MPASS(ifmp_ring_is_stalled(r) == 0); 3967 return (avail); 3968 } 3969 3970 static void 3971 iflib_ifmp_purge(iflib_txq_t txq) 3972 { 3973 struct ifmp_ring *r; 3974 3975 r = txq->ift_br; 3976 r->drain = iflib_txq_drain_free; 3977 r->can_drain = iflib_txq_drain_always; 3978 3979 ifmp_ring_check_drainage(r, r->size); 3980 3981 r->drain = iflib_txq_drain; 3982 r->can_drain = iflib_txq_can_drain; 3983 } 3984 3985 static void 3986 _task_fn_tx(void *context) 3987 { 3988 iflib_txq_t txq = context; 3989 if_ctx_t ctx = txq->ift_ctx; 3990 if_t ifp = ctx->ifc_ifp; 3991 int abdicate = ctx->ifc_sysctl_tx_abdicate; 3992 3993 #ifdef IFLIB_DIAGNOSTICS 3994 txq->ift_cpu_exec_count[curcpu]++; 3995 #endif 3996 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 3997 return; 3998 #ifdef DEV_NETMAP 3999 if ((if_getcapenable(ifp) & IFCAP_NETMAP) && 4000 netmap_tx_irq(ifp, txq->ift_id)) 4001 goto skip_ifmp; 4002 #endif 4003 if (ctx->ifc_sysctl_simple_tx) { 4004 mtx_lock(&txq->ift_mtx); 4005 (void)iflib_completed_tx_reclaim(txq, NULL); 4006 mtx_unlock(&txq->ift_mtx); 4007 goto skip_ifmp; 4008 } 4009 #ifdef ALTQ 4010 if (if_altq_is_enabled(ifp)) 4011 iflib_altq_if_start(ifp); 4012 #endif 4013 if (txq->ift_db_pending) 4014 ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate); 4015 else if (!abdicate) 4016 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); 4017 /* 4018 * When abdicating, we always need to check drainage, not just when we don't enqueue 4019 */ 4020 if (abdicate) 4021 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); 4022 4023 skip_ifmp: 4024 if (ctx->ifc_flags & IFC_LEGACY) 4025 IFDI_INTR_ENABLE(ctx); 4026 else 4027 IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id); 4028 } 4029 4030 static void 4031 _task_fn_rx(void *context) 4032 { 4033 iflib_rxq_t rxq = context; 4034 if_ctx_t ctx = rxq->ifr_ctx; 4035 uint8_t more; 4036 uint16_t budget; 4037 #ifdef DEV_NETMAP 4038 u_int work = 0; 4039 int nmirq; 4040 #endif 4041 4042 #ifdef IFLIB_DIAGNOSTICS 4043 rxq->ifr_cpu_exec_count[curcpu]++; 4044 #endif 4045 DBG_COUNTER_INC(task_fn_rxs); 4046 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))) 4047 return; 4048 #ifdef DEV_NETMAP 4049 nmirq = netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work); 4050 if (nmirq != NM_IRQ_PASS) { 4051 more = (nmirq == NM_IRQ_RESCHED) ? IFLIB_RXEOF_MORE : 0; 4052 goto skip_rxeof; 4053 } 4054 #endif 4055 budget = ctx->ifc_sysctl_rx_budget; 4056 if (budget == 0) 4057 budget = 16; /* XXX */ 4058 more = iflib_rxeof(rxq, budget); 4059 #ifdef DEV_NETMAP 4060 skip_rxeof: 4061 #endif 4062 if ((more & IFLIB_RXEOF_MORE) == 0) { 4063 if (ctx->ifc_flags & IFC_LEGACY) 4064 IFDI_INTR_ENABLE(ctx); 4065 else 4066 IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id); 4067 DBG_COUNTER_INC(rx_intr_enables); 4068 } 4069 if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))) 4070 return; 4071 4072 if (more & IFLIB_RXEOF_MORE) 4073 GROUPTASK_ENQUEUE(&rxq->ifr_task); 4074 else if (more & IFLIB_RXEOF_EMPTY) 4075 callout_reset_curcpu(&rxq->ifr_watchdog, 1, &_task_fn_rx_watchdog, rxq); 4076 } 4077 4078 static void 4079 _task_fn_admin(void *context, int pending) 4080 { 4081 if_ctx_t ctx = context; 4082 if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; 4083 iflib_txq_t txq; 4084 int i; 4085 bool oactive, running, do_reset, do_watchdog, in_detach; 4086 4087 STATE_LOCK(ctx); 4088 running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING); 4089 oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE); 4090 do_reset = (ctx->ifc_flags & IFC_DO_RESET); 4091 do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG); 4092 in_detach = (ctx->ifc_flags & IFC_IN_DETACH); 4093 ctx->ifc_flags &= ~(IFC_DO_RESET | IFC_DO_WATCHDOG); 4094 STATE_UNLOCK(ctx); 4095 4096 if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN)) 4097 return; 4098 if (in_detach) 4099 return; 4100 4101 CTX_LOCK(ctx); 4102 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) { 4103 CALLOUT_LOCK(txq); 4104 callout_stop(&txq->ift_timer); 4105 CALLOUT_UNLOCK(txq); 4106 } 4107 if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_ADMINCQ) 4108 IFDI_ADMIN_COMPLETION_HANDLE(ctx); 4109 if (do_watchdog) { 4110 ctx->ifc_watchdog_events++; 4111 IFDI_WATCHDOG_RESET(ctx); 4112 } 4113 IFDI_UPDATE_ADMIN_STATUS(ctx); 4114 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) { 4115 callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq, 4116 txq->ift_timer.c_cpu); 4117 } 4118 IFDI_LINK_INTR_ENABLE(ctx); 4119 if (do_reset) 4120 iflib_if_init_locked(ctx); 4121 CTX_UNLOCK(ctx); 4122 4123 if (LINK_ACTIVE(ctx) == 0) 4124 return; 4125 for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) 4126 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET); 4127 } 4128 4129 static void 4130 _task_fn_iov(void *context, int pending) 4131 { 4132 if_ctx_t ctx = context; 4133 4134 if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) && 4135 !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN)) 4136 return; 4137 4138 CTX_LOCK(ctx); 4139 IFDI_VFLR_HANDLE(ctx); 4140 CTX_UNLOCK(ctx); 4141 } 4142 4143 static int 4144 iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS) 4145 { 4146 int err; 4147 if_int_delay_info_t info; 4148 if_ctx_t ctx; 4149 4150 info = (if_int_delay_info_t)arg1; 4151 ctx = info->iidi_ctx; 4152 info->iidi_req = req; 4153 info->iidi_oidp = oidp; 4154 CTX_LOCK(ctx); 4155 err = IFDI_SYSCTL_INT_DELAY(ctx, info); 4156 CTX_UNLOCK(ctx); 4157 return (err); 4158 } 4159 4160 /********************************************************************* 4161 * 4162 * IFNET FUNCTIONS 4163 * 4164 **********************************************************************/ 4165 4166 static void 4167 iflib_if_init_locked(if_ctx_t ctx) 4168 { 4169 iflib_stop(ctx); 4170 iflib_init_locked(ctx); 4171 } 4172 4173 static void 4174 iflib_if_init(void *arg) 4175 { 4176 if_ctx_t ctx = arg; 4177 4178 CTX_LOCK(ctx); 4179 iflib_if_init_locked(ctx); 4180 CTX_UNLOCK(ctx); 4181 } 4182 4183 static int 4184 iflib_if_transmit(if_t ifp, struct mbuf *m) 4185 { 4186 if_ctx_t ctx = if_getsoftc(ifp); 4187 iflib_txq_t txq; 4188 int err, qidx; 4189 int abdicate; 4190 4191 if (__predict_false((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) { 4192 DBG_COUNTER_INC(tx_frees); 4193 m_freem(m); 4194 return (ENETDOWN); 4195 } 4196 4197 MPASS(m->m_nextpkt == NULL); 4198 /* ALTQ-enabled interfaces always use queue 0. */ 4199 qidx = 0; 4200 /* Use driver-supplied queue selection method if it exists */ 4201 if (ctx->isc_txq_select_v2) { 4202 struct if_pkt_info pi; 4203 uint64_t early_pullups = 0; 4204 memset(&pi, 0, sizeof(pi)); 4205 4206 err = iflib_parse_header_partial(&pi, &m, &early_pullups); 4207 if (__predict_false(err != 0)) { 4208 /* Assign pullups for bad pkts to default queue */ 4209 ctx->ifc_txqs[0].ift_pullups += early_pullups; 4210 DBG_COUNTER_INC(encap_txd_encap_fail); 4211 return (err); 4212 } 4213 /* Let driver make queueing decision */ 4214 qidx = ctx->isc_txq_select_v2(ctx->ifc_softc, m, &pi); 4215 ctx->ifc_txqs[qidx].ift_pullups += early_pullups; 4216 } 4217 /* Backwards compatibility w/ simpler queue select */ 4218 else if (ctx->isc_txq_select) 4219 qidx = ctx->isc_txq_select(ctx->ifc_softc, m); 4220 /* If not, use iflib's standard method */ 4221 else if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !if_altq_is_enabled(ifp)) 4222 qidx = QIDX(ctx, m); 4223 4224 /* Set TX queue */ 4225 txq = &ctx->ifc_txqs[qidx]; 4226 4227 #ifdef DRIVER_BACKPRESSURE 4228 if (txq->ift_closed) { 4229 while (m != NULL) { 4230 next = m->m_nextpkt; 4231 m->m_nextpkt = NULL; 4232 m_freem(m); 4233 DBG_COUNTER_INC(tx_frees); 4234 m = next; 4235 } 4236 return (ENOBUFS); 4237 } 4238 #endif 4239 #ifdef notyet 4240 qidx = count = 0; 4241 mp = marr; 4242 next = m; 4243 do { 4244 count++; 4245 next = next->m_nextpkt; 4246 } while (next != NULL); 4247 4248 if (count > nitems(marr)) 4249 if ((mp = malloc(count * sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) { 4250 /* XXX check nextpkt */ 4251 m_freem(m); 4252 /* XXX simplify for now */ 4253 DBG_COUNTER_INC(tx_frees); 4254 return (ENOBUFS); 4255 } 4256 for (next = m, i = 0; next != NULL; i++) { 4257 mp[i] = next; 4258 next = next->m_nextpkt; 4259 mp[i]->m_nextpkt = NULL; 4260 } 4261 #endif 4262 DBG_COUNTER_INC(tx_seen); 4263 abdicate = ctx->ifc_sysctl_tx_abdicate; 4264 4265 err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate); 4266 4267 if (abdicate) 4268 GROUPTASK_ENQUEUE(&txq->ift_task); 4269 if (err) { 4270 if (!abdicate) 4271 GROUPTASK_ENQUEUE(&txq->ift_task); 4272 /* support forthcoming later */ 4273 #ifdef DRIVER_BACKPRESSURE 4274 txq->ift_closed = TRUE; 4275 #endif 4276 ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); 4277 m_freem(m); 4278 DBG_COUNTER_INC(tx_frees); 4279 if (err == ENOBUFS) 4280 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 4281 else 4282 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 4283 } 4284 4285 return (err); 4286 } 4287 4288 #ifdef ALTQ 4289 /* 4290 * The overall approach to integrating iflib with ALTQ is to continue to use 4291 * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware 4292 * ring. Technically, when using ALTQ, queueing to an intermediate mp_ring 4293 * is redundant/unnecessary, but doing so minimizes the amount of 4294 * ALTQ-specific code required in iflib. It is assumed that the overhead of 4295 * redundantly queueing to an intermediate mp_ring is swamped by the 4296 * performance limitations inherent in using ALTQ. 4297 * 4298 * When ALTQ support is compiled in, all iflib drivers will use a transmit 4299 * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the 4300 * given interface. If ALTQ is enabled for an interface, then all 4301 * transmitted packets for that interface will be submitted to the ALTQ 4302 * subsystem via IFQ_ENQUEUE(). We don't use the legacy if_transmit() 4303 * implementation because it uses IFQ_HANDOFF(), which will duplicatively 4304 * update stats that the iflib machinery handles, and which is sensitve to 4305 * the disused IFF_DRV_OACTIVE flag. Additionally, iflib_altq_if_start() 4306 * will be installed as the start routine for use by ALTQ facilities that 4307 * need to trigger queue drains on a scheduled basis. 4308 * 4309 */ 4310 static void 4311 iflib_altq_if_start(if_t ifp) 4312 { 4313 struct ifaltq *ifq = &ifp->if_snd; /* XXX - DRVAPI */ 4314 struct mbuf *m; 4315 4316 IFQ_LOCK(ifq); 4317 IFQ_DEQUEUE_NOLOCK(ifq, m); 4318 while (m != NULL) { 4319 iflib_if_transmit(ifp, m); 4320 IFQ_DEQUEUE_NOLOCK(ifq, m); 4321 } 4322 IFQ_UNLOCK(ifq); 4323 } 4324 4325 static int 4326 iflib_altq_if_transmit(if_t ifp, struct mbuf *m) 4327 { 4328 int err; 4329 4330 if (if_altq_is_enabled(ifp)) { 4331 IFQ_ENQUEUE(&ifp->if_snd, m, err); /* XXX - DRVAPI */ 4332 if (err == 0) 4333 iflib_altq_if_start(ifp); 4334 } else 4335 err = iflib_if_transmit(ifp, m); 4336 4337 return (err); 4338 } 4339 #endif /* ALTQ */ 4340 4341 static void 4342 iflib_if_qflush(if_t ifp) 4343 { 4344 if_ctx_t ctx = if_getsoftc(ifp); 4345 iflib_txq_t txq = ctx->ifc_txqs; 4346 int i; 4347 4348 STATE_LOCK(ctx); 4349 ctx->ifc_flags |= IFC_QFLUSH; 4350 STATE_UNLOCK(ctx); 4351 for (i = 0; i < NTXQSETS(ctx); i++, txq++) 4352 while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br))) 4353 iflib_txq_check_drain(txq, 0); 4354 STATE_LOCK(ctx); 4355 ctx->ifc_flags &= ~IFC_QFLUSH; 4356 STATE_UNLOCK(ctx); 4357 4358 /* 4359 * When ALTQ is enabled, this will also take care of purging the 4360 * ALTQ queue(s). 4361 */ 4362 if_qflush(ifp); 4363 } 4364 4365 #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \ 4366 IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \ 4367 IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \ 4368 IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM | IFCAP_MEXTPG) 4369 4370 static int 4371 iflib_if_ioctl(if_t ifp, u_long command, caddr_t data) 4372 { 4373 if_ctx_t ctx = if_getsoftc(ifp); 4374 struct ifreq *ifr = (struct ifreq *)data; 4375 #if defined(INET) || defined(INET6) 4376 struct ifaddr *ifa = (struct ifaddr *)data; 4377 #endif 4378 bool avoid_reset = false; 4379 int err = 0, reinit = 0, bits; 4380 4381 switch (command) { 4382 case SIOCSIFADDR: 4383 #ifdef INET 4384 if (ifa->ifa_addr->sa_family == AF_INET) 4385 avoid_reset = true; 4386 #endif 4387 #ifdef INET6 4388 if (ifa->ifa_addr->sa_family == AF_INET6) 4389 avoid_reset = true; 4390 #endif 4391 /* 4392 * Calling init results in link renegotiation, 4393 * so we avoid doing it when possible. 4394 */ 4395 if (avoid_reset) { 4396 if_setflagbits(ifp, IFF_UP, 0); 4397 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 4398 reinit = 1; 4399 #ifdef INET 4400 if (!(if_getflags(ifp) & IFF_NOARP)) 4401 arp_ifinit(ifp, ifa); 4402 #endif 4403 } else 4404 err = ether_ioctl(ifp, command, data); 4405 break; 4406 case SIOCSIFMTU: 4407 CTX_LOCK(ctx); 4408 if (ifr->ifr_mtu == if_getmtu(ifp)) { 4409 CTX_UNLOCK(ctx); 4410 break; 4411 } 4412 bits = if_getdrvflags(ifp); 4413 /* stop the driver and free any clusters before proceeding */ 4414 iflib_stop(ctx); 4415 4416 if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) { 4417 STATE_LOCK(ctx); 4418 if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size) 4419 ctx->ifc_flags |= IFC_MULTISEG; 4420 else 4421 ctx->ifc_flags &= ~IFC_MULTISEG; 4422 STATE_UNLOCK(ctx); 4423 err = if_setmtu(ifp, ifr->ifr_mtu); 4424 } 4425 iflib_init_locked(ctx); 4426 STATE_LOCK(ctx); 4427 if_setdrvflags(ifp, bits); 4428 STATE_UNLOCK(ctx); 4429 CTX_UNLOCK(ctx); 4430 break; 4431 case SIOCSIFFLAGS: 4432 CTX_LOCK(ctx); 4433 if (if_getflags(ifp) & IFF_UP) { 4434 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4435 if ((if_getflags(ifp) ^ ctx->ifc_if_flags) & 4436 (IFF_PROMISC | IFF_ALLMULTI)) { 4437 CTX_UNLOCK(ctx); 4438 err = IFDI_PROMISC_SET(ctx, if_getflags(ifp)); 4439 CTX_LOCK(ctx); 4440 } 4441 } else 4442 reinit = 1; 4443 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4444 iflib_stop(ctx); 4445 } 4446 ctx->ifc_if_flags = if_getflags(ifp); 4447 CTX_UNLOCK(ctx); 4448 break; 4449 case SIOCADDMULTI: 4450 case SIOCDELMULTI: 4451 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4452 CTX_LOCK(ctx); 4453 IFDI_INTR_DISABLE(ctx); 4454 IFDI_MULTI_SET(ctx); 4455 IFDI_INTR_ENABLE(ctx); 4456 CTX_UNLOCK(ctx); 4457 } 4458 break; 4459 case SIOCSIFMEDIA: 4460 CTX_LOCK(ctx); 4461 IFDI_MEDIA_SET(ctx); 4462 CTX_UNLOCK(ctx); 4463 /* FALLTHROUGH */ 4464 case SIOCGIFMEDIA: 4465 case SIOCGIFXMEDIA: 4466 err = ifmedia_ioctl(ifp, ifr, ctx->ifc_mediap, command); 4467 break; 4468 case SIOCGI2C: 4469 { 4470 struct ifi2creq i2c; 4471 4472 err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 4473 if (err != 0) 4474 break; 4475 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 4476 err = EINVAL; 4477 break; 4478 } 4479 if (i2c.len > sizeof(i2c.data)) { 4480 err = EINVAL; 4481 break; 4482 } 4483 4484 if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0) 4485 err = copyout(&i2c, ifr_data_get_ptr(ifr), 4486 sizeof(i2c)); 4487 break; 4488 } 4489 case SIOCSIFCAP: 4490 { 4491 int mask, setmask, oldmask; 4492 4493 oldmask = if_getcapenable(ifp); 4494 mask = ifr->ifr_reqcap ^ oldmask; 4495 mask &= ctx->ifc_softc_ctx.isc_capabilities | IFCAP_MEXTPG; 4496 setmask = 0; 4497 #ifdef TCP_OFFLOAD 4498 setmask |= mask & (IFCAP_TOE4 | IFCAP_TOE6); 4499 #endif 4500 setmask |= (mask & IFCAP_FLAGS); 4501 setmask |= (mask & IFCAP_WOL); 4502 4503 /* 4504 * If any RX csum has changed, change all the ones that 4505 * are supported by the driver. 4506 */ 4507 if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) { 4508 setmask |= ctx->ifc_softc_ctx.isc_capabilities & 4509 (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6); 4510 } 4511 4512 /* 4513 * want to ensure that traffic has stopped before we change any of the flags 4514 */ 4515 if (setmask) { 4516 CTX_LOCK(ctx); 4517 bits = if_getdrvflags(ifp); 4518 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL) 4519 iflib_stop(ctx); 4520 STATE_LOCK(ctx); 4521 if_togglecapenable(ifp, setmask); 4522 ctx->ifc_softc_ctx.isc_capenable ^= setmask; 4523 STATE_UNLOCK(ctx); 4524 if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL) 4525 iflib_init_locked(ctx); 4526 STATE_LOCK(ctx); 4527 if_setdrvflags(ifp, bits); 4528 STATE_UNLOCK(ctx); 4529 CTX_UNLOCK(ctx); 4530 } 4531 if_vlancap(ifp); 4532 break; 4533 } 4534 case SIOCGPRIVATE_0: 4535 case SIOCSDRVSPEC: 4536 case SIOCGDRVSPEC: 4537 CTX_LOCK(ctx); 4538 err = IFDI_PRIV_IOCTL(ctx, command, data); 4539 CTX_UNLOCK(ctx); 4540 break; 4541 default: 4542 err = ether_ioctl(ifp, command, data); 4543 break; 4544 } 4545 if (reinit) 4546 iflib_if_init(ctx); 4547 return (err); 4548 } 4549 4550 static uint64_t 4551 iflib_if_get_counter(if_t ifp, ift_counter cnt) 4552 { 4553 if_ctx_t ctx = if_getsoftc(ifp); 4554 4555 return (IFDI_GET_COUNTER(ctx, cnt)); 4556 } 4557 4558 /********************************************************************* 4559 * 4560 * OTHER FUNCTIONS EXPORTED TO THE STACK 4561 * 4562 **********************************************************************/ 4563 4564 static void 4565 iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag) 4566 { 4567 if_ctx_t ctx = if_getsoftc(ifp); 4568 4569 if ((void *)ctx != arg) 4570 return; 4571 4572 if ((vtag == 0) || (vtag > 4095)) 4573 return; 4574 4575 if (iflib_in_detach(ctx)) 4576 return; 4577 4578 CTX_LOCK(ctx); 4579 /* Driver may need all untagged packets to be flushed */ 4580 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG)) 4581 iflib_stop(ctx); 4582 IFDI_VLAN_REGISTER(ctx, vtag); 4583 /* Re-init to load the changes, if required */ 4584 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG)) 4585 iflib_init_locked(ctx); 4586 CTX_UNLOCK(ctx); 4587 } 4588 4589 static void 4590 iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag) 4591 { 4592 if_ctx_t ctx = if_getsoftc(ifp); 4593 4594 if ((void *)ctx != arg) 4595 return; 4596 4597 if ((vtag == 0) || (vtag > 4095)) 4598 return; 4599 4600 CTX_LOCK(ctx); 4601 /* Driver may need all tagged packets to be flushed */ 4602 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG)) 4603 iflib_stop(ctx); 4604 IFDI_VLAN_UNREGISTER(ctx, vtag); 4605 /* Re-init to load the changes, if required */ 4606 if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG)) 4607 iflib_init_locked(ctx); 4608 CTX_UNLOCK(ctx); 4609 } 4610 4611 static void 4612 iflib_led_func(void *arg, int onoff) 4613 { 4614 if_ctx_t ctx = arg; 4615 4616 CTX_LOCK(ctx); 4617 IFDI_LED_FUNC(ctx, onoff); 4618 CTX_UNLOCK(ctx); 4619 } 4620 4621 /********************************************************************* 4622 * 4623 * BUS FUNCTION DEFINITIONS 4624 * 4625 **********************************************************************/ 4626 4627 int 4628 iflib_device_probe(device_t dev) 4629 { 4630 const pci_vendor_info_t *ent; 4631 if_shared_ctx_t sctx; 4632 uint16_t pci_device_id, pci_rev_id, pci_subdevice_id, pci_subvendor_id; 4633 uint16_t pci_vendor_id; 4634 4635 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC) 4636 return (ENOTSUP); 4637 4638 pci_vendor_id = pci_get_vendor(dev); 4639 pci_device_id = pci_get_device(dev); 4640 pci_subvendor_id = pci_get_subvendor(dev); 4641 pci_subdevice_id = pci_get_subdevice(dev); 4642 pci_rev_id = pci_get_revid(dev); 4643 if (sctx->isc_parse_devinfo != NULL) 4644 sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id); 4645 4646 ent = sctx->isc_vendor_info; 4647 while (ent->pvi_vendor_id != 0) { 4648 if (pci_vendor_id != ent->pvi_vendor_id) { 4649 ent++; 4650 continue; 4651 } 4652 if ((pci_device_id == ent->pvi_device_id) && 4653 ((pci_subvendor_id == ent->pvi_subvendor_id) || 4654 (ent->pvi_subvendor_id == 0)) && 4655 ((pci_subdevice_id == ent->pvi_subdevice_id) || 4656 (ent->pvi_subdevice_id == 0)) && 4657 ((pci_rev_id == ent->pvi_rev_id) || 4658 (ent->pvi_rev_id == 0))) { 4659 device_set_desc_copy(dev, ent->pvi_name); 4660 /* this needs to be changed to zero if the bus probing code 4661 * ever stops re-probing on best match because the sctx 4662 * may have its values over written by register calls 4663 * in subsequent probes 4664 */ 4665 return (BUS_PROBE_DEFAULT); 4666 } 4667 ent++; 4668 } 4669 return (ENXIO); 4670 } 4671 4672 int 4673 iflib_device_probe_vendor(device_t dev) 4674 { 4675 int probe; 4676 4677 probe = iflib_device_probe(dev); 4678 if (probe == BUS_PROBE_DEFAULT) 4679 return (BUS_PROBE_VENDOR); 4680 else 4681 return (probe); 4682 } 4683 4684 static void 4685 iflib_reset_qvalues(if_ctx_t ctx) 4686 { 4687 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 4688 if_shared_ctx_t sctx = ctx->ifc_sctx; 4689 device_t dev = ctx->ifc_dev; 4690 int i; 4691 4692 if (ctx->ifc_sysctl_ntxqs != 0) 4693 scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs; 4694 if (ctx->ifc_sysctl_nrxqs != 0) 4695 scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs; 4696 4697 for (i = 0; i < sctx->isc_ntxqs; i++) { 4698 if (ctx->ifc_sysctl_ntxds[i] != 0) 4699 scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i]; 4700 else 4701 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i]; 4702 } 4703 4704 for (i = 0; i < sctx->isc_nrxqs; i++) { 4705 if (ctx->ifc_sysctl_nrxds[i] != 0) 4706 scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i]; 4707 else 4708 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i]; 4709 } 4710 4711 for (i = 0; i < sctx->isc_nrxqs; i++) { 4712 if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) { 4713 device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n", 4714 i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]); 4715 scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i]; 4716 } 4717 if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) { 4718 device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n", 4719 i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]); 4720 scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i]; 4721 } 4722 if (!powerof2(scctx->isc_nrxd[i])) { 4723 device_printf(dev, "nrxd%d: %d is not a power of 2 - using default value of %d\n", 4724 i, scctx->isc_nrxd[i], sctx->isc_nrxd_default[i]); 4725 scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i]; 4726 } 4727 } 4728 4729 for (i = 0; i < sctx->isc_ntxqs; i++) { 4730 if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) { 4731 device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n", 4732 i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]); 4733 scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i]; 4734 } 4735 if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) { 4736 device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n", 4737 i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]); 4738 scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i]; 4739 } 4740 if (!powerof2(scctx->isc_ntxd[i])) { 4741 device_printf(dev, "ntxd%d: %d is not a power of 2 - using default value of %d\n", 4742 i, scctx->isc_ntxd[i], sctx->isc_ntxd_default[i]); 4743 scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i]; 4744 } 4745 } 4746 scctx->isc_tx_pad = 2; 4747 } 4748 4749 static void 4750 iflib_add_pfil(if_ctx_t ctx) 4751 { 4752 struct pfil_head *pfil; 4753 struct pfil_head_args pa; 4754 iflib_rxq_t rxq; 4755 int i; 4756 4757 pa.pa_version = PFIL_VERSION; 4758 pa.pa_flags = PFIL_IN; 4759 pa.pa_type = PFIL_TYPE_ETHERNET; 4760 pa.pa_headname = if_name(ctx->ifc_ifp); 4761 pfil = pfil_head_register(&pa); 4762 4763 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) { 4764 rxq->pfil = pfil; 4765 } 4766 } 4767 4768 static void 4769 iflib_rem_pfil(if_ctx_t ctx) 4770 { 4771 struct pfil_head *pfil; 4772 iflib_rxq_t rxq; 4773 int i; 4774 4775 rxq = ctx->ifc_rxqs; 4776 pfil = rxq->pfil; 4777 for (i = 0; i < NRXQSETS(ctx); i++, rxq++) { 4778 rxq->pfil = NULL; 4779 } 4780 pfil_head_unregister(pfil); 4781 } 4782 4783 4784 /* 4785 * Advance forward by n members of the cpuset ctx->ifc_cpus starting from 4786 * cpuid and wrapping as necessary. 4787 */ 4788 static unsigned int 4789 cpuid_advance(if_ctx_t ctx, unsigned int cpuid, unsigned int n) 4790 { 4791 unsigned int first_valid; 4792 unsigned int last_valid; 4793 4794 /* cpuid should always be in the valid set */ 4795 MPASS(CPU_ISSET(cpuid, &ctx->ifc_cpus)); 4796 4797 /* valid set should never be empty */ 4798 MPASS(!CPU_EMPTY(&ctx->ifc_cpus)); 4799 4800 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1; 4801 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1; 4802 n = n % CPU_COUNT(&ctx->ifc_cpus); 4803 while (n > 0) { 4804 do { 4805 cpuid++; 4806 if (cpuid > last_valid) 4807 cpuid = first_valid; 4808 } while (!CPU_ISSET(cpuid, &ctx->ifc_cpus)); 4809 n--; 4810 } 4811 4812 return (cpuid); 4813 } 4814 4815 #if defined(SMP) && defined(SCHED_ULE) 4816 extern struct cpu_group *cpu_top; /* CPU topology */ 4817 4818 static int 4819 find_child_with_core(int cpu, struct cpu_group *grp) 4820 { 4821 int i; 4822 4823 if (grp->cg_children == 0) 4824 return (-1); 4825 4826 MPASS(grp->cg_child); 4827 for (i = 0; i < grp->cg_children; i++) { 4828 if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask)) 4829 return (i); 4830 } 4831 4832 return (-1); 4833 } 4834 4835 4836 /* 4837 * Find an L2 neighbor of the given CPU or return -1 if none found. This 4838 * does not distinguish among multiple L2 neighbors if the given CPU has 4839 * more than one (it will always return the same result in that case). 4840 */ 4841 static int 4842 find_l2_neighbor(int cpu) 4843 { 4844 struct cpu_group *grp; 4845 int i; 4846 4847 grp = cpu_top; 4848 if (grp == NULL) 4849 return (-1); 4850 4851 /* 4852 * Find the smallest CPU group that contains the given core. 4853 */ 4854 i = 0; 4855 while ((i = find_child_with_core(cpu, grp)) != -1) { 4856 /* 4857 * If the smallest group containing the given CPU has less 4858 * than two members, we conclude the given CPU has no 4859 * L2 neighbor. 4860 */ 4861 if (grp->cg_child[i].cg_count <= 1) 4862 return (-1); 4863 grp = &grp->cg_child[i]; 4864 } 4865 4866 /* Must share L2. */ 4867 if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE) 4868 return (-1); 4869 4870 /* 4871 * Select the first member of the set that isn't the reference 4872 * CPU, which at this point is guaranteed to exist. 4873 */ 4874 for (i = 0; i < CPU_SETSIZE; i++) { 4875 if (CPU_ISSET(i, &grp->cg_mask) && i != cpu) 4876 return (i); 4877 } 4878 4879 /* Should never be reached */ 4880 return (-1); 4881 } 4882 4883 #else 4884 static int 4885 find_l2_neighbor(int cpu) 4886 { 4887 4888 return (-1); 4889 } 4890 #endif 4891 4892 /* 4893 * CPU mapping behaviors 4894 * --------------------- 4895 * 'separate txrx' refers to the separate_txrx sysctl 4896 * 'use logical' refers to the use_logical_cores sysctl 4897 * 'INTR CPUS' indicates whether bus_get_cpus(INTR_CPUS) succeeded 4898 * 4899 * separate use INTR 4900 * txrx logical CPUS result 4901 * ---------- --------- ------ ------------------------------------------------ 4902 * - - X RX and TX queues mapped to consecutive physical 4903 * cores with RX/TX pairs on same core and excess 4904 * of either following 4905 * - X X RX and TX queues mapped to consecutive cores 4906 * of any type with RX/TX pairs on same core and 4907 * excess of either following 4908 * X - X RX and TX queues mapped to consecutive physical 4909 * cores; all RX then all TX 4910 * X X X RX queues mapped to consecutive physical cores 4911 * first, then TX queues mapped to L2 neighbor of 4912 * the corresponding RX queue if one exists, 4913 * otherwise to consecutive physical cores 4914 * - n/a - RX and TX queues mapped to consecutive cores of 4915 * any type with RX/TX pairs on same core and excess 4916 * of either following 4917 * X n/a - RX and TX queues mapped to consecutive cores of 4918 * any type; all RX then all TX 4919 */ 4920 static unsigned int 4921 get_cpuid_for_queue(if_ctx_t ctx, unsigned int base_cpuid, unsigned int qid, 4922 bool is_tx) 4923 { 4924 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 4925 unsigned int core_index; 4926 4927 if (ctx->ifc_sysctl_separate_txrx) { 4928 /* 4929 * When using separate CPUs for TX and RX, the assignment 4930 * will always be of a consecutive CPU out of the set of 4931 * context CPUs, except for the specific case where the 4932 * context CPUs are phsyical cores, the use of logical cores 4933 * has been enabled, the assignment is for TX, the TX qid 4934 * corresponds to an RX qid, and the CPU assigned to the 4935 * corresponding RX queue has an L2 neighbor. 4936 */ 4937 if (ctx->ifc_sysctl_use_logical_cores && 4938 ctx->ifc_cpus_are_physical_cores && 4939 is_tx && qid < scctx->isc_nrxqsets) { 4940 int l2_neighbor; 4941 unsigned int rx_cpuid; 4942 4943 rx_cpuid = cpuid_advance(ctx, base_cpuid, qid); 4944 l2_neighbor = find_l2_neighbor(rx_cpuid); 4945 if (l2_neighbor != -1) { 4946 return (l2_neighbor); 4947 } 4948 /* 4949 * ... else fall through to the normal 4950 * consecutive-after-RX assignment scheme. 4951 * 4952 * Note that we are assuming that all RX queue CPUs 4953 * have an L2 neighbor, or all do not. If a mixed 4954 * scenario is possible, we will have to keep track 4955 * separately of how many queues prior to this one 4956 * were not able to be assigned to an L2 neighbor. 4957 */ 4958 } 4959 if (is_tx) 4960 core_index = scctx->isc_nrxqsets + qid; 4961 else 4962 core_index = qid; 4963 } else { 4964 core_index = qid; 4965 } 4966 4967 return (cpuid_advance(ctx, base_cpuid, core_index)); 4968 } 4969 4970 static uint16_t 4971 get_ctx_core_offset(if_ctx_t ctx) 4972 { 4973 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 4974 struct cpu_offset *op; 4975 cpuset_t assigned_cpus; 4976 unsigned int cores_consumed; 4977 unsigned int base_cpuid = ctx->ifc_sysctl_core_offset; 4978 unsigned int first_valid; 4979 unsigned int last_valid; 4980 unsigned int i; 4981 4982 first_valid = CPU_FFS(&ctx->ifc_cpus) - 1; 4983 last_valid = CPU_FLS(&ctx->ifc_cpus) - 1; 4984 4985 if (base_cpuid != CORE_OFFSET_UNSPECIFIED) { 4986 /* 4987 * Align the user-chosen base CPU ID to the next valid CPU 4988 * for this device. If the chosen base CPU ID is smaller 4989 * than the first valid CPU or larger than the last valid 4990 * CPU, we assume the user does not know what the valid 4991 * range is for this device and is thinking in terms of a 4992 * zero-based reference frame, and so we shift the given 4993 * value into the valid range (and wrap accordingly) so the 4994 * intent is translated to the proper frame of reference. 4995 * If the base CPU ID is within the valid first/last, but 4996 * does not correspond to a valid CPU, it is advanced to the 4997 * next valid CPU (wrapping if necessary). 4998 */ 4999 if (base_cpuid < first_valid || base_cpuid > last_valid) { 5000 /* shift from zero-based to first_valid-based */ 5001 base_cpuid += first_valid; 5002 /* wrap to range [first_valid, last_valid] */ 5003 base_cpuid = (base_cpuid - first_valid) % 5004 (last_valid - first_valid + 1); 5005 } 5006 if (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) { 5007 /* 5008 * base_cpuid is in [first_valid, last_valid], but 5009 * not a member of the valid set. In this case, 5010 * there will always be a member of the valid set 5011 * with a CPU ID that is greater than base_cpuid, 5012 * and we simply advance to it. 5013 */ 5014 while (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) 5015 base_cpuid++; 5016 } 5017 return (base_cpuid); 5018 } 5019 5020 /* 5021 * Determine how many cores will be consumed by performing the CPU 5022 * assignments and counting how many of the assigned CPUs correspond 5023 * to CPUs in the set of context CPUs. This is done using the CPU 5024 * ID first_valid as the base CPU ID, as the base CPU must be within 5025 * the set of context CPUs. 5026 * 5027 * Note not all assigned CPUs will be in the set of context CPUs 5028 * when separate CPUs are being allocated to TX and RX queues, 5029 * assignment to logical cores has been enabled, the set of context 5030 * CPUs contains only physical CPUs, and TX queues are mapped to L2 5031 * neighbors of CPUs that RX queues have been mapped to - in this 5032 * case we do only want to count how many CPUs in the set of context 5033 * CPUs have been consumed, as that determines the next CPU in that 5034 * set to start allocating at for the next device for which 5035 * core_offset is not set. 5036 */ 5037 CPU_ZERO(&assigned_cpus); 5038 for (i = 0; i < scctx->isc_ntxqsets; i++) 5039 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, true), 5040 &assigned_cpus); 5041 for (i = 0; i < scctx->isc_nrxqsets; i++) 5042 CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, false), 5043 &assigned_cpus); 5044 CPU_AND(&assigned_cpus, &assigned_cpus, &ctx->ifc_cpus); 5045 cores_consumed = CPU_COUNT(&assigned_cpus); 5046 5047 mtx_lock(&cpu_offset_mtx); 5048 SLIST_FOREACH(op, &cpu_offsets, entries) { 5049 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) { 5050 base_cpuid = op->next_cpuid; 5051 op->next_cpuid = cpuid_advance(ctx, op->next_cpuid, 5052 cores_consumed); 5053 MPASS(op->refcount < UINT_MAX); 5054 op->refcount++; 5055 break; 5056 } 5057 } 5058 if (base_cpuid == CORE_OFFSET_UNSPECIFIED) { 5059 base_cpuid = first_valid; 5060 op = malloc(sizeof(struct cpu_offset), M_IFLIB, 5061 M_NOWAIT | M_ZERO); 5062 if (op == NULL) { 5063 device_printf(ctx->ifc_dev, 5064 "allocation for cpu offset failed.\n"); 5065 } else { 5066 op->next_cpuid = cpuid_advance(ctx, base_cpuid, 5067 cores_consumed); 5068 op->refcount = 1; 5069 CPU_COPY(&ctx->ifc_cpus, &op->set); 5070 SLIST_INSERT_HEAD(&cpu_offsets, op, entries); 5071 } 5072 } 5073 mtx_unlock(&cpu_offset_mtx); 5074 5075 return (base_cpuid); 5076 } 5077 5078 static void 5079 unref_ctx_core_offset(if_ctx_t ctx) 5080 { 5081 struct cpu_offset *op, *top; 5082 5083 mtx_lock(&cpu_offset_mtx); 5084 SLIST_FOREACH_SAFE(op, &cpu_offsets, entries, top) { 5085 if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) { 5086 MPASS(op->refcount > 0); 5087 op->refcount--; 5088 if (op->refcount == 0) { 5089 SLIST_REMOVE(&cpu_offsets, op, cpu_offset, entries); 5090 free(op, M_IFLIB); 5091 } 5092 break; 5093 } 5094 } 5095 mtx_unlock(&cpu_offset_mtx); 5096 } 5097 5098 int 5099 iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp) 5100 { 5101 if_ctx_t ctx; 5102 if_t ifp; 5103 if_softc_ctx_t scctx; 5104 kobjop_desc_t kobj_desc; 5105 kobj_method_t *kobj_method; 5106 int err, msix, rid; 5107 int num_txd, num_rxd; 5108 char namebuf[TASKQUEUE_NAMELEN]; 5109 5110 ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK | M_ZERO); 5111 5112 if (sc == NULL) { 5113 sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK | M_ZERO); 5114 device_set_softc(dev, ctx); 5115 ctx->ifc_flags |= IFC_SC_ALLOCATED; 5116 } 5117 5118 ctx->ifc_sctx = sctx; 5119 ctx->ifc_dev = dev; 5120 ctx->ifc_softc = sc; 5121 5122 iflib_register(ctx); 5123 iflib_add_device_sysctl_pre(ctx); 5124 5125 scctx = &ctx->ifc_softc_ctx; 5126 ifp = ctx->ifc_ifp; 5127 if (ctx->ifc_sysctl_simple_tx) { 5128 #ifndef ALTQ 5129 if_settransmitfn(ifp, iflib_simple_transmit); 5130 device_printf(dev, "using simple if_transmit\n"); 5131 #else 5132 device_printf(dev, "ALTQ prevents using simple if_transmit\n"); 5133 #endif 5134 } 5135 iflib_reset_qvalues(ctx); 5136 IFNET_WLOCK(); 5137 CTX_LOCK(ctx); 5138 if ((err = IFDI_ATTACH_PRE(ctx)) != 0) { 5139 device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err); 5140 goto fail_unlock; 5141 } 5142 _iflib_pre_assert(scctx); 5143 ctx->ifc_txrx = *scctx->isc_txrx; 5144 5145 MPASS(scctx->isc_dma_width <= flsll(BUS_SPACE_MAXADDR)); 5146 5147 if (sctx->isc_flags & IFLIB_DRIVER_MEDIA) 5148 ctx->ifc_mediap = scctx->isc_media; 5149 5150 #ifdef INVARIANTS 5151 if (scctx->isc_capabilities & IFCAP_TXCSUM) 5152 MPASS(scctx->isc_tx_csum_flags); 5153 #endif 5154 5155 if_setcapabilities(ifp, 5156 scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_MEXTPG); 5157 if_setcapenable(ifp, 5158 scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_MEXTPG); 5159 5160 if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets)) 5161 scctx->isc_ntxqsets = scctx->isc_ntxqsets_max; 5162 if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets)) 5163 scctx->isc_nrxqsets = scctx->isc_nrxqsets_max; 5164 5165 num_txd = iflib_num_tx_descs(ctx); 5166 num_rxd = iflib_num_rx_descs(ctx); 5167 5168 /* XXX change for per-queue sizes */ 5169 device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n", 5170 num_txd, num_rxd); 5171 5172 if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION) 5173 scctx->isc_tx_nsegments = max(1, num_txd / 5174 MAX_SINGLE_PACKET_FRACTION); 5175 if (scctx->isc_tx_tso_segments_max > num_txd / 5176 MAX_SINGLE_PACKET_FRACTION) 5177 scctx->isc_tx_tso_segments_max = max(1, 5178 num_txd / MAX_SINGLE_PACKET_FRACTION); 5179 5180 /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */ 5181 if (if_getcapabilities(ifp) & IFCAP_TSO) { 5182 /* 5183 * The stack can't handle a TSO size larger than IP_MAXPACKET, 5184 * but some MACs do. 5185 */ 5186 if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max, 5187 IP_MAXPACKET)); 5188 /* 5189 * Take maximum number of m_pullup(9)'s in iflib_parse_header() 5190 * into account. In the worst case, each of these calls will 5191 * add another mbuf and, thus, the requirement for another DMA 5192 * segment. So for best performance, it doesn't make sense to 5193 * advertize a maximum of TSO segments that typically will 5194 * require defragmentation in iflib_encap(). 5195 */ 5196 if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3); 5197 if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max); 5198 } 5199 if (scctx->isc_rss_table_size == 0) 5200 scctx->isc_rss_table_size = 64; 5201 scctx->isc_rss_table_mask = scctx->isc_rss_table_size - 1; 5202 5203 /* Create and start admin taskqueue */ 5204 snprintf(namebuf, TASKQUEUE_NAMELEN, "if_%s_tq", device_get_nameunit(dev)); 5205 ctx->ifc_tq = taskqueue_create_fast(namebuf, M_NOWAIT, 5206 taskqueue_thread_enqueue, &ctx->ifc_tq); 5207 if (ctx->ifc_tq == NULL) { 5208 device_printf(dev, "Unable to create admin taskqueue\n"); 5209 return (ENOMEM); 5210 } 5211 5212 err = taskqueue_start_threads(&ctx->ifc_tq, 1, PI_NET, "%s", namebuf); 5213 if (err) { 5214 device_printf(dev, 5215 "Unable to start admin taskqueue threads error: %d\n", 5216 err); 5217 taskqueue_free(ctx->ifc_tq); 5218 return (err); 5219 } 5220 5221 TASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx); 5222 5223 /* Set up cpu set. If it fails, use the set of all CPUs. */ 5224 if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) { 5225 device_printf(dev, "Unable to fetch CPU list\n"); 5226 CPU_COPY(&all_cpus, &ctx->ifc_cpus); 5227 ctx->ifc_cpus_are_physical_cores = false; 5228 } else 5229 ctx->ifc_cpus_are_physical_cores = true; 5230 MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0); 5231 5232 /* 5233 * Now set up MSI or MSI-X, should return us the number of supported 5234 * vectors (will be 1 for a legacy interrupt and MSI). 5235 */ 5236 if (sctx->isc_flags & IFLIB_SKIP_MSIX) { 5237 msix = scctx->isc_vectors; 5238 } else if (scctx->isc_msix_bar != 0) 5239 /* 5240 * The simple fact that isc_msix_bar is not 0 does not mean we 5241 * we have a good value there that is known to work. 5242 */ 5243 msix = iflib_msix_init(ctx); 5244 else { 5245 scctx->isc_vectors = 1; 5246 scctx->isc_ntxqsets = 1; 5247 scctx->isc_nrxqsets = 1; 5248 scctx->isc_intr = IFLIB_INTR_LEGACY; 5249 msix = 0; 5250 } 5251 /* Get memory for the station queues */ 5252 if ((err = iflib_queues_alloc(ctx))) { 5253 device_printf(dev, "Unable to allocate queue memory\n"); 5254 goto fail_intr_free; 5255 } 5256 5257 if ((err = iflib_qset_structures_setup(ctx))) 5258 goto fail_queues; 5259 5260 /* 5261 * Now that we know how many queues there are, get the core offset. 5262 */ 5263 ctx->ifc_sysctl_core_offset = get_ctx_core_offset(ctx); 5264 5265 if (msix > 1) { 5266 /* 5267 * When using MSI-X, ensure that ifdi_{r,t}x_queue_intr_enable 5268 * aren't the default NULL implementation. 5269 */ 5270 kobj_desc = &ifdi_rx_queue_intr_enable_desc; 5271 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL, 5272 kobj_desc); 5273 if (kobj_method == &kobj_desc->deflt) { 5274 device_printf(dev, 5275 "MSI-X requires ifdi_rx_queue_intr_enable method"); 5276 err = EOPNOTSUPP; 5277 goto fail_queues; 5278 } 5279 kobj_desc = &ifdi_tx_queue_intr_enable_desc; 5280 kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL, 5281 kobj_desc); 5282 if (kobj_method == &kobj_desc->deflt) { 5283 device_printf(dev, 5284 "MSI-X requires ifdi_tx_queue_intr_enable method"); 5285 err = EOPNOTSUPP; 5286 goto fail_queues; 5287 } 5288 5289 /* 5290 * Assign the MSI-X vectors. 5291 * Note that the default NULL ifdi_msix_intr_assign method will 5292 * fail here, too. 5293 */ 5294 err = IFDI_MSIX_INTR_ASSIGN(ctx, msix); 5295 if (err != 0) { 5296 device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n", 5297 err); 5298 goto fail_queues; 5299 } 5300 } else if (scctx->isc_intr != IFLIB_INTR_MSIX) { 5301 rid = 0; 5302 if (scctx->isc_intr == IFLIB_INTR_MSI) { 5303 MPASS(msix == 1); 5304 rid = 1; 5305 } 5306 if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) { 5307 device_printf(dev, "iflib_legacy_setup failed %d\n", err); 5308 goto fail_queues; 5309 } 5310 } else { 5311 device_printf(dev, 5312 "Cannot use iflib with only 1 MSI-X interrupt!\n"); 5313 err = ENODEV; 5314 goto fail_queues; 5315 } 5316 5317 /* 5318 * It prevents a double-locking panic with iflib_media_status when 5319 * the driver loads. 5320 */ 5321 CTX_UNLOCK(ctx); 5322 ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet); 5323 CTX_LOCK(ctx); 5324 5325 if ((err = IFDI_ATTACH_POST(ctx)) != 0) { 5326 device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err); 5327 goto fail_detach; 5328 } 5329 5330 /* 5331 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported. 5332 * This must appear after the call to ether_ifattach() because 5333 * ether_ifattach() sets if_hdrlen to the default value. 5334 */ 5335 if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) 5336 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 5337 5338 if ((err = iflib_netmap_attach(ctx))) { 5339 device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err); 5340 goto fail_detach; 5341 } 5342 *ctxp = ctx; 5343 5344 DEBUGNET_SET(ctx->ifc_ifp, iflib); 5345 5346 iflib_add_device_sysctl_post(ctx); 5347 iflib_add_pfil(ctx); 5348 ctx->ifc_flags |= IFC_INIT_DONE; 5349 CTX_UNLOCK(ctx); 5350 IFNET_WUNLOCK(); 5351 5352 return (0); 5353 5354 fail_detach: 5355 ether_ifdetach(ctx->ifc_ifp); 5356 fail_queues: 5357 taskqueue_free(ctx->ifc_tq); 5358 iflib_tqg_detach(ctx); 5359 iflib_tx_structures_free(ctx); 5360 iflib_rx_structures_free(ctx); 5361 IFDI_DETACH(ctx); 5362 IFDI_QUEUES_FREE(ctx); 5363 fail_intr_free: 5364 iflib_free_intr_mem(ctx); 5365 fail_unlock: 5366 CTX_UNLOCK(ctx); 5367 IFNET_WUNLOCK(); 5368 iflib_deregister(ctx); 5369 device_set_softc(ctx->ifc_dev, NULL); 5370 if (ctx->ifc_flags & IFC_SC_ALLOCATED) 5371 free(ctx->ifc_softc, M_IFLIB); 5372 free(ctx, M_IFLIB); 5373 return (err); 5374 } 5375 5376 int 5377 iflib_device_attach(device_t dev) 5378 { 5379 if_ctx_t ctx; 5380 if_shared_ctx_t sctx; 5381 5382 if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC) 5383 return (ENOTSUP); 5384 5385 pci_enable_busmaster(dev); 5386 5387 return (iflib_device_register(dev, NULL, sctx, &ctx)); 5388 } 5389 5390 int 5391 iflib_device_deregister(if_ctx_t ctx) 5392 { 5393 if_t ifp = ctx->ifc_ifp; 5394 device_t dev = ctx->ifc_dev; 5395 5396 /* Make sure VLANS are not using driver */ 5397 if (if_vlantrunkinuse(ifp)) { 5398 device_printf(dev, "Vlan in use, detach first\n"); 5399 return (EBUSY); 5400 } 5401 #ifdef PCI_IOV 5402 if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) { 5403 device_printf(dev, "SR-IOV in use; detach first.\n"); 5404 return (EBUSY); 5405 } 5406 #endif 5407 5408 STATE_LOCK(ctx); 5409 ctx->ifc_flags |= IFC_IN_DETACH; 5410 STATE_UNLOCK(ctx); 5411 5412 /* Unregister VLAN handlers before calling iflib_stop() */ 5413 iflib_unregister_vlan_handlers(ctx); 5414 5415 iflib_netmap_detach(ifp); 5416 ether_ifdetach(ifp); 5417 5418 CTX_LOCK(ctx); 5419 iflib_stop(ctx); 5420 CTX_UNLOCK(ctx); 5421 5422 iflib_rem_pfil(ctx); 5423 if (ctx->ifc_led_dev != NULL) 5424 led_destroy(ctx->ifc_led_dev); 5425 5426 iflib_tqg_detach(ctx); 5427 iflib_tx_structures_free(ctx); 5428 iflib_rx_structures_free(ctx); 5429 5430 CTX_LOCK(ctx); 5431 IFDI_DETACH(ctx); 5432 IFDI_QUEUES_FREE(ctx); 5433 CTX_UNLOCK(ctx); 5434 5435 taskqueue_free(ctx->ifc_tq); 5436 ctx->ifc_tq = NULL; 5437 5438 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/ 5439 iflib_free_intr_mem(ctx); 5440 5441 bus_generic_detach(dev); 5442 5443 iflib_deregister(ctx); 5444 5445 device_set_softc(ctx->ifc_dev, NULL); 5446 if (ctx->ifc_flags & IFC_SC_ALLOCATED) 5447 free(ctx->ifc_softc, M_IFLIB); 5448 unref_ctx_core_offset(ctx); 5449 free(ctx, M_IFLIB); 5450 return (0); 5451 } 5452 5453 static void 5454 iflib_tqg_detach(if_ctx_t ctx) 5455 { 5456 iflib_txq_t txq; 5457 iflib_rxq_t rxq; 5458 int i; 5459 struct taskqgroup *tqg; 5460 5461 /* XXX drain any dependent tasks */ 5462 tqg = qgroup_if_io_tqg; 5463 for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) { 5464 callout_drain(&txq->ift_timer); 5465 #ifdef DEV_NETMAP 5466 callout_drain(&txq->ift_netmap_timer); 5467 #endif /* DEV_NETMAP */ 5468 if (txq->ift_task.gt_uniq != NULL) 5469 taskqgroup_detach(tqg, &txq->ift_task); 5470 } 5471 for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) { 5472 if (rxq->ifr_task.gt_uniq != NULL) 5473 taskqgroup_detach(tqg, &rxq->ifr_task); 5474 } 5475 } 5476 5477 static void 5478 iflib_free_intr_mem(if_ctx_t ctx) 5479 { 5480 5481 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) { 5482 iflib_irq_free(ctx, &ctx->ifc_legacy_irq); 5483 } 5484 if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) { 5485 pci_release_msi(ctx->ifc_dev); 5486 } 5487 if (ctx->ifc_msix_mem != NULL) { 5488 bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY, 5489 rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem); 5490 ctx->ifc_msix_mem = NULL; 5491 } 5492 } 5493 5494 int 5495 iflib_device_detach(device_t dev) 5496 { 5497 if_ctx_t ctx = device_get_softc(dev); 5498 5499 return (iflib_device_deregister(ctx)); 5500 } 5501 5502 int 5503 iflib_device_suspend(device_t dev) 5504 { 5505 if_ctx_t ctx = device_get_softc(dev); 5506 5507 CTX_LOCK(ctx); 5508 IFDI_SUSPEND(ctx); 5509 CTX_UNLOCK(ctx); 5510 5511 return (bus_generic_suspend(dev)); 5512 } 5513 int 5514 iflib_device_shutdown(device_t dev) 5515 { 5516 if_ctx_t ctx = device_get_softc(dev); 5517 5518 CTX_LOCK(ctx); 5519 IFDI_SHUTDOWN(ctx); 5520 CTX_UNLOCK(ctx); 5521 5522 return (bus_generic_suspend(dev)); 5523 } 5524 5525 int 5526 iflib_device_resume(device_t dev) 5527 { 5528 if_ctx_t ctx = device_get_softc(dev); 5529 iflib_txq_t txq = ctx->ifc_txqs; 5530 5531 CTX_LOCK(ctx); 5532 IFDI_RESUME(ctx); 5533 iflib_if_init_locked(ctx); 5534 CTX_UNLOCK(ctx); 5535 for (int i = 0; i < NTXQSETS(ctx); i++, txq++) 5536 iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET); 5537 5538 return (bus_generic_resume(dev)); 5539 } 5540 5541 int 5542 iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params) 5543 { 5544 int error; 5545 if_ctx_t ctx = device_get_softc(dev); 5546 5547 CTX_LOCK(ctx); 5548 error = IFDI_IOV_INIT(ctx, num_vfs, params); 5549 CTX_UNLOCK(ctx); 5550 5551 return (error); 5552 } 5553 5554 void 5555 iflib_device_iov_uninit(device_t dev) 5556 { 5557 if_ctx_t ctx = device_get_softc(dev); 5558 5559 CTX_LOCK(ctx); 5560 IFDI_IOV_UNINIT(ctx); 5561 CTX_UNLOCK(ctx); 5562 } 5563 5564 int 5565 iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params) 5566 { 5567 int error; 5568 if_ctx_t ctx = device_get_softc(dev); 5569 5570 CTX_LOCK(ctx); 5571 error = IFDI_IOV_VF_ADD(ctx, vfnum, params); 5572 CTX_UNLOCK(ctx); 5573 5574 return (error); 5575 } 5576 5577 /********************************************************************* 5578 * 5579 * MODULE FUNCTION DEFINITIONS 5580 * 5581 **********************************************************************/ 5582 5583 /* 5584 * - Start a fast taskqueue thread for each core 5585 * - Start a taskqueue for control operations 5586 */ 5587 static int 5588 iflib_module_init(void) 5589 { 5590 iflib_timer_default = hz / 2; 5591 return (0); 5592 } 5593 5594 static int 5595 iflib_module_event_handler(module_t mod, int what, void *arg) 5596 { 5597 int err; 5598 5599 switch (what) { 5600 case MOD_LOAD: 5601 if ((err = iflib_module_init()) != 0) 5602 return (err); 5603 break; 5604 case MOD_UNLOAD: 5605 return (EBUSY); 5606 default: 5607 return (EOPNOTSUPP); 5608 } 5609 5610 return (0); 5611 } 5612 5613 /********************************************************************* 5614 * 5615 * PUBLIC FUNCTION DEFINITIONS 5616 * ordered as in iflib.h 5617 * 5618 **********************************************************************/ 5619 5620 static void 5621 _iflib_assert(if_shared_ctx_t sctx) 5622 { 5623 int i; 5624 5625 MPASS(sctx->isc_tx_maxsize); 5626 MPASS(sctx->isc_tx_maxsegsize); 5627 5628 MPASS(sctx->isc_rx_maxsize); 5629 MPASS(sctx->isc_rx_nsegments); 5630 MPASS(sctx->isc_rx_maxsegsize); 5631 5632 MPASS(sctx->isc_nrxqs >= 1 && sctx->isc_nrxqs <= 8); 5633 for (i = 0; i < sctx->isc_nrxqs; i++) { 5634 MPASS(sctx->isc_nrxd_min[i]); 5635 MPASS(powerof2(sctx->isc_nrxd_min[i])); 5636 MPASS(sctx->isc_nrxd_max[i]); 5637 MPASS(powerof2(sctx->isc_nrxd_max[i])); 5638 MPASS(sctx->isc_nrxd_default[i]); 5639 MPASS(powerof2(sctx->isc_nrxd_default[i])); 5640 } 5641 5642 MPASS(sctx->isc_ntxqs >= 1 && sctx->isc_ntxqs <= 8); 5643 for (i = 0; i < sctx->isc_ntxqs; i++) { 5644 MPASS(sctx->isc_ntxd_min[i]); 5645 MPASS(powerof2(sctx->isc_ntxd_min[i])); 5646 MPASS(sctx->isc_ntxd_max[i]); 5647 MPASS(powerof2(sctx->isc_ntxd_max[i])); 5648 MPASS(sctx->isc_ntxd_default[i]); 5649 MPASS(powerof2(sctx->isc_ntxd_default[i])); 5650 } 5651 } 5652 5653 static void 5654 _iflib_pre_assert(if_softc_ctx_t scctx) 5655 { 5656 5657 MPASS(scctx->isc_txrx->ift_txd_encap); 5658 MPASS(scctx->isc_txrx->ift_txd_flush); 5659 MPASS(scctx->isc_txrx->ift_txd_credits_update); 5660 MPASS(scctx->isc_txrx->ift_rxd_available); 5661 MPASS(scctx->isc_txrx->ift_rxd_pkt_get); 5662 MPASS(scctx->isc_txrx->ift_rxd_refill); 5663 MPASS(scctx->isc_txrx->ift_rxd_flush); 5664 } 5665 5666 static void 5667 iflib_register(if_ctx_t ctx) 5668 { 5669 if_shared_ctx_t sctx = ctx->ifc_sctx; 5670 driver_t *driver = sctx->isc_driver; 5671 device_t dev = ctx->ifc_dev; 5672 if_t ifp; 5673 5674 _iflib_assert(sctx); 5675 5676 CTX_LOCK_INIT(ctx); 5677 STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev)); 5678 ifp = ctx->ifc_ifp = if_alloc_dev(IFT_ETHER, dev); 5679 5680 /* 5681 * Initialize our context's device specific methods 5682 */ 5683 kobj_init((kobj_t) ctx, (kobj_class_t) driver); 5684 kobj_class_compile((kobj_class_t) driver); 5685 5686 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 5687 if_setsoftc(ifp, ctx); 5688 if_setdev(ifp, dev); 5689 if_setinitfn(ifp, iflib_if_init); 5690 if_setioctlfn(ifp, iflib_if_ioctl); 5691 #ifdef ALTQ 5692 if_setstartfn(ifp, iflib_altq_if_start); 5693 if_settransmitfn(ifp, iflib_altq_if_transmit); 5694 if_setsendqready(ifp); 5695 #else 5696 if_settransmitfn(ifp, iflib_if_transmit); 5697 #endif 5698 if_setqflushfn(ifp, iflib_if_qflush); 5699 if_setgetcounterfn(ifp, iflib_if_get_counter); 5700 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 5701 ctx->ifc_vlan_attach_event = 5702 EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx, 5703 EVENTHANDLER_PRI_FIRST); 5704 ctx->ifc_vlan_detach_event = 5705 EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx, 5706 EVENTHANDLER_PRI_FIRST); 5707 5708 if ((sctx->isc_flags & IFLIB_DRIVER_MEDIA) == 0) { 5709 ctx->ifc_mediap = &ctx->ifc_media; 5710 ifmedia_init(ctx->ifc_mediap, IFM_IMASK, 5711 iflib_media_change, iflib_media_status); 5712 } 5713 } 5714 5715 static void 5716 iflib_unregister_vlan_handlers(if_ctx_t ctx) 5717 { 5718 /* Unregister VLAN events */ 5719 if (ctx->ifc_vlan_attach_event != NULL) { 5720 EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event); 5721 ctx->ifc_vlan_attach_event = NULL; 5722 } 5723 if (ctx->ifc_vlan_detach_event != NULL) { 5724 EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event); 5725 ctx->ifc_vlan_detach_event = NULL; 5726 } 5727 5728 } 5729 5730 static void 5731 iflib_deregister(if_ctx_t ctx) 5732 { 5733 if_t ifp = ctx->ifc_ifp; 5734 5735 /* Remove all media */ 5736 ifmedia_removeall(&ctx->ifc_media); 5737 5738 /* Ensure that VLAN event handlers are unregistered */ 5739 iflib_unregister_vlan_handlers(ctx); 5740 5741 /* Release kobject reference */ 5742 kobj_delete((kobj_t) ctx, NULL); 5743 5744 /* Free the ifnet structure */ 5745 if_free(ifp); 5746 5747 STATE_LOCK_DESTROY(ctx); 5748 5749 /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/ 5750 CTX_LOCK_DESTROY(ctx); 5751 } 5752 5753 static int 5754 iflib_queues_alloc(if_ctx_t ctx) 5755 { 5756 if_shared_ctx_t sctx = ctx->ifc_sctx; 5757 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 5758 device_t dev = ctx->ifc_dev; 5759 int nrxqsets = scctx->isc_nrxqsets; 5760 int ntxqsets = scctx->isc_ntxqsets; 5761 iflib_txq_t txq; 5762 iflib_rxq_t rxq; 5763 iflib_fl_t fl = NULL; 5764 int i, j, cpu, err, txconf, rxconf; 5765 iflib_dma_info_t ifdip; 5766 uint32_t *rxqsizes = scctx->isc_rxqsizes; 5767 uint32_t *txqsizes = scctx->isc_txqsizes; 5768 uint8_t nrxqs = sctx->isc_nrxqs; 5769 uint8_t ntxqs = sctx->isc_ntxqs; 5770 int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1; 5771 int fl_offset = (sctx->isc_flags & IFLIB_HAS_RXCQ ? 1 : 0); 5772 caddr_t *vaddrs; 5773 uint64_t *paddrs; 5774 5775 KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1")); 5776 KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1")); 5777 KASSERT(nrxqs >= fl_offset + nfree_lists, 5778 ("there must be at least a rxq for each free list")); 5779 5780 /* Allocate the TX ring struct memory */ 5781 if (!(ctx->ifc_txqs = 5782 (iflib_txq_t) malloc(sizeof(struct iflib_txq) * 5783 ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) { 5784 device_printf(dev, "Unable to allocate TX ring memory\n"); 5785 err = ENOMEM; 5786 goto fail; 5787 } 5788 5789 /* Now allocate the RX */ 5790 if (!(ctx->ifc_rxqs = 5791 (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) * 5792 nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) { 5793 device_printf(dev, "Unable to allocate RX ring memory\n"); 5794 err = ENOMEM; 5795 goto rx_fail; 5796 } 5797 5798 txq = ctx->ifc_txqs; 5799 rxq = ctx->ifc_rxqs; 5800 5801 /* 5802 * XXX handle allocation failure 5803 */ 5804 for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) { 5805 /* Set up some basics */ 5806 5807 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs, 5808 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { 5809 device_printf(dev, 5810 "Unable to allocate TX DMA info memory\n"); 5811 err = ENOMEM; 5812 goto err_tx_desc; 5813 } 5814 txq->ift_ifdi = ifdip; 5815 for (j = 0; j < ntxqs; j++, ifdip++) { 5816 if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) { 5817 device_printf(dev, 5818 "Unable to allocate TX descriptors\n"); 5819 err = ENOMEM; 5820 goto err_tx_desc; 5821 } 5822 txq->ift_txd_size[j] = scctx->isc_txd_size[j]; 5823 bzero((void *)ifdip->idi_vaddr, txqsizes[j]); 5824 } 5825 txq->ift_ctx = ctx; 5826 txq->ift_id = i; 5827 if (sctx->isc_flags & IFLIB_HAS_TXCQ) { 5828 txq->ift_br_offset = 1; 5829 } else { 5830 txq->ift_br_offset = 0; 5831 } 5832 5833 if (iflib_txsd_alloc(txq)) { 5834 device_printf(dev, "Critical Failure setting up TX buffers\n"); 5835 err = ENOMEM; 5836 goto err_tx_desc; 5837 } 5838 5839 /* Initialize the TX lock */ 5840 snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:TX(%d):callout", 5841 device_get_nameunit(dev), txq->ift_id); 5842 mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF); 5843 callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0); 5844 txq->ift_timer.c_cpu = cpu; 5845 #ifdef DEV_NETMAP 5846 callout_init_mtx(&txq->ift_netmap_timer, &txq->ift_mtx, 0); 5847 txq->ift_netmap_timer.c_cpu = cpu; 5848 #endif /* DEV_NETMAP */ 5849 5850 err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain, 5851 iflib_txq_can_drain, M_IFLIB, M_WAITOK); 5852 if (err) { 5853 /* XXX free any allocated rings */ 5854 device_printf(dev, "Unable to allocate buf_ring\n"); 5855 goto err_tx_desc; 5856 } 5857 txq->ift_reclaim_thresh = ctx->ifc_sysctl_tx_reclaim_thresh; 5858 } 5859 5860 for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) { 5861 /* Set up some basics */ 5862 callout_init(&rxq->ifr_watchdog, 1); 5863 5864 if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs, 5865 M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { 5866 device_printf(dev, 5867 "Unable to allocate RX DMA info memory\n"); 5868 err = ENOMEM; 5869 goto err_tx_desc; 5870 } 5871 5872 rxq->ifr_ifdi = ifdip; 5873 /* XXX this needs to be changed if #rx queues != #tx queues */ 5874 rxq->ifr_ntxqirq = 1; 5875 rxq->ifr_txqid[0] = i; 5876 for (j = 0; j < nrxqs; j++, ifdip++) { 5877 if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) { 5878 device_printf(dev, 5879 "Unable to allocate RX descriptors\n"); 5880 err = ENOMEM; 5881 goto err_tx_desc; 5882 } 5883 bzero((void *)ifdip->idi_vaddr, rxqsizes[j]); 5884 } 5885 rxq->ifr_ctx = ctx; 5886 rxq->ifr_id = i; 5887 rxq->ifr_fl_offset = fl_offset; 5888 rxq->ifr_nfl = nfree_lists; 5889 if (!(fl = 5890 (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) { 5891 device_printf(dev, "Unable to allocate free list memory\n"); 5892 err = ENOMEM; 5893 goto err_tx_desc; 5894 } 5895 rxq->ifr_fl = fl; 5896 for (j = 0; j < nfree_lists; j++) { 5897 fl[j].ifl_rxq = rxq; 5898 fl[j].ifl_id = j; 5899 fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset]; 5900 fl[j].ifl_rxd_size = scctx->isc_rxd_size[j]; 5901 } 5902 /* Allocate receive buffers for the ring */ 5903 if (iflib_rxsd_alloc(rxq)) { 5904 device_printf(dev, 5905 "Critical Failure setting up receive buffers\n"); 5906 err = ENOMEM; 5907 goto err_rx_desc; 5908 } 5909 5910 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) 5911 fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB, 5912 M_WAITOK); 5913 } 5914 5915 /* TXQs */ 5916 vaddrs = malloc(sizeof(caddr_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK); 5917 paddrs = malloc(sizeof(uint64_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK); 5918 for (i = 0; i < ntxqsets; i++) { 5919 iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi; 5920 5921 for (j = 0; j < ntxqs; j++, di++) { 5922 vaddrs[i * ntxqs + j] = di->idi_vaddr; 5923 paddrs[i * ntxqs + j] = di->idi_paddr; 5924 } 5925 } 5926 if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) { 5927 device_printf(ctx->ifc_dev, 5928 "Unable to allocate device TX queue\n"); 5929 iflib_tx_structures_free(ctx); 5930 free(vaddrs, M_IFLIB); 5931 free(paddrs, M_IFLIB); 5932 goto err_rx_desc; 5933 } 5934 free(vaddrs, M_IFLIB); 5935 free(paddrs, M_IFLIB); 5936 5937 /* RXQs */ 5938 vaddrs = malloc(sizeof(caddr_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK); 5939 paddrs = malloc(sizeof(uint64_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK); 5940 for (i = 0; i < nrxqsets; i++) { 5941 iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi; 5942 5943 for (j = 0; j < nrxqs; j++, di++) { 5944 vaddrs[i * nrxqs + j] = di->idi_vaddr; 5945 paddrs[i * nrxqs + j] = di->idi_paddr; 5946 } 5947 } 5948 if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) { 5949 device_printf(ctx->ifc_dev, 5950 "Unable to allocate device RX queue\n"); 5951 iflib_tx_structures_free(ctx); 5952 free(vaddrs, M_IFLIB); 5953 free(paddrs, M_IFLIB); 5954 goto err_rx_desc; 5955 } 5956 free(vaddrs, M_IFLIB); 5957 free(paddrs, M_IFLIB); 5958 5959 return (0); 5960 5961 /* XXX handle allocation failure changes */ 5962 err_rx_desc: 5963 err_tx_desc: 5964 rx_fail: 5965 if (ctx->ifc_rxqs != NULL) 5966 free(ctx->ifc_rxqs, M_IFLIB); 5967 ctx->ifc_rxqs = NULL; 5968 if (ctx->ifc_txqs != NULL) 5969 free(ctx->ifc_txqs, M_IFLIB); 5970 ctx->ifc_txqs = NULL; 5971 fail: 5972 return (err); 5973 } 5974 5975 static int 5976 iflib_tx_structures_setup(if_ctx_t ctx) 5977 { 5978 iflib_txq_t txq = ctx->ifc_txqs; 5979 int i; 5980 5981 for (i = 0; i < NTXQSETS(ctx); i++, txq++) 5982 iflib_txq_setup(txq); 5983 5984 return (0); 5985 } 5986 5987 static void 5988 iflib_tx_structures_free(if_ctx_t ctx) 5989 { 5990 iflib_txq_t txq = ctx->ifc_txqs; 5991 if_shared_ctx_t sctx = ctx->ifc_sctx; 5992 int i, j; 5993 5994 for (i = 0; i < NTXQSETS(ctx); i++, txq++) { 5995 for (j = 0; j < sctx->isc_ntxqs; j++) 5996 iflib_dma_free(&txq->ift_ifdi[j]); 5997 iflib_txq_destroy(txq); 5998 } 5999 free(ctx->ifc_txqs, M_IFLIB); 6000 ctx->ifc_txqs = NULL; 6001 } 6002 6003 /********************************************************************* 6004 * 6005 * Initialize all receive rings. 6006 * 6007 **********************************************************************/ 6008 static int 6009 iflib_rx_structures_setup(if_ctx_t ctx) 6010 { 6011 iflib_rxq_t rxq = ctx->ifc_rxqs; 6012 int q; 6013 #if defined(INET6) || defined(INET) 6014 int err, i; 6015 #endif 6016 6017 for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) { 6018 #if defined(INET6) || defined(INET) 6019 err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp, 6020 TCP_LRO_ENTRIES, min(1024, 6021 ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset])); 6022 if (err != 0) { 6023 device_printf(ctx->ifc_dev, 6024 "LRO Initialization failed!\n"); 6025 goto fail; 6026 } 6027 #endif 6028 IFDI_RXQ_SETUP(ctx, rxq->ifr_id); 6029 } 6030 return (0); 6031 #if defined(INET6) || defined(INET) 6032 fail: 6033 /* 6034 * Free LRO resources allocated so far, we will only handle 6035 * the rings that completed, the failing case will have 6036 * cleaned up for itself. 'q' failed, so its the terminus. 6037 */ 6038 rxq = ctx->ifc_rxqs; 6039 for (i = 0; i < q; ++i, rxq++) { 6040 tcp_lro_free(&rxq->ifr_lc); 6041 } 6042 return (err); 6043 #endif 6044 } 6045 6046 /********************************************************************* 6047 * 6048 * Free all receive rings. 6049 * 6050 **********************************************************************/ 6051 static void 6052 iflib_rx_structures_free(if_ctx_t ctx) 6053 { 6054 iflib_rxq_t rxq = ctx->ifc_rxqs; 6055 if_shared_ctx_t sctx = ctx->ifc_sctx; 6056 int i, j; 6057 6058 for (i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) { 6059 for (j = 0; j < sctx->isc_nrxqs; j++) 6060 iflib_dma_free(&rxq->ifr_ifdi[j]); 6061 iflib_rx_sds_free(rxq); 6062 #if defined(INET6) || defined(INET) 6063 tcp_lro_free(&rxq->ifr_lc); 6064 #endif 6065 } 6066 free(ctx->ifc_rxqs, M_IFLIB); 6067 ctx->ifc_rxqs = NULL; 6068 } 6069 6070 static int 6071 iflib_qset_structures_setup(if_ctx_t ctx) 6072 { 6073 int err; 6074 6075 /* 6076 * It is expected that the caller takes care of freeing queues if this 6077 * fails. 6078 */ 6079 if ((err = iflib_tx_structures_setup(ctx)) != 0) { 6080 device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err); 6081 return (err); 6082 } 6083 6084 if ((err = iflib_rx_structures_setup(ctx)) != 0) 6085 device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err); 6086 6087 return (err); 6088 } 6089 6090 int 6091 iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid, 6092 driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name) 6093 { 6094 6095 return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name)); 6096 } 6097 6098 /* Just to avoid copy/paste */ 6099 static inline int 6100 iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, 6101 int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq, 6102 const char *name) 6103 { 6104 device_t dev; 6105 unsigned int base_cpuid, cpuid; 6106 int err; 6107 6108 dev = ctx->ifc_dev; 6109 base_cpuid = ctx->ifc_sysctl_core_offset; 6110 cpuid = get_cpuid_for_queue(ctx, base_cpuid, qid, type == IFLIB_INTR_TX); 6111 err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev, 6112 irq ? irq->ii_res : NULL, name); 6113 if (err) { 6114 device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err); 6115 return (err); 6116 } 6117 #ifdef notyet 6118 if (cpuid > ctx->ifc_cpuid_highest) 6119 ctx->ifc_cpuid_highest = cpuid; 6120 #endif 6121 return (0); 6122 } 6123 6124 /* 6125 * Allocate a hardware interrupt for subctx using the parent (ctx)'s hardware 6126 * resources. 6127 * 6128 * Similar to iflib_irq_alloc_generic(), but for interrupt type IFLIB_INTR_RXTX 6129 * only. 6130 * 6131 * XXX: Could be removed if subctx's dev has its intr resource allocation 6132 * methods replaced with custom ones? 6133 */ 6134 int 6135 iflib_irq_alloc_generic_subctx(if_ctx_t ctx, if_ctx_t subctx, if_irq_t irq, 6136 int rid, iflib_intr_type_t type, 6137 driver_filter_t *filter, void *filter_arg, 6138 int qid, const char *name) 6139 { 6140 device_t dev, subdev; 6141 struct grouptask *gtask; 6142 struct taskqgroup *tqg; 6143 iflib_filter_info_t info; 6144 gtask_fn_t *fn; 6145 int tqrid, err; 6146 driver_filter_t *intr_fast; 6147 void *q; 6148 6149 MPASS(ctx != NULL); 6150 MPASS(subctx != NULL); 6151 6152 tqrid = rid; 6153 dev = ctx->ifc_dev; 6154 subdev = subctx->ifc_dev; 6155 6156 switch (type) { 6157 case IFLIB_INTR_RXTX: 6158 q = &subctx->ifc_rxqs[qid]; 6159 info = &subctx->ifc_rxqs[qid].ifr_filter_info; 6160 gtask = &subctx->ifc_rxqs[qid].ifr_task; 6161 tqg = qgroup_if_io_tqg; 6162 fn = _task_fn_rx; 6163 intr_fast = iflib_fast_intr_rxtx; 6164 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6165 break; 6166 default: 6167 device_printf(dev, "%s: unknown net intr type for subctx %s (%d)\n", 6168 __func__, device_get_nameunit(subdev), type); 6169 return (EINVAL); 6170 } 6171 6172 info->ifi_filter = filter; 6173 info->ifi_filter_arg = filter_arg; 6174 info->ifi_task = gtask; 6175 info->ifi_ctx = q; 6176 6177 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6178 6179 /* Allocate interrupts from hardware using parent context */ 6180 err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name); 6181 if (err != 0) { 6182 device_printf(dev, "_iflib_irq_alloc failed for subctx %s: %d\n", 6183 device_get_nameunit(subdev), err); 6184 return (err); 6185 } 6186 6187 if (tqrid != -1) { 6188 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, 6189 name); 6190 if (err) 6191 return (err); 6192 } else { 6193 taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name); 6194 } 6195 6196 return (0); 6197 } 6198 6199 int 6200 iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid, 6201 iflib_intr_type_t type, driver_filter_t *filter, 6202 void *filter_arg, int qid, const char *name) 6203 { 6204 device_t dev; 6205 struct grouptask *gtask; 6206 struct taskqgroup *tqg; 6207 iflib_filter_info_t info; 6208 gtask_fn_t *fn; 6209 int tqrid, err; 6210 driver_filter_t *intr_fast; 6211 void *q; 6212 6213 info = &ctx->ifc_filter_info; 6214 tqrid = rid; 6215 6216 switch (type) { 6217 /* XXX merge tx/rx for netmap? */ 6218 case IFLIB_INTR_TX: 6219 q = &ctx->ifc_txqs[qid]; 6220 info = &ctx->ifc_txqs[qid].ift_filter_info; 6221 gtask = &ctx->ifc_txqs[qid].ift_task; 6222 tqg = qgroup_if_io_tqg; 6223 fn = _task_fn_tx; 6224 intr_fast = iflib_fast_intr; 6225 GROUPTASK_INIT(gtask, 0, fn, q); 6226 ctx->ifc_flags |= IFC_NETMAP_TX_IRQ; 6227 break; 6228 case IFLIB_INTR_RX: 6229 q = &ctx->ifc_rxqs[qid]; 6230 info = &ctx->ifc_rxqs[qid].ifr_filter_info; 6231 gtask = &ctx->ifc_rxqs[qid].ifr_task; 6232 tqg = qgroup_if_io_tqg; 6233 fn = _task_fn_rx; 6234 intr_fast = iflib_fast_intr; 6235 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6236 break; 6237 case IFLIB_INTR_RXTX: 6238 q = &ctx->ifc_rxqs[qid]; 6239 info = &ctx->ifc_rxqs[qid].ifr_filter_info; 6240 gtask = &ctx->ifc_rxqs[qid].ifr_task; 6241 tqg = qgroup_if_io_tqg; 6242 fn = _task_fn_rx; 6243 intr_fast = iflib_fast_intr_rxtx; 6244 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6245 break; 6246 case IFLIB_INTR_ADMIN: 6247 q = ctx; 6248 tqrid = -1; 6249 info = &ctx->ifc_filter_info; 6250 gtask = NULL; 6251 intr_fast = iflib_fast_intr_ctx; 6252 break; 6253 default: 6254 device_printf(ctx->ifc_dev, "%s: unknown net intr type\n", 6255 __func__); 6256 return (EINVAL); 6257 } 6258 6259 info->ifi_filter = filter; 6260 info->ifi_filter_arg = filter_arg; 6261 info->ifi_task = gtask; 6262 info->ifi_ctx = q; 6263 6264 dev = ctx->ifc_dev; 6265 err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name); 6266 if (err != 0) { 6267 device_printf(dev, "_iflib_irq_alloc failed %d\n", err); 6268 return (err); 6269 } 6270 if (type == IFLIB_INTR_ADMIN) 6271 return (0); 6272 6273 if (tqrid != -1) { 6274 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, 6275 name); 6276 if (err) 6277 return (err); 6278 } else { 6279 taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name); 6280 } 6281 6282 return (0); 6283 } 6284 6285 void 6286 iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, 6287 void *arg, int qid, const char *name) 6288 { 6289 device_t dev; 6290 struct grouptask *gtask; 6291 struct taskqgroup *tqg; 6292 gtask_fn_t *fn; 6293 void *q; 6294 int err; 6295 6296 switch (type) { 6297 case IFLIB_INTR_TX: 6298 q = &ctx->ifc_txqs[qid]; 6299 gtask = &ctx->ifc_txqs[qid].ift_task; 6300 tqg = qgroup_if_io_tqg; 6301 fn = _task_fn_tx; 6302 GROUPTASK_INIT(gtask, 0, fn, q); 6303 break; 6304 case IFLIB_INTR_RX: 6305 q = &ctx->ifc_rxqs[qid]; 6306 gtask = &ctx->ifc_rxqs[qid].ifr_task; 6307 tqg = qgroup_if_io_tqg; 6308 fn = _task_fn_rx; 6309 NET_GROUPTASK_INIT(gtask, 0, fn, q); 6310 break; 6311 case IFLIB_INTR_IOV: 6312 TASK_INIT(&ctx->ifc_vflr_task, 0, _task_fn_iov, ctx); 6313 return; 6314 default: 6315 panic("unknown net intr type"); 6316 } 6317 err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, name); 6318 if (err) { 6319 dev = ctx->ifc_dev; 6320 taskqgroup_attach(tqg, gtask, q, dev, irq ? irq->ii_res : NULL, 6321 name); 6322 } 6323 } 6324 6325 void 6326 iflib_irq_free(if_ctx_t ctx, if_irq_t irq) 6327 { 6328 6329 if (irq->ii_tag) 6330 bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag); 6331 6332 if (irq->ii_res) 6333 bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ, 6334 rman_get_rid(irq->ii_res), irq->ii_res); 6335 } 6336 6337 static int 6338 iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name) 6339 { 6340 iflib_txq_t txq = ctx->ifc_txqs; 6341 iflib_rxq_t rxq = ctx->ifc_rxqs; 6342 if_irq_t irq = &ctx->ifc_legacy_irq; 6343 iflib_filter_info_t info; 6344 device_t dev; 6345 struct grouptask *gtask; 6346 struct resource *res; 6347 int err, tqrid; 6348 bool rx_only; 6349 6350 info = &rxq->ifr_filter_info; 6351 gtask = &rxq->ifr_task; 6352 tqrid = *rid; 6353 rx_only = (ctx->ifc_sctx->isc_flags & IFLIB_SINGLE_IRQ_RX_ONLY) != 0; 6354 6355 ctx->ifc_flags |= IFC_LEGACY; 6356 info->ifi_filter = filter; 6357 info->ifi_filter_arg = filter_arg; 6358 info->ifi_task = gtask; 6359 info->ifi_ctx = rxq; 6360 6361 dev = ctx->ifc_dev; 6362 /* We allocate a single interrupt resource */ 6363 err = _iflib_irq_alloc(ctx, irq, tqrid, rx_only ? iflib_fast_intr : 6364 iflib_fast_intr_rxtx, NULL, info, name); 6365 if (err != 0) 6366 return (err); 6367 NET_GROUPTASK_INIT(gtask, 0, _task_fn_rx, rxq); 6368 res = irq->ii_res; 6369 taskqgroup_attach(qgroup_if_io_tqg, gtask, rxq, dev, res, name); 6370 6371 GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq); 6372 taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res, 6373 "tx"); 6374 return (0); 6375 } 6376 6377 void 6378 iflib_led_create(if_ctx_t ctx) 6379 { 6380 6381 ctx->ifc_led_dev = led_create(iflib_led_func, ctx, 6382 device_get_nameunit(ctx->ifc_dev)); 6383 } 6384 6385 void 6386 iflib_tx_intr_deferred(if_ctx_t ctx, int txqid) 6387 { 6388 6389 GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task); 6390 } 6391 6392 void 6393 iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid) 6394 { 6395 6396 GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task); 6397 } 6398 6399 void 6400 iflib_admin_intr_deferred(if_ctx_t ctx) 6401 { 6402 6403 taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task); 6404 } 6405 6406 void 6407 iflib_iov_intr_deferred(if_ctx_t ctx) 6408 { 6409 6410 taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_vflr_task); 6411 } 6412 6413 void 6414 iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, const char *name) 6415 { 6416 6417 taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL, 6418 name); 6419 } 6420 6421 void 6422 iflib_config_task_init(if_ctx_t ctx, struct task *config_task, task_fn_t *fn) 6423 { 6424 TASK_INIT(config_task, 0, fn, ctx); 6425 } 6426 6427 void 6428 iflib_config_task_enqueue(if_ctx_t ctx, struct task *config_task) 6429 { 6430 taskqueue_enqueue(ctx->ifc_tq, config_task); 6431 } 6432 6433 void 6434 iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate) 6435 { 6436 if_t ifp = ctx->ifc_ifp; 6437 iflib_txq_t txq = ctx->ifc_txqs; 6438 6439 if_setbaudrate(ifp, baudrate); 6440 if (baudrate >= IF_Gbps(10)) { 6441 STATE_LOCK(ctx); 6442 ctx->ifc_flags |= IFC_PREFETCH; 6443 STATE_UNLOCK(ctx); 6444 } 6445 /* If link down, disable watchdog */ 6446 if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) { 6447 for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++) 6448 txq->ift_qstatus = IFLIB_QUEUE_IDLE; 6449 } 6450 ctx->ifc_link_state = link_state; 6451 if_link_state_change(ifp, link_state); 6452 } 6453 6454 static int 6455 iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq) 6456 { 6457 int credits; 6458 #ifdef INVARIANTS 6459 int credits_pre = txq->ift_cidx_processed; 6460 #endif 6461 6462 bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, 6463 BUS_DMASYNC_POSTREAD); 6464 if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0) 6465 return (0); 6466 6467 txq->ift_processed += credits; 6468 txq->ift_cidx_processed += credits; 6469 6470 MPASS(credits_pre + credits == txq->ift_cidx_processed); 6471 if (txq->ift_cidx_processed >= txq->ift_size) 6472 txq->ift_cidx_processed -= txq->ift_size; 6473 return (credits); 6474 } 6475 6476 static int 6477 iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget) 6478 { 6479 iflib_fl_t fl; 6480 u_int i; 6481 6482 for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++) 6483 bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, 6484 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6485 return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx, 6486 budget)); 6487 } 6488 6489 void 6490 iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name, 6491 const char *description, if_int_delay_info_t info, 6492 int offset, int value) 6493 { 6494 info->iidi_ctx = ctx; 6495 info->iidi_offset = offset; 6496 info->iidi_value = value; 6497 SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev), 6498 SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)), 6499 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 6500 info, 0, iflib_sysctl_int_delay, "I", description); 6501 } 6502 6503 struct sx * 6504 iflib_ctx_lock_get(if_ctx_t ctx) 6505 { 6506 6507 return (&ctx->ifc_ctx_sx); 6508 } 6509 6510 static int 6511 iflib_msix_init(if_ctx_t ctx) 6512 { 6513 device_t dev = ctx->ifc_dev; 6514 if_shared_ctx_t sctx = ctx->ifc_sctx; 6515 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 6516 int admincnt, bar, err, iflib_num_rx_queues, iflib_num_tx_queues; 6517 int msgs, queuemsgs, queues, rx_queues, tx_queues, vectors; 6518 6519 iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs; 6520 iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs; 6521 6522 if (bootverbose) 6523 device_printf(dev, "msix_init qsets capped at %d\n", 6524 imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets)); 6525 6526 /* Override by tuneable */ 6527 if (scctx->isc_disable_msix) 6528 goto msi; 6529 6530 /* First try MSI-X */ 6531 if ((msgs = pci_msix_count(dev)) == 0) { 6532 if (bootverbose) 6533 device_printf(dev, "MSI-X not supported or disabled\n"); 6534 goto msi; 6535 } 6536 6537 bar = ctx->ifc_softc_ctx.isc_msix_bar; 6538 /* 6539 * bar == -1 => "trust me I know what I'm doing" 6540 * Some drivers are for hardware that is so shoddily 6541 * documented that no one knows which bars are which 6542 * so the developer has to map all bars. This hack 6543 * allows shoddy garbage to use MSI-X in this framework. 6544 */ 6545 if (bar != -1) { 6546 ctx->ifc_msix_mem = bus_alloc_resource_any(dev, 6547 SYS_RES_MEMORY, &bar, RF_ACTIVE); 6548 if (ctx->ifc_msix_mem == NULL) { 6549 device_printf(dev, "Unable to map MSI-X table\n"); 6550 goto msi; 6551 } 6552 } 6553 6554 admincnt = sctx->isc_admin_intrcnt; 6555 #if IFLIB_DEBUG 6556 /* use only 1 qset in debug mode */ 6557 queuemsgs = min(msgs - admincnt, 1); 6558 #else 6559 queuemsgs = msgs - admincnt; 6560 #endif 6561 #ifdef RSS 6562 queues = imin(queuemsgs, rss_getnumbuckets()); 6563 #else 6564 queues = queuemsgs; 6565 #endif 6566 queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues); 6567 if (bootverbose) 6568 device_printf(dev, 6569 "intr CPUs: %d queue msgs: %d admincnt: %d\n", 6570 CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt); 6571 #ifdef RSS 6572 /* If we're doing RSS, clamp at the number of RSS buckets */ 6573 if (queues > rss_getnumbuckets()) 6574 queues = rss_getnumbuckets(); 6575 #endif 6576 if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt) 6577 rx_queues = iflib_num_rx_queues; 6578 else 6579 rx_queues = queues; 6580 6581 if (rx_queues > scctx->isc_nrxqsets) 6582 rx_queues = scctx->isc_nrxqsets; 6583 6584 /* 6585 * We want this to be all logical CPUs by default 6586 */ 6587 if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues) 6588 tx_queues = iflib_num_tx_queues; 6589 else 6590 tx_queues = mp_ncpus; 6591 6592 if (tx_queues > scctx->isc_ntxqsets) 6593 tx_queues = scctx->isc_ntxqsets; 6594 6595 if (ctx->ifc_sysctl_qs_eq_override == 0) { 6596 #ifdef INVARIANTS 6597 if (tx_queues != rx_queues) 6598 device_printf(dev, 6599 "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n", 6600 min(rx_queues, tx_queues), min(rx_queues, tx_queues)); 6601 #endif 6602 tx_queues = min(rx_queues, tx_queues); 6603 rx_queues = min(rx_queues, tx_queues); 6604 } 6605 6606 vectors = rx_queues + admincnt; 6607 if (msgs < vectors) { 6608 device_printf(dev, 6609 "insufficient number of MSI-X vectors " 6610 "(supported %d, need %d)\n", msgs, vectors); 6611 goto msi; 6612 } 6613 6614 device_printf(dev, "Using %d RX queues %d TX queues\n", rx_queues, 6615 tx_queues); 6616 msgs = vectors; 6617 if ((err = pci_alloc_msix(dev, &vectors)) == 0) { 6618 if (vectors != msgs) { 6619 device_printf(dev, 6620 "Unable to allocate sufficient MSI-X vectors " 6621 "(got %d, need %d)\n", vectors, msgs); 6622 pci_release_msi(dev); 6623 if (bar != -1) { 6624 bus_release_resource(dev, SYS_RES_MEMORY, bar, 6625 ctx->ifc_msix_mem); 6626 ctx->ifc_msix_mem = NULL; 6627 } 6628 goto msi; 6629 } 6630 device_printf(dev, "Using MSI-X interrupts with %d vectors\n", 6631 vectors); 6632 scctx->isc_vectors = vectors; 6633 scctx->isc_nrxqsets = rx_queues; 6634 scctx->isc_ntxqsets = tx_queues; 6635 scctx->isc_intr = IFLIB_INTR_MSIX; 6636 6637 return (vectors); 6638 } else { 6639 device_printf(dev, 6640 "failed to allocate %d MSI-X vectors, err: %d\n", vectors, 6641 err); 6642 if (bar != -1) { 6643 bus_release_resource(dev, SYS_RES_MEMORY, bar, 6644 ctx->ifc_msix_mem); 6645 ctx->ifc_msix_mem = NULL; 6646 } 6647 } 6648 6649 msi: 6650 vectors = pci_msi_count(dev); 6651 scctx->isc_nrxqsets = 1; 6652 scctx->isc_ntxqsets = 1; 6653 scctx->isc_vectors = vectors; 6654 if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) { 6655 device_printf(dev, "Using an MSI interrupt\n"); 6656 scctx->isc_intr = IFLIB_INTR_MSI; 6657 } else { 6658 scctx->isc_vectors = 1; 6659 device_printf(dev, "Using a Legacy interrupt\n"); 6660 scctx->isc_intr = IFLIB_INTR_LEGACY; 6661 } 6662 6663 return (vectors); 6664 } 6665 6666 static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" }; 6667 6668 static int 6669 mp_ring_state_handler(SYSCTL_HANDLER_ARGS) 6670 { 6671 int rc; 6672 uint16_t *state = ((uint16_t *)oidp->oid_arg1); 6673 struct sbuf *sb; 6674 const char *ring_state = "UNKNOWN"; 6675 6676 /* XXX needed ? */ 6677 rc = sysctl_wire_old_buffer(req, 0); 6678 MPASS(rc == 0); 6679 if (rc != 0) 6680 return (rc); 6681 sb = sbuf_new_for_sysctl(NULL, NULL, 80, req); 6682 MPASS(sb != NULL); 6683 if (sb == NULL) 6684 return (ENOMEM); 6685 if (state[3] <= 3) 6686 ring_state = ring_states[state[3]]; 6687 6688 sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s", 6689 state[0], state[1], state[2], ring_state); 6690 rc = sbuf_finish(sb); 6691 sbuf_delete(sb); 6692 return (rc); 6693 } 6694 6695 enum iflib_ndesc_handler { 6696 IFLIB_NTXD_HANDLER, 6697 IFLIB_NRXD_HANDLER, 6698 }; 6699 6700 static int 6701 mp_ndesc_handler(SYSCTL_HANDLER_ARGS) 6702 { 6703 if_ctx_t ctx = (void *)arg1; 6704 enum iflib_ndesc_handler type = arg2; 6705 char buf[256] = {0}; 6706 qidx_t *ndesc; 6707 char *p, *next; 6708 int nqs, rc, i; 6709 6710 nqs = 8; 6711 switch (type) { 6712 case IFLIB_NTXD_HANDLER: 6713 ndesc = ctx->ifc_sysctl_ntxds; 6714 if (ctx->ifc_sctx) 6715 nqs = ctx->ifc_sctx->isc_ntxqs; 6716 break; 6717 case IFLIB_NRXD_HANDLER: 6718 ndesc = ctx->ifc_sysctl_nrxds; 6719 if (ctx->ifc_sctx) 6720 nqs = ctx->ifc_sctx->isc_nrxqs; 6721 break; 6722 default: 6723 printf("%s: unhandled type\n", __func__); 6724 return (EINVAL); 6725 } 6726 if (nqs == 0) 6727 nqs = 8; 6728 6729 for (i = 0; i < 8; i++) { 6730 if (i >= nqs) 6731 break; 6732 if (i) 6733 strcat(buf, ","); 6734 sprintf(strchr(buf, 0), "%d", ndesc[i]); 6735 } 6736 6737 rc = sysctl_handle_string(oidp, buf, sizeof(buf), req); 6738 if (rc || req->newptr == NULL) 6739 return (rc); 6740 6741 for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p; 6742 i++, p = strsep(&next, " ,")) { 6743 ndesc[i] = strtoul(p, NULL, 10); 6744 } 6745 6746 return (rc); 6747 } 6748 6749 static int 6750 iflib_handle_tx_reclaim_thresh(SYSCTL_HANDLER_ARGS) 6751 { 6752 if_ctx_t ctx = (void *)arg1; 6753 iflib_txq_t txq; 6754 int i, err; 6755 int thresh; 6756 6757 thresh = ctx->ifc_sysctl_tx_reclaim_thresh; 6758 err = sysctl_handle_int(oidp, &thresh, arg2, req); 6759 if (err != 0) { 6760 return err; 6761 } 6762 6763 if (thresh == ctx->ifc_sysctl_tx_reclaim_thresh) 6764 return 0; 6765 6766 if (thresh > ctx->ifc_softc_ctx.isc_ntxd[0] / 2) { 6767 device_printf(ctx->ifc_dev, "TX Reclaim thresh must be <= %d\n", 6768 ctx->ifc_softc_ctx.isc_ntxd[0] / 2); 6769 return (EINVAL); 6770 } 6771 6772 ctx->ifc_sysctl_tx_reclaim_thresh = thresh; 6773 if (ctx->ifc_txqs == NULL) 6774 return (err); 6775 6776 txq = &ctx->ifc_txqs[0]; 6777 for (i = 0; i < NTXQSETS(ctx); i++, txq++) { 6778 txq->ift_reclaim_thresh = thresh; 6779 } 6780 return (err); 6781 } 6782 6783 static int 6784 iflib_handle_tx_reclaim_ticks(SYSCTL_HANDLER_ARGS) 6785 { 6786 if_ctx_t ctx = (void *)arg1; 6787 iflib_txq_t txq; 6788 int i, err; 6789 int ticks; 6790 6791 ticks = ctx->ifc_sysctl_tx_reclaim_ticks; 6792 err = sysctl_handle_int(oidp, &ticks, arg2, req); 6793 if (err != 0) { 6794 return err; 6795 } 6796 6797 if (ticks == ctx->ifc_sysctl_tx_reclaim_ticks) 6798 return 0; 6799 6800 if (ticks > hz) { 6801 device_printf(ctx->ifc_dev, 6802 "TX Reclaim ticks must be <= hz (%d)\n", hz); 6803 return (EINVAL); 6804 } 6805 6806 ctx->ifc_sysctl_tx_reclaim_ticks = ticks; 6807 if (ctx->ifc_txqs == NULL) 6808 return (err); 6809 6810 txq = &ctx->ifc_txqs[0]; 6811 for (i = 0; i < NTXQSETS(ctx); i++, txq++) { 6812 txq->ift_reclaim_ticks = ticks; 6813 } 6814 return (err); 6815 } 6816 6817 static int 6818 iflib_handle_tx_defer_mfree(SYSCTL_HANDLER_ARGS) 6819 { 6820 if_ctx_t ctx = (void *)arg1; 6821 iflib_txq_t txq; 6822 int i, err; 6823 int defer; 6824 6825 defer = ctx->ifc_sysctl_tx_defer_mfree; 6826 err = sysctl_handle_int(oidp, &defer, arg2, req); 6827 if (err != 0) { 6828 return err; 6829 } 6830 6831 if (defer == ctx->ifc_sysctl_tx_defer_mfree) 6832 return 0; 6833 6834 ctx->ifc_sysctl_tx_defer_mfree = defer; 6835 if (ctx->ifc_txqs == NULL) 6836 return (err); 6837 6838 txq = &ctx->ifc_txqs[0]; 6839 for (i = 0; i < NTXQSETS(ctx); i++, txq++) { 6840 txq->ift_defer_mfree = defer; 6841 } 6842 return (err); 6843 } 6844 6845 #define NAME_BUFLEN 32 6846 static void 6847 iflib_add_device_sysctl_pre(if_ctx_t ctx) 6848 { 6849 device_t dev = iflib_get_dev(ctx); 6850 struct sysctl_oid_list *child, *oid_list; 6851 struct sysctl_ctx_list *ctx_list; 6852 struct sysctl_oid *node; 6853 6854 ctx_list = device_get_sysctl_ctx(dev); 6855 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); 6856 ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child, 6857 OID_AUTO, "iflib", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 6858 "IFLIB fields"); 6859 oid_list = SYSCTL_CHILDREN(node); 6860 6861 SYSCTL_ADD_CONST_STRING(ctx_list, oid_list, OID_AUTO, "driver_version", 6862 CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version, "driver version"); 6863 6864 SYSCTL_ADD_BOOL(ctx_list, oid_list, OID_AUTO, "simple_tx", 6865 CTLFLAG_RDTUN, &ctx->ifc_sysctl_simple_tx, 0, 6866 "use simple tx ring"); 6867 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs", 6868 CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0, 6869 "# of txqs to use, 0 => use default #"); 6870 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs", 6871 CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0, 6872 "# of rxqs to use, 0 => use default #"); 6873 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable", 6874 CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0, 6875 "permit #txq != #rxq"); 6876 SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix", 6877 CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0, 6878 "disable MSI-X (default 0)"); 6879 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget", 6880 CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0, "set the RX budget"); 6881 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate", 6882 CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0, 6883 "cause TX to abdicate instead of running to completion"); 6884 ctx->ifc_sysctl_core_offset = CORE_OFFSET_UNSPECIFIED; 6885 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "core_offset", 6886 CTLFLAG_RDTUN, &ctx->ifc_sysctl_core_offset, 0, 6887 "offset to start using cores at"); 6888 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "separate_txrx", 6889 CTLFLAG_RDTUN, &ctx->ifc_sysctl_separate_txrx, 0, 6890 "use separate cores for TX and RX"); 6891 SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "use_logical_cores", 6892 CTLFLAG_RDTUN, &ctx->ifc_sysctl_use_logical_cores, 0, 6893 "try to make use of logical cores for TX and RX"); 6894 SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "use_extra_msix_vectors", 6895 CTLFLAG_RDTUN, &ctx->ifc_sysctl_extra_msix_vectors, 0, 6896 "attempt to reserve the given number of extra MSI-X vectors during driver load for the creation of additional interfaces later"); 6897 SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "allocated_msix_vectors", 6898 CTLFLAG_RDTUN, &ctx->ifc_softc_ctx.isc_vectors, 0, 6899 "total # of MSI-X vectors allocated by driver"); 6900 6901 /* XXX change for per-queue sizes */ 6902 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds", 6903 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx, 6904 IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A", 6905 "list of # of TX descriptors to use, 0 = use default #"); 6906 SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds", 6907 CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx, 6908 IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A", 6909 "list of # of RX descriptors to use, 0 = use default #"); 6910 } 6911 6912 static void 6913 iflib_add_device_sysctl_post(if_ctx_t ctx) 6914 { 6915 if_shared_ctx_t sctx = ctx->ifc_sctx; 6916 if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; 6917 device_t dev = iflib_get_dev(ctx); 6918 struct sysctl_oid_list *child; 6919 struct sysctl_ctx_list *ctx_list; 6920 iflib_fl_t fl; 6921 iflib_txq_t txq; 6922 iflib_rxq_t rxq; 6923 int i, j; 6924 char namebuf[NAME_BUFLEN]; 6925 char *qfmt; 6926 struct sysctl_oid *queue_node, *fl_node, *node; 6927 struct sysctl_oid_list *queue_list, *fl_list; 6928 ctx_list = device_get_sysctl_ctx(dev); 6929 6930 node = ctx->ifc_sysctl_node; 6931 child = SYSCTL_CHILDREN(node); 6932 6933 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "tx_reclaim_thresh", 6934 CTLTYPE_INT | CTLFLAG_RWTUN, ctx, 6935 0, iflib_handle_tx_reclaim_thresh, "I", 6936 "Number of TX descs outstanding before reclaim is called"); 6937 6938 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "tx_reclaim_ticks", 6939 CTLTYPE_INT | CTLFLAG_RWTUN, ctx, 6940 0, iflib_handle_tx_reclaim_ticks, "I", 6941 "Number of ticks before a TX reclaim is forced"); 6942 6943 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "tx_defer_mfree", 6944 CTLTYPE_INT | CTLFLAG_RWTUN, ctx, 6945 0, iflib_handle_tx_defer_mfree, "I", 6946 "Free completed transmits outside of TX ring lock"); 6947 6948 if (scctx->isc_ntxqsets > 100) 6949 qfmt = "txq%03d"; 6950 else if (scctx->isc_ntxqsets > 10) 6951 qfmt = "txq%02d"; 6952 else 6953 qfmt = "txq%d"; 6954 for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) { 6955 snprintf(namebuf, NAME_BUFLEN, qfmt, i); 6956 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf, 6957 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name"); 6958 queue_list = SYSCTL_CHILDREN(queue_node); 6959 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu", 6960 CTLFLAG_RD, &txq->ift_task.gt_cpu, 0, 6961 "cpu this queue is bound to"); 6962 #if MEMORY_LOGGING 6963 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued", 6964 CTLFLAG_RD, &txq->ift_dequeued, "total mbufs freed"); 6965 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued", 6966 CTLFLAG_RD, &txq->ift_enqueued, "total mbufs enqueued"); 6967 #endif 6968 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag", 6969 CTLFLAG_RD, &txq->ift_mbuf_defrag, 6970 "# of times m_defrag was called"); 6971 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "m_pullups", 6972 CTLFLAG_RD, &txq->ift_pullups, 6973 "# of times m_pullup was called"); 6974 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6975 "mbuf_defrag_failed", CTLFLAG_RD, 6976 &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed"); 6977 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6978 "no_desc_avail", CTLFLAG_RD, &txq->ift_no_desc_avail, 6979 "# of times no descriptors were available"); 6980 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6981 "tx_map_failed", CTLFLAG_RD, &txq->ift_map_failed, 6982 "# of times DMA map failed"); 6983 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6984 "txd_encap_efbig", CTLFLAG_RD, &txq->ift_txd_encap_efbig, 6985 "# of times txd_encap returned EFBIG"); 6986 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6987 "no_tx_dma_setup", CTLFLAG_RD, &txq->ift_no_tx_dma_setup, 6988 "# of times map failed for other than EFBIG"); 6989 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx", 6990 CTLFLAG_RD, &txq->ift_pidx, 1, "Producer Index"); 6991 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx", 6992 CTLFLAG_RD, &txq->ift_cidx, 1, "Consumer Index"); 6993 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, 6994 "txq_cidx_processed", CTLFLAG_RD, &txq->ift_cidx_processed, 6995 1, "Consumer Index seen by credit update"); 6996 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use", 6997 CTLFLAG_RD, &txq->ift_in_use, 1, "descriptors in use"); 6998 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, 6999 "txq_processed", CTLFLAG_RD, &txq->ift_processed, 7000 "descriptors procesed for clean"); 7001 SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned", 7002 CTLFLAG_RD, &txq->ift_cleaned, "total cleaned"); 7003 SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state", 7004 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 7005 __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0, 7006 mp_ring_state_handler, "A", "soft ring state"); 7007 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 7008 "r_enqueues", CTLFLAG_RD, &txq->ift_br->enqueues, 7009 "# of enqueues to the mp_ring for this queue"); 7010 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 7011 "r_drops", CTLFLAG_RD, &txq->ift_br->drops, 7012 "# of drops in the mp_ring for this queue"); 7013 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 7014 "r_starts", CTLFLAG_RD, &txq->ift_br->starts, 7015 "# of normal consumer starts in mp_ring for this queue"); 7016 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 7017 "r_stalls", CTLFLAG_RD, &txq->ift_br->stalls, 7018 "# of consumer stalls in the mp_ring for this queue"); 7019 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 7020 "r_restarts", CTLFLAG_RD, &txq->ift_br->restarts, 7021 "# of consumer restarts in the mp_ring for this queue"); 7022 SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, 7023 "r_abdications", CTLFLAG_RD, &txq->ift_br->abdications, 7024 "# of consumer abdications in the mp_ring for this queue"); 7025 } 7026 7027 if (scctx->isc_nrxqsets > 100) 7028 qfmt = "rxq%03d"; 7029 else if (scctx->isc_nrxqsets > 10) 7030 qfmt = "rxq%02d"; 7031 else 7032 qfmt = "rxq%d"; 7033 for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) { 7034 snprintf(namebuf, NAME_BUFLEN, qfmt, i); 7035 queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf, 7036 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name"); 7037 queue_list = SYSCTL_CHILDREN(queue_node); 7038 SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu", 7039 CTLFLAG_RD, &rxq->ifr_task.gt_cpu, 0, 7040 "cpu this queue is bound to"); 7041 if (sctx->isc_flags & IFLIB_HAS_RXCQ) { 7042 SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, 7043 "rxq_cq_cidx", CTLFLAG_RD, &rxq->ifr_cq_cidx, 1, 7044 "Consumer Index"); 7045 } 7046 7047 for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) { 7048 snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j); 7049 fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list, 7050 OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE, 7051 NULL, "freelist Name"); 7052 fl_list = SYSCTL_CHILDREN(fl_node); 7053 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx", 7054 CTLFLAG_RD, &fl->ifl_pidx, 1, "Producer Index"); 7055 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx", 7056 CTLFLAG_RD, &fl->ifl_cidx, 1, "Consumer Index"); 7057 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits", 7058 CTLFLAG_RD, &fl->ifl_credits, 1, 7059 "credits available"); 7060 SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "buf_size", 7061 CTLFLAG_RD, &fl->ifl_buf_size, 1, "buffer size"); 7062 #if MEMORY_LOGGING 7063 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO, 7064 "fl_m_enqueued", CTLFLAG_RD, &fl->ifl_m_enqueued, 7065 "mbufs allocated"); 7066 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO, 7067 "fl_m_dequeued", CTLFLAG_RD, &fl->ifl_m_dequeued, 7068 "mbufs freed"); 7069 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO, 7070 "fl_cl_enqueued", CTLFLAG_RD, &fl->ifl_cl_enqueued, 7071 "clusters allocated"); 7072 SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO, 7073 "fl_cl_dequeued", CTLFLAG_RD, &fl->ifl_cl_dequeued, 7074 "clusters freed"); 7075 #endif 7076 } 7077 } 7078 7079 } 7080 7081 void 7082 iflib_request_reset(if_ctx_t ctx) 7083 { 7084 7085 STATE_LOCK(ctx); 7086 ctx->ifc_flags |= IFC_DO_RESET; 7087 STATE_UNLOCK(ctx); 7088 } 7089 7090 #ifndef __NO_STRICT_ALIGNMENT 7091 static struct mbuf * 7092 iflib_fixup_rx(struct mbuf *m) 7093 { 7094 struct mbuf *n; 7095 7096 if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { 7097 bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); 7098 m->m_data += ETHER_HDR_LEN; 7099 n = m; 7100 } else { 7101 MGETHDR(n, M_NOWAIT, MT_DATA); 7102 if (n == NULL) { 7103 m_freem(m); 7104 return (NULL); 7105 } 7106 bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); 7107 m->m_data += ETHER_HDR_LEN; 7108 m->m_len -= ETHER_HDR_LEN; 7109 n->m_len = ETHER_HDR_LEN; 7110 M_MOVE_PKTHDR(n, m); 7111 n->m_next = m; 7112 } 7113 return (n); 7114 } 7115 #endif 7116 7117 #ifdef DEBUGNET 7118 static void 7119 iflib_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 7120 { 7121 if_ctx_t ctx; 7122 7123 ctx = if_getsoftc(ifp); 7124 CTX_LOCK(ctx); 7125 *nrxr = NRXQSETS(ctx); 7126 *ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size; 7127 *clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size; 7128 CTX_UNLOCK(ctx); 7129 } 7130 7131 static void 7132 iflib_debugnet_event(if_t ifp, enum debugnet_ev event) 7133 { 7134 if_ctx_t ctx; 7135 if_softc_ctx_t scctx; 7136 iflib_fl_t fl; 7137 iflib_rxq_t rxq; 7138 int i, j; 7139 7140 ctx = if_getsoftc(ifp); 7141 scctx = &ctx->ifc_softc_ctx; 7142 7143 switch (event) { 7144 case DEBUGNET_START: 7145 for (i = 0; i < scctx->isc_nrxqsets; i++) { 7146 rxq = &ctx->ifc_rxqs[i]; 7147 for (j = 0; j < rxq->ifr_nfl; j++) { 7148 fl = rxq->ifr_fl; 7149 fl->ifl_zone = m_getzone(fl->ifl_buf_size); 7150 } 7151 } 7152 iflib_no_tx_batch = 1; 7153 break; 7154 default: 7155 break; 7156 } 7157 } 7158 7159 static int 7160 iflib_debugnet_transmit(if_t ifp, struct mbuf *m) 7161 { 7162 if_ctx_t ctx; 7163 iflib_txq_t txq; 7164 int error; 7165 7166 ctx = if_getsoftc(ifp); 7167 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 7168 IFF_DRV_RUNNING) 7169 return (EBUSY); 7170 7171 txq = &ctx->ifc_txqs[0]; 7172 error = iflib_encap(txq, &m); 7173 if (error == 0) 7174 (void)iflib_txd_db_check(txq, true); 7175 return (error); 7176 } 7177 7178 static int 7179 iflib_debugnet_poll(if_t ifp, int count) 7180 { 7181 struct epoch_tracker et; 7182 if_ctx_t ctx; 7183 if_softc_ctx_t scctx; 7184 iflib_txq_t txq; 7185 int i; 7186 7187 ctx = if_getsoftc(ifp); 7188 scctx = &ctx->ifc_softc_ctx; 7189 7190 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 7191 IFF_DRV_RUNNING) 7192 return (EBUSY); 7193 7194 txq = &ctx->ifc_txqs[0]; 7195 (void)iflib_completed_tx_reclaim(txq, NULL); 7196 7197 NET_EPOCH_ENTER(et); 7198 for (i = 0; i < scctx->isc_nrxqsets; i++) 7199 (void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */); 7200 NET_EPOCH_EXIT(et); 7201 return (0); 7202 } 7203 #endif /* DEBUGNET */ 7204 7205 #ifndef ALTQ 7206 static inline iflib_txq_t 7207 iflib_simple_select_queue(if_ctx_t ctx, struct mbuf *m) 7208 { 7209 int qidx; 7210 7211 if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m)) 7212 qidx = QIDX(ctx, m); 7213 else 7214 qidx = NTXQSETS(ctx) + FIRST_QSET(ctx) - 1; 7215 return (&ctx->ifc_txqs[qidx]); 7216 } 7217 7218 static int 7219 iflib_simple_transmit(if_t ifp, struct mbuf *m) 7220 { 7221 if_ctx_t ctx; 7222 iflib_txq_t txq; 7223 struct mbuf **m_defer; 7224 int error, i, reclaimable; 7225 int bytes_sent = 0, pkt_sent = 0, mcast_sent = 0; 7226 7227 7228 ctx = if_getsoftc(ifp); 7229 if (__predict_false((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 7230 || !LINK_ACTIVE(ctx))) { 7231 DBG_COUNTER_INC(tx_frees); 7232 m_freem(m); 7233 return (ENETDOWN); 7234 } 7235 7236 txq = iflib_simple_select_queue(ctx, m); 7237 mtx_lock(&txq->ift_mtx); 7238 error = iflib_encap(txq, &m); 7239 if (error == 0) { 7240 pkt_sent++; 7241 bytes_sent += m->m_pkthdr.len; 7242 mcast_sent += !!(m->m_flags & M_MCAST); 7243 (void)iflib_txd_db_check(txq, true); 7244 } else { 7245 if (error == ENOBUFS) 7246 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); 7247 else 7248 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 7249 } 7250 m_defer = NULL; 7251 reclaimable = iflib_txq_can_reclaim(txq); 7252 if (reclaimable != 0) { 7253 /* 7254 * Try to set m_defer to the deferred mbuf reclaim array. If 7255 * we can, the frees will happen outside the tx lock. If we 7256 * can't, it means another thread is still proccessing frees. 7257 */ 7258 if (txq->ift_defer_mfree && 7259 atomic_cmpset_acq_ptr((uintptr_t *)&txq->ift_sds.ifsd_m_defer, 7260 (uintptr_t )txq->ift_sds.ifsd_m_deferb, 0)) { 7261 m_defer = txq->ift_sds.ifsd_m_deferb; 7262 } 7263 _iflib_completed_tx_reclaim(txq, m_defer, reclaimable); 7264 } 7265 mtx_unlock(&txq->ift_mtx); 7266 7267 /* 7268 * Process mbuf frees outside the tx lock 7269 */ 7270 if (m_defer != NULL) { 7271 for (i = 0; m_defer[i] != NULL; i++) { 7272 m_freem(m_defer[i]); 7273 m_defer[i] = NULL; 7274 } 7275 atomic_store_rel_ptr((uintptr_t *)&txq->ift_sds.ifsd_m_defer, 7276 (uintptr_t)m_defer); 7277 } 7278 if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent); 7279 if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent); 7280 if (mcast_sent) 7281 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent); 7282 7283 return (error); 7284 } 7285 #endif 7286