xref: /freebsd/sys/net/iflib.c (revision 43d7ee540efe0df1def80ce24255b32f9f9396ba)
1 /*-
2  * Copyright (c) 2014-2018, Matthew Macy <mmacy@mattmacy.io>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Neither the name of Matthew Macy nor the names of its
12  *     contributors may be used to endorse or promote products derived from
13  *     this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_acpi.h"
32 #include "opt_sched.h"
33 
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/bus.h>
37 #include <sys/eventhandler.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/module.h>
42 #include <sys/kobj.h>
43 #include <sys/rman.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
50 #include <sys/taskqueue.h>
51 #include <sys/limits.h>
52 
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_private.h>
56 #include <net/if_types.h>
57 #include <net/if_media.h>
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/mp_ring.h>
61 #include <net/debugnet.h>
62 #include <net/pfil.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/tcp_lro.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 #include <netinet/ip6.h>
72 #include <netinet/tcp.h>
73 #include <netinet/udp.h>
74 #include <netinet/ip_var.h>
75 #include <netinet6/ip6_var.h>
76 
77 #include <machine/bus.h>
78 #include <machine/in_cksum.h>
79 
80 #include <vm/vm.h>
81 #include <vm/pmap.h>
82 
83 #include <dev/led/led.h>
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/pci_private.h>
87 
88 #include <net/iflib.h>
89 
90 #include "ifdi_if.h"
91 
92 #ifdef PCI_IOV
93 #include <dev/pci/pci_iov.h>
94 #endif
95 
96 #include <sys/bitstring.h>
97 /*
98  * enable accounting of every mbuf as it comes in to and goes out of
99  * iflib's software descriptor references
100  */
101 #define MEMORY_LOGGING 0
102 /*
103  * Enable mbuf vectors for compressing long mbuf chains
104  */
105 
106 /*
107  * NB:
108  * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead
109  *   we prefetch needs to be determined by the time spent in m_free vis a vis
110  *   the cost of a prefetch. This will of course vary based on the workload:
111  *      - NFLX's m_free path is dominated by vm-based M_EXT manipulation which
112  *        is quite expensive, thus suggesting very little prefetch.
113  *      - small packet forwarding which is just returning a single mbuf to
114  *        UMA will typically be very fast vis a vis the cost of a memory
115  *        access.
116  */
117 
118 /*
119  * File organization:
120  *  - private structures
121  *  - iflib private utility functions
122  *  - ifnet functions
123  *  - vlan registry and other exported functions
124  *  - iflib public core functions
125  *
126  *
127  */
128 static MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library");
129 
130 #define	IFLIB_RXEOF_MORE	(1U << 0)
131 #define	IFLIB_RXEOF_EMPTY	(2U << 0)
132 
133 struct iflib_txq;
134 typedef struct iflib_txq *iflib_txq_t;
135 struct iflib_rxq;
136 typedef struct iflib_rxq *iflib_rxq_t;
137 struct iflib_fl;
138 typedef struct iflib_fl *iflib_fl_t;
139 
140 struct iflib_ctx;
141 
142 static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid);
143 static void iflib_timer(void *arg);
144 static void iflib_tqg_detach(if_ctx_t ctx);
145 #ifndef ALTQ
146 static int  iflib_simple_transmit(if_t ifp, struct mbuf *m);
147 #endif
148 
149 typedef struct iflib_filter_info {
150 	driver_filter_t *ifi_filter;
151 	void *ifi_filter_arg;
152 	struct grouptask *ifi_task;
153 	void *ifi_ctx;
154 } *iflib_filter_info_t;
155 
156 struct iflib_ctx {
157 	KOBJ_FIELDS;
158 	/*
159 	 * Pointer to hardware driver's softc
160 	 */
161 	void *ifc_softc;
162 	device_t ifc_dev;
163 	if_t ifc_ifp;
164 
165 	cpuset_t ifc_cpus;
166 	if_shared_ctx_t ifc_sctx;
167 	struct if_softc_ctx ifc_softc_ctx;
168 
169 	struct sx ifc_ctx_sx;
170 	struct mtx ifc_state_mtx;
171 
172 	iflib_txq_t ifc_txqs;
173 	iflib_rxq_t ifc_rxqs;
174 	uint32_t ifc_if_flags;
175 	uint32_t ifc_flags;
176 	uint32_t ifc_max_fl_buf_size;
177 	uint32_t ifc_rx_mbuf_sz;
178 
179 	int ifc_link_state;
180 	int ifc_watchdog_events;
181 	struct cdev *ifc_led_dev;
182 	struct resource *ifc_msix_mem;
183 
184 	struct if_irq ifc_legacy_irq;
185 	struct task ifc_admin_task;
186 	struct task ifc_vflr_task;
187 	struct taskqueue *ifc_tq;
188 	struct iflib_filter_info ifc_filter_info;
189 	struct ifmedia	ifc_media;
190 	struct ifmedia	*ifc_mediap;
191 
192 	struct sysctl_oid *ifc_sysctl_node;
193 	uint16_t ifc_sysctl_ntxqs;
194 	uint16_t ifc_sysctl_nrxqs;
195 	uint16_t ifc_sysctl_qs_eq_override;
196 	uint16_t ifc_sysctl_rx_budget;
197 	uint16_t ifc_sysctl_tx_abdicate;
198 	uint16_t ifc_sysctl_core_offset;
199 #define	CORE_OFFSET_UNSPECIFIED	0xffff
200 	uint8_t  ifc_sysctl_separate_txrx;
201 	uint8_t  ifc_sysctl_use_logical_cores;
202 	uint16_t ifc_sysctl_extra_msix_vectors;
203 	bool     ifc_cpus_are_physical_cores;
204 	bool     ifc_sysctl_simple_tx;
205 	uint16_t ifc_sysctl_tx_reclaim_thresh;
206 	uint16_t ifc_sysctl_tx_reclaim_ticks;
207 
208 	qidx_t ifc_sysctl_ntxds[8];
209 	qidx_t ifc_sysctl_nrxds[8];
210 	struct if_txrx ifc_txrx;
211 #define isc_txd_encap		ifc_txrx.ift_txd_encap
212 #define isc_txd_flush		ifc_txrx.ift_txd_flush
213 #define isc_txd_credits_update	ifc_txrx.ift_txd_credits_update
214 #define isc_rxd_available	ifc_txrx.ift_rxd_available
215 #define isc_rxd_pkt_get		ifc_txrx.ift_rxd_pkt_get
216 #define isc_rxd_refill		ifc_txrx.ift_rxd_refill
217 #define isc_rxd_flush		ifc_txrx.ift_rxd_flush
218 #define isc_legacy_intr		ifc_txrx.ift_legacy_intr
219 #define isc_txq_select		ifc_txrx.ift_txq_select
220 #define isc_txq_select_v2	ifc_txrx.ift_txq_select_v2
221 
222 	eventhandler_tag ifc_vlan_attach_event;
223 	eventhandler_tag ifc_vlan_detach_event;
224 	struct ether_addr ifc_mac;
225 };
226 
227 void *
iflib_get_softc(if_ctx_t ctx)228 iflib_get_softc(if_ctx_t ctx)
229 {
230 
231 	return (ctx->ifc_softc);
232 }
233 
234 device_t
iflib_get_dev(if_ctx_t ctx)235 iflib_get_dev(if_ctx_t ctx)
236 {
237 
238 	return (ctx->ifc_dev);
239 }
240 
241 if_t
iflib_get_ifp(if_ctx_t ctx)242 iflib_get_ifp(if_ctx_t ctx)
243 {
244 
245 	return (ctx->ifc_ifp);
246 }
247 
248 struct ifmedia *
iflib_get_media(if_ctx_t ctx)249 iflib_get_media(if_ctx_t ctx)
250 {
251 
252 	return (ctx->ifc_mediap);
253 }
254 
255 void
iflib_set_mac(if_ctx_t ctx,uint8_t mac[ETHER_ADDR_LEN])256 iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN])
257 {
258 
259 	bcopy(mac, ctx->ifc_mac.octet, ETHER_ADDR_LEN);
260 }
261 
262 if_softc_ctx_t
iflib_get_softc_ctx(if_ctx_t ctx)263 iflib_get_softc_ctx(if_ctx_t ctx)
264 {
265 
266 	return (&ctx->ifc_softc_ctx);
267 }
268 
269 if_shared_ctx_t
iflib_get_sctx(if_ctx_t ctx)270 iflib_get_sctx(if_ctx_t ctx)
271 {
272 
273 	return (ctx->ifc_sctx);
274 }
275 
276 uint16_t
iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx)277 iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx)
278 {
279 
280 	return (ctx->ifc_sysctl_extra_msix_vectors);
281 }
282 
283 #define IP_ALIGNED(m)		((((uintptr_t)(m)->m_data) & 0x3) == 0x2)
284 #define CACHE_PTR_INCREMENT	(CACHE_LINE_SIZE / sizeof(void *))
285 #define CACHE_PTR_NEXT(ptr)	((void *)(roundup2(ptr, CACHE_LINE_SIZE)))
286 
287 #define LINK_ACTIVE(ctx)	((ctx)->ifc_link_state == LINK_STATE_UP)
288 #define CTX_IS_VF(ctx)		((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF)
289 
290 typedef struct iflib_sw_rx_desc_array {
291 	bus_dmamap_t	*ifsd_map;	/* bus_dma maps for packet */
292 	struct mbuf	**ifsd_m;	/* pkthdr mbufs */
293 	caddr_t		*ifsd_cl;	/* direct cluster pointer for rx */
294 	bus_addr_t	*ifsd_ba;	/* bus addr of cluster for rx */
295 } iflib_rxsd_array_t;
296 
297 typedef struct iflib_sw_tx_desc_array {
298 	bus_dmamap_t	*ifsd_map;	/* bus_dma maps for packet */
299 	bus_dmamap_t	*ifsd_tso_map;	/* bus_dma maps for TSO packet */
300 	struct mbuf	**ifsd_m;	/* pkthdr mbufs */
301 } if_txsd_vec_t;
302 
303 /* magic number that should be high enough for any hardware */
304 #define IFLIB_MAX_TX_SEGS		128
305 #define IFLIB_RX_COPY_THRESH		128
306 #define IFLIB_MAX_RX_REFRESH		32
307 /* The minimum descriptors per second before we start coalescing */
308 #define IFLIB_MIN_DESC_SEC		16384
309 #define IFLIB_DEFAULT_TX_UPDATE_FREQ	16
310 #define IFLIB_QUEUE_IDLE		0
311 #define IFLIB_QUEUE_HUNG		1
312 #define IFLIB_QUEUE_WORKING		2
313 /* maximum number of txqs that can share an rx interrupt */
314 #define IFLIB_MAX_TX_SHARED_INTR	4
315 
316 /* this should really scale with ring size - this is a fairly arbitrary value */
317 #define TX_BATCH_SIZE			32
318 
319 #define IFLIB_RESTART_BUDGET		8
320 
321 #define	IFC_LEGACY		0x001
322 #define	IFC_QFLUSH		0x002
323 #define	IFC_MULTISEG		0x004
324 #define	IFC_SPARE1		0x008
325 #define	IFC_SC_ALLOCATED	0x010
326 #define	IFC_INIT_DONE		0x020
327 #define	IFC_PREFETCH		0x040
328 #define	IFC_DO_RESET		0x080
329 #define	IFC_DO_WATCHDOG		0x100
330 #define	IFC_SPARE0		0x200
331 #define	IFC_SPARE2		0x400
332 #define	IFC_IN_DETACH		0x800
333 
334 #define	IFC_NETMAP_TX_IRQ	0x80000000
335 
336 #define CSUM_OFFLOAD		(CSUM_IP_TSO | CSUM_IP6_TSO | CSUM_IP | \
337 				 CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \
338 				 CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP)
339 
340 struct iflib_txq {
341 	qidx_t		ift_in_use;
342 	qidx_t		ift_cidx;
343 	qidx_t		ift_cidx_processed;
344 	qidx_t		ift_pidx;
345 	uint8_t		ift_gen;
346 	uint8_t		ift_br_offset;
347 	uint16_t	ift_npending;
348 	uint16_t	ift_db_pending;
349 	uint16_t	ift_rs_pending;
350 	uint32_t	ift_last_reclaim;
351 	uint16_t	ift_reclaim_thresh;
352 	uint16_t	ift_reclaim_ticks;
353 	uint8_t		ift_txd_size[8];
354 	uint64_t	ift_processed;
355 	uint64_t	ift_cleaned;
356 	uint64_t	ift_cleaned_prev;
357 #if MEMORY_LOGGING
358 	uint64_t	ift_enqueued;
359 	uint64_t	ift_dequeued;
360 #endif
361 	uint64_t	ift_no_tx_dma_setup;
362 	uint64_t	ift_no_desc_avail;
363 	uint64_t	ift_mbuf_defrag_failed;
364 	uint64_t	ift_mbuf_defrag;
365 	uint64_t	ift_map_failed;
366 	uint64_t	ift_txd_encap_efbig;
367 	uint64_t	ift_pullups;
368 	uint64_t	ift_last_timer_tick;
369 
370 	struct mtx	ift_mtx;
371 	struct mtx	ift_db_mtx;
372 
373 	/* constant values */
374 	if_ctx_t	ift_ctx;
375 	struct ifmp_ring	*ift_br;
376 	struct grouptask	ift_task;
377 	qidx_t		ift_size;
378 	qidx_t		ift_pad;
379 	uint16_t	ift_id;
380 	struct callout	ift_timer;
381 #ifdef DEV_NETMAP
382 	struct callout	ift_netmap_timer;
383 #endif /* DEV_NETMAP */
384 
385 	if_txsd_vec_t	ift_sds;
386 	uint8_t		ift_qstatus;
387 	uint8_t		ift_closed;
388 	uint8_t		ift_update_freq;
389 	struct iflib_filter_info ift_filter_info;
390 	bus_dma_tag_t	ift_buf_tag;
391 	bus_dma_tag_t	ift_tso_buf_tag;
392 	iflib_dma_info_t	ift_ifdi;
393 #define	MTX_NAME_LEN	32
394 	char		ift_mtx_name[MTX_NAME_LEN];
395 	bus_dma_segment_t	ift_segs[IFLIB_MAX_TX_SEGS]  __aligned(CACHE_LINE_SIZE);
396 #ifdef IFLIB_DIAGNOSTICS
397 	uint64_t ift_cpu_exec_count[256];
398 #endif
399 } __aligned(CACHE_LINE_SIZE);
400 
401 struct iflib_fl {
402 	qidx_t		ifl_cidx;
403 	qidx_t		ifl_pidx;
404 	qidx_t		ifl_credits;
405 	uint8_t		ifl_gen;
406 	uint8_t		ifl_rxd_size;
407 #if MEMORY_LOGGING
408 	uint64_t	ifl_m_enqueued;
409 	uint64_t	ifl_m_dequeued;
410 	uint64_t	ifl_cl_enqueued;
411 	uint64_t	ifl_cl_dequeued;
412 #endif
413 	/* implicit pad */
414 	bitstr_t	*ifl_rx_bitmap;
415 	qidx_t		ifl_fragidx;
416 	/* constant */
417 	qidx_t		ifl_size;
418 	uint16_t	ifl_buf_size;
419 	uint16_t	ifl_cltype;
420 	uma_zone_t	ifl_zone;
421 	iflib_rxsd_array_t	ifl_sds;
422 	iflib_rxq_t	ifl_rxq;
423 	uint8_t		ifl_id;
424 	bus_dma_tag_t	ifl_buf_tag;
425 	iflib_dma_info_t	ifl_ifdi;
426 	uint64_t	ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE);
427 	qidx_t		ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH];
428 }  __aligned(CACHE_LINE_SIZE);
429 
430 static inline qidx_t
get_inuse(int size,qidx_t cidx,qidx_t pidx,uint8_t gen)431 get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen)
432 {
433 	qidx_t used;
434 
435 	if (pidx > cidx)
436 		used = pidx - cidx;
437 	else if (pidx < cidx)
438 		used = size - cidx + pidx;
439 	else if (gen == 0 && pidx == cidx)
440 		used = 0;
441 	else if (gen == 1 && pidx == cidx)
442 		used = size;
443 	else
444 		panic("bad state");
445 
446 	return (used);
447 }
448 
449 #define TXQ_AVAIL(txq) ((txq->ift_size - txq->ift_pad) -\
450 	    get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen))
451 
452 #define IDXDIFF(head, tail, wrap) \
453 	((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
454 
455 struct iflib_rxq {
456 	if_ctx_t	ifr_ctx;
457 	iflib_fl_t	ifr_fl;
458 	uint64_t	ifr_rx_irq;
459 	struct pfil_head	*pfil;
460 	/*
461 	 * If there is a separate completion queue (IFLIB_HAS_RXCQ), this is
462 	 * the completion queue consumer index.  Otherwise it's unused.
463 	 */
464 	qidx_t		ifr_cq_cidx;
465 	uint16_t	ifr_id;
466 	uint8_t		ifr_nfl;
467 	uint8_t		ifr_ntxqirq;
468 	uint8_t		ifr_txqid[IFLIB_MAX_TX_SHARED_INTR];
469 	uint8_t		ifr_fl_offset;
470 	struct lro_ctrl		ifr_lc;
471 	struct grouptask	ifr_task;
472 	struct callout		ifr_watchdog;
473 	struct iflib_filter_info ifr_filter_info;
474 	iflib_dma_info_t	ifr_ifdi;
475 
476 	/* dynamically allocate if any drivers need a value substantially larger than this */
477 	struct if_rxd_frag	ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE);
478 #ifdef IFLIB_DIAGNOSTICS
479 	uint64_t ifr_cpu_exec_count[256];
480 #endif
481 }  __aligned(CACHE_LINE_SIZE);
482 
483 typedef struct if_rxsd {
484 	caddr_t *ifsd_cl;
485 	iflib_fl_t ifsd_fl;
486 } *if_rxsd_t;
487 
488 /* multiple of word size */
489 #ifdef __LP64__
490 #define PKT_INFO_SIZE	7
491 #define RXD_INFO_SIZE	5
492 #define PKT_TYPE uint64_t
493 #else
494 #define PKT_INFO_SIZE	12
495 #define RXD_INFO_SIZE	8
496 #define PKT_TYPE uint32_t
497 #endif
498 #define PKT_LOOP_BOUND	((PKT_INFO_SIZE / 3) * 3)
499 #define RXD_LOOP_BOUND	((RXD_INFO_SIZE / 4) * 4)
500 
501 typedef struct if_pkt_info_pad {
502 	PKT_TYPE pkt_val[PKT_INFO_SIZE];
503 } *if_pkt_info_pad_t;
504 typedef struct if_rxd_info_pad {
505 	PKT_TYPE rxd_val[RXD_INFO_SIZE];
506 } *if_rxd_info_pad_t;
507 
508 CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info));
509 CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info));
510 
511 static inline void
pkt_info_zero(if_pkt_info_t pi)512 pkt_info_zero(if_pkt_info_t pi)
513 {
514 	if_pkt_info_pad_t pi_pad;
515 
516 	pi_pad = (if_pkt_info_pad_t)pi;
517 	pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0;
518 	pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0;
519 #ifndef __LP64__
520 	pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0;
521 	pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0;
522 #endif
523 }
524 
525 static inline void
rxd_info_zero(if_rxd_info_t ri)526 rxd_info_zero(if_rxd_info_t ri)
527 {
528 	if_rxd_info_pad_t ri_pad;
529 	int i;
530 
531 	ri_pad = (if_rxd_info_pad_t)ri;
532 	for (i = 0; i < RXD_LOOP_BOUND; i += 4) {
533 		ri_pad->rxd_val[i] = 0;
534 		ri_pad->rxd_val[i + 1] = 0;
535 		ri_pad->rxd_val[i + 2] = 0;
536 		ri_pad->rxd_val[i + 3] = 0;
537 	}
538 #ifdef __LP64__
539 	ri_pad->rxd_val[RXD_INFO_SIZE - 1] = 0;
540 #endif
541 }
542 
543 /*
544  * Only allow a single packet to take up most 1/nth of the tx ring
545  */
546 #define MAX_SINGLE_PACKET_FRACTION 12
547 #define IF_BAD_DMA	((bus_addr_t)-1)
548 
549 #define CTX_ACTIVE(ctx)	((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING))
550 
551 #define CTX_LOCK_INIT(_sc)	sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock")
552 #define CTX_LOCK(ctx)		sx_xlock(&(ctx)->ifc_ctx_sx)
553 #define CTX_UNLOCK(ctx)		sx_xunlock(&(ctx)->ifc_ctx_sx)
554 #define CTX_LOCK_DESTROY(ctx)	sx_destroy(&(ctx)->ifc_ctx_sx)
555 
556 #define STATE_LOCK_INIT(_sc, _name)	mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF)
557 #define STATE_LOCK(ctx)		mtx_lock(&(ctx)->ifc_state_mtx)
558 #define STATE_UNLOCK(ctx)	mtx_unlock(&(ctx)->ifc_state_mtx)
559 #define STATE_LOCK_DESTROY(ctx)	mtx_destroy(&(ctx)->ifc_state_mtx)
560 
561 #define CALLOUT_LOCK(txq)	mtx_lock(&txq->ift_mtx)
562 #define CALLOUT_UNLOCK(txq)	mtx_unlock(&txq->ift_mtx)
563 
564 /* Our boot-time initialization hook */
565 static int	iflib_module_event_handler(module_t, int, void *);
566 
567 static moduledata_t iflib_moduledata = {
568 	"iflib",
569 	iflib_module_event_handler,
570 	NULL
571 };
572 
573 DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY);
574 MODULE_VERSION(iflib, 1);
575 
576 MODULE_DEPEND(iflib, pci, 1, 1, 1);
577 MODULE_DEPEND(iflib, ether, 1, 1, 1);
578 
579 TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1);
580 TASKQGROUP_DEFINE(if_config_tqg, 1, 1);
581 
582 #ifndef IFLIB_DEBUG_COUNTERS
583 #ifdef INVARIANTS
584 #define IFLIB_DEBUG_COUNTERS 1
585 #else
586 #define IFLIB_DEBUG_COUNTERS 0
587 #endif /* !INVARIANTS */
588 #endif
589 
590 static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
591     "iflib driver parameters");
592 
593 /*
594  * XXX need to ensure that this can't accidentally cause the head to be moved backwards
595  */
596 static int iflib_min_tx_latency = 0;
597 SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW,
598     &iflib_min_tx_latency, 0,
599     "minimize transmit latency at the possible expense of throughput");
600 static int iflib_no_tx_batch = 0;
601 SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW,
602     &iflib_no_tx_batch, 0,
603     "minimize transmit latency at the possible expense of throughput");
604 static int iflib_timer_default = 1000;
605 SYSCTL_INT(_net_iflib, OID_AUTO, timer_default, CTLFLAG_RW,
606     &iflib_timer_default, 0, "number of ticks between iflib_timer calls");
607 
608 
609 #if IFLIB_DEBUG_COUNTERS
610 
611 static int iflib_tx_seen;
612 static int iflib_tx_sent;
613 static int iflib_tx_encap;
614 static int iflib_rx_allocs;
615 static int iflib_fl_refills;
616 static int iflib_fl_refills_large;
617 static int iflib_tx_frees;
618 
619 SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD, &iflib_tx_seen, 0,
620     "# TX mbufs seen");
621 SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD, &iflib_tx_sent, 0,
622     "# TX mbufs sent");
623 SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD, &iflib_tx_encap, 0,
624     "# TX mbufs encapped");
625 SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD, &iflib_tx_frees, 0,
626     "# TX frees");
627 SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD, &iflib_rx_allocs, 0,
628     "# RX allocations");
629 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD, &iflib_fl_refills, 0,
630     "# refills");
631 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD,
632     &iflib_fl_refills_large, 0, "# large refills");
633 
634 static int iflib_txq_drain_flushing;
635 static int iflib_txq_drain_oactive;
636 static int iflib_txq_drain_notready;
637 
638 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD,
639     &iflib_txq_drain_flushing, 0, "# drain flushes");
640 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD,
641     &iflib_txq_drain_oactive, 0, "# drain oactives");
642 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD,
643     &iflib_txq_drain_notready, 0, "# drain notready");
644 
645 static int iflib_encap_load_mbuf_fail;
646 static int iflib_encap_pad_mbuf_fail;
647 static int iflib_encap_txq_avail_fail;
648 static int iflib_encap_txd_encap_fail;
649 
650 SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD,
651     &iflib_encap_load_mbuf_fail, 0, "# busdma load failures");
652 SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD,
653     &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures");
654 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD,
655     &iflib_encap_txq_avail_fail, 0, "# txq avail failures");
656 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD,
657     &iflib_encap_txd_encap_fail, 0, "# driver encap failures");
658 
659 static int iflib_task_fn_rxs;
660 static int iflib_rx_intr_enables;
661 static int iflib_fast_intrs;
662 static int iflib_rx_unavail;
663 static int iflib_rx_ctx_inactive;
664 static int iflib_rx_if_input;
665 static int iflib_rxd_flush;
666 
667 static int iflib_verbose_debug;
668 
669 SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD, &iflib_task_fn_rxs, 0,
670     "# task_fn_rx calls");
671 SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD,
672     &iflib_rx_intr_enables, 0, "# RX intr enables");
673 SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD, &iflib_fast_intrs, 0,
674     "# fast_intr calls");
675 SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD, &iflib_rx_unavail, 0,
676     "# times rxeof called with no available data");
677 SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD,
678     &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context");
679 SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD, &iflib_rx_if_input,
680     0, "# times rxeof called if_input");
681 SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD, &iflib_rxd_flush, 0,
682     "# times rxd_flush called");
683 SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW,
684     &iflib_verbose_debug, 0, "enable verbose debugging");
685 
686 #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1)
687 static void
iflib_debug_reset(void)688 iflib_debug_reset(void)
689 {
690 	iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs =
691 		iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees =
692 		iflib_txq_drain_flushing = iflib_txq_drain_oactive =
693 		iflib_txq_drain_notready =
694 		iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail =
695 		iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail =
696 		iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs =
697 		iflib_rx_unavail =
698 		iflib_rx_ctx_inactive = iflib_rx_if_input =
699 		iflib_rxd_flush = 0;
700 }
701 
702 #else
703 #define DBG_COUNTER_INC(name)
iflib_debug_reset(void)704 static void iflib_debug_reset(void) {}
705 #endif
706 
707 #define IFLIB_DEBUG 0
708 
709 static void iflib_tx_structures_free(if_ctx_t ctx);
710 static void iflib_rx_structures_free(if_ctx_t ctx);
711 static int iflib_queues_alloc(if_ctx_t ctx);
712 static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq);
713 static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget);
714 static int iflib_qset_structures_setup(if_ctx_t ctx);
715 static int iflib_msix_init(if_ctx_t ctx);
716 static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str);
717 static void iflib_txq_check_drain(iflib_txq_t txq, int budget);
718 static uint32_t iflib_txq_can_drain(struct ifmp_ring *);
719 #ifdef ALTQ
720 static void iflib_altq_if_start(if_t ifp);
721 static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m);
722 #endif
723 static void iflib_register(if_ctx_t);
724 static void iflib_deregister(if_ctx_t);
725 static void iflib_unregister_vlan_handlers(if_ctx_t ctx);
726 static uint16_t iflib_get_mbuf_size_for(unsigned int size);
727 static void iflib_init_locked(if_ctx_t ctx);
728 static void iflib_add_device_sysctl_pre(if_ctx_t ctx);
729 static void iflib_add_device_sysctl_post(if_ctx_t ctx);
730 static void iflib_ifmp_purge(iflib_txq_t txq);
731 static void _iflib_pre_assert(if_softc_ctx_t scctx);
732 static void iflib_stop(if_ctx_t ctx);
733 static void iflib_if_init_locked(if_ctx_t ctx);
734 static void iflib_free_intr_mem(if_ctx_t ctx);
735 #ifndef __NO_STRICT_ALIGNMENT
736 static struct mbuf *iflib_fixup_rx(struct mbuf *m);
737 #endif
738 static __inline int iflib_completed_tx_reclaim(iflib_txq_t txq);
739 
740 static SLIST_HEAD(cpu_offset_list, cpu_offset) cpu_offsets =
741     SLIST_HEAD_INITIALIZER(cpu_offsets);
742 struct cpu_offset {
743 	SLIST_ENTRY(cpu_offset) entries;
744 	cpuset_t	set;
745 	unsigned int	refcount;
746 	uint16_t	next_cpuid;
747 };
748 static struct mtx cpu_offset_mtx;
749 MTX_SYSINIT(iflib_cpu_offset, &cpu_offset_mtx, "iflib_cpu_offset lock",
750     MTX_DEF);
751 
752 DEBUGNET_DEFINE(iflib);
753 
754 static int
iflib_num_rx_descs(if_ctx_t ctx)755 iflib_num_rx_descs(if_ctx_t ctx)
756 {
757 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
758 	if_shared_ctx_t sctx = ctx->ifc_sctx;
759 	uint16_t first_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0;
760 
761 	return (scctx->isc_nrxd[first_rxq]);
762 }
763 
764 static int
iflib_num_tx_descs(if_ctx_t ctx)765 iflib_num_tx_descs(if_ctx_t ctx)
766 {
767 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
768 	if_shared_ctx_t sctx = ctx->ifc_sctx;
769 	uint16_t first_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0;
770 
771 	return (scctx->isc_ntxd[first_txq]);
772 }
773 
774 #ifdef DEV_NETMAP
775 #include <sys/selinfo.h>
776 #include <net/netmap.h>
777 #include <dev/netmap/netmap_kern.h>
778 
779 MODULE_DEPEND(iflib, netmap, 1, 1, 1);
780 
781 static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init);
782 static void iflib_netmap_timer(void *arg);
783 
784 /*
785  * device-specific sysctl variables:
786  *
787  * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it.
788  *	During regular operations the CRC is stripped, but on some
789  *	hardware reception of frames not multiple of 64 is slower,
790  *	so using crcstrip=0 helps in benchmarks.
791  *
792  * iflib_rx_miss, iflib_rx_miss_bufs:
793  *	count packets that might be missed due to lost interrupts.
794  */
795 SYSCTL_DECL(_dev_netmap);
796 /*
797  * The xl driver by default strips CRCs and we do not override it.
798  */
799 
800 int iflib_crcstrip = 1;
801 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip,
802     CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on RX frames");
803 
804 int iflib_rx_miss, iflib_rx_miss_bufs;
805 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss,
806     CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed RX intr");
807 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs,
808     CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed RX intr bufs");
809 
810 /*
811  * Register/unregister. We are already under netmap lock.
812  * Only called on the first register or the last unregister.
813  */
814 static int
iflib_netmap_register(struct netmap_adapter * na,int onoff)815 iflib_netmap_register(struct netmap_adapter *na, int onoff)
816 {
817 	if_t ifp = na->ifp;
818 	if_ctx_t ctx = if_getsoftc(ifp);
819 	int status;
820 
821 	CTX_LOCK(ctx);
822 	if (!CTX_IS_VF(ctx))
823 		IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip);
824 
825 	iflib_stop(ctx);
826 
827 	/*
828 	 * Enable (or disable) netmap flags, and intercept (or restore)
829 	 * ifp->if_transmit. This is done once the device has been stopped
830 	 * to prevent race conditions. Also, this must be done after
831 	 * calling netmap_disable_all_rings() and before calling
832 	 * netmap_enable_all_rings(), so that these two functions see the
833 	 * updated state of the NAF_NETMAP_ON bit.
834 	 */
835 	if (onoff) {
836 		nm_set_native_flags(na);
837 	} else {
838 		nm_clear_native_flags(na);
839 	}
840 
841 	iflib_init_locked(ctx);
842 	IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ?
843 	status = if_getdrvflags(ifp) & IFF_DRV_RUNNING ? 0 : 1;
844 	if (status)
845 		nm_clear_native_flags(na);
846 	CTX_UNLOCK(ctx);
847 	return (status);
848 }
849 
850 static int
iflib_netmap_config(struct netmap_adapter * na,struct nm_config_info * info)851 iflib_netmap_config(struct netmap_adapter *na, struct nm_config_info *info)
852 {
853 	if_t ifp = na->ifp;
854 	if_ctx_t ctx = if_getsoftc(ifp);
855 	iflib_rxq_t rxq = &ctx->ifc_rxqs[0];
856 	iflib_fl_t fl = &rxq->ifr_fl[0];
857 
858 	info->num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
859 	info->num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
860 	info->num_tx_descs = iflib_num_tx_descs(ctx);
861 	info->num_rx_descs = iflib_num_rx_descs(ctx);
862 	info->rx_buf_maxsize = fl->ifl_buf_size;
863 	nm_prinf("txr %u rxr %u txd %u rxd %u rbufsz %u",
864 		info->num_tx_rings, info->num_rx_rings, info->num_tx_descs,
865 		info->num_rx_descs, info->rx_buf_maxsize);
866 
867 	return (0);
868 }
869 
870 static int
netmap_fl_refill(iflib_rxq_t rxq,struct netmap_kring * kring,bool init)871 netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init)
872 {
873 	struct netmap_adapter *na = kring->na;
874 	u_int const lim = kring->nkr_num_slots - 1;
875 	struct netmap_ring *ring = kring->ring;
876 	bus_dmamap_t *map;
877 	struct if_rxd_update iru;
878 	if_ctx_t ctx = rxq->ifr_ctx;
879 	iflib_fl_t fl = &rxq->ifr_fl[0];
880 	u_int nic_i_first, nic_i;
881 	u_int nm_i;
882 	int i, n;
883 #if IFLIB_DEBUG_COUNTERS
884 	int rf_count = 0;
885 #endif
886 
887 	/*
888 	 * This function is used both at initialization and in rxsync.
889 	 * At initialization we need to prepare (with isc_rxd_refill())
890 	 * all the netmap buffers currently owned by the kernel, in
891 	 * such a way to keep fl->ifl_pidx and kring->nr_hwcur in sync
892 	 * (except for kring->nkr_hwofs). These may be less than
893 	 * kring->nkr_num_slots if netmap_reset() was called while
894 	 * an application using the kring that still owned some
895 	 * buffers.
896 	 * At rxsync time, both indexes point to the next buffer to be
897 	 * refilled.
898 	 * In any case we publish (with isc_rxd_flush()) up to
899 	 * (fl->ifl_pidx - 1) % N (included), to avoid the NIC tail/prod
900 	 * pointer to overrun the head/cons pointer, although this is
901 	 * not necessary for some NICs (e.g. vmx).
902 	 */
903 	if (__predict_false(init)) {
904 		n = kring->nkr_num_slots - nm_kr_rxspace(kring);
905 	} else {
906 		n = kring->rhead - kring->nr_hwcur;
907 		if (n == 0)
908 			return (0); /* Nothing to do. */
909 		if (n < 0)
910 			n += kring->nkr_num_slots;
911 	}
912 
913 	iru_init(&iru, rxq, 0 /* flid */);
914 	map = fl->ifl_sds.ifsd_map;
915 	nic_i = fl->ifl_pidx;
916 	nm_i = netmap_idx_n2k(kring, nic_i);
917 	if (__predict_false(init)) {
918 		/*
919 		 * On init/reset, nic_i must be 0, and we must
920 		 * start to refill from hwtail (see netmap_reset()).
921 		 */
922 		MPASS(nic_i == 0);
923 		MPASS(nm_i == kring->nr_hwtail);
924 	} else
925 		MPASS(nm_i == kring->nr_hwcur);
926 	DBG_COUNTER_INC(fl_refills);
927 	while (n > 0) {
928 #if IFLIB_DEBUG_COUNTERS
929 		if (++rf_count == 9)
930 			DBG_COUNTER_INC(fl_refills_large);
931 #endif
932 		nic_i_first = nic_i;
933 		for (i = 0; n > 0 && i < IFLIB_MAX_RX_REFRESH; n--, i++) {
934 			struct netmap_slot *slot = &ring->slot[nm_i];
935 			uint64_t paddr;
936 			void *addr = PNMB(na, slot, &paddr);
937 
938 			MPASS(i < IFLIB_MAX_RX_REFRESH);
939 
940 			if (addr == NETMAP_BUF_BASE(na)) /* bad buf */
941 				return (netmap_ring_reinit(kring));
942 
943 			fl->ifl_bus_addrs[i] = paddr +
944 			    nm_get_offset(kring, slot);
945 			fl->ifl_rxd_idxs[i] = nic_i;
946 
947 			if (__predict_false(init)) {
948 				netmap_load_map(na, fl->ifl_buf_tag,
949 				    map[nic_i], addr);
950 			} else if (slot->flags & NS_BUF_CHANGED) {
951 				/* buffer has changed, reload map */
952 				netmap_reload_map(na, fl->ifl_buf_tag,
953 				    map[nic_i], addr);
954 			}
955 			bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i],
956 			    BUS_DMASYNC_PREREAD);
957 			slot->flags &= ~NS_BUF_CHANGED;
958 
959 			nm_i = nm_next(nm_i, lim);
960 			nic_i = nm_next(nic_i, lim);
961 		}
962 
963 		iru.iru_pidx = nic_i_first;
964 		iru.iru_count = i;
965 		ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
966 	}
967 	fl->ifl_pidx = nic_i;
968 	/*
969 	 * At the end of the loop we must have refilled everything
970 	 * we could possibly refill.
971 	 */
972 	MPASS(nm_i == kring->rhead);
973 	kring->nr_hwcur = nm_i;
974 
975 	bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
976 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
977 	ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id,
978 	    nm_prev(nic_i, lim));
979 	DBG_COUNTER_INC(rxd_flush);
980 
981 	return (0);
982 }
983 
984 #define NETMAP_TX_TIMER_US	90
985 
986 /*
987  * Reconcile kernel and user view of the transmit ring.
988  *
989  * All information is in the kring.
990  * Userspace wants to send packets up to the one before kring->rhead,
991  * kernel knows kring->nr_hwcur is the first unsent packet.
992  *
993  * Here we push packets out (as many as possible), and possibly
994  * reclaim buffers from previously completed transmission.
995  *
996  * The caller (netmap) guarantees that there is only one instance
997  * running at any time. Any interference with other driver
998  * methods should be handled by the individual drivers.
999  */
1000 static int
iflib_netmap_txsync(struct netmap_kring * kring,int flags)1001 iflib_netmap_txsync(struct netmap_kring *kring, int flags)
1002 {
1003 	struct netmap_adapter *na = kring->na;
1004 	if_t ifp = na->ifp;
1005 	struct netmap_ring *ring = kring->ring;
1006 	u_int nm_i;	/* index into the netmap kring */
1007 	u_int nic_i;	/* index into the NIC ring */
1008 	u_int const lim = kring->nkr_num_slots - 1;
1009 	u_int const head = kring->rhead;
1010 	struct if_pkt_info pi;
1011 	int tx_pkts = 0, tx_bytes = 0;
1012 
1013 	/*
1014 	 * interrupts on every tx packet are expensive so request
1015 	 * them every half ring, or where NS_REPORT is set
1016 	 */
1017 	u_int report_frequency = kring->nkr_num_slots >> 1;
1018 	/* device-specific */
1019 	if_ctx_t ctx = if_getsoftc(ifp);
1020 	iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id];
1021 
1022 	bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1023 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1024 
1025 	/*
1026 	 * First part: process new packets to send.
1027 	 * nm_i is the current index in the netmap kring,
1028 	 * nic_i is the corresponding index in the NIC ring.
1029 	 *
1030 	 * If we have packets to send (nm_i != head)
1031 	 * iterate over the netmap ring, fetch length and update
1032 	 * the corresponding slot in the NIC ring. Some drivers also
1033 	 * need to update the buffer's physical address in the NIC slot
1034 	 * even NS_BUF_CHANGED is not set (PNMB computes the addresses).
1035 	 *
1036 	 * The netmap_reload_map() calls is especially expensive,
1037 	 * even when (as in this case) the tag is 0, so do only
1038 	 * when the buffer has actually changed.
1039 	 *
1040 	 * If possible do not set the report/intr bit on all slots,
1041 	 * but only a few times per ring or when NS_REPORT is set.
1042 	 *
1043 	 * Finally, on 10G and faster drivers, it might be useful
1044 	 * to prefetch the next slot and txr entry.
1045 	 */
1046 
1047 	nm_i = kring->nr_hwcur;
1048 	if (nm_i != head) {	/* we have new packets to send */
1049 		uint32_t pkt_len = 0, seg_idx = 0;
1050 		int nic_i_start = -1, flags = 0;
1051 		pkt_info_zero(&pi);
1052 		pi.ipi_segs = txq->ift_segs;
1053 		pi.ipi_qsidx = kring->ring_id;
1054 		nic_i = netmap_idx_k2n(kring, nm_i);
1055 
1056 		__builtin_prefetch(&ring->slot[nm_i]);
1057 		__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]);
1058 		__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]);
1059 
1060 		while (nm_i != head) {
1061 			struct netmap_slot *slot = &ring->slot[nm_i];
1062 			uint64_t offset = nm_get_offset(kring, slot);
1063 			u_int len = slot->len;
1064 			uint64_t paddr;
1065 			void *addr = PNMB(na, slot, &paddr);
1066 
1067 			flags |= (slot->flags & NS_REPORT ||
1068 				nic_i == 0 || nic_i == report_frequency) ?
1069 				IPI_TX_INTR : 0;
1070 
1071 			/*
1072 			 * If this is the first packet fragment, save the
1073 			 * index of the first NIC slot for later.
1074 			 */
1075 			if (nic_i_start < 0)
1076 				nic_i_start = nic_i;
1077 
1078 			pi.ipi_segs[seg_idx].ds_addr = paddr + offset;
1079 			pi.ipi_segs[seg_idx].ds_len = len;
1080 			if (len) {
1081 				pkt_len += len;
1082 				seg_idx++;
1083 			}
1084 
1085 			if (!(slot->flags & NS_MOREFRAG)) {
1086 				pi.ipi_len = pkt_len;
1087 				pi.ipi_nsegs = seg_idx;
1088 				pi.ipi_pidx = nic_i_start;
1089 				pi.ipi_ndescs = 0;
1090 				pi.ipi_flags = flags;
1091 
1092 				/* Prepare the NIC TX ring. */
1093 				ctx->isc_txd_encap(ctx->ifc_softc, &pi);
1094 				DBG_COUNTER_INC(tx_encap);
1095 
1096 				/* Update transmit counters */
1097 				tx_bytes += pi.ipi_len;
1098 				tx_pkts++;
1099 
1100 				/* Reinit per-packet info for the next one. */
1101 				flags = seg_idx = pkt_len = 0;
1102 				nic_i_start = -1;
1103 			}
1104 
1105 			/* prefetch for next round */
1106 			__builtin_prefetch(&ring->slot[nm_i + 1]);
1107 			__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]);
1108 			__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]);
1109 
1110 			NM_CHECK_ADDR_LEN_OFF(na, len, offset);
1111 
1112 			if (slot->flags & NS_BUF_CHANGED) {
1113 				/* buffer has changed, reload map */
1114 				netmap_reload_map(na, txq->ift_buf_tag,
1115 				    txq->ift_sds.ifsd_map[nic_i], addr);
1116 			}
1117 			/* make sure changes to the buffer are synced */
1118 			bus_dmamap_sync(txq->ift_buf_tag,
1119 			    txq->ift_sds.ifsd_map[nic_i],
1120 			    BUS_DMASYNC_PREWRITE);
1121 
1122 			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED | NS_MOREFRAG);
1123 			nm_i = nm_next(nm_i, lim);
1124 			nic_i = nm_next(nic_i, lim);
1125 		}
1126 		kring->nr_hwcur = nm_i;
1127 
1128 		/* synchronize the NIC ring */
1129 		bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1130 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1131 
1132 		/* (re)start the tx unit up to slot nic_i (excluded) */
1133 		ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i);
1134 	}
1135 
1136 	/*
1137 	 * Second part: reclaim buffers for completed transmissions.
1138 	 *
1139 	 * If there are unclaimed buffers, attempt to reclaim them.
1140 	 * If we don't manage to reclaim them all, and TX IRQs are not in use,
1141 	 * trigger a per-tx-queue timer to try again later.
1142 	 */
1143 	if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1144 		if (iflib_tx_credits_update(ctx, txq)) {
1145 			/* some tx completed, increment avail */
1146 			nic_i = txq->ift_cidx_processed;
1147 			kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim);
1148 		}
1149 	}
1150 
1151 	if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ))
1152 		if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1153 			callout_reset_sbt_on(&txq->ift_netmap_timer,
1154 			    NETMAP_TX_TIMER_US * SBT_1US, SBT_1US,
1155 			    iflib_netmap_timer, txq,
1156 			    txq->ift_netmap_timer.c_cpu, 0);
1157 		}
1158 
1159 	if_inc_counter(ifp, IFCOUNTER_OBYTES, tx_bytes);
1160 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, tx_pkts);
1161 
1162 	return (0);
1163 }
1164 
1165 /*
1166  * Reconcile kernel and user view of the receive ring.
1167  * Same as for the txsync, this routine must be efficient.
1168  * The caller guarantees a single invocations, but races against
1169  * the rest of the driver should be handled here.
1170  *
1171  * On call, kring->rhead is the first packet that userspace wants
1172  * to keep, and kring->rcur is the wakeup point.
1173  * The kernel has previously reported packets up to kring->rtail.
1174  *
1175  * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective
1176  * of whether or not we received an interrupt.
1177  */
1178 static int
iflib_netmap_rxsync(struct netmap_kring * kring,int flags)1179 iflib_netmap_rxsync(struct netmap_kring *kring, int flags)
1180 {
1181 	struct netmap_adapter *na = kring->na;
1182 	struct netmap_ring *ring = kring->ring;
1183 	if_t ifp = na->ifp;
1184 	uint32_t nm_i;	/* index into the netmap ring */
1185 	uint32_t nic_i;	/* index into the NIC ring */
1186 	u_int n;
1187 	u_int const lim = kring->nkr_num_slots - 1;
1188 	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
1189 	int i = 0, rx_bytes = 0, rx_pkts = 0;
1190 
1191 	if_ctx_t ctx = if_getsoftc(ifp);
1192 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1193 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1194 	iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id];
1195 	iflib_fl_t fl = &rxq->ifr_fl[0];
1196 	struct if_rxd_info ri;
1197 	qidx_t *cidxp;
1198 
1199 	/*
1200 	 * netmap only uses free list 0, to avoid out of order consumption
1201 	 * of receive buffers
1202 	 */
1203 
1204 	bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
1205 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1206 
1207 	/*
1208 	 * First part: import newly received packets.
1209 	 *
1210 	 * nm_i is the index of the next free slot in the netmap ring,
1211 	 * nic_i is the index of the next received packet in the NIC ring
1212 	 * (or in the free list 0 if IFLIB_HAS_RXCQ is set), and they may
1213 	 * differ in case if_init() has been called while
1214 	 * in netmap mode. For the receive ring we have
1215 	 *
1216 	 *	nic_i = fl->ifl_cidx;
1217 	 *	nm_i = kring->nr_hwtail (previous)
1218 	 * and
1219 	 *	nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1220 	 *
1221 	 * fl->ifl_cidx is set to 0 on a ring reinit
1222 	 */
1223 	if (netmap_no_pendintr || force_update) {
1224 		uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim);
1225 		bool have_rxcq = sctx->isc_flags & IFLIB_HAS_RXCQ;
1226 		int crclen = iflib_crcstrip ? 0 : 4;
1227 		int error, avail;
1228 
1229 		/*
1230 		 * For the free list consumer index, we use the same
1231 		 * logic as in iflib_rxeof().
1232 		 */
1233 		if (have_rxcq)
1234 			cidxp = &rxq->ifr_cq_cidx;
1235 		else
1236 			cidxp = &fl->ifl_cidx;
1237 		avail = ctx->isc_rxd_available(ctx->ifc_softc,
1238 		    rxq->ifr_id, *cidxp, USHRT_MAX);
1239 
1240 		nic_i = fl->ifl_cidx;
1241 		nm_i = netmap_idx_n2k(kring, nic_i);
1242 		MPASS(nm_i == kring->nr_hwtail);
1243 		for (n = 0; avail > 0 && nm_i != hwtail_lim; n++, avail--) {
1244 			rxd_info_zero(&ri);
1245 			ri.iri_frags = rxq->ifr_frags;
1246 			ri.iri_qsidx = kring->ring_id;
1247 			ri.iri_ifp = ctx->ifc_ifp;
1248 			ri.iri_cidx = *cidxp;
1249 
1250 			error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
1251 			for (i = 0; i < ri.iri_nfrags; i++) {
1252 				if (error) {
1253 					ring->slot[nm_i].len = 0;
1254 					ring->slot[nm_i].flags = 0;
1255 				} else {
1256 					ring->slot[nm_i].len = ri.iri_frags[i].irf_len;
1257 					if (i == (ri.iri_nfrags - 1)) {
1258 						ring->slot[nm_i].len -= crclen;
1259 						ring->slot[nm_i].flags = 0;
1260 
1261 						/* Update receive counters */
1262 						rx_bytes += ri.iri_len;
1263 						rx_pkts++;
1264 					} else
1265 						ring->slot[nm_i].flags = NS_MOREFRAG;
1266 				}
1267 
1268 				bus_dmamap_sync(fl->ifl_buf_tag,
1269 				    fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD);
1270 				nm_i = nm_next(nm_i, lim);
1271 				fl->ifl_cidx = nic_i = nm_next(nic_i, lim);
1272 			}
1273 
1274 			if (have_rxcq) {
1275 				*cidxp = ri.iri_cidx;
1276 				while (*cidxp >= scctx->isc_nrxd[0])
1277 					*cidxp -= scctx->isc_nrxd[0];
1278 			}
1279 
1280 		}
1281 		if (n) { /* update the state variables */
1282 			if (netmap_no_pendintr && !force_update) {
1283 				/* diagnostics */
1284 				iflib_rx_miss++;
1285 				iflib_rx_miss_bufs += n;
1286 			}
1287 			kring->nr_hwtail = nm_i;
1288 		}
1289 		kring->nr_kflags &= ~NKR_PENDINTR;
1290 	}
1291 	/*
1292 	 * Second part: skip past packets that userspace has released.
1293 	 * (kring->nr_hwcur to head excluded),
1294 	 * and make the buffers available for reception.
1295 	 * As usual nm_i is the index in the netmap ring,
1296 	 * nic_i is the index in the NIC ring, and
1297 	 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1298 	 */
1299 	netmap_fl_refill(rxq, kring, false);
1300 
1301 	if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
1302 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
1303 
1304 	return (0);
1305 }
1306 
1307 static void
iflib_netmap_intr(struct netmap_adapter * na,int onoff)1308 iflib_netmap_intr(struct netmap_adapter *na, int onoff)
1309 {
1310 	if_ctx_t ctx = if_getsoftc(na->ifp);
1311 
1312 	CTX_LOCK(ctx);
1313 	if (onoff) {
1314 		IFDI_INTR_ENABLE(ctx);
1315 	} else {
1316 		IFDI_INTR_DISABLE(ctx);
1317 	}
1318 	CTX_UNLOCK(ctx);
1319 }
1320 
1321 static int
iflib_netmap_attach(if_ctx_t ctx)1322 iflib_netmap_attach(if_ctx_t ctx)
1323 {
1324 	struct netmap_adapter na;
1325 
1326 	bzero(&na, sizeof(na));
1327 
1328 	na.ifp = ctx->ifc_ifp;
1329 	na.na_flags = NAF_BDG_MAYSLEEP | NAF_MOREFRAG | NAF_OFFSETS;
1330 	MPASS(ctx->ifc_softc_ctx.isc_ntxqsets);
1331 	MPASS(ctx->ifc_softc_ctx.isc_nrxqsets);
1332 
1333 	na.num_tx_desc = iflib_num_tx_descs(ctx);
1334 	na.num_rx_desc = iflib_num_rx_descs(ctx);
1335 	na.nm_txsync = iflib_netmap_txsync;
1336 	na.nm_rxsync = iflib_netmap_rxsync;
1337 	na.nm_register = iflib_netmap_register;
1338 	na.nm_intr = iflib_netmap_intr;
1339 	na.nm_config = iflib_netmap_config;
1340 	na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
1341 	na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
1342 	return (netmap_attach(&na));
1343 }
1344 
1345 static int
iflib_netmap_txq_init(if_ctx_t ctx,iflib_txq_t txq)1346 iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq)
1347 {
1348 	struct netmap_adapter *na = NA(ctx->ifc_ifp);
1349 	struct netmap_slot *slot;
1350 
1351 	slot = netmap_reset(na, NR_TX, txq->ift_id, 0);
1352 	if (slot == NULL)
1353 		return (0);
1354 	for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) {
1355 		/*
1356 		 * In netmap mode, set the map for the packet buffer.
1357 		 * NOTE: Some drivers (not this one) also need to set
1358 		 * the physical buffer address in the NIC ring.
1359 		 * netmap_idx_n2k() maps a nic index, i, into the corresponding
1360 		 * netmap slot index, si
1361 		 */
1362 		int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i);
1363 		netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i],
1364 		    NMB(na, slot + si));
1365 	}
1366 	return (1);
1367 }
1368 
1369 static int
iflib_netmap_rxq_init(if_ctx_t ctx,iflib_rxq_t rxq)1370 iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq)
1371 {
1372 	struct netmap_adapter *na = NA(ctx->ifc_ifp);
1373 	struct netmap_kring *kring;
1374 	struct netmap_slot *slot;
1375 
1376 	slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0);
1377 	if (slot == NULL)
1378 		return (0);
1379 	kring = na->rx_rings[rxq->ifr_id];
1380 	netmap_fl_refill(rxq, kring, true);
1381 	return (1);
1382 }
1383 
1384 static void
iflib_netmap_timer(void * arg)1385 iflib_netmap_timer(void *arg)
1386 {
1387 	iflib_txq_t txq = arg;
1388 	if_ctx_t ctx = txq->ift_ctx;
1389 
1390 	/*
1391 	 * Wake up the netmap application, to give it a chance to
1392 	 * call txsync and reclaim more completed TX buffers.
1393 	 */
1394 	netmap_tx_irq(ctx->ifc_ifp, txq->ift_id);
1395 }
1396 
1397 #define iflib_netmap_detach(ifp) netmap_detach(ifp)
1398 
1399 #else
1400 #define iflib_netmap_txq_init(ctx, txq) (0)
1401 #define iflib_netmap_rxq_init(ctx, rxq) (0)
1402 #define iflib_netmap_detach(ifp)
1403 #define netmap_enable_all_rings(ifp)
1404 #define netmap_disable_all_rings(ifp)
1405 
1406 #define iflib_netmap_attach(ctx) (0)
1407 #define netmap_rx_irq(ifp, qid, budget) (0)
1408 #endif
1409 
1410 #if defined(__i386__) || defined(__amd64__)
1411 static __inline void
prefetch(void * x)1412 prefetch(void *x)
1413 {
1414 	__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1415 }
1416 
1417 static __inline void
prefetch2cachelines(void * x)1418 prefetch2cachelines(void *x)
1419 {
1420 	__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1421 #if (CACHE_LINE_SIZE < 128)
1422 	__asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x) + CACHE_LINE_SIZE / (sizeof(unsigned long)))));
1423 #endif
1424 }
1425 #else
1426 static __inline void
prefetch(void * x)1427 prefetch(void *x)
1428 {
1429 }
1430 
1431 static __inline void
prefetch2cachelines(void * x)1432 prefetch2cachelines(void *x)
1433 {
1434 }
1435 #endif
1436 
1437 static void
iru_init(if_rxd_update_t iru,iflib_rxq_t rxq,uint8_t flid)1438 iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid)
1439 {
1440 	iflib_fl_t fl;
1441 
1442 	fl = &rxq->ifr_fl[flid];
1443 	iru->iru_paddrs = fl->ifl_bus_addrs;
1444 	iru->iru_idxs = fl->ifl_rxd_idxs;
1445 	iru->iru_qsidx = rxq->ifr_id;
1446 	iru->iru_buf_size = fl->ifl_buf_size;
1447 	iru->iru_flidx = fl->ifl_id;
1448 }
1449 
1450 static void
_iflib_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int err)1451 _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
1452 {
1453 	if (err)
1454 		return;
1455 	*(bus_addr_t *) arg = segs[0].ds_addr;
1456 }
1457 
1458 #define	DMA_WIDTH_TO_BUS_LOWADDR(width)				\
1459 	(((width) == 0) || (width) == flsll(BUS_SPACE_MAXADDR) ?	\
1460 	    BUS_SPACE_MAXADDR : (1ULL << (width)) - 1ULL)
1461 
1462 int
iflib_dma_alloc_align(if_ctx_t ctx,int size,int align,iflib_dma_info_t dma,int mapflags)1463 iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags)
1464 {
1465 	int err;
1466 	device_t dev = ctx->ifc_dev;
1467 	bus_addr_t lowaddr;
1468 
1469 	lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(ctx->ifc_softc_ctx.isc_dma_width);
1470 
1471 	err = bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
1472 		    align, 0,		/* alignment, bounds */
1473 		    lowaddr,		/* lowaddr */
1474 		    BUS_SPACE_MAXADDR,	/* highaddr */
1475 		    NULL, NULL,		/* filter, filterarg */
1476 		    size,		/* maxsize */
1477 		    1,			/* nsegments */
1478 		    size,		/* maxsegsize */
1479 		    BUS_DMA_ALLOCNOW,	/* flags */
1480 		    NULL,		/* lockfunc */
1481 		    NULL,		/* lockarg */
1482 		    &dma->idi_tag);
1483 	if (err) {
1484 		device_printf(dev,
1485 		    "%s: bus_dma_tag_create failed: %d (size=%d, align=%d)\n",
1486 		    __func__, err, size, align);
1487 		goto fail_0;
1488 	}
1489 
1490 	err = bus_dmamem_alloc(dma->idi_tag, (void **)&dma->idi_vaddr,
1491 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map);
1492 	if (err) {
1493 		device_printf(dev,
1494 		    "%s: bus_dmamem_alloc(%ju) failed: %d\n",
1495 		    __func__, (uintmax_t)size, err);
1496 		goto fail_1;
1497 	}
1498 
1499 	dma->idi_paddr = IF_BAD_DMA;
1500 	err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr,
1501 	    size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT);
1502 	if (err || dma->idi_paddr == IF_BAD_DMA) {
1503 		device_printf(dev,
1504 		    "%s: bus_dmamap_load failed: %d\n",
1505 		    __func__, err);
1506 		goto fail_2;
1507 	}
1508 
1509 	dma->idi_size = size;
1510 	return (0);
1511 
1512 fail_2:
1513 	bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1514 fail_1:
1515 	bus_dma_tag_destroy(dma->idi_tag);
1516 fail_0:
1517 	dma->idi_tag = NULL;
1518 
1519 	return (err);
1520 }
1521 
1522 int
iflib_dma_alloc(if_ctx_t ctx,int size,iflib_dma_info_t dma,int mapflags)1523 iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags)
1524 {
1525 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1526 
1527 	KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized"));
1528 
1529 	return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags));
1530 }
1531 
1532 int
iflib_dma_alloc_multi(if_ctx_t ctx,int * sizes,iflib_dma_info_t * dmalist,int mapflags,int count)1533 iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count)
1534 {
1535 	int i, err;
1536 	iflib_dma_info_t *dmaiter;
1537 
1538 	dmaiter = dmalist;
1539 	for (i = 0; i < count; i++, dmaiter++) {
1540 		if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0)
1541 			break;
1542 	}
1543 	if (err)
1544 		iflib_dma_free_multi(dmalist, i);
1545 	return (err);
1546 }
1547 
1548 void
iflib_dma_free(iflib_dma_info_t dma)1549 iflib_dma_free(iflib_dma_info_t dma)
1550 {
1551 	if (dma->idi_tag == NULL)
1552 		return;
1553 	if (dma->idi_paddr != IF_BAD_DMA) {
1554 		bus_dmamap_sync(dma->idi_tag, dma->idi_map,
1555 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1556 		bus_dmamap_unload(dma->idi_tag, dma->idi_map);
1557 		dma->idi_paddr = IF_BAD_DMA;
1558 	}
1559 	if (dma->idi_vaddr != NULL) {
1560 		bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1561 		dma->idi_vaddr = NULL;
1562 	}
1563 	bus_dma_tag_destroy(dma->idi_tag);
1564 	dma->idi_tag = NULL;
1565 }
1566 
1567 void
iflib_dma_free_multi(iflib_dma_info_t * dmalist,int count)1568 iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count)
1569 {
1570 	int i;
1571 	iflib_dma_info_t *dmaiter = dmalist;
1572 
1573 	for (i = 0; i < count; i++, dmaiter++)
1574 		iflib_dma_free(*dmaiter);
1575 }
1576 
1577 static int
iflib_fast_intr(void * arg)1578 iflib_fast_intr(void *arg)
1579 {
1580 	iflib_filter_info_t info = arg;
1581 	struct grouptask *gtask = info->ifi_task;
1582 	int result;
1583 
1584 	DBG_COUNTER_INC(fast_intrs);
1585 	if (info->ifi_filter != NULL) {
1586 		result = info->ifi_filter(info->ifi_filter_arg);
1587 		if ((result & FILTER_SCHEDULE_THREAD) == 0)
1588 			return (result);
1589 	}
1590 
1591 	GROUPTASK_ENQUEUE(gtask);
1592 	return (FILTER_HANDLED);
1593 }
1594 
1595 static int
iflib_fast_intr_rxtx(void * arg)1596 iflib_fast_intr_rxtx(void *arg)
1597 {
1598 	iflib_filter_info_t info = arg;
1599 	struct grouptask *gtask = info->ifi_task;
1600 	if_ctx_t ctx;
1601 	iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx;
1602 	iflib_txq_t txq;
1603 	void *sc;
1604 	int i, cidx, result;
1605 	qidx_t txqid;
1606 	bool intr_enable, intr_legacy;
1607 
1608 	DBG_COUNTER_INC(fast_intrs);
1609 	if (info->ifi_filter != NULL) {
1610 		result = info->ifi_filter(info->ifi_filter_arg);
1611 		if ((result & FILTER_SCHEDULE_THREAD) == 0)
1612 			return (result);
1613 	}
1614 
1615 	ctx = rxq->ifr_ctx;
1616 	sc = ctx->ifc_softc;
1617 	intr_enable = false;
1618 	intr_legacy = !!(ctx->ifc_flags & IFC_LEGACY);
1619 	MPASS(rxq->ifr_ntxqirq);
1620 	for (i = 0; i < rxq->ifr_ntxqirq; i++) {
1621 		txqid = rxq->ifr_txqid[i];
1622 		txq = &ctx->ifc_txqs[txqid];
1623 		bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1624 		    BUS_DMASYNC_POSTREAD);
1625 		if (!ctx->isc_txd_credits_update(sc, txqid, false)) {
1626 			if (intr_legacy)
1627 				intr_enable = true;
1628 			else
1629 				IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid);
1630 			continue;
1631 		}
1632 		GROUPTASK_ENQUEUE(&txq->ift_task);
1633 	}
1634 	if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ)
1635 		cidx = rxq->ifr_cq_cidx;
1636 	else
1637 		cidx = rxq->ifr_fl[0].ifl_cidx;
1638 	if (iflib_rxd_avail(ctx, rxq, cidx, 1))
1639 		GROUPTASK_ENQUEUE(gtask);
1640 	else {
1641 		if (intr_legacy)
1642 			intr_enable = true;
1643 		else
1644 			IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
1645 		DBG_COUNTER_INC(rx_intr_enables);
1646 	}
1647 	if (intr_enable)
1648 		IFDI_INTR_ENABLE(ctx);
1649 	return (FILTER_HANDLED);
1650 }
1651 
1652 static int
iflib_fast_intr_ctx(void * arg)1653 iflib_fast_intr_ctx(void *arg)
1654 {
1655 	iflib_filter_info_t info = arg;
1656 	if_ctx_t ctx = info->ifi_ctx;
1657 	int result;
1658 
1659 	DBG_COUNTER_INC(fast_intrs);
1660 	if (info->ifi_filter != NULL) {
1661 		result = info->ifi_filter(info->ifi_filter_arg);
1662 		if ((result & FILTER_SCHEDULE_THREAD) == 0)
1663 			return (result);
1664 	}
1665 
1666 	taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task);
1667 	return (FILTER_HANDLED);
1668 }
1669 
1670 static int
_iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,driver_intr_t handler,void * arg,const char * name)1671 _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
1672 		 driver_filter_t filter, driver_intr_t handler, void *arg,
1673 		 const char *name)
1674 {
1675 	struct resource *res;
1676 	void *tag = NULL;
1677 	device_t dev = ctx->ifc_dev;
1678 	int flags, i, rc;
1679 
1680 	flags = RF_ACTIVE;
1681 	if (ctx->ifc_flags & IFC_LEGACY)
1682 		flags |= RF_SHAREABLE;
1683 	MPASS(rid < 512);
1684 	i = rid;
1685 	res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, flags);
1686 	if (res == NULL) {
1687 		device_printf(dev,
1688 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
1689 		return (ENOMEM);
1690 	}
1691 	irq->ii_res = res;
1692 	KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL"));
1693 	rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET,
1694 		    filter, handler, arg, &tag);
1695 	if (rc != 0) {
1696 		device_printf(dev,
1697 		    "failed to setup interrupt for rid %d, name %s: %d\n",
1698 		    rid, name ? name : "unknown", rc);
1699 		return (rc);
1700 	} else if (name)
1701 		bus_describe_intr(dev, res, tag, "%s", name);
1702 
1703 	irq->ii_tag = tag;
1704 	return (0);
1705 }
1706 
1707 /*********************************************************************
1708  *
1709  *  Allocate DMA resources for TX buffers as well as memory for the TX
1710  *  mbuf map.  TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a
1711  *  iflib_sw_tx_desc_array structure, storing all the information that
1712  *  is needed to transmit a packet on the wire.  This is called only
1713  *  once at attach, setup is done every reset.
1714  *
1715  **********************************************************************/
1716 static int
iflib_txsd_alloc(iflib_txq_t txq)1717 iflib_txsd_alloc(iflib_txq_t txq)
1718 {
1719 	if_ctx_t ctx = txq->ift_ctx;
1720 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1721 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1722 	device_t dev = ctx->ifc_dev;
1723 	bus_size_t tsomaxsize;
1724 	bus_addr_t lowaddr;
1725 	int err, nsegments, ntsosegments;
1726 	bool tso;
1727 
1728 	nsegments = scctx->isc_tx_nsegments;
1729 	ntsosegments = scctx->isc_tx_tso_segments_max;
1730 	tsomaxsize = scctx->isc_tx_tso_size_max;
1731 	if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU)
1732 		tsomaxsize += sizeof(struct ether_vlan_header);
1733 	MPASS(scctx->isc_ntxd[0] > 0);
1734 	MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0);
1735 	MPASS(nsegments > 0);
1736 	if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) {
1737 		MPASS(ntsosegments > 0);
1738 		MPASS(sctx->isc_tso_maxsize >= tsomaxsize);
1739 	}
1740 
1741 	lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width);
1742 
1743 	/*
1744 	 * Set up DMA tags for TX buffers.
1745 	 */
1746 	if ((err = bus_dma_tag_create(bus_get_dma_tag(dev),
1747 		    1, 0,			/* alignment, bounds */
1748 		    lowaddr,			/* lowaddr */
1749 		    BUS_SPACE_MAXADDR,		/* highaddr */
1750 		    NULL, NULL,			/* filter, filterarg */
1751 		    sctx->isc_tx_maxsize,	/* maxsize */
1752 		    nsegments,			/* nsegments */
1753 		    sctx->isc_tx_maxsegsize,	/* maxsegsize */
1754 		    0,				/* flags */
1755 		    NULL,			/* lockfunc */
1756 		    NULL,			/* lockfuncarg */
1757 		    &txq->ift_buf_tag))) {
1758 		device_printf(dev, "Unable to allocate TX DMA tag: %d\n", err);
1759 		device_printf(dev, "maxsize: %ju nsegments: %d maxsegsize: %ju\n",
1760 		    (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize);
1761 		goto fail;
1762 	}
1763 	tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0;
1764 	if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev),
1765 		    1, 0,			/* alignment, bounds */
1766 		    lowaddr,			/* lowaddr */
1767 		    BUS_SPACE_MAXADDR,		/* highaddr */
1768 		    NULL, NULL,			/* filter, filterarg */
1769 		    tsomaxsize,			/* maxsize */
1770 		    ntsosegments,		/* nsegments */
1771 		    sctx->isc_tso_maxsegsize,	/* maxsegsize */
1772 		    0,				/* flags */
1773 		    NULL,			/* lockfunc */
1774 		    NULL,			/* lockfuncarg */
1775 		    &txq->ift_tso_buf_tag))) {
1776 		device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n",
1777 		    err);
1778 		goto fail;
1779 	}
1780 
1781 	/* Allocate memory for the TX mbuf map. */
1782 	if (!(txq->ift_sds.ifsd_m =
1783 	    (struct mbuf **) malloc(sizeof(struct mbuf *) *
1784 	    scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1785 		device_printf(dev, "Unable to allocate TX mbuf map memory\n");
1786 		err = ENOMEM;
1787 		goto fail;
1788 	}
1789 
1790 	/*
1791 	 * Create the DMA maps for TX buffers.
1792 	 */
1793 	if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc(
1794 	    sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1795 	    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1796 		device_printf(dev,
1797 		    "Unable to allocate TX buffer DMA map memory\n");
1798 		err = ENOMEM;
1799 		goto fail;
1800 	}
1801 	if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc(
1802 	    sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1803 	    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1804 		device_printf(dev,
1805 		    "Unable to allocate TSO TX buffer map memory\n");
1806 		err = ENOMEM;
1807 		goto fail;
1808 	}
1809 	for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) {
1810 		err = bus_dmamap_create(txq->ift_buf_tag, 0,
1811 		    &txq->ift_sds.ifsd_map[i]);
1812 		if (err != 0) {
1813 			device_printf(dev, "Unable to create TX DMA map\n");
1814 			goto fail;
1815 		}
1816 		if (!tso)
1817 			continue;
1818 		err = bus_dmamap_create(txq->ift_tso_buf_tag, 0,
1819 		    &txq->ift_sds.ifsd_tso_map[i]);
1820 		if (err != 0) {
1821 			device_printf(dev, "Unable to create TSO TX DMA map\n");
1822 			goto fail;
1823 		}
1824 	}
1825 	return (0);
1826 fail:
1827 	/* We free all, it handles case where we are in the middle */
1828 	iflib_tx_structures_free(ctx);
1829 	return (err);
1830 }
1831 
1832 static void
iflib_txsd_destroy(if_ctx_t ctx,iflib_txq_t txq,int i)1833 iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i)
1834 {
1835 	bus_dmamap_t map;
1836 
1837 	if (txq->ift_sds.ifsd_map != NULL) {
1838 		map = txq->ift_sds.ifsd_map[i];
1839 		bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE);
1840 		bus_dmamap_unload(txq->ift_buf_tag, map);
1841 		bus_dmamap_destroy(txq->ift_buf_tag, map);
1842 		txq->ift_sds.ifsd_map[i] = NULL;
1843 	}
1844 
1845 	if (txq->ift_sds.ifsd_tso_map != NULL) {
1846 		map = txq->ift_sds.ifsd_tso_map[i];
1847 		bus_dmamap_sync(txq->ift_tso_buf_tag, map,
1848 		    BUS_DMASYNC_POSTWRITE);
1849 		bus_dmamap_unload(txq->ift_tso_buf_tag, map);
1850 		bus_dmamap_destroy(txq->ift_tso_buf_tag, map);
1851 		txq->ift_sds.ifsd_tso_map[i] = NULL;
1852 	}
1853 }
1854 
1855 static void
iflib_txq_destroy(iflib_txq_t txq)1856 iflib_txq_destroy(iflib_txq_t txq)
1857 {
1858 	if_ctx_t ctx = txq->ift_ctx;
1859 
1860 	for (int i = 0; i < txq->ift_size; i++)
1861 		iflib_txsd_destroy(ctx, txq, i);
1862 
1863 	if (txq->ift_br != NULL) {
1864 		ifmp_ring_free(txq->ift_br);
1865 		txq->ift_br = NULL;
1866 	}
1867 
1868 	mtx_destroy(&txq->ift_mtx);
1869 
1870 	if (txq->ift_sds.ifsd_map != NULL) {
1871 		free(txq->ift_sds.ifsd_map, M_IFLIB);
1872 		txq->ift_sds.ifsd_map = NULL;
1873 	}
1874 	if (txq->ift_sds.ifsd_tso_map != NULL) {
1875 		free(txq->ift_sds.ifsd_tso_map, M_IFLIB);
1876 		txq->ift_sds.ifsd_tso_map = NULL;
1877 	}
1878 	if (txq->ift_sds.ifsd_m != NULL) {
1879 		free(txq->ift_sds.ifsd_m, M_IFLIB);
1880 		txq->ift_sds.ifsd_m = NULL;
1881 	}
1882 	if (txq->ift_buf_tag != NULL) {
1883 		bus_dma_tag_destroy(txq->ift_buf_tag);
1884 		txq->ift_buf_tag = NULL;
1885 	}
1886 	if (txq->ift_tso_buf_tag != NULL) {
1887 		bus_dma_tag_destroy(txq->ift_tso_buf_tag);
1888 		txq->ift_tso_buf_tag = NULL;
1889 	}
1890 	if (txq->ift_ifdi != NULL) {
1891 		free(txq->ift_ifdi, M_IFLIB);
1892 	}
1893 }
1894 
1895 static void
iflib_txsd_free(if_ctx_t ctx,iflib_txq_t txq,int i)1896 iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i)
1897 {
1898 	struct mbuf **mp;
1899 
1900 	mp = &txq->ift_sds.ifsd_m[i];
1901 	if (*mp == NULL)
1902 		return;
1903 
1904 	if (txq->ift_sds.ifsd_map != NULL) {
1905 		bus_dmamap_sync(txq->ift_buf_tag,
1906 		    txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE);
1907 		bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]);
1908 	}
1909 	if (txq->ift_sds.ifsd_tso_map != NULL) {
1910 		bus_dmamap_sync(txq->ift_tso_buf_tag,
1911 		    txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE);
1912 		bus_dmamap_unload(txq->ift_tso_buf_tag,
1913 		    txq->ift_sds.ifsd_tso_map[i]);
1914 	}
1915 	m_freem(*mp);
1916 	DBG_COUNTER_INC(tx_frees);
1917 	*mp = NULL;
1918 }
1919 
1920 static int
iflib_txq_setup(iflib_txq_t txq)1921 iflib_txq_setup(iflib_txq_t txq)
1922 {
1923 	if_ctx_t ctx = txq->ift_ctx;
1924 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1925 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1926 	iflib_dma_info_t di;
1927 	int i;
1928 
1929 	/* Set number of descriptors available */
1930 	txq->ift_qstatus = IFLIB_QUEUE_IDLE;
1931 	/* XXX make configurable */
1932 	txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ;
1933 
1934 	/* Reset indices */
1935 	txq->ift_cidx_processed = 0;
1936 	txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0;
1937 	txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset];
1938 	txq->ift_pad = scctx->isc_tx_pad;
1939 
1940 	for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1941 		bzero((void *)di->idi_vaddr, di->idi_size);
1942 
1943 	IFDI_TXQ_SETUP(ctx, txq->ift_id);
1944 	for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1945 		bus_dmamap_sync(di->idi_tag, di->idi_map,
1946 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1947 	return (0);
1948 }
1949 
1950 /*********************************************************************
1951  *
1952  *  Allocate DMA resources for RX buffers as well as memory for the RX
1953  *  mbuf map, direct RX cluster pointer map and RX cluster bus address
1954  *  map.  RX DMA map, RX mbuf map, direct RX cluster pointer map and
1955  *  RX cluster map are kept in a iflib_sw_rx_desc_array structure.
1956  *  Since we use use one entry in iflib_sw_rx_desc_array per received
1957  *  packet, the maximum number of entries we'll need is equal to the
1958  *  number of hardware receive descriptors that we've allocated.
1959  *
1960  **********************************************************************/
1961 static int
iflib_rxsd_alloc(iflib_rxq_t rxq)1962 iflib_rxsd_alloc(iflib_rxq_t rxq)
1963 {
1964 	if_ctx_t ctx = rxq->ifr_ctx;
1965 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1966 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1967 	device_t dev = ctx->ifc_dev;
1968 	iflib_fl_t fl;
1969 	bus_addr_t lowaddr;
1970 	int err;
1971 
1972 	MPASS(scctx->isc_nrxd[0] > 0);
1973 	MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0);
1974 
1975 	lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width);
1976 
1977 	fl = rxq->ifr_fl;
1978 	for (int i = 0; i < rxq->ifr_nfl; i++, fl++) {
1979 		fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */
1980 		/* Set up DMA tag for RX buffers. */
1981 		err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1982 			    1, 0,			/* alignment, bounds */
1983 			    lowaddr,			/* lowaddr */
1984 			    BUS_SPACE_MAXADDR,		/* highaddr */
1985 			    NULL, NULL,			/* filter, filterarg */
1986 			    sctx->isc_rx_maxsize,	/* maxsize */
1987 			    sctx->isc_rx_nsegments,	/* nsegments */
1988 			    sctx->isc_rx_maxsegsize,	/* maxsegsize */
1989 			    0,				/* flags */
1990 			    NULL,			/* lockfunc */
1991 			    NULL,			/* lockarg */
1992 			    &fl->ifl_buf_tag);
1993 		if (err) {
1994 			device_printf(dev,
1995 			    "Unable to allocate RX DMA tag: %d\n", err);
1996 			goto fail;
1997 		}
1998 
1999 		/* Allocate memory for the RX mbuf map. */
2000 		if (!(fl->ifl_sds.ifsd_m =
2001 		    (struct mbuf **) malloc(sizeof(struct mbuf *) *
2002 			    scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2003 			device_printf(dev,
2004 			    "Unable to allocate RX mbuf map memory\n");
2005 			err = ENOMEM;
2006 			goto fail;
2007 		}
2008 
2009 		/* Allocate memory for the direct RX cluster pointer map. */
2010 		if (!(fl->ifl_sds.ifsd_cl =
2011 		    (caddr_t *) malloc(sizeof(caddr_t) *
2012 			    scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2013 			device_printf(dev,
2014 			    "Unable to allocate RX cluster map memory\n");
2015 			err = ENOMEM;
2016 			goto fail;
2017 		}
2018 
2019 		/* Allocate memory for the RX cluster bus address map. */
2020 		if (!(fl->ifl_sds.ifsd_ba =
2021 		    (bus_addr_t *) malloc(sizeof(bus_addr_t) *
2022 			    scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2023 			device_printf(dev,
2024 			    "Unable to allocate RX bus address map memory\n");
2025 			err = ENOMEM;
2026 			goto fail;
2027 		}
2028 
2029 		/*
2030 		 * Create the DMA maps for RX buffers.
2031 		 */
2032 		if (!(fl->ifl_sds.ifsd_map =
2033 		    (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2034 			device_printf(dev,
2035 			    "Unable to allocate RX buffer DMA map memory\n");
2036 			err = ENOMEM;
2037 			goto fail;
2038 		}
2039 		for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) {
2040 			err = bus_dmamap_create(fl->ifl_buf_tag, 0,
2041 			    &fl->ifl_sds.ifsd_map[i]);
2042 			if (err != 0) {
2043 				device_printf(dev, "Unable to create RX buffer DMA map\n");
2044 				goto fail;
2045 			}
2046 		}
2047 	}
2048 	return (0);
2049 
2050 fail:
2051 	iflib_rx_structures_free(ctx);
2052 	return (err);
2053 }
2054 
2055 /*
2056  * Internal service routines
2057  */
2058 
2059 struct rxq_refill_cb_arg {
2060 	int               error;
2061 	bus_dma_segment_t seg;
2062 	int               nseg;
2063 };
2064 
2065 static void
_rxq_refill_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)2066 _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2067 {
2068 	struct rxq_refill_cb_arg *cb_arg = arg;
2069 
2070 	cb_arg->error = error;
2071 	cb_arg->seg = segs[0];
2072 	cb_arg->nseg = nseg;
2073 }
2074 
2075 /**
2076  * iflib_fl_refill - refill an rxq free-buffer list
2077  * @ctx: the iflib context
2078  * @fl: the free list to refill
2079  * @count: the number of new buffers to allocate
2080  *
2081  * (Re)populate an rxq free-buffer list with up to @count new packet buffers.
2082  * The caller must assure that @count does not exceed the queue's capacity
2083  * minus one (since we always leave a descriptor unavailable).
2084  */
2085 static uint8_t
iflib_fl_refill(if_ctx_t ctx,iflib_fl_t fl,int count)2086 iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count)
2087 {
2088 	struct if_rxd_update iru;
2089 	struct rxq_refill_cb_arg cb_arg;
2090 	struct mbuf *m;
2091 	caddr_t cl, *sd_cl;
2092 	struct mbuf **sd_m;
2093 	bus_dmamap_t *sd_map;
2094 	bus_addr_t bus_addr, *sd_ba;
2095 	int err, frag_idx, i, idx, n, pidx;
2096 	qidx_t credits;
2097 
2098 	MPASS(count <= fl->ifl_size - fl->ifl_credits - 1);
2099 
2100 	sd_m = fl->ifl_sds.ifsd_m;
2101 	sd_map = fl->ifl_sds.ifsd_map;
2102 	sd_cl = fl->ifl_sds.ifsd_cl;
2103 	sd_ba = fl->ifl_sds.ifsd_ba;
2104 	pidx = fl->ifl_pidx;
2105 	idx = pidx;
2106 	frag_idx = fl->ifl_fragidx;
2107 	credits = fl->ifl_credits;
2108 
2109 	i = 0;
2110 	n = count;
2111 	MPASS(n > 0);
2112 	MPASS(credits + n <= fl->ifl_size);
2113 
2114 	if (pidx < fl->ifl_cidx)
2115 		MPASS(pidx + n <= fl->ifl_cidx);
2116 	if (pidx == fl->ifl_cidx && (credits < fl->ifl_size))
2117 		MPASS(fl->ifl_gen == 0);
2118 	if (pidx > fl->ifl_cidx)
2119 		MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx);
2120 
2121 	DBG_COUNTER_INC(fl_refills);
2122 	if (n > 8)
2123 		DBG_COUNTER_INC(fl_refills_large);
2124 	iru_init(&iru, fl->ifl_rxq, fl->ifl_id);
2125 	while (n-- > 0) {
2126 		/*
2127 		 * We allocate an uninitialized mbuf + cluster, mbuf is
2128 		 * initialized after rx.
2129 		 *
2130 		 * If the cluster is still set then we know a minimum sized
2131 		 * packet was received
2132 		 */
2133 		bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size,
2134 		    &frag_idx);
2135 		if (frag_idx < 0)
2136 			bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx);
2137 		MPASS(frag_idx >= 0);
2138 		if ((cl = sd_cl[frag_idx]) == NULL) {
2139 			cl = uma_zalloc(fl->ifl_zone, M_NOWAIT);
2140 			if (__predict_false(cl == NULL))
2141 				break;
2142 
2143 			cb_arg.error = 0;
2144 			MPASS(sd_map != NULL);
2145 			err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx],
2146 			    cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg,
2147 			    BUS_DMA_NOWAIT);
2148 			if (__predict_false(err != 0 || cb_arg.error)) {
2149 				uma_zfree(fl->ifl_zone, cl);
2150 				break;
2151 			}
2152 
2153 			sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr;
2154 			sd_cl[frag_idx] = cl;
2155 #if MEMORY_LOGGING
2156 			fl->ifl_cl_enqueued++;
2157 #endif
2158 		} else {
2159 			bus_addr = sd_ba[frag_idx];
2160 		}
2161 		bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx],
2162 		    BUS_DMASYNC_PREREAD);
2163 
2164 		if (sd_m[frag_idx] == NULL) {
2165 			m = m_gethdr_raw(M_NOWAIT, 0);
2166 			if (__predict_false(m == NULL))
2167 				break;
2168 			sd_m[frag_idx] = m;
2169 		}
2170 		bit_set(fl->ifl_rx_bitmap, frag_idx);
2171 #if MEMORY_LOGGING
2172 		fl->ifl_m_enqueued++;
2173 #endif
2174 
2175 		DBG_COUNTER_INC(rx_allocs);
2176 		fl->ifl_rxd_idxs[i] = frag_idx;
2177 		fl->ifl_bus_addrs[i] = bus_addr;
2178 		credits++;
2179 		i++;
2180 		MPASS(credits <= fl->ifl_size);
2181 		if (++idx == fl->ifl_size) {
2182 #ifdef INVARIANTS
2183 			fl->ifl_gen = 1;
2184 #endif
2185 			idx = 0;
2186 		}
2187 		if (n == 0 || i == IFLIB_MAX_RX_REFRESH) {
2188 			iru.iru_pidx = pidx;
2189 			iru.iru_count = i;
2190 			ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2191 			fl->ifl_pidx = idx;
2192 			fl->ifl_credits = credits;
2193 			pidx = idx;
2194 			i = 0;
2195 		}
2196 	}
2197 
2198 	if (n < count - 1) {
2199 		if (i != 0) {
2200 			iru.iru_pidx = pidx;
2201 			iru.iru_count = i;
2202 			ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2203 			fl->ifl_pidx = idx;
2204 			fl->ifl_credits = credits;
2205 		}
2206 		DBG_COUNTER_INC(rxd_flush);
2207 		bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2208 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2209 		ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id,
2210 		    fl->ifl_id, fl->ifl_pidx);
2211 		if (__predict_true(bit_test(fl->ifl_rx_bitmap, frag_idx))) {
2212 			fl->ifl_fragidx = frag_idx + 1;
2213 			if (fl->ifl_fragidx == fl->ifl_size)
2214 				fl->ifl_fragidx = 0;
2215 		} else {
2216 			fl->ifl_fragidx = frag_idx;
2217 		}
2218 	}
2219 
2220 	return (n == -1 ? 0 : IFLIB_RXEOF_EMPTY);
2221 }
2222 
2223 static inline uint8_t
iflib_fl_refill_all(if_ctx_t ctx,iflib_fl_t fl)2224 iflib_fl_refill_all(if_ctx_t ctx, iflib_fl_t fl)
2225 {
2226 	/*
2227 	 * We leave an unused descriptor to avoid pidx to catch up with cidx.
2228 	 * This is important as it confuses most NICs. For instance,
2229 	 * Intel NICs have (per receive ring) RDH and RDT registers, where
2230 	 * RDH points to the next receive descriptor to be used by the NIC,
2231 	 * and RDT for the next receive descriptor to be published by the
2232 	 * driver to the NIC (RDT - 1 is thus the last valid one).
2233 	 * The condition RDH == RDT means no descriptors are available to
2234 	 * the NIC, and thus it would be ambiguous if it also meant that
2235 	 * all the descriptors are available to the NIC.
2236 	 */
2237 	int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1;
2238 #ifdef INVARIANTS
2239 	int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1;
2240 #endif
2241 
2242 	MPASS(fl->ifl_credits <= fl->ifl_size);
2243 	MPASS(reclaimable == delta);
2244 
2245 	if (reclaimable > 0)
2246 		return (iflib_fl_refill(ctx, fl, reclaimable));
2247 	return (0);
2248 }
2249 
2250 uint8_t
iflib_in_detach(if_ctx_t ctx)2251 iflib_in_detach(if_ctx_t ctx)
2252 {
2253 	bool in_detach;
2254 
2255 	STATE_LOCK(ctx);
2256 	in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH);
2257 	STATE_UNLOCK(ctx);
2258 	return (in_detach);
2259 }
2260 
2261 static void
iflib_fl_bufs_free(iflib_fl_t fl)2262 iflib_fl_bufs_free(iflib_fl_t fl)
2263 {
2264 	iflib_dma_info_t idi = fl->ifl_ifdi;
2265 	bus_dmamap_t sd_map;
2266 	uint32_t i;
2267 
2268 	for (i = 0; i < fl->ifl_size; i++) {
2269 		struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i];
2270 		caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i];
2271 
2272 		if (*sd_cl != NULL) {
2273 			sd_map = fl->ifl_sds.ifsd_map[i];
2274 			bus_dmamap_sync(fl->ifl_buf_tag, sd_map,
2275 			    BUS_DMASYNC_POSTREAD);
2276 			bus_dmamap_unload(fl->ifl_buf_tag, sd_map);
2277 			uma_zfree(fl->ifl_zone, *sd_cl);
2278 			*sd_cl = NULL;
2279 			if (*sd_m != NULL) {
2280 				m_init(*sd_m, M_NOWAIT, MT_DATA, 0);
2281 				m_free_raw(*sd_m);
2282 				*sd_m = NULL;
2283 			}
2284 		} else {
2285 			MPASS(*sd_m == NULL);
2286 		}
2287 #if MEMORY_LOGGING
2288 		fl->ifl_m_dequeued++;
2289 		fl->ifl_cl_dequeued++;
2290 #endif
2291 	}
2292 #ifdef INVARIANTS
2293 	for (i = 0; i < fl->ifl_size; i++) {
2294 		MPASS(fl->ifl_sds.ifsd_cl[i] == NULL);
2295 		MPASS(fl->ifl_sds.ifsd_m[i] == NULL);
2296 	}
2297 #endif
2298 	/*
2299 	 * Reset free list values
2300 	 */
2301 	fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0;
2302 	bzero(idi->idi_vaddr, idi->idi_size);
2303 }
2304 
2305 /*********************************************************************
2306  *
2307  *  Initialize a free list and its buffers.
2308  *
2309  **********************************************************************/
2310 static int
iflib_fl_setup(iflib_fl_t fl)2311 iflib_fl_setup(iflib_fl_t fl)
2312 {
2313 	iflib_rxq_t rxq = fl->ifl_rxq;
2314 	if_ctx_t ctx = rxq->ifr_ctx;
2315 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2316 	int qidx;
2317 
2318 	bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1);
2319 	/*
2320 	 * Free current RX buffer structs and their mbufs
2321 	 */
2322 	iflib_fl_bufs_free(fl);
2323 	/* Now replenish the mbufs */
2324 	MPASS(fl->ifl_credits == 0);
2325 	qidx = rxq->ifr_fl_offset + fl->ifl_id;
2326 	if (scctx->isc_rxd_buf_size[qidx] != 0)
2327 		fl->ifl_buf_size = scctx->isc_rxd_buf_size[qidx];
2328 	else
2329 		fl->ifl_buf_size = ctx->ifc_rx_mbuf_sz;
2330 	/*
2331 	 * ifl_buf_size may be a driver-supplied value, so pull it up
2332 	 * to the selected mbuf size.
2333 	 */
2334 	fl->ifl_buf_size = iflib_get_mbuf_size_for(fl->ifl_buf_size);
2335 	if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size)
2336 		ctx->ifc_max_fl_buf_size = fl->ifl_buf_size;
2337 	fl->ifl_cltype = m_gettype(fl->ifl_buf_size);
2338 	fl->ifl_zone = m_getzone(fl->ifl_buf_size);
2339 
2340 	/*
2341 	 * Avoid pre-allocating zillions of clusters to an idle card
2342 	 * potentially speeding up attach. In any case make sure
2343 	 * to leave a descriptor unavailable. See the comment in
2344 	 * iflib_fl_refill_all().
2345 	 */
2346 	MPASS(fl->ifl_size > 0);
2347 	(void)iflib_fl_refill(ctx, fl, min(128, fl->ifl_size - 1));
2348 	if (min(128, fl->ifl_size - 1) != fl->ifl_credits)
2349 		return (ENOBUFS);
2350 	/*
2351 	 * handle failure
2352 	 */
2353 	MPASS(rxq != NULL);
2354 	MPASS(fl->ifl_ifdi != NULL);
2355 	bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2356 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2357 	return (0);
2358 }
2359 
2360 /*********************************************************************
2361  *
2362  *  Free receive ring data structures
2363  *
2364  **********************************************************************/
2365 static void
iflib_rx_sds_free(iflib_rxq_t rxq)2366 iflib_rx_sds_free(iflib_rxq_t rxq)
2367 {
2368 	iflib_fl_t fl;
2369 	int i, j;
2370 
2371 	if (rxq->ifr_fl != NULL) {
2372 		for (i = 0; i < rxq->ifr_nfl; i++) {
2373 			fl = &rxq->ifr_fl[i];
2374 			if (fl->ifl_buf_tag != NULL) {
2375 				if (fl->ifl_sds.ifsd_map != NULL) {
2376 					for (j = 0; j < fl->ifl_size; j++) {
2377 						bus_dmamap_sync(
2378 						    fl->ifl_buf_tag,
2379 						    fl->ifl_sds.ifsd_map[j],
2380 						    BUS_DMASYNC_POSTREAD);
2381 						bus_dmamap_unload(
2382 						    fl->ifl_buf_tag,
2383 						    fl->ifl_sds.ifsd_map[j]);
2384 						bus_dmamap_destroy(
2385 						    fl->ifl_buf_tag,
2386 						    fl->ifl_sds.ifsd_map[j]);
2387 					}
2388 				}
2389 				bus_dma_tag_destroy(fl->ifl_buf_tag);
2390 				fl->ifl_buf_tag = NULL;
2391 			}
2392 			free(fl->ifl_sds.ifsd_m, M_IFLIB);
2393 			free(fl->ifl_sds.ifsd_cl, M_IFLIB);
2394 			free(fl->ifl_sds.ifsd_ba, M_IFLIB);
2395 			free(fl->ifl_sds.ifsd_map, M_IFLIB);
2396 			free(fl->ifl_rx_bitmap, M_IFLIB);
2397 			fl->ifl_sds.ifsd_m = NULL;
2398 			fl->ifl_sds.ifsd_cl = NULL;
2399 			fl->ifl_sds.ifsd_ba = NULL;
2400 			fl->ifl_sds.ifsd_map = NULL;
2401 			fl->ifl_rx_bitmap = NULL;
2402 		}
2403 		free(rxq->ifr_fl, M_IFLIB);
2404 		rxq->ifr_fl = NULL;
2405 		free(rxq->ifr_ifdi, M_IFLIB);
2406 		rxq->ifr_ifdi = NULL;
2407 		rxq->ifr_cq_cidx = 0;
2408 	}
2409 }
2410 
2411 /*
2412  * Timer routine
2413  */
2414 static void
iflib_timer(void * arg)2415 iflib_timer(void *arg)
2416 {
2417 	iflib_txq_t txq = arg;
2418 	if_ctx_t ctx = txq->ift_ctx;
2419 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2420 	uint64_t this_tick = ticks;
2421 
2422 	if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
2423 		return;
2424 
2425 	/*
2426 	** Check on the state of the TX queue(s), this
2427 	** can be done without the lock because its RO
2428 	** and the HUNG state will be static if set.
2429 	*/
2430 	if (this_tick - txq->ift_last_timer_tick >= iflib_timer_default) {
2431 		txq->ift_last_timer_tick = this_tick;
2432 		IFDI_TIMER(ctx, txq->ift_id);
2433 		if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) &&
2434 		    ((txq->ift_cleaned_prev == txq->ift_cleaned) ||
2435 		     (sctx->isc_pause_frames == 0)))
2436 			goto hung;
2437 
2438 		if (txq->ift_qstatus != IFLIB_QUEUE_IDLE &&
2439 		    ifmp_ring_is_stalled(txq->ift_br)) {
2440 			KASSERT(ctx->ifc_link_state == LINK_STATE_UP,
2441 			    ("queue can't be marked as hung if interface is down"));
2442 			txq->ift_qstatus = IFLIB_QUEUE_HUNG;
2443 		}
2444 		txq->ift_cleaned_prev = txq->ift_cleaned;
2445 	}
2446 	/* handle any laggards */
2447 	if (txq->ift_db_pending)
2448 		GROUPTASK_ENQUEUE(&txq->ift_task);
2449 
2450 	sctx->isc_pause_frames = 0;
2451 	if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)
2452 		callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer,
2453 		    txq, txq->ift_timer.c_cpu);
2454 	return;
2455 
2456  hung:
2457 	device_printf(ctx->ifc_dev,
2458 	    "Watchdog timeout (TX: %d desc avail: %d pidx: %d) -- resetting\n",
2459 	    txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx);
2460 	STATE_LOCK(ctx);
2461 	if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2462 	ctx->ifc_flags |= (IFC_DO_WATCHDOG | IFC_DO_RESET);
2463 	iflib_admin_intr_deferred(ctx);
2464 	STATE_UNLOCK(ctx);
2465 }
2466 
2467 static uint16_t
iflib_get_mbuf_size_for(unsigned int size)2468 iflib_get_mbuf_size_for(unsigned int size)
2469 {
2470 
2471 	if (size <= MCLBYTES)
2472 		return (MCLBYTES);
2473 	else
2474 		return (MJUMPAGESIZE);
2475 }
2476 
2477 static void
iflib_calc_rx_mbuf_sz(if_ctx_t ctx)2478 iflib_calc_rx_mbuf_sz(if_ctx_t ctx)
2479 {
2480 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2481 
2482 	/*
2483 	 * XXX don't set the max_frame_size to larger
2484 	 * than the hardware can handle
2485 	 */
2486 	ctx->ifc_rx_mbuf_sz =
2487 	    iflib_get_mbuf_size_for(sctx->isc_max_frame_size);
2488 }
2489 
2490 uint32_t
iflib_get_rx_mbuf_sz(if_ctx_t ctx)2491 iflib_get_rx_mbuf_sz(if_ctx_t ctx)
2492 {
2493 
2494 	return (ctx->ifc_rx_mbuf_sz);
2495 }
2496 
2497 static void
iflib_init_locked(if_ctx_t ctx)2498 iflib_init_locked(if_ctx_t ctx)
2499 {
2500 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2501 	if_t ifp = ctx->ifc_ifp;
2502 	iflib_fl_t fl;
2503 	iflib_txq_t txq;
2504 	iflib_rxq_t rxq;
2505 	int i, j, tx_ip_csum_flags, tx_ip6_csum_flags;
2506 
2507 	if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2508 	IFDI_INTR_DISABLE(ctx);
2509 
2510 	/*
2511 	 * See iflib_stop(). Useful in case iflib_init_locked() is
2512 	 * called without first calling iflib_stop().
2513 	 */
2514 	netmap_disable_all_rings(ifp);
2515 
2516 	tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP);
2517 	tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP);
2518 	/* Set hardware offload abilities */
2519 	if_clearhwassist(ifp);
2520 	if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2521 		if_sethwassistbits(ifp, tx_ip_csum_flags, 0);
2522 	if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6)
2523 		if_sethwassistbits(ifp,  tx_ip6_csum_flags, 0);
2524 	if (if_getcapenable(ifp) & IFCAP_TSO4)
2525 		if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
2526 	if (if_getcapenable(ifp) & IFCAP_TSO6)
2527 		if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
2528 
2529 	for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
2530 		CALLOUT_LOCK(txq);
2531 		callout_stop(&txq->ift_timer);
2532 #ifdef DEV_NETMAP
2533 		callout_stop(&txq->ift_netmap_timer);
2534 #endif /* DEV_NETMAP */
2535 		CALLOUT_UNLOCK(txq);
2536 		(void)iflib_netmap_txq_init(ctx, txq);
2537 	}
2538 
2539 	/*
2540 	 * Calculate a suitable Rx mbuf size prior to calling IFDI_INIT, so
2541 	 * that drivers can use the value when setting up the hardware receive
2542 	 * buffers.
2543 	 */
2544 	iflib_calc_rx_mbuf_sz(ctx);
2545 
2546 #ifdef INVARIANTS
2547 	i = if_getdrvflags(ifp);
2548 #endif
2549 	IFDI_INIT(ctx);
2550 	MPASS(if_getdrvflags(ifp) == i);
2551 	for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
2552 		if (iflib_netmap_rxq_init(ctx, rxq) > 0) {
2553 			/* This rxq is in netmap mode. Skip normal init. */
2554 			continue;
2555 		}
2556 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
2557 			if (iflib_fl_setup(fl)) {
2558 				device_printf(ctx->ifc_dev,
2559 				    "setting up free list %d failed - "
2560 				    "check cluster settings\n", j);
2561 				goto done;
2562 			}
2563 		}
2564 	}
2565 done:
2566 	if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2567 	IFDI_INTR_ENABLE(ctx);
2568 	txq = ctx->ifc_txqs;
2569 	for (i = 0; i < scctx->isc_ntxqsets; i++, txq++)
2570 		callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
2571 			txq->ift_timer.c_cpu);
2572 
2573 	/* Re-enable txsync/rxsync. */
2574 	netmap_enable_all_rings(ifp);
2575 }
2576 
2577 static int
iflib_media_change(if_t ifp)2578 iflib_media_change(if_t ifp)
2579 {
2580 	if_ctx_t ctx = if_getsoftc(ifp);
2581 	int err;
2582 
2583 	CTX_LOCK(ctx);
2584 	if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0)
2585 		iflib_if_init_locked(ctx);
2586 	CTX_UNLOCK(ctx);
2587 	return (err);
2588 }
2589 
2590 static void
iflib_media_status(if_t ifp,struct ifmediareq * ifmr)2591 iflib_media_status(if_t ifp, struct ifmediareq *ifmr)
2592 {
2593 	if_ctx_t ctx = if_getsoftc(ifp);
2594 
2595 	CTX_LOCK(ctx);
2596 	IFDI_UPDATE_ADMIN_STATUS(ctx);
2597 	IFDI_MEDIA_STATUS(ctx, ifmr);
2598 	CTX_UNLOCK(ctx);
2599 }
2600 
2601 static void
iflib_stop(if_ctx_t ctx)2602 iflib_stop(if_ctx_t ctx)
2603 {
2604 	iflib_txq_t txq = ctx->ifc_txqs;
2605 	iflib_rxq_t rxq = ctx->ifc_rxqs;
2606 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2607 	if_shared_ctx_t sctx = ctx->ifc_sctx;
2608 	iflib_dma_info_t di;
2609 	iflib_fl_t fl;
2610 	int i, j;
2611 
2612 	/* Tell the stack that the interface is no longer active */
2613 	if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2614 
2615 	IFDI_INTR_DISABLE(ctx);
2616 	DELAY(1000);
2617 	IFDI_STOP(ctx);
2618 	DELAY(1000);
2619 
2620 	/*
2621 	 * Stop any pending txsync/rxsync and prevent new ones
2622 	 * form starting. Processes blocked in poll() will get
2623 	 * POLLERR.
2624 	 */
2625 	netmap_disable_all_rings(ctx->ifc_ifp);
2626 
2627 	iflib_debug_reset();
2628 	/* Wait for current tx queue users to exit to disarm watchdog timer. */
2629 	for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) {
2630 		/* make sure all transmitters have completed before proceeding XXX */
2631 
2632 		CALLOUT_LOCK(txq);
2633 		callout_stop(&txq->ift_timer);
2634 #ifdef DEV_NETMAP
2635 		callout_stop(&txq->ift_netmap_timer);
2636 #endif /* DEV_NETMAP */
2637 		CALLOUT_UNLOCK(txq);
2638 
2639 		if (!ctx->ifc_sysctl_simple_tx) {
2640 			/* clean any enqueued buffers */
2641 			iflib_ifmp_purge(txq);
2642 		}
2643 		/* Free any existing tx buffers. */
2644 		for (j = 0; j < txq->ift_size; j++) {
2645 			iflib_txsd_free(ctx, txq, j);
2646 		}
2647 		txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0;
2648 		txq->ift_in_use = txq->ift_gen = txq->ift_no_desc_avail = 0;
2649 		if (sctx->isc_flags & IFLIB_PRESERVE_TX_INDICES)
2650 			txq->ift_cidx = txq->ift_pidx;
2651 		else
2652 			txq->ift_cidx = txq->ift_pidx = 0;
2653 
2654 		txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0;
2655 		txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0;
2656 		txq->ift_pullups = 0;
2657 		ifmp_ring_reset_stats(txq->ift_br);
2658 		for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++)
2659 			bzero((void *)di->idi_vaddr, di->idi_size);
2660 	}
2661 	for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) {
2662 		if (rxq->ifr_task.gt_taskqueue != NULL)
2663 			gtaskqueue_drain(rxq->ifr_task.gt_taskqueue,
2664 				 &rxq->ifr_task.gt_task);
2665 
2666 		rxq->ifr_cq_cidx = 0;
2667 		for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++)
2668 			bzero((void *)di->idi_vaddr, di->idi_size);
2669 		/* also resets the free lists pidx/cidx */
2670 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
2671 			iflib_fl_bufs_free(fl);
2672 	}
2673 }
2674 
2675 static inline caddr_t
calc_next_rxd(iflib_fl_t fl,int cidx)2676 calc_next_rxd(iflib_fl_t fl, int cidx)
2677 {
2678 	qidx_t size;
2679 	int nrxd;
2680 	caddr_t start, end, cur, next;
2681 
2682 	nrxd = fl->ifl_size;
2683 	size = fl->ifl_rxd_size;
2684 	start = fl->ifl_ifdi->idi_vaddr;
2685 
2686 	if (__predict_false(size == 0))
2687 		return (start);
2688 	cur = start + size * cidx;
2689 	end = start + size * nrxd;
2690 	next = CACHE_PTR_NEXT(cur);
2691 	return (next < end ? next : start);
2692 }
2693 
2694 static inline void
prefetch_pkts(iflib_fl_t fl,int cidx)2695 prefetch_pkts(iflib_fl_t fl, int cidx)
2696 {
2697 	int nextptr;
2698 	int nrxd = fl->ifl_size;
2699 	caddr_t next_rxd;
2700 
2701 	nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd - 1);
2702 	prefetch(&fl->ifl_sds.ifsd_m[nextptr]);
2703 	prefetch(&fl->ifl_sds.ifsd_cl[nextptr]);
2704 	next_rxd = calc_next_rxd(fl, cidx);
2705 	prefetch(next_rxd);
2706 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd - 1)]);
2707 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd - 1)]);
2708 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd - 1)]);
2709 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd - 1)]);
2710 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd - 1)]);
2711 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd - 1)]);
2712 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd - 1)]);
2713 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd - 1)]);
2714 }
2715 
2716 static struct mbuf *
rxd_frag_to_sd(iflib_rxq_t rxq,if_rxd_frag_t irf,bool unload,if_rxsd_t sd,int * pf_rv,if_rxd_info_t ri)2717 rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, bool unload, if_rxsd_t sd,
2718     int *pf_rv, if_rxd_info_t ri)
2719 {
2720 	bus_dmamap_t map;
2721 	iflib_fl_t fl;
2722 	caddr_t payload;
2723 	struct mbuf *m;
2724 	int flid, cidx, len, next;
2725 
2726 	map = NULL;
2727 	flid = irf->irf_flid;
2728 	cidx = irf->irf_idx;
2729 	fl = &rxq->ifr_fl[flid];
2730 	sd->ifsd_fl = fl;
2731 	sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx];
2732 	fl->ifl_credits--;
2733 #if MEMORY_LOGGING
2734 	fl->ifl_m_dequeued++;
2735 #endif
2736 	if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH)
2737 		prefetch_pkts(fl, cidx);
2738 	next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size - 1);
2739 	prefetch(&fl->ifl_sds.ifsd_map[next]);
2740 	map = fl->ifl_sds.ifsd_map[cidx];
2741 
2742 	bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD);
2743 
2744 	if (rxq->pfil != NULL && PFIL_HOOKED_IN(rxq->pfil) && pf_rv != NULL &&
2745 	    irf->irf_len != 0) {
2746 		payload  = *sd->ifsd_cl;
2747 		payload +=  ri->iri_pad;
2748 		len = ri->iri_len - ri->iri_pad;
2749 		*pf_rv = pfil_mem_in(rxq->pfil, payload, len, ri->iri_ifp, &m);
2750 		switch (*pf_rv) {
2751 		case PFIL_DROPPED:
2752 		case PFIL_CONSUMED:
2753 			/*
2754 			 * The filter ate it.  Everything is recycled.
2755 			 */
2756 			m = NULL;
2757 			unload = 0;
2758 			break;
2759 		case PFIL_REALLOCED:
2760 			/*
2761 			 * The filter copied it.  Everything is recycled.
2762 			 * 'm' points at new mbuf.
2763 			 */
2764 			unload = 0;
2765 			break;
2766 		case PFIL_PASS:
2767 			/*
2768 			 * Filter said it was OK, so receive like
2769 			 * normal
2770 			 */
2771 			m = fl->ifl_sds.ifsd_m[cidx];
2772 			fl->ifl_sds.ifsd_m[cidx] = NULL;
2773 			break;
2774 		default:
2775 			MPASS(0);
2776 		}
2777 	} else {
2778 		m = fl->ifl_sds.ifsd_m[cidx];
2779 		fl->ifl_sds.ifsd_m[cidx] = NULL;
2780 		if (pf_rv != NULL)
2781 			*pf_rv = PFIL_PASS;
2782 	}
2783 
2784 	if (unload && irf->irf_len != 0)
2785 		bus_dmamap_unload(fl->ifl_buf_tag, map);
2786 	fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size - 1);
2787 	if (__predict_false(fl->ifl_cidx == 0))
2788 		fl->ifl_gen = 0;
2789 	bit_clear(fl->ifl_rx_bitmap, cidx);
2790 	return (m);
2791 }
2792 
2793 static struct mbuf *
assemble_segments(iflib_rxq_t rxq,if_rxd_info_t ri,if_rxsd_t sd,int * pf_rv)2794 assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd, int *pf_rv)
2795 {
2796 	struct mbuf *m, *mh, *mt;
2797 	caddr_t cl;
2798 	int  *pf_rv_ptr, flags, i, padlen;
2799 	bool consumed;
2800 
2801 	i = 0;
2802 	mh = NULL;
2803 	consumed = false;
2804 	*pf_rv = PFIL_PASS;
2805 	pf_rv_ptr = pf_rv;
2806 	do {
2807 		m = rxd_frag_to_sd(rxq, &ri->iri_frags[i], !consumed, sd,
2808 		    pf_rv_ptr, ri);
2809 
2810 		MPASS(*sd->ifsd_cl != NULL);
2811 
2812 		/*
2813 		 * Exclude zero-length frags & frags from
2814 		 * packets the filter has consumed or dropped
2815 		 */
2816 		if (ri->iri_frags[i].irf_len == 0 || consumed ||
2817 		    *pf_rv == PFIL_CONSUMED || *pf_rv == PFIL_DROPPED) {
2818 			if (mh == NULL) {
2819 				/* everything saved here */
2820 				consumed = true;
2821 				pf_rv_ptr = NULL;
2822 				continue;
2823 			}
2824 			/* XXX we can save the cluster here, but not the mbuf */
2825 			m_init(m, M_NOWAIT, MT_DATA, 0);
2826 			m_free(m);
2827 			continue;
2828 		}
2829 		if (mh == NULL) {
2830 			flags = M_PKTHDR | M_EXT;
2831 			mh = mt = m;
2832 			padlen = ri->iri_pad;
2833 		} else {
2834 			flags = M_EXT;
2835 			mt->m_next = m;
2836 			mt = m;
2837 			/* assuming padding is only on the first fragment */
2838 			padlen = 0;
2839 		}
2840 		cl = *sd->ifsd_cl;
2841 		*sd->ifsd_cl = NULL;
2842 
2843 		/* Can these two be made one ? */
2844 		m_init(m, M_NOWAIT, MT_DATA, flags);
2845 		m_cljset(m, cl, sd->ifsd_fl->ifl_cltype);
2846 		/*
2847 		 * These must follow m_init and m_cljset
2848 		 */
2849 		m->m_data += padlen;
2850 		ri->iri_len -= padlen;
2851 		m->m_len = ri->iri_frags[i].irf_len;
2852 	} while (++i < ri->iri_nfrags);
2853 
2854 	return (mh);
2855 }
2856 
2857 /*
2858  * Process one software descriptor
2859  */
2860 static struct mbuf *
iflib_rxd_pkt_get(iflib_rxq_t rxq,if_rxd_info_t ri)2861 iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri)
2862 {
2863 	struct if_rxsd sd;
2864 	struct mbuf *m;
2865 	int pf_rv;
2866 
2867 	/* should I merge this back in now that the two paths are basically duplicated? */
2868 	if (ri->iri_nfrags == 1 &&
2869 	    ri->iri_frags[0].irf_len != 0 &&
2870 	    ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) {
2871 		m = rxd_frag_to_sd(rxq, &ri->iri_frags[0], false, &sd,
2872 		    &pf_rv, ri);
2873 		if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2874 			return (m);
2875 		if (pf_rv == PFIL_PASS) {
2876 			m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
2877 #ifndef __NO_STRICT_ALIGNMENT
2878 			if (!IP_ALIGNED(m) && ri->iri_pad == 0)
2879 				m->m_data += 2;
2880 #endif
2881 			memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len);
2882 			m->m_len = ri->iri_frags[0].irf_len;
2883 			m->m_data += ri->iri_pad;
2884 			ri->iri_len -= ri->iri_pad;
2885 		}
2886 	} else {
2887 		m = assemble_segments(rxq, ri, &sd, &pf_rv);
2888 		if (m == NULL)
2889 			return (NULL);
2890 		if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2891 			return (m);
2892 	}
2893 	m->m_pkthdr.len = ri->iri_len;
2894 	m->m_pkthdr.rcvif = ri->iri_ifp;
2895 	m->m_flags |= ri->iri_flags;
2896 	m->m_pkthdr.ether_vtag = ri->iri_vtag;
2897 	m->m_pkthdr.flowid = ri->iri_flowid;
2898 #ifdef NUMA
2899 	m->m_pkthdr.numa_domain = if_getnumadomain(ri->iri_ifp);
2900 #endif
2901 	M_HASHTYPE_SET(m, ri->iri_rsstype);
2902 	m->m_pkthdr.csum_flags = ri->iri_csum_flags;
2903 	m->m_pkthdr.csum_data = ri->iri_csum_data;
2904 	return (m);
2905 }
2906 
2907 static void
_task_fn_rx_watchdog(void * context)2908 _task_fn_rx_watchdog(void *context)
2909 {
2910 	iflib_rxq_t rxq = context;
2911 
2912 	GROUPTASK_ENQUEUE(&rxq->ifr_task);
2913 }
2914 
2915 static uint8_t
iflib_rxeof(iflib_rxq_t rxq,qidx_t budget)2916 iflib_rxeof(iflib_rxq_t rxq, qidx_t budget)
2917 {
2918 	if_t ifp;
2919 	if_ctx_t ctx = rxq->ifr_ctx;
2920 	if_shared_ctx_t sctx = ctx->ifc_sctx;
2921 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2922 	int avail, i;
2923 	qidx_t *cidxp;
2924 	struct if_rxd_info ri;
2925 	int err, budget_left, rx_bytes, rx_pkts;
2926 	iflib_fl_t fl;
2927 #if defined(INET6) || defined(INET)
2928 	int lro_enabled;
2929 #endif
2930 	uint8_t retval = 0;
2931 
2932 	/*
2933 	 * XXX early demux data packets so that if_input processing only handles
2934 	 * acks in interrupt context
2935 	 */
2936 	struct mbuf *m, *mh, *mt;
2937 
2938 	NET_EPOCH_ASSERT();
2939 
2940 	ifp = ctx->ifc_ifp;
2941 	mh = mt = NULL;
2942 	MPASS(budget > 0);
2943 	rx_pkts	= rx_bytes = 0;
2944 	if (sctx->isc_flags & IFLIB_HAS_RXCQ)
2945 		cidxp = &rxq->ifr_cq_cidx;
2946 	else
2947 		cidxp = &rxq->ifr_fl[0].ifl_cidx;
2948 	if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) {
2949 		for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
2950 			retval |= iflib_fl_refill_all(ctx, fl);
2951 		DBG_COUNTER_INC(rx_unavail);
2952 		return (retval);
2953 	}
2954 
2955 #if defined(INET6) || defined(INET)
2956 	lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO);
2957 #endif
2958 
2959 	/* pfil needs the vnet to be set */
2960 	CURVNET_SET_QUIET(if_getvnet(ifp));
2961 	for (budget_left = budget; budget_left > 0 && avail > 0;) {
2962 		if (__predict_false(!CTX_ACTIVE(ctx))) {
2963 			DBG_COUNTER_INC(rx_ctx_inactive);
2964 			break;
2965 		}
2966 		/*
2967 		 * Reset client set fields to their default values
2968 		 */
2969 		rxd_info_zero(&ri);
2970 		ri.iri_qsidx = rxq->ifr_id;
2971 		ri.iri_cidx = *cidxp;
2972 		ri.iri_ifp = ifp;
2973 		ri.iri_frags = rxq->ifr_frags;
2974 		err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
2975 
2976 		if (err)
2977 			goto err;
2978 		rx_pkts += 1;
2979 		rx_bytes += ri.iri_len;
2980 		if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
2981 			*cidxp = ri.iri_cidx;
2982 			/* Update our consumer index */
2983 			/* XXX NB: shurd - check if this is still safe */
2984 			while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0])
2985 				rxq->ifr_cq_cidx -= scctx->isc_nrxd[0];
2986 			/* was this only a completion queue message? */
2987 			if (__predict_false(ri.iri_nfrags == 0))
2988 				continue;
2989 		}
2990 		MPASS(ri.iri_nfrags != 0);
2991 		MPASS(ri.iri_len != 0);
2992 
2993 		/* will advance the cidx on the corresponding free lists */
2994 		m = iflib_rxd_pkt_get(rxq, &ri);
2995 		avail--;
2996 		budget_left--;
2997 		if (avail == 0 && budget_left)
2998 			avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left);
2999 
3000 		if (__predict_false(m == NULL))
3001 			continue;
3002 
3003 #ifndef __NO_STRICT_ALIGNMENT
3004 		if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL)
3005 			continue;
3006 #endif
3007 #if defined(INET6) || defined(INET)
3008 		if (lro_enabled) {
3009 			tcp_lro_queue_mbuf(&rxq->ifr_lc, m);
3010 			continue;
3011 		}
3012 #endif
3013 
3014 		if (mh == NULL)
3015 			mh = mt = m;
3016 		else {
3017 			mt->m_nextpkt = m;
3018 			mt = m;
3019 		}
3020 	}
3021 	CURVNET_RESTORE();
3022 	/* make sure that we can refill faster than drain */
3023 	for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
3024 		retval |= iflib_fl_refill_all(ctx, fl);
3025 
3026 	if (mh != NULL) {
3027 		if_input(ifp, mh);
3028 		DBG_COUNTER_INC(rx_if_input);
3029 	}
3030 
3031 	if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
3032 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
3033 
3034 	/*
3035 	 * Flush any outstanding LRO work
3036 	 */
3037 #if defined(INET6) || defined(INET)
3038 	tcp_lro_flush_all(&rxq->ifr_lc);
3039 #endif
3040 	if (avail != 0 || iflib_rxd_avail(ctx, rxq, *cidxp, 1) != 0)
3041 		retval |= IFLIB_RXEOF_MORE;
3042 	return (retval);
3043 err:
3044 	STATE_LOCK(ctx);
3045 	ctx->ifc_flags |= IFC_DO_RESET;
3046 	iflib_admin_intr_deferred(ctx);
3047 	STATE_UNLOCK(ctx);
3048 	return (0);
3049 }
3050 
3051 #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq) - 1)
3052 static inline qidx_t
txq_max_db_deferred(iflib_txq_t txq,qidx_t in_use)3053 txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use)
3054 {
3055 	qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3056 	qidx_t minthresh = txq->ift_size / 8;
3057 	if (in_use > 4 * minthresh)
3058 		return (notify_count);
3059 	if (in_use > 2 * minthresh)
3060 		return (notify_count >> 1);
3061 	if (in_use > minthresh)
3062 		return (notify_count >> 3);
3063 	return (0);
3064 }
3065 
3066 static inline qidx_t
txq_max_rs_deferred(iflib_txq_t txq)3067 txq_max_rs_deferred(iflib_txq_t txq)
3068 {
3069 	qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3070 	qidx_t minthresh = txq->ift_size / 8;
3071 	if (txq->ift_in_use > 4 * minthresh)
3072 		return (notify_count);
3073 	if (txq->ift_in_use > 2 * minthresh)
3074 		return (notify_count >> 1);
3075 	if (txq->ift_in_use > minthresh)
3076 		return (notify_count >> 2);
3077 	return (2);
3078 }
3079 
3080 #define M_CSUM_FLAGS(m)		((m)->m_pkthdr.csum_flags)
3081 #define M_HAS_VLANTAG(m)	(m->m_flags & M_VLANTAG)
3082 
3083 #define TXQ_MAX_DB_DEFERRED(txq, in_use)	txq_max_db_deferred((txq), (in_use))
3084 #define TXQ_MAX_RS_DEFERRED(txq)	txq_max_rs_deferred(txq)
3085 #define TXQ_MAX_DB_CONSUMED(size)	(size >> 4)
3086 
3087 /* forward compatibility for cxgb */
3088 #define FIRST_QSET(ctx) 0
3089 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets)
3090 #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets)
3091 #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx))
3092 #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments))
3093 
3094 #define	MAX_TX_DESC(ctx) MAX((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \
3095     (ctx)->ifc_softc_ctx.isc_tx_nsegments)
3096 
3097 static inline bool
iflib_txd_db_check(iflib_txq_t txq,int ring)3098 iflib_txd_db_check(iflib_txq_t txq, int ring)
3099 {
3100 	if_ctx_t ctx = txq->ift_ctx;
3101 	qidx_t dbval, max;
3102 
3103 	max = TXQ_MAX_DB_DEFERRED(txq, txq->ift_in_use);
3104 
3105 	/* force || threshold exceeded || at the edge of the ring */
3106 	if (ring || (txq->ift_db_pending >= max) || (TXQ_AVAIL(txq) <= MAX_TX_DESC(ctx))) {
3107 
3108 		/*
3109 		 * 'npending' is used if the card's doorbell is in terms of the number of descriptors
3110 		 * pending flush (BRCM). 'pidx' is used in cases where the card's doorbeel uses the
3111 		 * producer index explicitly (INTC).
3112 		 */
3113 		dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx;
3114 		bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3115 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3116 		ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval);
3117 
3118 		/*
3119 		 * Absent bugs there are zero packets pending so reset pending counts to zero.
3120 		 */
3121 		txq->ift_db_pending = txq->ift_npending = 0;
3122 		return (true);
3123 	}
3124 	return (false);
3125 }
3126 
3127 #ifdef PKT_DEBUG
3128 static void
print_pkt(if_pkt_info_t pi)3129 print_pkt(if_pkt_info_t pi)
3130 {
3131 	printf("pi len:  %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n",
3132 	    pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx);
3133 	printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n",
3134 	    pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag);
3135 	printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n",
3136 	    pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto);
3137 }
3138 #endif
3139 
3140 #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO)
3141 #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO))
3142 #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO)
3143 #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO))
3144 
3145 /**
3146  * Parses out ethernet header information in the given mbuf.
3147  * Returns in pi: ipi_etype (EtherType) and ipi_ehdrlen (Ethernet header length)
3148  *
3149  * This will account for the VLAN header if present.
3150  *
3151  * XXX: This doesn't handle QinQ, which could prevent TX offloads for those
3152  * types of packets.
3153  */
3154 static int
iflib_parse_ether_header(if_pkt_info_t pi,struct mbuf ** mp,uint64_t * pullups)3155 iflib_parse_ether_header(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups)
3156 {
3157 	struct ether_vlan_header *eh;
3158 	struct mbuf *m;
3159 
3160 	m = *mp;
3161 	if (__predict_false(m->m_len < sizeof(*eh))) {
3162 		(*pullups)++;
3163 		if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL))
3164 			return (ENOMEM);
3165 	}
3166 	eh = mtod(m, struct ether_vlan_header *);
3167 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3168 		pi->ipi_etype = ntohs(eh->evl_proto);
3169 		pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3170 	} else {
3171 		pi->ipi_etype = ntohs(eh->evl_encap_proto);
3172 		pi->ipi_ehdrlen = ETHER_HDR_LEN;
3173 	}
3174 	*mp = m;
3175 
3176 	return (0);
3177 }
3178 
3179 /**
3180  * Parse up to the L3 header and extract IPv4/IPv6 header information into pi.
3181  * Currently this information includes: IP ToS value, IP header version/presence
3182  *
3183  * This is missing some checks and doesn't edit the packet content as it goes,
3184  * unlike iflib_parse_header(), in order to keep the amount of code here minimal.
3185  */
3186 static int
iflib_parse_header_partial(if_pkt_info_t pi,struct mbuf ** mp,uint64_t * pullups)3187 iflib_parse_header_partial(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups)
3188 {
3189 	struct mbuf *m;
3190 	int err;
3191 
3192 	*pullups = 0;
3193 	m = *mp;
3194 	if (!M_WRITABLE(m)) {
3195 		if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3196 			return (ENOMEM);
3197 		} else {
3198 			m_freem(*mp);
3199 			DBG_COUNTER_INC(tx_frees);
3200 			*mp = m;
3201 		}
3202 	}
3203 
3204 	/* Fills out pi->ipi_etype */
3205 	err = iflib_parse_ether_header(pi, mp, pullups);
3206 	if (err)
3207 		return (err);
3208 	m = *mp;
3209 
3210 	switch (pi->ipi_etype) {
3211 #ifdef INET
3212 	case ETHERTYPE_IP:
3213 	{
3214 		struct mbuf *n;
3215 		struct ip *ip = NULL;
3216 		int miniplen;
3217 
3218 		miniplen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip));
3219 		if (__predict_false(m->m_len < miniplen)) {
3220 			/*
3221 			 * Check for common case where the first mbuf only contains
3222 			 * the Ethernet header
3223 			 */
3224 			if (m->m_len == pi->ipi_ehdrlen) {
3225 				n = m->m_next;
3226 				MPASS(n);
3227 				/* If next mbuf contains at least the minimal IP header, then stop */
3228 				if (n->m_len >= sizeof(*ip)) {
3229 					ip = (struct ip *)n->m_data;
3230 				} else {
3231 					(*pullups)++;
3232 					if (__predict_false((m = m_pullup(m, miniplen)) == NULL))
3233 						return (ENOMEM);
3234 					ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3235 				}
3236 			} else {
3237 				(*pullups)++;
3238 				if (__predict_false((m = m_pullup(m, miniplen)) == NULL))
3239 					return (ENOMEM);
3240 				ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3241 			}
3242 		} else {
3243 			ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3244 		}
3245 
3246 		/* Have the IPv4 header w/ no options here */
3247 		pi->ipi_ip_hlen = ip->ip_hl << 2;
3248 		pi->ipi_ipproto = ip->ip_p;
3249 		pi->ipi_ip_tos = ip->ip_tos;
3250 		pi->ipi_flags |= IPI_TX_IPV4;
3251 
3252 		break;
3253 	}
3254 #endif
3255 #ifdef INET6
3256 	case ETHERTYPE_IPV6:
3257 	{
3258 		struct ip6_hdr *ip6;
3259 
3260 		if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3261 			(*pullups)++;
3262 			if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3263 				return (ENOMEM);
3264 		}
3265 		ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3266 
3267 		/* Have the IPv6 fixed header here */
3268 		pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3269 		pi->ipi_ipproto = ip6->ip6_nxt;
3270 		pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6);
3271 		pi->ipi_flags |= IPI_TX_IPV6;
3272 
3273 		break;
3274 	}
3275 #endif
3276 	default:
3277 		pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3278 		pi->ipi_ip_hlen = 0;
3279 		break;
3280 	}
3281 	*mp = m;
3282 
3283 	return (0);
3284 
3285 }
3286 
3287 static int
iflib_parse_header(iflib_txq_t txq,if_pkt_info_t pi,struct mbuf ** mp)3288 iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp)
3289 {
3290 	if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx;
3291 	struct mbuf *m;
3292 	int err;
3293 
3294 	m = *mp;
3295 	if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) &&
3296 	    M_WRITABLE(m) == 0) {
3297 		if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3298 			return (ENOMEM);
3299 		} else {
3300 			m_freem(*mp);
3301 			DBG_COUNTER_INC(tx_frees);
3302 			*mp = m;
3303 		}
3304 	}
3305 
3306 	/* Fills out pi->ipi_etype */
3307 	err = iflib_parse_ether_header(pi, mp, &txq->ift_pullups);
3308 	if (__predict_false(err))
3309 		return (err);
3310 	m = *mp;
3311 
3312 	switch (pi->ipi_etype) {
3313 #ifdef INET
3314 	case ETHERTYPE_IP:
3315 	{
3316 		struct ip *ip;
3317 		struct tcphdr *th;
3318 		uint8_t hlen;
3319 
3320 		hlen = pi->ipi_ehdrlen + sizeof(*ip);
3321 		if (__predict_false(m->m_len < hlen)) {
3322 			txq->ift_pullups++;
3323 			if (__predict_false((m = m_pullup(m, hlen)) == NULL))
3324 				return (ENOMEM);
3325 		}
3326 		ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3327 		hlen = pi->ipi_ehdrlen + (ip->ip_hl << 2);
3328 		if (ip->ip_p == IPPROTO_TCP) {
3329 			hlen += sizeof(*th);
3330 			th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
3331 		} else if (ip->ip_p == IPPROTO_UDP) {
3332 			hlen += sizeof(struct udphdr);
3333 		}
3334 		if (__predict_false(m->m_len < hlen)) {
3335 			txq->ift_pullups++;
3336 			if ((m = m_pullup(m, hlen)) == NULL)
3337 				return (ENOMEM);
3338 		}
3339 		pi->ipi_ip_hlen = ip->ip_hl << 2;
3340 		pi->ipi_ipproto = ip->ip_p;
3341 		pi->ipi_ip_tos = ip->ip_tos;
3342 		pi->ipi_flags |= IPI_TX_IPV4;
3343 
3344 		/* TCP checksum offload may require TCP header length */
3345 		if (IS_TX_OFFLOAD4(pi)) {
3346 			if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) {
3347 				pi->ipi_tcp_hflags = tcp_get_flags(th);
3348 				pi->ipi_tcp_hlen = th->th_off << 2;
3349 				pi->ipi_tcp_seq = th->th_seq;
3350 			}
3351 			if (IS_TSO4(pi)) {
3352 				if (__predict_false(ip->ip_p != IPPROTO_TCP))
3353 					return (ENXIO);
3354 				/*
3355 				 * TSO always requires hardware checksum offload.
3356 				 */
3357 				pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP);
3358 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
3359 						       ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3360 				pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3361 				if (sctx->isc_flags & IFLIB_TSO_INIT_IP) {
3362 					ip->ip_sum = 0;
3363 					ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz);
3364 				}
3365 			}
3366 		}
3367 		if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP))
3368 			ip->ip_sum = 0;
3369 
3370 		break;
3371 	}
3372 #endif
3373 #ifdef INET6
3374 	case ETHERTYPE_IPV6:
3375 	{
3376 		struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3377 		struct tcphdr *th;
3378 		pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3379 
3380 		if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3381 			txq->ift_pullups++;
3382 			if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3383 				return (ENOMEM);
3384 		}
3385 		th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen);
3386 
3387 		/* XXX-BZ this will go badly in case of ext hdrs. */
3388 		pi->ipi_ipproto = ip6->ip6_nxt;
3389 		pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6);
3390 		pi->ipi_flags |= IPI_TX_IPV6;
3391 
3392 		/* TCP checksum offload may require TCP header length */
3393 		if (IS_TX_OFFLOAD6(pi)) {
3394 			if (pi->ipi_ipproto == IPPROTO_TCP) {
3395 				if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) {
3396 					txq->ift_pullups++;
3397 					if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL))
3398 						return (ENOMEM);
3399 				}
3400 				pi->ipi_tcp_hflags = tcp_get_flags(th);
3401 				pi->ipi_tcp_hlen = th->th_off << 2;
3402 				pi->ipi_tcp_seq = th->th_seq;
3403 			}
3404 			if (IS_TSO6(pi)) {
3405 				if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP))
3406 					return (ENXIO);
3407 				/*
3408 				 * TSO always requires hardware checksum offload.
3409 				 */
3410 				pi->ipi_csum_flags |= CSUM_IP6_TCP;
3411 				th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
3412 				pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3413 			}
3414 		}
3415 		break;
3416 	}
3417 #endif
3418 	default:
3419 		pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3420 		pi->ipi_ip_hlen = 0;
3421 		break;
3422 	}
3423 	*mp = m;
3424 
3425 	return (0);
3426 }
3427 
3428 /*
3429  * If dodgy hardware rejects the scatter gather chain we've handed it
3430  * we'll need to remove the mbuf chain from ifsg_m[] before we can add the
3431  * m_defrag'd mbufs
3432  */
3433 static __noinline struct mbuf *
iflib_remove_mbuf(iflib_txq_t txq)3434 iflib_remove_mbuf(iflib_txq_t txq)
3435 {
3436 	int ntxd, pidx;
3437 	struct mbuf *m, **ifsd_m;
3438 
3439 	ifsd_m = txq->ift_sds.ifsd_m;
3440 	ntxd = txq->ift_size;
3441 	pidx = txq->ift_pidx & (ntxd - 1);
3442 	ifsd_m = txq->ift_sds.ifsd_m;
3443 	m = ifsd_m[pidx];
3444 	ifsd_m[pidx] = NULL;
3445 	bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]);
3446 	if (txq->ift_sds.ifsd_tso_map != NULL)
3447 		bus_dmamap_unload(txq->ift_tso_buf_tag,
3448 		    txq->ift_sds.ifsd_tso_map[pidx]);
3449 #if MEMORY_LOGGING
3450 	txq->ift_dequeued++;
3451 #endif
3452 	return (m);
3453 }
3454 
3455 /*
3456  * Pad an mbuf to ensure a minimum ethernet frame size.
3457  * min_frame_size is the frame size (less CRC) to pad the mbuf to
3458  */
3459 static __noinline int
iflib_ether_pad(device_t dev,struct mbuf ** m_head,uint16_t min_frame_size)3460 iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size)
3461 {
3462 	/*
3463 	 * 18 is enough bytes to pad an ARP packet to 46 bytes, and
3464 	 * and ARP message is the smallest common payload I can think of
3465 	 */
3466 	static char pad[18];	/* just zeros */
3467 	int n;
3468 	struct mbuf *new_head;
3469 
3470 	if (!M_WRITABLE(*m_head)) {
3471 		new_head = m_dup(*m_head, M_NOWAIT);
3472 		if (new_head == NULL) {
3473 			m_freem(*m_head);
3474 			device_printf(dev, "cannot pad short frame, m_dup() failed");
3475 			DBG_COUNTER_INC(encap_pad_mbuf_fail);
3476 			DBG_COUNTER_INC(tx_frees);
3477 			return (ENOMEM);
3478 		}
3479 		m_freem(*m_head);
3480 		*m_head = new_head;
3481 	}
3482 
3483 	for (n = min_frame_size - (*m_head)->m_pkthdr.len;
3484 	     n > 0; n -= sizeof(pad))
3485 		if (!m_append(*m_head, min(n, sizeof(pad)), pad))
3486 			break;
3487 
3488 	if (n > 0) {
3489 		m_freem(*m_head);
3490 		device_printf(dev, "cannot pad short frame\n");
3491 		DBG_COUNTER_INC(encap_pad_mbuf_fail);
3492 		DBG_COUNTER_INC(tx_frees);
3493 		return (ENOBUFS);
3494 	}
3495 
3496 	return (0);
3497 }
3498 
3499 static int
iflib_encap(iflib_txq_t txq,struct mbuf ** m_headp)3500 iflib_encap(iflib_txq_t txq, struct mbuf **m_headp)
3501 {
3502 	if_ctx_t		ctx;
3503 	if_shared_ctx_t		sctx;
3504 	if_softc_ctx_t		scctx;
3505 	bus_dma_tag_t		buf_tag;
3506 	bus_dma_segment_t	*segs;
3507 	struct mbuf		*m_head, **ifsd_m;
3508 	bus_dmamap_t		map;
3509 	struct if_pkt_info	pi;
3510 	int remap = 0;
3511 	int err, nsegs, ndesc, max_segs, pidx;
3512 
3513 	ctx = txq->ift_ctx;
3514 	sctx = ctx->ifc_sctx;
3515 	scctx = &ctx->ifc_softc_ctx;
3516 	segs = txq->ift_segs;
3517 	m_head = *m_headp;
3518 	map = NULL;
3519 
3520 	/*
3521 	 * If we're doing TSO the next descriptor to clean may be quite far ahead
3522 	 */
3523 	pidx = txq->ift_pidx;
3524 	map = txq->ift_sds.ifsd_map[pidx];
3525 	ifsd_m = txq->ift_sds.ifsd_m;
3526 
3527 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3528 		buf_tag = txq->ift_tso_buf_tag;
3529 		max_segs = scctx->isc_tx_tso_segments_max;
3530 		map = txq->ift_sds.ifsd_tso_map[pidx];
3531 		MPASS(buf_tag != NULL);
3532 		MPASS(max_segs > 0);
3533 	} else {
3534 		buf_tag = txq->ift_buf_tag;
3535 		max_segs = scctx->isc_tx_nsegments;
3536 		map = txq->ift_sds.ifsd_map[pidx];
3537 	}
3538 	if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) &&
3539 	    __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) {
3540 		err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size);
3541 		if (err) {
3542 			DBG_COUNTER_INC(encap_txd_encap_fail);
3543 			return (err);
3544 		}
3545 	}
3546 	m_head = *m_headp;
3547 
3548 	pkt_info_zero(&pi);
3549 	pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG | M_BCAST | M_MCAST));
3550 	pi.ipi_pidx = pidx;
3551 	pi.ipi_qsidx = txq->ift_id;
3552 	pi.ipi_len = m_head->m_pkthdr.len;
3553 	pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags;
3554 	pi.ipi_vtag = M_HAS_VLANTAG(m_head) ? m_head->m_pkthdr.ether_vtag : 0;
3555 
3556 	/* deliberate bitwise OR to make one condition */
3557 	if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) {
3558 		if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) {
3559 			DBG_COUNTER_INC(encap_txd_encap_fail);
3560 			return (err);
3561 		}
3562 		m_head = *m_headp;
3563 	}
3564 
3565 retry:
3566 	err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs,
3567 	    BUS_DMA_NOWAIT);
3568 defrag:
3569 	if (__predict_false(err)) {
3570 		switch (err) {
3571 		case EFBIG:
3572 			/* try collapse once and defrag once */
3573 			if (remap == 0) {
3574 				m_head = m_collapse(*m_headp, M_NOWAIT, max_segs);
3575 				/* try defrag if collapsing fails */
3576 				if (m_head == NULL)
3577 					remap++;
3578 			}
3579 			if (remap == 1) {
3580 				txq->ift_mbuf_defrag++;
3581 				m_head = m_defrag(*m_headp, M_NOWAIT);
3582 			}
3583 			/*
3584 			 * remap should never be >1 unless bus_dmamap_load_mbuf_sg
3585 			 * failed to map an mbuf that was run through m_defrag
3586 			 */
3587 			MPASS(remap <= 1);
3588 			if (__predict_false(m_head == NULL || remap > 1))
3589 				goto defrag_failed;
3590 			remap++;
3591 			*m_headp = m_head;
3592 			goto retry;
3593 			break;
3594 		case ENOMEM:
3595 			txq->ift_no_tx_dma_setup++;
3596 			break;
3597 		default:
3598 			txq->ift_no_tx_dma_setup++;
3599 			m_freem(*m_headp);
3600 			DBG_COUNTER_INC(tx_frees);
3601 			*m_headp = NULL;
3602 			break;
3603 		}
3604 		txq->ift_map_failed++;
3605 		DBG_COUNTER_INC(encap_load_mbuf_fail);
3606 		DBG_COUNTER_INC(encap_txd_encap_fail);
3607 		return (err);
3608 	}
3609 	ifsd_m[pidx] = m_head;
3610 	if (m_head->m_pkthdr.csum_flags & CSUM_SND_TAG)
3611 		pi.ipi_mbuf = m_head;
3612 	else
3613 		pi.ipi_mbuf = NULL;
3614 	/*
3615 	 * XXX assumes a 1 to 1 relationship between segments and
3616 	 *        descriptors - this does not hold true on all drivers, e.g.
3617 	 *        cxgb
3618 	 */
3619 	if (__predict_false(nsegs > TXQ_AVAIL(txq))) {
3620 		(void)iflib_completed_tx_reclaim(txq);
3621 		if (__predict_false(nsegs > TXQ_AVAIL(txq))) {
3622 			txq->ift_no_desc_avail++;
3623 			bus_dmamap_unload(buf_tag, map);
3624 			DBG_COUNTER_INC(encap_txq_avail_fail);
3625 			DBG_COUNTER_INC(encap_txd_encap_fail);
3626 			if (ctx->ifc_sysctl_simple_tx) {
3627 				*m_headp = m_head = iflib_remove_mbuf(txq);
3628 				m_freem(*m_headp);
3629 				DBG_COUNTER_INC(tx_frees);
3630 				*m_headp = NULL;
3631 			}
3632 			if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0)
3633 				GROUPTASK_ENQUEUE(&txq->ift_task);
3634 			return (ENOBUFS);
3635 		}
3636 	}
3637 	/*
3638 	 * On Intel cards we can greatly reduce the number of TX interrupts
3639 	 * we see by only setting report status on every Nth descriptor.
3640 	 * However, this also means that the driver will need to keep track
3641 	 * of the descriptors that RS was set on to check them for the DD bit.
3642 	 */
3643 	txq->ift_rs_pending += nsegs + 1;
3644 	if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) ||
3645 	    iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx)) {
3646 		pi.ipi_flags |= IPI_TX_INTR;
3647 		txq->ift_rs_pending = 0;
3648 	}
3649 
3650 	pi.ipi_segs = segs;
3651 	pi.ipi_nsegs = nsegs;
3652 
3653 	MPASS(pidx >= 0 && pidx < txq->ift_size);
3654 #ifdef PKT_DEBUG
3655 	print_pkt(&pi);
3656 #endif
3657 	if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) {
3658 		bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE);
3659 		DBG_COUNTER_INC(tx_encap);
3660 		MPASS(pi.ipi_new_pidx < txq->ift_size);
3661 
3662 		ndesc = pi.ipi_new_pidx - pi.ipi_pidx;
3663 		if (pi.ipi_new_pidx < pi.ipi_pidx) {
3664 			ndesc += txq->ift_size;
3665 			txq->ift_gen = 1;
3666 		}
3667 		/*
3668 		 * drivers can need up to ift_pad sentinels
3669 		 */
3670 		MPASS(ndesc <= pi.ipi_nsegs + txq->ift_pad);
3671 		MPASS(pi.ipi_new_pidx != pidx);
3672 		MPASS(ndesc > 0);
3673 		txq->ift_in_use += ndesc;
3674 		txq->ift_db_pending += ndesc;
3675 
3676 		/*
3677 		 * We update the last software descriptor again here because there may
3678 		 * be a sentinel and/or there may be more mbufs than segments
3679 		 */
3680 		txq->ift_pidx = pi.ipi_new_pidx;
3681 		txq->ift_npending += pi.ipi_ndescs;
3682 	} else {
3683 		*m_headp = m_head = iflib_remove_mbuf(txq);
3684 		if (err == EFBIG) {
3685 			txq->ift_txd_encap_efbig++;
3686 			if (remap < 2) {
3687 				remap = 1;
3688 				goto defrag;
3689 			}
3690 		}
3691 		goto defrag_failed;
3692 	}
3693 	/*
3694 	 * err can't possibly be non-zero here, so we don't neet to test it
3695 	 * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail).
3696 	 */
3697 	return (err);
3698 
3699 defrag_failed:
3700 	txq->ift_mbuf_defrag_failed++;
3701 	txq->ift_map_failed++;
3702 	m_freem(*m_headp);
3703 	DBG_COUNTER_INC(tx_frees);
3704 	*m_headp = NULL;
3705 	DBG_COUNTER_INC(encap_txd_encap_fail);
3706 	return (ENOMEM);
3707 }
3708 
3709 static void
iflib_tx_desc_free(iflib_txq_t txq,int n)3710 iflib_tx_desc_free(iflib_txq_t txq, int n)
3711 {
3712 	uint32_t qsize, cidx, gen;
3713 	struct mbuf *m, **ifsd_m;
3714 
3715 	cidx = txq->ift_cidx;
3716 	gen = txq->ift_gen;
3717 	qsize = txq->ift_size;
3718 	ifsd_m = txq->ift_sds.ifsd_m;
3719 
3720 	while (n-- > 0) {
3721 		if ((m = ifsd_m[cidx]) != NULL) {
3722 			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
3723 				bus_dmamap_sync(txq->ift_tso_buf_tag,
3724 				    txq->ift_sds.ifsd_tso_map[cidx],
3725 				    BUS_DMASYNC_POSTWRITE);
3726 				bus_dmamap_unload(txq->ift_tso_buf_tag,
3727 				    txq->ift_sds.ifsd_tso_map[cidx]);
3728 			} else {
3729 				bus_dmamap_sync(txq->ift_buf_tag,
3730 				    txq->ift_sds.ifsd_map[cidx],
3731 				    BUS_DMASYNC_POSTWRITE);
3732 				bus_dmamap_unload(txq->ift_buf_tag,
3733 				    txq->ift_sds.ifsd_map[cidx]);
3734 			}
3735 			/* XXX we don't support any drivers that batch packets yet */
3736 			MPASS(m->m_nextpkt == NULL);
3737 			m_freem(m);
3738 			ifsd_m[cidx] = NULL;
3739 #if MEMORY_LOGGING
3740 			txq->ift_dequeued++;
3741 #endif
3742 			DBG_COUNTER_INC(tx_frees);
3743 		}
3744 		if (__predict_false(++cidx == qsize)) {
3745 			cidx = 0;
3746 			gen = 0;
3747 		}
3748 	}
3749 	txq->ift_cidx = cidx;
3750 	txq->ift_gen = gen;
3751 }
3752 
3753 static __inline int
iflib_completed_tx_reclaim(iflib_txq_t txq)3754 iflib_completed_tx_reclaim(iflib_txq_t txq)
3755 {
3756 	int reclaim, thresh;
3757 	uint32_t now;
3758 	if_ctx_t ctx = txq->ift_ctx;
3759 
3760 	thresh = txq->ift_reclaim_thresh;
3761 	KASSERT(thresh >= 0, ("invalid threshold to reclaim"));
3762 	MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size);
3763 
3764 	now = ticks;
3765 	if (now <= (txq->ift_last_reclaim + txq->ift_reclaim_ticks) &&
3766 	    txq->ift_in_use < thresh)
3767 		return (0);
3768 	txq->ift_last_reclaim = now;
3769 	/*
3770 	 * Need a rate-limiting check so that this isn't called every time
3771 	 */
3772 	iflib_tx_credits_update(ctx, txq);
3773 	reclaim = DESC_RECLAIMABLE(txq);
3774 
3775 	if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) {
3776 #ifdef INVARIANTS
3777 		if (iflib_verbose_debug) {
3778 			printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __func__,
3779 			    txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments,
3780 			    reclaim, thresh);
3781 		}
3782 #endif
3783 		return (0);
3784 	}
3785 	iflib_tx_desc_free(txq, reclaim);
3786 	txq->ift_cleaned += reclaim;
3787 	txq->ift_in_use -= reclaim;
3788 
3789 	return (reclaim);
3790 }
3791 
3792 static struct mbuf **
_ring_peek_one(struct ifmp_ring * r,int cidx,int offset,int remaining)3793 _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining)
3794 {
3795 	int next, size;
3796 	struct mbuf **items;
3797 
3798 	size = r->size;
3799 	next = (cidx + CACHE_PTR_INCREMENT) & (size - 1);
3800 	items = __DEVOLATILE(struct mbuf **, &r->items[0]);
3801 
3802 	prefetch(items[(cidx + offset) & (size - 1)]);
3803 	if (remaining > 1) {
3804 		prefetch2cachelines(&items[next]);
3805 		prefetch2cachelines(items[(cidx + offset + 1) & (size - 1)]);
3806 		prefetch2cachelines(items[(cidx + offset + 2) & (size - 1)]);
3807 		prefetch2cachelines(items[(cidx + offset + 3) & (size - 1)]);
3808 	}
3809 	return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size - 1)]));
3810 }
3811 
3812 static void
iflib_txq_check_drain(iflib_txq_t txq,int budget)3813 iflib_txq_check_drain(iflib_txq_t txq, int budget)
3814 {
3815 
3816 	ifmp_ring_check_drainage(txq->ift_br, budget);
3817 }
3818 
3819 static uint32_t
iflib_txq_can_drain(struct ifmp_ring * r)3820 iflib_txq_can_drain(struct ifmp_ring *r)
3821 {
3822 	iflib_txq_t txq = r->cookie;
3823 	if_ctx_t ctx = txq->ift_ctx;
3824 
3825 	if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx))
3826 		return (1);
3827 	bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3828 	    BUS_DMASYNC_POSTREAD);
3829 	return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id,
3830 	    false));
3831 }
3832 
3833 static uint32_t
iflib_txq_drain(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3834 iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3835 {
3836 	iflib_txq_t txq = r->cookie;
3837 	if_ctx_t ctx = txq->ift_ctx;
3838 	if_t ifp = ctx->ifc_ifp;
3839 	struct mbuf *m, **mp;
3840 	int avail, bytes_sent, skipped, count, err, i;
3841 	int mcast_sent, pkt_sent, reclaimed;
3842 	bool do_prefetch, rang, ring;
3843 
3844 	if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) ||
3845 			    !LINK_ACTIVE(ctx))) {
3846 		DBG_COUNTER_INC(txq_drain_notready);
3847 		return (0);
3848 	}
3849 	reclaimed = iflib_completed_tx_reclaim(txq);
3850 	rang = iflib_txd_db_check(txq, reclaimed && txq->ift_db_pending);
3851 	avail = IDXDIFF(pidx, cidx, r->size);
3852 
3853 	if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) {
3854 		/*
3855 		 * The driver is unloading so we need to free all pending packets.
3856 		 */
3857 		DBG_COUNTER_INC(txq_drain_flushing);
3858 		for (i = 0; i < avail; i++) {
3859 			if (__predict_true(r->items[(cidx + i) & (r->size - 1)] != (void *)txq))
3860 				m_freem(r->items[(cidx + i) & (r->size - 1)]);
3861 			r->items[(cidx + i) & (r->size - 1)] = NULL;
3862 		}
3863 		return (avail);
3864 	}
3865 
3866 	if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) {
3867 		txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3868 		CALLOUT_LOCK(txq);
3869 		callout_stop(&txq->ift_timer);
3870 		CALLOUT_UNLOCK(txq);
3871 		DBG_COUNTER_INC(txq_drain_oactive);
3872 		return (0);
3873 	}
3874 
3875 	/*
3876 	 * If we've reclaimed any packets this queue cannot be hung.
3877 	 */
3878 	if (reclaimed)
3879 		txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3880 	skipped = mcast_sent = bytes_sent = pkt_sent = 0;
3881 	count = MIN(avail, TX_BATCH_SIZE);
3882 #ifdef INVARIANTS
3883 	if (iflib_verbose_debug)
3884 		printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __func__,
3885 		    avail, ctx->ifc_flags, TXQ_AVAIL(txq));
3886 #endif
3887 	do_prefetch = (ctx->ifc_flags & IFC_PREFETCH);
3888 	err = 0;
3889 	for (i = 0; i < count && TXQ_AVAIL(txq) >= MAX_TX_DESC(ctx); i++) {
3890 		int rem = do_prefetch ? count - i : 0;
3891 
3892 		mp = _ring_peek_one(r, cidx, i, rem);
3893 		MPASS(mp != NULL && *mp != NULL);
3894 
3895 		/*
3896 		 * Completion interrupts will use the address of the txq
3897 		 * as a sentinel to enqueue _something_ in order to acquire
3898 		 * the lock on the mp_ring (there's no direct lock call).
3899 		 * We obviously whave to check for these sentinel cases
3900 		 * and skip them.
3901 		 */
3902 		if (__predict_false(*mp == (struct mbuf *)txq)) {
3903 			skipped++;
3904 			continue;
3905 		}
3906 		err = iflib_encap(txq, mp);
3907 		if (__predict_false(err)) {
3908 			/* no room - bail out */
3909 			if (err == ENOBUFS)
3910 				break;
3911 			skipped++;
3912 			/* we can't send this packet - skip it */
3913 			continue;
3914 		}
3915 		pkt_sent++;
3916 		m = *mp;
3917 		DBG_COUNTER_INC(tx_sent);
3918 		bytes_sent += m->m_pkthdr.len;
3919 		mcast_sent += !!(m->m_flags & M_MCAST);
3920 
3921 		if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)))
3922 			break;
3923 		ETHER_BPF_MTAP(ifp, m);
3924 		rang = iflib_txd_db_check(txq, false);
3925 	}
3926 
3927 	/* deliberate use of bitwise or to avoid gratuitous short-circuit */
3928 	ring = rang ? false  : (iflib_min_tx_latency | err | (!!txq->ift_reclaim_thresh));
3929 	iflib_txd_db_check(txq, ring);
3930 	if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
3931 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
3932 	if (mcast_sent)
3933 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
3934 #ifdef INVARIANTS
3935 	if (iflib_verbose_debug)
3936 		printf("consumed=%d\n", skipped + pkt_sent);
3937 #endif
3938 	return (skipped + pkt_sent);
3939 }
3940 
3941 static uint32_t
iflib_txq_drain_always(struct ifmp_ring * r)3942 iflib_txq_drain_always(struct ifmp_ring *r)
3943 {
3944 	return (1);
3945 }
3946 
3947 static uint32_t
iflib_txq_drain_free(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3948 iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3949 {
3950 	int i, avail;
3951 	struct mbuf **mp;
3952 	iflib_txq_t txq;
3953 
3954 	txq = r->cookie;
3955 
3956 	txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3957 	CALLOUT_LOCK(txq);
3958 	callout_stop(&txq->ift_timer);
3959 	CALLOUT_UNLOCK(txq);
3960 
3961 	avail = IDXDIFF(pidx, cidx, r->size);
3962 	for (i = 0; i < avail; i++) {
3963 		mp = _ring_peek_one(r, cidx, i, avail - i);
3964 		if (__predict_false(*mp == (struct mbuf *)txq))
3965 			continue;
3966 		m_freem(*mp);
3967 		DBG_COUNTER_INC(tx_frees);
3968 	}
3969 	MPASS(ifmp_ring_is_stalled(r) == 0);
3970 	return (avail);
3971 }
3972 
3973 static void
iflib_ifmp_purge(iflib_txq_t txq)3974 iflib_ifmp_purge(iflib_txq_t txq)
3975 {
3976 	struct ifmp_ring *r;
3977 
3978 	r = txq->ift_br;
3979 	r->drain = iflib_txq_drain_free;
3980 	r->can_drain = iflib_txq_drain_always;
3981 
3982 	ifmp_ring_check_drainage(r, r->size);
3983 
3984 	r->drain = iflib_txq_drain;
3985 	r->can_drain = iflib_txq_can_drain;
3986 }
3987 
3988 static void
_task_fn_tx(void * context)3989 _task_fn_tx(void *context)
3990 {
3991 	iflib_txq_t txq = context;
3992 	if_ctx_t ctx = txq->ift_ctx;
3993 	if_t ifp = ctx->ifc_ifp;
3994 	int abdicate = ctx->ifc_sysctl_tx_abdicate;
3995 
3996 #ifdef IFLIB_DIAGNOSTICS
3997 	txq->ift_cpu_exec_count[curcpu]++;
3998 #endif
3999 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4000 		return;
4001 #ifdef DEV_NETMAP
4002 	if ((if_getcapenable(ifp) & IFCAP_NETMAP) &&
4003 	    netmap_tx_irq(ifp, txq->ift_id))
4004 		goto skip_ifmp;
4005 #endif
4006         if (ctx->ifc_sysctl_simple_tx) {
4007                 mtx_lock(&txq->ift_mtx);
4008                 (void)iflib_completed_tx_reclaim(txq);
4009                 mtx_unlock(&txq->ift_mtx);
4010                 goto skip_ifmp;
4011         }
4012 #ifdef ALTQ
4013 	if (if_altq_is_enabled(ifp))
4014 		iflib_altq_if_start(ifp);
4015 #endif
4016 	if (txq->ift_db_pending)
4017 		ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate);
4018 	else if (!abdicate)
4019 		ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4020 	/*
4021 	 * When abdicating, we always need to check drainage, not just when we don't enqueue
4022 	 */
4023 	if (abdicate)
4024 		ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4025 
4026 skip_ifmp:
4027 	if (ctx->ifc_flags & IFC_LEGACY)
4028 		IFDI_INTR_ENABLE(ctx);
4029 	else
4030 		IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id);
4031 }
4032 
4033 static void
_task_fn_rx(void * context)4034 _task_fn_rx(void *context)
4035 {
4036 	iflib_rxq_t rxq = context;
4037 	if_ctx_t ctx = rxq->ifr_ctx;
4038 	uint8_t more;
4039 	uint16_t budget;
4040 #ifdef DEV_NETMAP
4041 	u_int work = 0;
4042 	int nmirq;
4043 #endif
4044 
4045 #ifdef IFLIB_DIAGNOSTICS
4046 	rxq->ifr_cpu_exec_count[curcpu]++;
4047 #endif
4048 	DBG_COUNTER_INC(task_fn_rxs);
4049 	if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4050 		return;
4051 #ifdef DEV_NETMAP
4052 	nmirq = netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work);
4053 	if (nmirq != NM_IRQ_PASS) {
4054 		more = (nmirq == NM_IRQ_RESCHED) ? IFLIB_RXEOF_MORE : 0;
4055 		goto skip_rxeof;
4056 	}
4057 #endif
4058 	budget = ctx->ifc_sysctl_rx_budget;
4059 	if (budget == 0)
4060 		budget = 16;	/* XXX */
4061 	more = iflib_rxeof(rxq, budget);
4062 #ifdef DEV_NETMAP
4063 skip_rxeof:
4064 #endif
4065 	if ((more & IFLIB_RXEOF_MORE) == 0) {
4066 		if (ctx->ifc_flags & IFC_LEGACY)
4067 			IFDI_INTR_ENABLE(ctx);
4068 		else
4069 			IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
4070 		DBG_COUNTER_INC(rx_intr_enables);
4071 	}
4072 	if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4073 		return;
4074 
4075 	if (more & IFLIB_RXEOF_MORE)
4076 		GROUPTASK_ENQUEUE(&rxq->ifr_task);
4077 	else if (more & IFLIB_RXEOF_EMPTY)
4078 		callout_reset_curcpu(&rxq->ifr_watchdog, 1, &_task_fn_rx_watchdog, rxq);
4079 }
4080 
4081 static void
_task_fn_admin(void * context,int pending)4082 _task_fn_admin(void *context, int pending)
4083 {
4084 	if_ctx_t ctx = context;
4085 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
4086 	iflib_txq_t txq;
4087 	int i;
4088 	bool oactive, running, do_reset, do_watchdog, in_detach;
4089 
4090 	STATE_LOCK(ctx);
4091 	running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING);
4092 	oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE);
4093 	do_reset = (ctx->ifc_flags & IFC_DO_RESET);
4094 	do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG);
4095 	in_detach = (ctx->ifc_flags & IFC_IN_DETACH);
4096 	ctx->ifc_flags &= ~(IFC_DO_RESET | IFC_DO_WATCHDOG);
4097 	STATE_UNLOCK(ctx);
4098 
4099 	if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4100 		return;
4101 	if (in_detach)
4102 		return;
4103 
4104 	CTX_LOCK(ctx);
4105 	for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4106 		CALLOUT_LOCK(txq);
4107 		callout_stop(&txq->ift_timer);
4108 		CALLOUT_UNLOCK(txq);
4109 	}
4110 	if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_ADMINCQ)
4111 		IFDI_ADMIN_COMPLETION_HANDLE(ctx);
4112 	if (do_watchdog) {
4113 		ctx->ifc_watchdog_events++;
4114 		IFDI_WATCHDOG_RESET(ctx);
4115 	}
4116 	IFDI_UPDATE_ADMIN_STATUS(ctx);
4117 	for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4118 		callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
4119 		    txq->ift_timer.c_cpu);
4120 	}
4121 	IFDI_LINK_INTR_ENABLE(ctx);
4122 	if (do_reset)
4123 		iflib_if_init_locked(ctx);
4124 	CTX_UNLOCK(ctx);
4125 
4126 	if (LINK_ACTIVE(ctx) == 0)
4127 		return;
4128 	for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++)
4129 		iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
4130 }
4131 
4132 static void
_task_fn_iov(void * context,int pending)4133 _task_fn_iov(void *context, int pending)
4134 {
4135 	if_ctx_t ctx = context;
4136 
4137 	if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) &&
4138 	    !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4139 		return;
4140 
4141 	CTX_LOCK(ctx);
4142 	IFDI_VFLR_HANDLE(ctx);
4143 	CTX_UNLOCK(ctx);
4144 }
4145 
4146 static int
iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)4147 iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4148 {
4149 	int err;
4150 	if_int_delay_info_t info;
4151 	if_ctx_t ctx;
4152 
4153 	info = (if_int_delay_info_t)arg1;
4154 	ctx = info->iidi_ctx;
4155 	info->iidi_req = req;
4156 	info->iidi_oidp = oidp;
4157 	CTX_LOCK(ctx);
4158 	err = IFDI_SYSCTL_INT_DELAY(ctx, info);
4159 	CTX_UNLOCK(ctx);
4160 	return (err);
4161 }
4162 
4163 /*********************************************************************
4164  *
4165  *  IFNET FUNCTIONS
4166  *
4167  **********************************************************************/
4168 
4169 static void
iflib_if_init_locked(if_ctx_t ctx)4170 iflib_if_init_locked(if_ctx_t ctx)
4171 {
4172 	iflib_stop(ctx);
4173 	iflib_init_locked(ctx);
4174 }
4175 
4176 static void
iflib_if_init(void * arg)4177 iflib_if_init(void *arg)
4178 {
4179 	if_ctx_t ctx = arg;
4180 
4181 	CTX_LOCK(ctx);
4182 	iflib_if_init_locked(ctx);
4183 	CTX_UNLOCK(ctx);
4184 }
4185 
4186 static int
iflib_if_transmit(if_t ifp,struct mbuf * m)4187 iflib_if_transmit(if_t ifp, struct mbuf *m)
4188 {
4189 	if_ctx_t ctx = if_getsoftc(ifp);
4190 	iflib_txq_t txq;
4191 	int err, qidx;
4192 	int abdicate;
4193 
4194 	if (__predict_false((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) {
4195 		DBG_COUNTER_INC(tx_frees);
4196 		m_freem(m);
4197 		return (ENETDOWN);
4198 	}
4199 
4200 	MPASS(m->m_nextpkt == NULL);
4201 	/* ALTQ-enabled interfaces always use queue 0. */
4202 	qidx = 0;
4203 	/* Use driver-supplied queue selection method if it exists */
4204 	if (ctx->isc_txq_select_v2) {
4205 		struct if_pkt_info pi;
4206 		uint64_t early_pullups = 0;
4207 		pkt_info_zero(&pi);
4208 
4209 		err = iflib_parse_header_partial(&pi, &m, &early_pullups);
4210 		if (__predict_false(err != 0)) {
4211 			/* Assign pullups for bad pkts to default queue */
4212 			ctx->ifc_txqs[0].ift_pullups += early_pullups;
4213 			DBG_COUNTER_INC(encap_txd_encap_fail);
4214 			return (err);
4215 		}
4216 		/* Let driver make queueing decision */
4217 		qidx = ctx->isc_txq_select_v2(ctx->ifc_softc, m, &pi);
4218 		ctx->ifc_txqs[qidx].ift_pullups += early_pullups;
4219 	}
4220 	/* Backwards compatibility w/ simpler queue select */
4221 	else if (ctx->isc_txq_select)
4222 		qidx = ctx->isc_txq_select(ctx->ifc_softc, m);
4223 	/* If not, use iflib's standard method */
4224 	else if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !if_altq_is_enabled(ifp))
4225 		qidx = QIDX(ctx, m);
4226 
4227 	/* Set TX queue */
4228 	txq = &ctx->ifc_txqs[qidx];
4229 
4230 #ifdef DRIVER_BACKPRESSURE
4231 	if (txq->ift_closed) {
4232 		while (m != NULL) {
4233 			next = m->m_nextpkt;
4234 			m->m_nextpkt = NULL;
4235 			m_freem(m);
4236 			DBG_COUNTER_INC(tx_frees);
4237 			m = next;
4238 		}
4239 		return (ENOBUFS);
4240 	}
4241 #endif
4242 #ifdef notyet
4243 	qidx = count = 0;
4244 	mp = marr;
4245 	next = m;
4246 	do {
4247 		count++;
4248 		next = next->m_nextpkt;
4249 	} while (next != NULL);
4250 
4251 	if (count > nitems(marr))
4252 		if ((mp = malloc(count * sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) {
4253 			/* XXX check nextpkt */
4254 			m_freem(m);
4255 			/* XXX simplify for now */
4256 			DBG_COUNTER_INC(tx_frees);
4257 			return (ENOBUFS);
4258 		}
4259 	for (next = m, i = 0; next != NULL; i++) {
4260 		mp[i] = next;
4261 		next = next->m_nextpkt;
4262 		mp[i]->m_nextpkt = NULL;
4263 	}
4264 #endif
4265 	DBG_COUNTER_INC(tx_seen);
4266 	abdicate = ctx->ifc_sysctl_tx_abdicate;
4267 
4268 	err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate);
4269 
4270 	if (abdicate)
4271 		GROUPTASK_ENQUEUE(&txq->ift_task);
4272 	if (err) {
4273 		if (!abdicate)
4274 			GROUPTASK_ENQUEUE(&txq->ift_task);
4275 		/* support forthcoming later */
4276 #ifdef DRIVER_BACKPRESSURE
4277 		txq->ift_closed = TRUE;
4278 #endif
4279 		ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4280 		m_freem(m);
4281 		DBG_COUNTER_INC(tx_frees);
4282 		if (err == ENOBUFS)
4283 			if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4284 		else
4285 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4286 	}
4287 
4288 	return (err);
4289 }
4290 
4291 #ifdef ALTQ
4292 /*
4293  * The overall approach to integrating iflib with ALTQ is to continue to use
4294  * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware
4295  * ring.  Technically, when using ALTQ, queueing to an intermediate mp_ring
4296  * is redundant/unnecessary, but doing so minimizes the amount of
4297  * ALTQ-specific code required in iflib.  It is assumed that the overhead of
4298  * redundantly queueing to an intermediate mp_ring is swamped by the
4299  * performance limitations inherent in using ALTQ.
4300  *
4301  * When ALTQ support is compiled in, all iflib drivers will use a transmit
4302  * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the
4303  * given interface.  If ALTQ is enabled for an interface, then all
4304  * transmitted packets for that interface will be submitted to the ALTQ
4305  * subsystem via IFQ_ENQUEUE().  We don't use the legacy if_transmit()
4306  * implementation because it uses IFQ_HANDOFF(), which will duplicatively
4307  * update stats that the iflib machinery handles, and which is sensitve to
4308  * the disused IFF_DRV_OACTIVE flag.  Additionally, iflib_altq_if_start()
4309  * will be installed as the start routine for use by ALTQ facilities that
4310  * need to trigger queue drains on a scheduled basis.
4311  *
4312  */
4313 static void
iflib_altq_if_start(if_t ifp)4314 iflib_altq_if_start(if_t ifp)
4315 {
4316 	struct ifaltq *ifq = &ifp->if_snd; /* XXX - DRVAPI */
4317 	struct mbuf *m;
4318 
4319 	IFQ_LOCK(ifq);
4320 	IFQ_DEQUEUE_NOLOCK(ifq, m);
4321 	while (m != NULL) {
4322 		iflib_if_transmit(ifp, m);
4323 		IFQ_DEQUEUE_NOLOCK(ifq, m);
4324 	}
4325 	IFQ_UNLOCK(ifq);
4326 }
4327 
4328 static int
iflib_altq_if_transmit(if_t ifp,struct mbuf * m)4329 iflib_altq_if_transmit(if_t ifp, struct mbuf *m)
4330 {
4331 	int err;
4332 
4333 	if (if_altq_is_enabled(ifp)) {
4334 		IFQ_ENQUEUE(&ifp->if_snd, m, err); /* XXX - DRVAPI */
4335 		if (err == 0)
4336 			iflib_altq_if_start(ifp);
4337 	} else
4338 		err = iflib_if_transmit(ifp, m);
4339 
4340 	return (err);
4341 }
4342 #endif /* ALTQ */
4343 
4344 static void
iflib_if_qflush(if_t ifp)4345 iflib_if_qflush(if_t ifp)
4346 {
4347 	if_ctx_t ctx = if_getsoftc(ifp);
4348 	iflib_txq_t txq = ctx->ifc_txqs;
4349 	int i;
4350 
4351 	STATE_LOCK(ctx);
4352 	ctx->ifc_flags |= IFC_QFLUSH;
4353 	STATE_UNLOCK(ctx);
4354 	for (i = 0; i < NTXQSETS(ctx); i++, txq++)
4355 		while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br)))
4356 			iflib_txq_check_drain(txq, 0);
4357 	STATE_LOCK(ctx);
4358 	ctx->ifc_flags &= ~IFC_QFLUSH;
4359 	STATE_UNLOCK(ctx);
4360 
4361 	/*
4362 	 * When ALTQ is enabled, this will also take care of purging the
4363 	 * ALTQ queue(s).
4364 	 */
4365 	if_qflush(ifp);
4366 }
4367 
4368 #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \
4369 		    IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \
4370 		    IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \
4371 		    IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM | IFCAP_MEXTPG)
4372 
4373 static int
iflib_if_ioctl(if_t ifp,u_long command,caddr_t data)4374 iflib_if_ioctl(if_t ifp, u_long command, caddr_t data)
4375 {
4376 	if_ctx_t ctx = if_getsoftc(ifp);
4377 	struct ifreq	*ifr = (struct ifreq *)data;
4378 #if defined(INET) || defined(INET6)
4379 	struct ifaddr	*ifa = (struct ifaddr *)data;
4380 #endif
4381 	bool		avoid_reset = false;
4382 	int		err = 0, reinit = 0, bits;
4383 
4384 	switch (command) {
4385 	case SIOCSIFADDR:
4386 #ifdef INET
4387 		if (ifa->ifa_addr->sa_family == AF_INET)
4388 			avoid_reset = true;
4389 #endif
4390 #ifdef INET6
4391 		if (ifa->ifa_addr->sa_family == AF_INET6)
4392 			avoid_reset = true;
4393 #endif
4394 		/*
4395 		 * Calling init results in link renegotiation,
4396 		 * so we avoid doing it when possible.
4397 		 */
4398 		if (avoid_reset) {
4399 			if_setflagbits(ifp, IFF_UP, 0);
4400 			if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4401 				reinit = 1;
4402 #ifdef INET
4403 			if (!(if_getflags(ifp) & IFF_NOARP))
4404 				arp_ifinit(ifp, ifa);
4405 #endif
4406 		} else
4407 			err = ether_ioctl(ifp, command, data);
4408 		break;
4409 	case SIOCSIFMTU:
4410 		CTX_LOCK(ctx);
4411 		if (ifr->ifr_mtu == if_getmtu(ifp)) {
4412 			CTX_UNLOCK(ctx);
4413 			break;
4414 		}
4415 		bits = if_getdrvflags(ifp);
4416 		/* stop the driver and free any clusters before proceeding */
4417 		iflib_stop(ctx);
4418 
4419 		if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) {
4420 			STATE_LOCK(ctx);
4421 			if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size)
4422 				ctx->ifc_flags |= IFC_MULTISEG;
4423 			else
4424 				ctx->ifc_flags &= ~IFC_MULTISEG;
4425 			STATE_UNLOCK(ctx);
4426 			err = if_setmtu(ifp, ifr->ifr_mtu);
4427 		}
4428 		iflib_init_locked(ctx);
4429 		STATE_LOCK(ctx);
4430 		if_setdrvflags(ifp, bits);
4431 		STATE_UNLOCK(ctx);
4432 		CTX_UNLOCK(ctx);
4433 		break;
4434 	case SIOCSIFFLAGS:
4435 		CTX_LOCK(ctx);
4436 		if (if_getflags(ifp) & IFF_UP) {
4437 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4438 				if ((if_getflags(ifp) ^ ctx->ifc_if_flags) &
4439 				    (IFF_PROMISC | IFF_ALLMULTI)) {
4440 					CTX_UNLOCK(ctx);
4441 					err = IFDI_PROMISC_SET(ctx, if_getflags(ifp));
4442 					CTX_LOCK(ctx);
4443 				}
4444 			} else
4445 				reinit = 1;
4446 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4447 			iflib_stop(ctx);
4448 		}
4449 		ctx->ifc_if_flags = if_getflags(ifp);
4450 		CTX_UNLOCK(ctx);
4451 		break;
4452 	case SIOCADDMULTI:
4453 	case SIOCDELMULTI:
4454 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4455 			CTX_LOCK(ctx);
4456 			IFDI_INTR_DISABLE(ctx);
4457 			IFDI_MULTI_SET(ctx);
4458 			IFDI_INTR_ENABLE(ctx);
4459 			CTX_UNLOCK(ctx);
4460 		}
4461 		break;
4462 	case SIOCSIFMEDIA:
4463 		CTX_LOCK(ctx);
4464 		IFDI_MEDIA_SET(ctx);
4465 		CTX_UNLOCK(ctx);
4466 		/* FALLTHROUGH */
4467 	case SIOCGIFMEDIA:
4468 	case SIOCGIFXMEDIA:
4469 		err = ifmedia_ioctl(ifp, ifr, ctx->ifc_mediap, command);
4470 		break;
4471 	case SIOCGI2C:
4472 	{
4473 		struct ifi2creq i2c;
4474 
4475 		err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
4476 		if (err != 0)
4477 			break;
4478 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
4479 			err = EINVAL;
4480 			break;
4481 		}
4482 		if (i2c.len > sizeof(i2c.data)) {
4483 			err = EINVAL;
4484 			break;
4485 		}
4486 
4487 		if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0)
4488 			err = copyout(&i2c, ifr_data_get_ptr(ifr),
4489 			    sizeof(i2c));
4490 		break;
4491 	}
4492 	case SIOCSIFCAP:
4493 	{
4494 		int mask, setmask, oldmask;
4495 
4496 		oldmask = if_getcapenable(ifp);
4497 		mask = ifr->ifr_reqcap ^ oldmask;
4498 		mask &= ctx->ifc_softc_ctx.isc_capabilities | IFCAP_MEXTPG;
4499 		setmask = 0;
4500 #ifdef TCP_OFFLOAD
4501 		setmask |= mask & (IFCAP_TOE4 | IFCAP_TOE6);
4502 #endif
4503 		setmask |= (mask & IFCAP_FLAGS);
4504 		setmask |= (mask & IFCAP_WOL);
4505 
4506 		/*
4507 		 * If any RX csum has changed, change all the ones that
4508 		 * are supported by the driver.
4509 		 */
4510 		if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) {
4511 			setmask |= ctx->ifc_softc_ctx.isc_capabilities &
4512 			    (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6);
4513 		}
4514 
4515 		/*
4516 		 * want to ensure that traffic has stopped before we change any of the flags
4517 		 */
4518 		if (setmask) {
4519 			CTX_LOCK(ctx);
4520 			bits = if_getdrvflags(ifp);
4521 			if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4522 				iflib_stop(ctx);
4523 			STATE_LOCK(ctx);
4524 			if_togglecapenable(ifp, setmask);
4525 			ctx->ifc_softc_ctx.isc_capenable ^= setmask;
4526 			STATE_UNLOCK(ctx);
4527 			if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4528 				iflib_init_locked(ctx);
4529 			STATE_LOCK(ctx);
4530 			if_setdrvflags(ifp, bits);
4531 			STATE_UNLOCK(ctx);
4532 			CTX_UNLOCK(ctx);
4533 		}
4534 		if_vlancap(ifp);
4535 		break;
4536 	}
4537 	case SIOCGPRIVATE_0:
4538 	case SIOCSDRVSPEC:
4539 	case SIOCGDRVSPEC:
4540 		CTX_LOCK(ctx);
4541 		err = IFDI_PRIV_IOCTL(ctx, command, data);
4542 		CTX_UNLOCK(ctx);
4543 		break;
4544 	default:
4545 		err = ether_ioctl(ifp, command, data);
4546 		break;
4547 	}
4548 	if (reinit)
4549 		iflib_if_init(ctx);
4550 	return (err);
4551 }
4552 
4553 static uint64_t
iflib_if_get_counter(if_t ifp,ift_counter cnt)4554 iflib_if_get_counter(if_t ifp, ift_counter cnt)
4555 {
4556 	if_ctx_t ctx = if_getsoftc(ifp);
4557 
4558 	return (IFDI_GET_COUNTER(ctx, cnt));
4559 }
4560 
4561 /*********************************************************************
4562  *
4563  *  OTHER FUNCTIONS EXPORTED TO THE STACK
4564  *
4565  **********************************************************************/
4566 
4567 static void
iflib_vlan_register(void * arg,if_t ifp,uint16_t vtag)4568 iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag)
4569 {
4570 	if_ctx_t ctx = if_getsoftc(ifp);
4571 
4572 	if ((void *)ctx != arg)
4573 		return;
4574 
4575 	if ((vtag == 0) || (vtag > 4095))
4576 		return;
4577 
4578 	if (iflib_in_detach(ctx))
4579 		return;
4580 
4581 	CTX_LOCK(ctx);
4582 	/* Driver may need all untagged packets to be flushed */
4583 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4584 		iflib_stop(ctx);
4585 	IFDI_VLAN_REGISTER(ctx, vtag);
4586 	/* Re-init to load the changes, if required */
4587 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4588 		iflib_init_locked(ctx);
4589 	CTX_UNLOCK(ctx);
4590 }
4591 
4592 static void
iflib_vlan_unregister(void * arg,if_t ifp,uint16_t vtag)4593 iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag)
4594 {
4595 	if_ctx_t ctx = if_getsoftc(ifp);
4596 
4597 	if ((void *)ctx != arg)
4598 		return;
4599 
4600 	if ((vtag == 0) || (vtag > 4095))
4601 		return;
4602 
4603 	CTX_LOCK(ctx);
4604 	/* Driver may need all tagged packets to be flushed */
4605 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4606 		iflib_stop(ctx);
4607 	IFDI_VLAN_UNREGISTER(ctx, vtag);
4608 	/* Re-init to load the changes, if required */
4609 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4610 		iflib_init_locked(ctx);
4611 	CTX_UNLOCK(ctx);
4612 }
4613 
4614 static void
iflib_led_func(void * arg,int onoff)4615 iflib_led_func(void *arg, int onoff)
4616 {
4617 	if_ctx_t ctx = arg;
4618 
4619 	CTX_LOCK(ctx);
4620 	IFDI_LED_FUNC(ctx, onoff);
4621 	CTX_UNLOCK(ctx);
4622 }
4623 
4624 /*********************************************************************
4625  *
4626  *  BUS FUNCTION DEFINITIONS
4627  *
4628  **********************************************************************/
4629 
4630 int
iflib_device_probe(device_t dev)4631 iflib_device_probe(device_t dev)
4632 {
4633 	const pci_vendor_info_t *ent;
4634 	if_shared_ctx_t sctx;
4635 	uint16_t pci_device_id, pci_rev_id, pci_subdevice_id, pci_subvendor_id;
4636 	uint16_t pci_vendor_id;
4637 
4638 	if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
4639 		return (ENOTSUP);
4640 
4641 	pci_vendor_id = pci_get_vendor(dev);
4642 	pci_device_id = pci_get_device(dev);
4643 	pci_subvendor_id = pci_get_subvendor(dev);
4644 	pci_subdevice_id = pci_get_subdevice(dev);
4645 	pci_rev_id = pci_get_revid(dev);
4646 	if (sctx->isc_parse_devinfo != NULL)
4647 		sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id);
4648 
4649 	ent = sctx->isc_vendor_info;
4650 	while (ent->pvi_vendor_id != 0) {
4651 		if (pci_vendor_id != ent->pvi_vendor_id) {
4652 			ent++;
4653 			continue;
4654 		}
4655 		if ((pci_device_id == ent->pvi_device_id) &&
4656 		    ((pci_subvendor_id == ent->pvi_subvendor_id) ||
4657 		     (ent->pvi_subvendor_id == 0)) &&
4658 		    ((pci_subdevice_id == ent->pvi_subdevice_id) ||
4659 		     (ent->pvi_subdevice_id == 0)) &&
4660 		    ((pci_rev_id == ent->pvi_rev_id) ||
4661 		     (ent->pvi_rev_id == 0))) {
4662 			device_set_desc_copy(dev, ent->pvi_name);
4663 			/* this needs to be changed to zero if the bus probing code
4664 			 * ever stops re-probing on best match because the sctx
4665 			 * may have its values over written by register calls
4666 			 * in subsequent probes
4667 			 */
4668 			return (BUS_PROBE_DEFAULT);
4669 		}
4670 		ent++;
4671 	}
4672 	return (ENXIO);
4673 }
4674 
4675 int
iflib_device_probe_vendor(device_t dev)4676 iflib_device_probe_vendor(device_t dev)
4677 {
4678 	int probe;
4679 
4680 	probe = iflib_device_probe(dev);
4681 	if (probe == BUS_PROBE_DEFAULT)
4682 		return (BUS_PROBE_VENDOR);
4683 	else
4684 		return (probe);
4685 }
4686 
4687 static void
iflib_reset_qvalues(if_ctx_t ctx)4688 iflib_reset_qvalues(if_ctx_t ctx)
4689 {
4690 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4691 	if_shared_ctx_t sctx = ctx->ifc_sctx;
4692 	device_t dev = ctx->ifc_dev;
4693 	int i;
4694 
4695 	if (ctx->ifc_sysctl_ntxqs != 0)
4696 		scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs;
4697 	if (ctx->ifc_sysctl_nrxqs != 0)
4698 		scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs;
4699 
4700 	for (i = 0; i < sctx->isc_ntxqs; i++) {
4701 		if (ctx->ifc_sysctl_ntxds[i] != 0)
4702 			scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i];
4703 		else
4704 			scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4705 	}
4706 
4707 	for (i = 0; i < sctx->isc_nrxqs; i++) {
4708 		if (ctx->ifc_sysctl_nrxds[i] != 0)
4709 			scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i];
4710 		else
4711 			scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4712 	}
4713 
4714 	for (i = 0; i < sctx->isc_nrxqs; i++) {
4715 		if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) {
4716 			device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n",
4717 			    i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]);
4718 			scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i];
4719 		}
4720 		if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) {
4721 			device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n",
4722 			    i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]);
4723 			scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i];
4724 		}
4725 		if (!powerof2(scctx->isc_nrxd[i])) {
4726 			device_printf(dev, "nrxd%d: %d is not a power of 2 - using default value of %d\n",
4727 			    i, scctx->isc_nrxd[i], sctx->isc_nrxd_default[i]);
4728 			scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4729 		}
4730 	}
4731 
4732 	for (i = 0; i < sctx->isc_ntxqs; i++) {
4733 		if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) {
4734 			device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n",
4735 			    i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]);
4736 			scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i];
4737 		}
4738 		if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) {
4739 			device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n",
4740 			    i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]);
4741 			scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i];
4742 		}
4743 		if (!powerof2(scctx->isc_ntxd[i])) {
4744 			device_printf(dev, "ntxd%d: %d is not a power of 2 - using default value of %d\n",
4745 			    i, scctx->isc_ntxd[i], sctx->isc_ntxd_default[i]);
4746 			scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4747 		}
4748 	}
4749 	scctx->isc_tx_pad = 2;
4750 }
4751 
4752 static void
iflib_add_pfil(if_ctx_t ctx)4753 iflib_add_pfil(if_ctx_t ctx)
4754 {
4755 	struct pfil_head *pfil;
4756 	struct pfil_head_args pa;
4757 	iflib_rxq_t rxq;
4758 	int i;
4759 
4760 	pa.pa_version = PFIL_VERSION;
4761 	pa.pa_flags = PFIL_IN;
4762 	pa.pa_type = PFIL_TYPE_ETHERNET;
4763 	pa.pa_headname = if_name(ctx->ifc_ifp);
4764 	pfil = pfil_head_register(&pa);
4765 
4766 	for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
4767 		rxq->pfil = pfil;
4768 	}
4769 }
4770 
4771 static void
iflib_rem_pfil(if_ctx_t ctx)4772 iflib_rem_pfil(if_ctx_t ctx)
4773 {
4774 	struct pfil_head *pfil;
4775 	iflib_rxq_t rxq;
4776 	int i;
4777 
4778 	rxq = ctx->ifc_rxqs;
4779 	pfil = rxq->pfil;
4780 	for (i = 0; i < NRXQSETS(ctx); i++, rxq++) {
4781 		rxq->pfil = NULL;
4782 	}
4783 	pfil_head_unregister(pfil);
4784 }
4785 
4786 
4787 /*
4788  * Advance forward by n members of the cpuset ctx->ifc_cpus starting from
4789  * cpuid and wrapping as necessary.
4790  */
4791 static unsigned int
cpuid_advance(if_ctx_t ctx,unsigned int cpuid,unsigned int n)4792 cpuid_advance(if_ctx_t ctx, unsigned int cpuid, unsigned int n)
4793 {
4794 	unsigned int first_valid;
4795 	unsigned int last_valid;
4796 
4797 	/* cpuid should always be in the valid set */
4798 	MPASS(CPU_ISSET(cpuid, &ctx->ifc_cpus));
4799 
4800 	/* valid set should never be empty */
4801 	MPASS(!CPU_EMPTY(&ctx->ifc_cpus));
4802 
4803 	first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4804 	last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4805 	n = n % CPU_COUNT(&ctx->ifc_cpus);
4806 	while (n > 0) {
4807 		do {
4808 			cpuid++;
4809 			if (cpuid > last_valid)
4810 				cpuid = first_valid;
4811 		} while (!CPU_ISSET(cpuid, &ctx->ifc_cpus));
4812 		n--;
4813 	}
4814 
4815 	return (cpuid);
4816 }
4817 
4818 #if defined(SMP) && defined(SCHED_ULE)
4819 extern struct cpu_group *cpu_top;	/* CPU topology */
4820 
4821 static int
find_child_with_core(int cpu,struct cpu_group * grp)4822 find_child_with_core(int cpu, struct cpu_group *grp)
4823 {
4824 	int i;
4825 
4826 	if (grp->cg_children == 0)
4827 		return (-1);
4828 
4829 	MPASS(grp->cg_child);
4830 	for (i = 0; i < grp->cg_children; i++) {
4831 		if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask))
4832 			return (i);
4833 	}
4834 
4835 	return (-1);
4836 }
4837 
4838 
4839 /*
4840  * Find an L2 neighbor of the given CPU or return -1 if none found.  This
4841  * does not distinguish among multiple L2 neighbors if the given CPU has
4842  * more than one (it will always return the same result in that case).
4843  */
4844 static int
find_l2_neighbor(int cpu)4845 find_l2_neighbor(int cpu)
4846 {
4847 	struct cpu_group *grp;
4848 	int i;
4849 
4850 	grp = cpu_top;
4851 	if (grp == NULL)
4852 		return (-1);
4853 
4854 	/*
4855 	 * Find the smallest CPU group that contains the given core.
4856 	 */
4857 	i = 0;
4858 	while ((i = find_child_with_core(cpu, grp)) != -1) {
4859 		/*
4860 		 * If the smallest group containing the given CPU has less
4861 		 * than two members, we conclude the given CPU has no
4862 		 * L2 neighbor.
4863 		 */
4864 		if (grp->cg_child[i].cg_count <= 1)
4865 			return (-1);
4866 		grp = &grp->cg_child[i];
4867 	}
4868 
4869 	/* Must share L2. */
4870 	if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE)
4871 		return (-1);
4872 
4873 	/*
4874 	 * Select the first member of the set that isn't the reference
4875 	 * CPU, which at this point is guaranteed to exist.
4876 	 */
4877 	for (i = 0; i < CPU_SETSIZE; i++) {
4878 		if (CPU_ISSET(i, &grp->cg_mask) && i != cpu)
4879 			return (i);
4880 	}
4881 
4882 	/* Should never be reached */
4883 	return (-1);
4884 }
4885 
4886 #else
4887 static int
find_l2_neighbor(int cpu)4888 find_l2_neighbor(int cpu)
4889 {
4890 
4891 	return (-1);
4892 }
4893 #endif
4894 
4895 /*
4896  * CPU mapping behaviors
4897  * ---------------------
4898  * 'separate txrx' refers to the separate_txrx sysctl
4899  * 'use logical' refers to the use_logical_cores sysctl
4900  * 'INTR CPUS' indicates whether bus_get_cpus(INTR_CPUS) succeeded
4901  *
4902  *  separate     use     INTR
4903  *    txrx     logical   CPUS   result
4904  * ---------- --------- ------ ------------------------------------------------
4905  *     -          -       X     RX and TX queues mapped to consecutive physical
4906  *                              cores with RX/TX pairs on same core and excess
4907  *                              of either following
4908  *     -          X       X     RX and TX queues mapped to consecutive cores
4909  *                              of any type with RX/TX pairs on same core and
4910  *                              excess of either following
4911  *     X          -       X     RX and TX queues mapped to consecutive physical
4912  *                              cores; all RX then all TX
4913  *     X          X       X     RX queues mapped to consecutive physical cores
4914  *                              first, then TX queues mapped to L2 neighbor of
4915  *                              the corresponding RX queue if one exists,
4916  *                              otherwise to consecutive physical cores
4917  *     -         n/a      -     RX and TX queues mapped to consecutive cores of
4918  *                              any type with RX/TX pairs on same core and excess
4919  *                              of either following
4920  *     X         n/a      -     RX and TX queues mapped to consecutive cores of
4921  *                              any type; all RX then all TX
4922  */
4923 static unsigned int
get_cpuid_for_queue(if_ctx_t ctx,unsigned int base_cpuid,unsigned int qid,bool is_tx)4924 get_cpuid_for_queue(if_ctx_t ctx, unsigned int base_cpuid, unsigned int qid,
4925     bool is_tx)
4926 {
4927 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4928 	unsigned int core_index;
4929 
4930 	if (ctx->ifc_sysctl_separate_txrx) {
4931 		/*
4932 		 * When using separate CPUs for TX and RX, the assignment
4933 		 * will always be of a consecutive CPU out of the set of
4934 		 * context CPUs, except for the specific case where the
4935 		 * context CPUs are phsyical cores, the use of logical cores
4936 		 * has been enabled, the assignment is for TX, the TX qid
4937 		 * corresponds to an RX qid, and the CPU assigned to the
4938 		 * corresponding RX queue has an L2 neighbor.
4939 		 */
4940 		if (ctx->ifc_sysctl_use_logical_cores &&
4941 		    ctx->ifc_cpus_are_physical_cores &&
4942 		    is_tx && qid < scctx->isc_nrxqsets) {
4943 			int l2_neighbor;
4944 			unsigned int rx_cpuid;
4945 
4946 			rx_cpuid = cpuid_advance(ctx, base_cpuid, qid);
4947 			l2_neighbor = find_l2_neighbor(rx_cpuid);
4948 			if (l2_neighbor != -1) {
4949 				return (l2_neighbor);
4950 			}
4951 			/*
4952 			 * ... else fall through to the normal
4953 			 * consecutive-after-RX assignment scheme.
4954 			 *
4955 			 * Note that we are assuming that all RX queue CPUs
4956 			 * have an L2 neighbor, or all do not.  If a mixed
4957 			 * scenario is possible, we will have to keep track
4958 			 * separately of how many queues prior to this one
4959 			 * were not able to be assigned to an L2 neighbor.
4960 			 */
4961 		}
4962 		if (is_tx)
4963 			core_index = scctx->isc_nrxqsets + qid;
4964 		else
4965 			core_index = qid;
4966 	} else {
4967 		core_index = qid;
4968 	}
4969 
4970 	return (cpuid_advance(ctx, base_cpuid, core_index));
4971 }
4972 
4973 static uint16_t
get_ctx_core_offset(if_ctx_t ctx)4974 get_ctx_core_offset(if_ctx_t ctx)
4975 {
4976 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4977 	struct cpu_offset *op;
4978 	cpuset_t assigned_cpus;
4979 	unsigned int cores_consumed;
4980 	unsigned int base_cpuid = ctx->ifc_sysctl_core_offset;
4981 	unsigned int first_valid;
4982 	unsigned int last_valid;
4983 	unsigned int i;
4984 
4985 	first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4986 	last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4987 
4988 	if (base_cpuid != CORE_OFFSET_UNSPECIFIED) {
4989 		/*
4990 		 * Align the user-chosen base CPU ID to the next valid CPU
4991 		 * for this device.  If the chosen base CPU ID is smaller
4992 		 * than the first valid CPU or larger than the last valid
4993 		 * CPU, we assume the user does not know what the valid
4994 		 * range is for this device and is thinking in terms of a
4995 		 * zero-based reference frame, and so we shift the given
4996 		 * value into the valid range (and wrap accordingly) so the
4997 		 * intent is translated to the proper frame of reference.
4998 		 * If the base CPU ID is within the valid first/last, but
4999 		 * does not correspond to a valid CPU, it is advanced to the
5000 		 * next valid CPU (wrapping if necessary).
5001 		 */
5002 		if (base_cpuid < first_valid || base_cpuid > last_valid) {
5003 			/* shift from zero-based to first_valid-based */
5004 			base_cpuid += first_valid;
5005 			/* wrap to range [first_valid, last_valid] */
5006 			base_cpuid = (base_cpuid - first_valid) %
5007 			    (last_valid - first_valid + 1);
5008 		}
5009 		if (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) {
5010 			/*
5011 			 * base_cpuid is in [first_valid, last_valid], but
5012 			 * not a member of the valid set.  In this case,
5013 			 * there will always be a member of the valid set
5014 			 * with a CPU ID that is greater than base_cpuid,
5015 			 * and we simply advance to it.
5016 			 */
5017 			while (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus))
5018 				base_cpuid++;
5019 		}
5020 		return (base_cpuid);
5021 	}
5022 
5023 	/*
5024 	 * Determine how many cores will be consumed by performing the CPU
5025 	 * assignments and counting how many of the assigned CPUs correspond
5026 	 * to CPUs in the set of context CPUs.  This is done using the CPU
5027 	 * ID first_valid as the base CPU ID, as the base CPU must be within
5028 	 * the set of context CPUs.
5029 	 *
5030 	 * Note not all assigned CPUs will be in the set of context CPUs
5031 	 * when separate CPUs are being allocated to TX and RX queues,
5032 	 * assignment to logical cores has been enabled, the set of context
5033 	 * CPUs contains only physical CPUs, and TX queues are mapped to L2
5034 	 * neighbors of CPUs that RX queues have been mapped to - in this
5035 	 * case we do only want to count how many CPUs in the set of context
5036 	 * CPUs have been consumed, as that determines the next CPU in that
5037 	 * set to start allocating at for the next device for which
5038 	 * core_offset is not set.
5039 	 */
5040 	CPU_ZERO(&assigned_cpus);
5041 	for (i = 0; i < scctx->isc_ntxqsets; i++)
5042 		CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, true),
5043 		    &assigned_cpus);
5044 	for (i = 0; i < scctx->isc_nrxqsets; i++)
5045 		CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, false),
5046 		    &assigned_cpus);
5047 	CPU_AND(&assigned_cpus, &assigned_cpus, &ctx->ifc_cpus);
5048 	cores_consumed = CPU_COUNT(&assigned_cpus);
5049 
5050 	mtx_lock(&cpu_offset_mtx);
5051 	SLIST_FOREACH(op, &cpu_offsets, entries) {
5052 		if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
5053 			base_cpuid = op->next_cpuid;
5054 			op->next_cpuid = cpuid_advance(ctx, op->next_cpuid,
5055 			    cores_consumed);
5056 			MPASS(op->refcount < UINT_MAX);
5057 			op->refcount++;
5058 			break;
5059 		}
5060 	}
5061 	if (base_cpuid == CORE_OFFSET_UNSPECIFIED) {
5062 		base_cpuid = first_valid;
5063 		op = malloc(sizeof(struct cpu_offset), M_IFLIB,
5064 		    M_NOWAIT | M_ZERO);
5065 		if (op == NULL) {
5066 			device_printf(ctx->ifc_dev,
5067 			    "allocation for cpu offset failed.\n");
5068 		} else {
5069 			op->next_cpuid = cpuid_advance(ctx, base_cpuid,
5070 			    cores_consumed);
5071 			op->refcount = 1;
5072 			CPU_COPY(&ctx->ifc_cpus, &op->set);
5073 			SLIST_INSERT_HEAD(&cpu_offsets, op, entries);
5074 		}
5075 	}
5076 	mtx_unlock(&cpu_offset_mtx);
5077 
5078 	return (base_cpuid);
5079 }
5080 
5081 static void
unref_ctx_core_offset(if_ctx_t ctx)5082 unref_ctx_core_offset(if_ctx_t ctx)
5083 {
5084 	struct cpu_offset *op, *top;
5085 
5086 	mtx_lock(&cpu_offset_mtx);
5087 	SLIST_FOREACH_SAFE(op, &cpu_offsets, entries, top) {
5088 		if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
5089 			MPASS(op->refcount > 0);
5090 			op->refcount--;
5091 			if (op->refcount == 0) {
5092 				SLIST_REMOVE(&cpu_offsets, op, cpu_offset, entries);
5093 				free(op, M_IFLIB);
5094 			}
5095 			break;
5096 		}
5097 	}
5098 	mtx_unlock(&cpu_offset_mtx);
5099 }
5100 
5101 int
iflib_device_register(device_t dev,void * sc,if_shared_ctx_t sctx,if_ctx_t * ctxp)5102 iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp)
5103 {
5104 	if_ctx_t ctx;
5105 	if_t ifp;
5106 	if_softc_ctx_t scctx;
5107 	kobjop_desc_t kobj_desc;
5108 	kobj_method_t *kobj_method;
5109 	int err, msix, rid;
5110 	int num_txd, num_rxd;
5111 	char namebuf[TASKQUEUE_NAMELEN];
5112 
5113 	ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK | M_ZERO);
5114 
5115 	if (sc == NULL) {
5116 		sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK | M_ZERO);
5117 		device_set_softc(dev, ctx);
5118 		ctx->ifc_flags |= IFC_SC_ALLOCATED;
5119 	}
5120 
5121 	ctx->ifc_sctx = sctx;
5122 	ctx->ifc_dev = dev;
5123 	ctx->ifc_softc = sc;
5124 
5125 	iflib_register(ctx);
5126 	iflib_add_device_sysctl_pre(ctx);
5127 
5128 	scctx = &ctx->ifc_softc_ctx;
5129 	ifp = ctx->ifc_ifp;
5130 	if (ctx->ifc_sysctl_simple_tx) {
5131 #ifndef ALTQ
5132 		if_settransmitfn(ifp, iflib_simple_transmit);
5133 		device_printf(dev, "using simple if_transmit\n");
5134 #else
5135 		device_printf(dev, "ALTQ prevents using simple if_transmit\n");
5136 #endif
5137 	}
5138 	iflib_reset_qvalues(ctx);
5139 	IFNET_WLOCK();
5140 	CTX_LOCK(ctx);
5141 	if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
5142 		device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
5143 		goto fail_unlock;
5144 	}
5145 	_iflib_pre_assert(scctx);
5146 	ctx->ifc_txrx = *scctx->isc_txrx;
5147 
5148 	MPASS(scctx->isc_dma_width <= flsll(BUS_SPACE_MAXADDR));
5149 
5150 	if (sctx->isc_flags & IFLIB_DRIVER_MEDIA)
5151 		ctx->ifc_mediap = scctx->isc_media;
5152 
5153 #ifdef INVARIANTS
5154 	if (scctx->isc_capabilities & IFCAP_TXCSUM)
5155 		MPASS(scctx->isc_tx_csum_flags);
5156 #endif
5157 
5158 	if_setcapabilities(ifp,
5159 	    scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_MEXTPG);
5160 	if_setcapenable(ifp,
5161 	    scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_MEXTPG);
5162 
5163 	if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
5164 		scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
5165 	if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
5166 		scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
5167 
5168 	num_txd = iflib_num_tx_descs(ctx);
5169 	num_rxd = iflib_num_rx_descs(ctx);
5170 
5171 	/* XXX change for per-queue sizes */
5172 	device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
5173 	    num_txd, num_rxd);
5174 
5175 	if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION)
5176 		scctx->isc_tx_nsegments = max(1, num_txd /
5177 		    MAX_SINGLE_PACKET_FRACTION);
5178 	if (scctx->isc_tx_tso_segments_max > num_txd /
5179 	    MAX_SINGLE_PACKET_FRACTION)
5180 		scctx->isc_tx_tso_segments_max = max(1,
5181 		    num_txd / MAX_SINGLE_PACKET_FRACTION);
5182 
5183 	/* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
5184 	if (if_getcapabilities(ifp) & IFCAP_TSO) {
5185 		/*
5186 		 * The stack can't handle a TSO size larger than IP_MAXPACKET,
5187 		 * but some MACs do.
5188 		 */
5189 		if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
5190 		    IP_MAXPACKET));
5191 		/*
5192 		 * Take maximum number of m_pullup(9)'s in iflib_parse_header()
5193 		 * into account.  In the worst case, each of these calls will
5194 		 * add another mbuf and, thus, the requirement for another DMA
5195 		 * segment.  So for best performance, it doesn't make sense to
5196 		 * advertize a maximum of TSO segments that typically will
5197 		 * require defragmentation in iflib_encap().
5198 		 */
5199 		if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
5200 		if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
5201 	}
5202 	if (scctx->isc_rss_table_size == 0)
5203 		scctx->isc_rss_table_size = 64;
5204 	scctx->isc_rss_table_mask = scctx->isc_rss_table_size - 1;
5205 
5206 	/* Create and start admin taskqueue */
5207 	snprintf(namebuf, TASKQUEUE_NAMELEN, "if_%s_tq", device_get_nameunit(dev));
5208 	ctx->ifc_tq = taskqueue_create_fast(namebuf, M_NOWAIT,
5209 	    taskqueue_thread_enqueue, &ctx->ifc_tq);
5210 	if (ctx->ifc_tq == NULL) {
5211 		device_printf(dev, "Unable to create admin taskqueue\n");
5212 		return (ENOMEM);
5213 	}
5214 
5215 	err = taskqueue_start_threads(&ctx->ifc_tq, 1, PI_NET, "%s", namebuf);
5216 	if (err) {
5217 		device_printf(dev,
5218 		    "Unable to start admin taskqueue threads error: %d\n",
5219 		    err);
5220 		taskqueue_free(ctx->ifc_tq);
5221 		return (err);
5222 	}
5223 
5224 	TASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
5225 
5226 	/* Set up cpu set.  If it fails, use the set of all CPUs. */
5227 	if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) {
5228 		device_printf(dev, "Unable to fetch CPU list\n");
5229 		CPU_COPY(&all_cpus, &ctx->ifc_cpus);
5230 		ctx->ifc_cpus_are_physical_cores = false;
5231 	} else
5232 		ctx->ifc_cpus_are_physical_cores = true;
5233 	MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0);
5234 
5235 	/*
5236 	 * Now set up MSI or MSI-X, should return us the number of supported
5237 	 * vectors (will be 1 for a legacy interrupt and MSI).
5238 	 */
5239 	if (sctx->isc_flags & IFLIB_SKIP_MSIX) {
5240 		msix = scctx->isc_vectors;
5241 	} else if (scctx->isc_msix_bar != 0)
5242 		/*
5243 		 * The simple fact that isc_msix_bar is not 0 does not mean we
5244 		 * we have a good value there that is known to work.
5245 		 */
5246 		msix = iflib_msix_init(ctx);
5247 	else {
5248 		scctx->isc_vectors = 1;
5249 		scctx->isc_ntxqsets = 1;
5250 		scctx->isc_nrxqsets = 1;
5251 		scctx->isc_intr = IFLIB_INTR_LEGACY;
5252 		msix = 0;
5253 	}
5254 	/* Get memory for the station queues */
5255 	if ((err = iflib_queues_alloc(ctx))) {
5256 		device_printf(dev, "Unable to allocate queue memory\n");
5257 		goto fail_intr_free;
5258 	}
5259 
5260 	if ((err = iflib_qset_structures_setup(ctx)))
5261 		goto fail_queues;
5262 
5263 	/*
5264 	 * Now that we know how many queues there are, get the core offset.
5265 	 */
5266 	ctx->ifc_sysctl_core_offset = get_ctx_core_offset(ctx);
5267 
5268 	if (msix > 1) {
5269 		/*
5270 		 * When using MSI-X, ensure that ifdi_{r,t}x_queue_intr_enable
5271 		 * aren't the default NULL implementation.
5272 		 */
5273 		kobj_desc = &ifdi_rx_queue_intr_enable_desc;
5274 		kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5275 		    kobj_desc);
5276 		if (kobj_method == &kobj_desc->deflt) {
5277 			device_printf(dev,
5278 			    "MSI-X requires ifdi_rx_queue_intr_enable method");
5279 			err = EOPNOTSUPP;
5280 			goto fail_queues;
5281 		}
5282 		kobj_desc = &ifdi_tx_queue_intr_enable_desc;
5283 		kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5284 		    kobj_desc);
5285 		if (kobj_method == &kobj_desc->deflt) {
5286 			device_printf(dev,
5287 			    "MSI-X requires ifdi_tx_queue_intr_enable method");
5288 			err = EOPNOTSUPP;
5289 			goto fail_queues;
5290 		}
5291 
5292 		/*
5293 		 * Assign the MSI-X vectors.
5294 		 * Note that the default NULL ifdi_msix_intr_assign method will
5295 		 * fail here, too.
5296 		 */
5297 		err = IFDI_MSIX_INTR_ASSIGN(ctx, msix);
5298 		if (err != 0) {
5299 			device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n",
5300 			    err);
5301 			goto fail_queues;
5302 		}
5303 	} else if (scctx->isc_intr != IFLIB_INTR_MSIX) {
5304 		rid = 0;
5305 		if (scctx->isc_intr == IFLIB_INTR_MSI) {
5306 			MPASS(msix == 1);
5307 			rid = 1;
5308 		}
5309 		if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) {
5310 			device_printf(dev, "iflib_legacy_setup failed %d\n", err);
5311 			goto fail_queues;
5312 		}
5313 	} else {
5314 		device_printf(dev,
5315 		    "Cannot use iflib with only 1 MSI-X interrupt!\n");
5316 		err = ENODEV;
5317 		goto fail_queues;
5318 	}
5319 
5320 	/*
5321 	 * It prevents a double-locking panic with iflib_media_status when
5322 	 * the driver loads.
5323 	 */
5324 	CTX_UNLOCK(ctx);
5325 	ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5326 	CTX_LOCK(ctx);
5327 
5328 	if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5329 		device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5330 		goto fail_detach;
5331 	}
5332 
5333 	/*
5334 	 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5335 	 * This must appear after the call to ether_ifattach() because
5336 	 * ether_ifattach() sets if_hdrlen to the default value.
5337 	 */
5338 	if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5339 		if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
5340 
5341 	if ((err = iflib_netmap_attach(ctx))) {
5342 		device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err);
5343 		goto fail_detach;
5344 	}
5345 	*ctxp = ctx;
5346 
5347 	DEBUGNET_SET(ctx->ifc_ifp, iflib);
5348 
5349 	iflib_add_device_sysctl_post(ctx);
5350 	iflib_add_pfil(ctx);
5351 	ctx->ifc_flags |= IFC_INIT_DONE;
5352 	CTX_UNLOCK(ctx);
5353 	IFNET_WUNLOCK();
5354 
5355 	return (0);
5356 
5357 fail_detach:
5358 	ether_ifdetach(ctx->ifc_ifp);
5359 fail_queues:
5360 	taskqueue_free(ctx->ifc_tq);
5361 	iflib_tqg_detach(ctx);
5362 	iflib_tx_structures_free(ctx);
5363 	iflib_rx_structures_free(ctx);
5364 	IFDI_DETACH(ctx);
5365 	IFDI_QUEUES_FREE(ctx);
5366 fail_intr_free:
5367 	iflib_free_intr_mem(ctx);
5368 fail_unlock:
5369 	CTX_UNLOCK(ctx);
5370 	IFNET_WUNLOCK();
5371 	iflib_deregister(ctx);
5372 	device_set_softc(ctx->ifc_dev, NULL);
5373 	if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5374 		free(ctx->ifc_softc, M_IFLIB);
5375 	free(ctx, M_IFLIB);
5376 	return (err);
5377 }
5378 
5379 int
iflib_device_attach(device_t dev)5380 iflib_device_attach(device_t dev)
5381 {
5382 	if_ctx_t ctx;
5383 	if_shared_ctx_t sctx;
5384 
5385 	if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
5386 		return (ENOTSUP);
5387 
5388 	pci_enable_busmaster(dev);
5389 
5390 	return (iflib_device_register(dev, NULL, sctx, &ctx));
5391 }
5392 
5393 int
iflib_device_deregister(if_ctx_t ctx)5394 iflib_device_deregister(if_ctx_t ctx)
5395 {
5396 	if_t ifp = ctx->ifc_ifp;
5397 	device_t dev = ctx->ifc_dev;
5398 
5399 	/* Make sure VLANS are not using driver */
5400 	if (if_vlantrunkinuse(ifp)) {
5401 		device_printf(dev, "Vlan in use, detach first\n");
5402 		return (EBUSY);
5403 	}
5404 #ifdef PCI_IOV
5405 	if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) {
5406 		device_printf(dev, "SR-IOV in use; detach first.\n");
5407 		return (EBUSY);
5408 	}
5409 #endif
5410 
5411 	STATE_LOCK(ctx);
5412 	ctx->ifc_flags |= IFC_IN_DETACH;
5413 	STATE_UNLOCK(ctx);
5414 
5415 	/* Unregister VLAN handlers before calling iflib_stop() */
5416 	iflib_unregister_vlan_handlers(ctx);
5417 
5418 	iflib_netmap_detach(ifp);
5419 	ether_ifdetach(ifp);
5420 
5421 	CTX_LOCK(ctx);
5422 	iflib_stop(ctx);
5423 	CTX_UNLOCK(ctx);
5424 
5425 	iflib_rem_pfil(ctx);
5426 	if (ctx->ifc_led_dev != NULL)
5427 		led_destroy(ctx->ifc_led_dev);
5428 
5429 	iflib_tqg_detach(ctx);
5430 	iflib_tx_structures_free(ctx);
5431 	iflib_rx_structures_free(ctx);
5432 
5433 	CTX_LOCK(ctx);
5434 	IFDI_DETACH(ctx);
5435 	IFDI_QUEUES_FREE(ctx);
5436 	CTX_UNLOCK(ctx);
5437 
5438 	taskqueue_free(ctx->ifc_tq);
5439 	ctx->ifc_tq = NULL;
5440 
5441 	/* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5442 	iflib_free_intr_mem(ctx);
5443 
5444 	bus_generic_detach(dev);
5445 
5446 	iflib_deregister(ctx);
5447 
5448 	device_set_softc(ctx->ifc_dev, NULL);
5449 	if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5450 		free(ctx->ifc_softc, M_IFLIB);
5451 	unref_ctx_core_offset(ctx);
5452 	free(ctx, M_IFLIB);
5453 	return (0);
5454 }
5455 
5456 static void
iflib_tqg_detach(if_ctx_t ctx)5457 iflib_tqg_detach(if_ctx_t ctx)
5458 {
5459 	iflib_txq_t txq;
5460 	iflib_rxq_t rxq;
5461 	int i;
5462 	struct taskqgroup *tqg;
5463 
5464 	/* XXX drain any dependent tasks */
5465 	tqg = qgroup_if_io_tqg;
5466 	for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) {
5467 		callout_drain(&txq->ift_timer);
5468 #ifdef DEV_NETMAP
5469 		callout_drain(&txq->ift_netmap_timer);
5470 #endif /* DEV_NETMAP */
5471 		if (txq->ift_task.gt_uniq != NULL)
5472 			taskqgroup_detach(tqg, &txq->ift_task);
5473 	}
5474 	for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
5475 		if (rxq->ifr_task.gt_uniq != NULL)
5476 			taskqgroup_detach(tqg, &rxq->ifr_task);
5477 	}
5478 }
5479 
5480 static void
iflib_free_intr_mem(if_ctx_t ctx)5481 iflib_free_intr_mem(if_ctx_t ctx)
5482 {
5483 
5484 	if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) {
5485 		iflib_irq_free(ctx, &ctx->ifc_legacy_irq);
5486 	}
5487 	if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) {
5488 		pci_release_msi(ctx->ifc_dev);
5489 	}
5490 	if (ctx->ifc_msix_mem != NULL) {
5491 		bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY,
5492 		    rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem);
5493 		ctx->ifc_msix_mem = NULL;
5494 	}
5495 }
5496 
5497 int
iflib_device_detach(device_t dev)5498 iflib_device_detach(device_t dev)
5499 {
5500 	if_ctx_t ctx = device_get_softc(dev);
5501 
5502 	return (iflib_device_deregister(ctx));
5503 }
5504 
5505 int
iflib_device_suspend(device_t dev)5506 iflib_device_suspend(device_t dev)
5507 {
5508 	if_ctx_t ctx = device_get_softc(dev);
5509 
5510 	CTX_LOCK(ctx);
5511 	IFDI_SUSPEND(ctx);
5512 	CTX_UNLOCK(ctx);
5513 
5514 	return (bus_generic_suspend(dev));
5515 }
5516 int
iflib_device_shutdown(device_t dev)5517 iflib_device_shutdown(device_t dev)
5518 {
5519 	if_ctx_t ctx = device_get_softc(dev);
5520 
5521 	CTX_LOCK(ctx);
5522 	IFDI_SHUTDOWN(ctx);
5523 	CTX_UNLOCK(ctx);
5524 
5525 	return (bus_generic_suspend(dev));
5526 }
5527 
5528 int
iflib_device_resume(device_t dev)5529 iflib_device_resume(device_t dev)
5530 {
5531 	if_ctx_t ctx = device_get_softc(dev);
5532 	iflib_txq_t txq = ctx->ifc_txqs;
5533 
5534 	CTX_LOCK(ctx);
5535 	IFDI_RESUME(ctx);
5536 	iflib_if_init_locked(ctx);
5537 	CTX_UNLOCK(ctx);
5538 	for (int i = 0; i < NTXQSETS(ctx); i++, txq++)
5539 		iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
5540 
5541 	return (bus_generic_resume(dev));
5542 }
5543 
5544 int
iflib_device_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * params)5545 iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params)
5546 {
5547 	int error;
5548 	if_ctx_t ctx = device_get_softc(dev);
5549 
5550 	CTX_LOCK(ctx);
5551 	error = IFDI_IOV_INIT(ctx, num_vfs, params);
5552 	CTX_UNLOCK(ctx);
5553 
5554 	return (error);
5555 }
5556 
5557 void
iflib_device_iov_uninit(device_t dev)5558 iflib_device_iov_uninit(device_t dev)
5559 {
5560 	if_ctx_t ctx = device_get_softc(dev);
5561 
5562 	CTX_LOCK(ctx);
5563 	IFDI_IOV_UNINIT(ctx);
5564 	CTX_UNLOCK(ctx);
5565 }
5566 
5567 int
iflib_device_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * params)5568 iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params)
5569 {
5570 	int error;
5571 	if_ctx_t ctx = device_get_softc(dev);
5572 
5573 	CTX_LOCK(ctx);
5574 	error = IFDI_IOV_VF_ADD(ctx, vfnum, params);
5575 	CTX_UNLOCK(ctx);
5576 
5577 	return (error);
5578 }
5579 
5580 /*********************************************************************
5581  *
5582  *  MODULE FUNCTION DEFINITIONS
5583  *
5584  **********************************************************************/
5585 
5586 /*
5587  * - Start a fast taskqueue thread for each core
5588  * - Start a taskqueue for control operations
5589  */
5590 static int
iflib_module_init(void)5591 iflib_module_init(void)
5592 {
5593 	iflib_timer_default = hz / 2;
5594 	return (0);
5595 }
5596 
5597 static int
iflib_module_event_handler(module_t mod,int what,void * arg)5598 iflib_module_event_handler(module_t mod, int what, void *arg)
5599 {
5600 	int err;
5601 
5602 	switch (what) {
5603 	case MOD_LOAD:
5604 		if ((err = iflib_module_init()) != 0)
5605 			return (err);
5606 		break;
5607 	case MOD_UNLOAD:
5608 		return (EBUSY);
5609 	default:
5610 		return (EOPNOTSUPP);
5611 	}
5612 
5613 	return (0);
5614 }
5615 
5616 /*********************************************************************
5617  *
5618  *  PUBLIC FUNCTION DEFINITIONS
5619  *     ordered as in iflib.h
5620  *
5621  **********************************************************************/
5622 
5623 static void
_iflib_assert(if_shared_ctx_t sctx)5624 _iflib_assert(if_shared_ctx_t sctx)
5625 {
5626 	int i;
5627 
5628 	MPASS(sctx->isc_tx_maxsize);
5629 	MPASS(sctx->isc_tx_maxsegsize);
5630 
5631 	MPASS(sctx->isc_rx_maxsize);
5632 	MPASS(sctx->isc_rx_nsegments);
5633 	MPASS(sctx->isc_rx_maxsegsize);
5634 
5635 	MPASS(sctx->isc_nrxqs >= 1 && sctx->isc_nrxqs <= 8);
5636 	for (i = 0; i < sctx->isc_nrxqs; i++) {
5637 		MPASS(sctx->isc_nrxd_min[i]);
5638 		MPASS(powerof2(sctx->isc_nrxd_min[i]));
5639 		MPASS(sctx->isc_nrxd_max[i]);
5640 		MPASS(powerof2(sctx->isc_nrxd_max[i]));
5641 		MPASS(sctx->isc_nrxd_default[i]);
5642 		MPASS(powerof2(sctx->isc_nrxd_default[i]));
5643 	}
5644 
5645 	MPASS(sctx->isc_ntxqs >= 1 && sctx->isc_ntxqs <= 8);
5646 	for (i = 0; i < sctx->isc_ntxqs; i++) {
5647 		MPASS(sctx->isc_ntxd_min[i]);
5648 		MPASS(powerof2(sctx->isc_ntxd_min[i]));
5649 		MPASS(sctx->isc_ntxd_max[i]);
5650 		MPASS(powerof2(sctx->isc_ntxd_max[i]));
5651 		MPASS(sctx->isc_ntxd_default[i]);
5652 		MPASS(powerof2(sctx->isc_ntxd_default[i]));
5653 	}
5654 }
5655 
5656 static void
_iflib_pre_assert(if_softc_ctx_t scctx)5657 _iflib_pre_assert(if_softc_ctx_t scctx)
5658 {
5659 
5660 	MPASS(scctx->isc_txrx->ift_txd_encap);
5661 	MPASS(scctx->isc_txrx->ift_txd_flush);
5662 	MPASS(scctx->isc_txrx->ift_txd_credits_update);
5663 	MPASS(scctx->isc_txrx->ift_rxd_available);
5664 	MPASS(scctx->isc_txrx->ift_rxd_pkt_get);
5665 	MPASS(scctx->isc_txrx->ift_rxd_refill);
5666 	MPASS(scctx->isc_txrx->ift_rxd_flush);
5667 }
5668 
5669 static void
iflib_register(if_ctx_t ctx)5670 iflib_register(if_ctx_t ctx)
5671 {
5672 	if_shared_ctx_t sctx = ctx->ifc_sctx;
5673 	driver_t *driver = sctx->isc_driver;
5674 	device_t dev = ctx->ifc_dev;
5675 	if_t ifp;
5676 
5677 	_iflib_assert(sctx);
5678 
5679 	CTX_LOCK_INIT(ctx);
5680 	STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev));
5681 	ifp = ctx->ifc_ifp = if_alloc_dev(IFT_ETHER, dev);
5682 
5683 	/*
5684 	 * Initialize our context's device specific methods
5685 	 */
5686 	kobj_init((kobj_t) ctx, (kobj_class_t) driver);
5687 	kobj_class_compile((kobj_class_t) driver);
5688 
5689 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
5690 	if_setsoftc(ifp, ctx);
5691 	if_setdev(ifp, dev);
5692 	if_setinitfn(ifp, iflib_if_init);
5693 	if_setioctlfn(ifp, iflib_if_ioctl);
5694 #ifdef ALTQ
5695 	if_setstartfn(ifp, iflib_altq_if_start);
5696 	if_settransmitfn(ifp, iflib_altq_if_transmit);
5697 	if_setsendqready(ifp);
5698 #else
5699 	if_settransmitfn(ifp, iflib_if_transmit);
5700 #endif
5701 	if_setqflushfn(ifp, iflib_if_qflush);
5702 	if_setgetcounterfn(ifp, iflib_if_get_counter);
5703 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
5704 	ctx->ifc_vlan_attach_event =
5705 	    EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx,
5706 		    EVENTHANDLER_PRI_FIRST);
5707 	ctx->ifc_vlan_detach_event =
5708 	    EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx,
5709 		    EVENTHANDLER_PRI_FIRST);
5710 
5711 	if ((sctx->isc_flags & IFLIB_DRIVER_MEDIA) == 0) {
5712 		ctx->ifc_mediap = &ctx->ifc_media;
5713 		ifmedia_init(ctx->ifc_mediap, IFM_IMASK,
5714 		    iflib_media_change, iflib_media_status);
5715 	}
5716 }
5717 
5718 static void
iflib_unregister_vlan_handlers(if_ctx_t ctx)5719 iflib_unregister_vlan_handlers(if_ctx_t ctx)
5720 {
5721 	/* Unregister VLAN events */
5722 	if (ctx->ifc_vlan_attach_event != NULL) {
5723 		EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event);
5724 		ctx->ifc_vlan_attach_event = NULL;
5725 	}
5726 	if (ctx->ifc_vlan_detach_event != NULL) {
5727 		EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event);
5728 		ctx->ifc_vlan_detach_event = NULL;
5729 	}
5730 
5731 }
5732 
5733 static void
iflib_deregister(if_ctx_t ctx)5734 iflib_deregister(if_ctx_t ctx)
5735 {
5736 	if_t ifp = ctx->ifc_ifp;
5737 
5738 	/* Remove all media */
5739 	ifmedia_removeall(&ctx->ifc_media);
5740 
5741 	/* Ensure that VLAN event handlers are unregistered */
5742 	iflib_unregister_vlan_handlers(ctx);
5743 
5744 	/* Release kobject reference */
5745 	kobj_delete((kobj_t) ctx, NULL);
5746 
5747 	/* Free the ifnet structure */
5748 	if_free(ifp);
5749 
5750 	STATE_LOCK_DESTROY(ctx);
5751 
5752 	/* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5753 	CTX_LOCK_DESTROY(ctx);
5754 }
5755 
5756 static int
iflib_queues_alloc(if_ctx_t ctx)5757 iflib_queues_alloc(if_ctx_t ctx)
5758 {
5759 	if_shared_ctx_t sctx = ctx->ifc_sctx;
5760 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
5761 	device_t dev = ctx->ifc_dev;
5762 	int nrxqsets = scctx->isc_nrxqsets;
5763 	int ntxqsets = scctx->isc_ntxqsets;
5764 	iflib_txq_t txq;
5765 	iflib_rxq_t rxq;
5766 	iflib_fl_t fl = NULL;
5767 	int i, j, cpu, err, txconf, rxconf;
5768 	iflib_dma_info_t ifdip;
5769 	uint32_t *rxqsizes = scctx->isc_rxqsizes;
5770 	uint32_t *txqsizes = scctx->isc_txqsizes;
5771 	uint8_t nrxqs = sctx->isc_nrxqs;
5772 	uint8_t ntxqs = sctx->isc_ntxqs;
5773 	int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1;
5774 	int fl_offset = (sctx->isc_flags & IFLIB_HAS_RXCQ ? 1 : 0);
5775 	caddr_t *vaddrs;
5776 	uint64_t *paddrs;
5777 
5778 	KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1"));
5779 	KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1"));
5780 	KASSERT(nrxqs >= fl_offset + nfree_lists,
5781 	    ("there must be at least a rxq for each free list"));
5782 
5783 	/* Allocate the TX ring struct memory */
5784 	if (!(ctx->ifc_txqs =
5785 	    (iflib_txq_t) malloc(sizeof(struct iflib_txq) *
5786 		    ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5787 		device_printf(dev, "Unable to allocate TX ring memory\n");
5788 		err = ENOMEM;
5789 		goto fail;
5790 	}
5791 
5792 	/* Now allocate the RX */
5793 	if (!(ctx->ifc_rxqs =
5794 	    (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) *
5795 		    nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5796 		device_printf(dev, "Unable to allocate RX ring memory\n");
5797 		err = ENOMEM;
5798 		goto rx_fail;
5799 	}
5800 
5801 	txq = ctx->ifc_txqs;
5802 	rxq = ctx->ifc_rxqs;
5803 
5804 	/*
5805 	 * XXX handle allocation failure
5806 	 */
5807 	for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) {
5808 		/* Set up some basics */
5809 
5810 		if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs,
5811 		    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5812 			device_printf(dev,
5813 			    "Unable to allocate TX DMA info memory\n");
5814 			err = ENOMEM;
5815 			goto err_tx_desc;
5816 		}
5817 		txq->ift_ifdi = ifdip;
5818 		for (j = 0; j < ntxqs; j++, ifdip++) {
5819 			if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) {
5820 				device_printf(dev,
5821 				    "Unable to allocate TX descriptors\n");
5822 				err = ENOMEM;
5823 				goto err_tx_desc;
5824 			}
5825 			txq->ift_txd_size[j] = scctx->isc_txd_size[j];
5826 			bzero((void *)ifdip->idi_vaddr, txqsizes[j]);
5827 		}
5828 		txq->ift_ctx = ctx;
5829 		txq->ift_id = i;
5830 		if (sctx->isc_flags & IFLIB_HAS_TXCQ) {
5831 			txq->ift_br_offset = 1;
5832 		} else {
5833 			txq->ift_br_offset = 0;
5834 		}
5835 
5836 		if (iflib_txsd_alloc(txq)) {
5837 			device_printf(dev, "Critical Failure setting up TX buffers\n");
5838 			err = ENOMEM;
5839 			goto err_tx_desc;
5840 		}
5841 
5842 		/* Initialize the TX lock */
5843 		snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:TX(%d):callout",
5844 		    device_get_nameunit(dev), txq->ift_id);
5845 		mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF);
5846 		callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0);
5847 		txq->ift_timer.c_cpu = cpu;
5848 #ifdef DEV_NETMAP
5849 		callout_init_mtx(&txq->ift_netmap_timer, &txq->ift_mtx, 0);
5850 		txq->ift_netmap_timer.c_cpu = cpu;
5851 #endif /* DEV_NETMAP */
5852 
5853 		err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain,
5854 		    iflib_txq_can_drain, M_IFLIB, M_WAITOK);
5855 		if (err) {
5856 			/* XXX free any allocated rings */
5857 			device_printf(dev, "Unable to allocate buf_ring\n");
5858 			goto err_tx_desc;
5859 		}
5860 		txq->ift_reclaim_thresh = ctx->ifc_sysctl_tx_reclaim_thresh;
5861 	}
5862 
5863 	for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) {
5864 		/* Set up some basics */
5865 		callout_init(&rxq->ifr_watchdog, 1);
5866 
5867 		if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs,
5868 		    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5869 			device_printf(dev,
5870 			    "Unable to allocate RX DMA info memory\n");
5871 			err = ENOMEM;
5872 			goto err_tx_desc;
5873 		}
5874 
5875 		rxq->ifr_ifdi = ifdip;
5876 		/* XXX this needs to be changed if #rx queues != #tx queues */
5877 		rxq->ifr_ntxqirq = 1;
5878 		rxq->ifr_txqid[0] = i;
5879 		for (j = 0; j < nrxqs; j++, ifdip++) {
5880 			if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) {
5881 				device_printf(dev,
5882 				    "Unable to allocate RX descriptors\n");
5883 				err = ENOMEM;
5884 				goto err_tx_desc;
5885 			}
5886 			bzero((void *)ifdip->idi_vaddr, rxqsizes[j]);
5887 		}
5888 		rxq->ifr_ctx = ctx;
5889 		rxq->ifr_id = i;
5890 		rxq->ifr_fl_offset = fl_offset;
5891 		rxq->ifr_nfl = nfree_lists;
5892 		if (!(fl =
5893 		    (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) {
5894 			device_printf(dev, "Unable to allocate free list memory\n");
5895 			err = ENOMEM;
5896 			goto err_tx_desc;
5897 		}
5898 		rxq->ifr_fl = fl;
5899 		for (j = 0; j < nfree_lists; j++) {
5900 			fl[j].ifl_rxq = rxq;
5901 			fl[j].ifl_id = j;
5902 			fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset];
5903 			fl[j].ifl_rxd_size = scctx->isc_rxd_size[j];
5904 		}
5905 		/* Allocate receive buffers for the ring */
5906 		if (iflib_rxsd_alloc(rxq)) {
5907 			device_printf(dev,
5908 			    "Critical Failure setting up receive buffers\n");
5909 			err = ENOMEM;
5910 			goto err_rx_desc;
5911 		}
5912 
5913 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
5914 			fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB,
5915 			    M_WAITOK);
5916 	}
5917 
5918 	/* TXQs */
5919 	vaddrs = malloc(sizeof(caddr_t)  * ntxqsets * ntxqs, M_IFLIB, M_WAITOK);
5920 	paddrs = malloc(sizeof(uint64_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK);
5921 	for (i = 0; i < ntxqsets; i++) {
5922 		iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi;
5923 
5924 		for (j = 0; j < ntxqs; j++, di++) {
5925 			vaddrs[i * ntxqs + j] = di->idi_vaddr;
5926 			paddrs[i * ntxqs + j] = di->idi_paddr;
5927 		}
5928 	}
5929 	if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) {
5930 		device_printf(ctx->ifc_dev,
5931 		    "Unable to allocate device TX queue\n");
5932 		iflib_tx_structures_free(ctx);
5933 		free(vaddrs, M_IFLIB);
5934 		free(paddrs, M_IFLIB);
5935 		goto err_rx_desc;
5936 	}
5937 	free(vaddrs, M_IFLIB);
5938 	free(paddrs, M_IFLIB);
5939 
5940 	/* RXQs */
5941 	vaddrs = malloc(sizeof(caddr_t)  * nrxqsets * nrxqs, M_IFLIB, M_WAITOK);
5942 	paddrs = malloc(sizeof(uint64_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK);
5943 	for (i = 0; i < nrxqsets; i++) {
5944 		iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi;
5945 
5946 		for (j = 0; j < nrxqs; j++, di++) {
5947 			vaddrs[i * nrxqs + j] = di->idi_vaddr;
5948 			paddrs[i * nrxqs + j] = di->idi_paddr;
5949 		}
5950 	}
5951 	if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) {
5952 		device_printf(ctx->ifc_dev,
5953 		    "Unable to allocate device RX queue\n");
5954 		iflib_tx_structures_free(ctx);
5955 		free(vaddrs, M_IFLIB);
5956 		free(paddrs, M_IFLIB);
5957 		goto err_rx_desc;
5958 	}
5959 	free(vaddrs, M_IFLIB);
5960 	free(paddrs, M_IFLIB);
5961 
5962 	return (0);
5963 
5964 /* XXX handle allocation failure changes */
5965 err_rx_desc:
5966 err_tx_desc:
5967 rx_fail:
5968 	if (ctx->ifc_rxqs != NULL)
5969 		free(ctx->ifc_rxqs, M_IFLIB);
5970 	ctx->ifc_rxqs = NULL;
5971 	if (ctx->ifc_txqs != NULL)
5972 		free(ctx->ifc_txqs, M_IFLIB);
5973 	ctx->ifc_txqs = NULL;
5974 fail:
5975 	return (err);
5976 }
5977 
5978 static int
iflib_tx_structures_setup(if_ctx_t ctx)5979 iflib_tx_structures_setup(if_ctx_t ctx)
5980 {
5981 	iflib_txq_t txq = ctx->ifc_txqs;
5982 	int i;
5983 
5984 	for (i = 0; i < NTXQSETS(ctx); i++, txq++)
5985 		iflib_txq_setup(txq);
5986 
5987 	return (0);
5988 }
5989 
5990 static void
iflib_tx_structures_free(if_ctx_t ctx)5991 iflib_tx_structures_free(if_ctx_t ctx)
5992 {
5993 	iflib_txq_t txq = ctx->ifc_txqs;
5994 	if_shared_ctx_t sctx = ctx->ifc_sctx;
5995 	int i, j;
5996 
5997 	for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
5998 		for (j = 0; j < sctx->isc_ntxqs; j++)
5999 			iflib_dma_free(&txq->ift_ifdi[j]);
6000 		iflib_txq_destroy(txq);
6001 	}
6002 	free(ctx->ifc_txqs, M_IFLIB);
6003 	ctx->ifc_txqs = NULL;
6004 }
6005 
6006 /*********************************************************************
6007  *
6008  *  Initialize all receive rings.
6009  *
6010  **********************************************************************/
6011 static int
iflib_rx_structures_setup(if_ctx_t ctx)6012 iflib_rx_structures_setup(if_ctx_t ctx)
6013 {
6014 	iflib_rxq_t rxq = ctx->ifc_rxqs;
6015 	int q;
6016 #if defined(INET6) || defined(INET)
6017 	int err, i;
6018 #endif
6019 
6020 	for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) {
6021 #if defined(INET6) || defined(INET)
6022 		err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp,
6023 		    TCP_LRO_ENTRIES, min(1024,
6024 		    ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset]));
6025 		if (err != 0) {
6026 			device_printf(ctx->ifc_dev,
6027 			    "LRO Initialization failed!\n");
6028 			goto fail;
6029 		}
6030 #endif
6031 		IFDI_RXQ_SETUP(ctx, rxq->ifr_id);
6032 	}
6033 	return (0);
6034 #if defined(INET6) || defined(INET)
6035 fail:
6036 	/*
6037 	 * Free LRO resources allocated so far, we will only handle
6038 	 * the rings that completed, the failing case will have
6039 	 * cleaned up for itself.  'q' failed, so its the terminus.
6040 	 */
6041 	rxq = ctx->ifc_rxqs;
6042 	for (i = 0; i < q; ++i, rxq++) {
6043 		tcp_lro_free(&rxq->ifr_lc);
6044 	}
6045 	return (err);
6046 #endif
6047 }
6048 
6049 /*********************************************************************
6050  *
6051  *  Free all receive rings.
6052  *
6053  **********************************************************************/
6054 static void
iflib_rx_structures_free(if_ctx_t ctx)6055 iflib_rx_structures_free(if_ctx_t ctx)
6056 {
6057 	iflib_rxq_t rxq = ctx->ifc_rxqs;
6058 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6059 	int i, j;
6060 
6061 	for (i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) {
6062 		for (j = 0; j < sctx->isc_nrxqs; j++)
6063 			iflib_dma_free(&rxq->ifr_ifdi[j]);
6064 		iflib_rx_sds_free(rxq);
6065 #if defined(INET6) || defined(INET)
6066 		tcp_lro_free(&rxq->ifr_lc);
6067 #endif
6068 	}
6069 	free(ctx->ifc_rxqs, M_IFLIB);
6070 	ctx->ifc_rxqs = NULL;
6071 }
6072 
6073 static int
iflib_qset_structures_setup(if_ctx_t ctx)6074 iflib_qset_structures_setup(if_ctx_t ctx)
6075 {
6076 	int err;
6077 
6078 	/*
6079 	 * It is expected that the caller takes care of freeing queues if this
6080 	 * fails.
6081 	 */
6082 	if ((err = iflib_tx_structures_setup(ctx)) != 0) {
6083 		device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err);
6084 		return (err);
6085 	}
6086 
6087 	if ((err = iflib_rx_structures_setup(ctx)) != 0)
6088 		device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err);
6089 
6090 	return (err);
6091 }
6092 
6093 int
iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,void * filter_arg,driver_intr_t handler,void * arg,const char * name)6094 iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
6095 		driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name)
6096 {
6097 
6098 	return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name));
6099 }
6100 
6101 /* Just to avoid copy/paste */
6102 static inline int
iflib_irq_set_affinity(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,int qid,struct grouptask * gtask,struct taskqgroup * tqg,void * uniq,const char * name)6103 iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6104     int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq,
6105     const char *name)
6106 {
6107 	device_t dev;
6108 	unsigned int base_cpuid, cpuid;
6109 	int err;
6110 
6111 	dev = ctx->ifc_dev;
6112 	base_cpuid = ctx->ifc_sysctl_core_offset;
6113 	cpuid = get_cpuid_for_queue(ctx, base_cpuid, qid, type == IFLIB_INTR_TX);
6114 	err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev,
6115 	    irq ? irq->ii_res : NULL, name);
6116 	if (err) {
6117 		device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err);
6118 		return (err);
6119 	}
6120 #ifdef notyet
6121 	if (cpuid > ctx->ifc_cpuid_highest)
6122 		ctx->ifc_cpuid_highest = cpuid;
6123 #endif
6124 	return (0);
6125 }
6126 
6127 /*
6128  * Allocate a hardware interrupt for subctx using the parent (ctx)'s hardware
6129  * resources.
6130  *
6131  * Similar to iflib_irq_alloc_generic(), but for interrupt type IFLIB_INTR_RXTX
6132  * only.
6133  *
6134  * XXX: Could be removed if subctx's dev has its intr resource allocation
6135  * methods replaced with custom ones?
6136  */
6137 int
iflib_irq_alloc_generic_subctx(if_ctx_t ctx,if_ctx_t subctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6138 iflib_irq_alloc_generic_subctx(if_ctx_t ctx, if_ctx_t subctx, if_irq_t irq,
6139 			       int rid, iflib_intr_type_t type,
6140 			       driver_filter_t *filter, void *filter_arg,
6141 			       int qid, const char *name)
6142 {
6143 	device_t dev, subdev;
6144 	struct grouptask *gtask;
6145 	struct taskqgroup *tqg;
6146 	iflib_filter_info_t info;
6147 	gtask_fn_t *fn;
6148 	int tqrid, err;
6149 	driver_filter_t *intr_fast;
6150 	void *q;
6151 
6152 	MPASS(ctx != NULL);
6153 	MPASS(subctx != NULL);
6154 
6155 	tqrid = rid;
6156 	dev = ctx->ifc_dev;
6157 	subdev = subctx->ifc_dev;
6158 
6159 	switch (type) {
6160 	case IFLIB_INTR_RXTX:
6161 		q = &subctx->ifc_rxqs[qid];
6162 		info = &subctx->ifc_rxqs[qid].ifr_filter_info;
6163 		gtask = &subctx->ifc_rxqs[qid].ifr_task;
6164 		tqg = qgroup_if_io_tqg;
6165 		fn = _task_fn_rx;
6166 		intr_fast = iflib_fast_intr_rxtx;
6167 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6168 		break;
6169 	default:
6170 		device_printf(dev, "%s: unknown net intr type for subctx %s (%d)\n",
6171 		    __func__, device_get_nameunit(subdev), type);
6172 		return (EINVAL);
6173 	}
6174 
6175 	info->ifi_filter = filter;
6176 	info->ifi_filter_arg = filter_arg;
6177 	info->ifi_task = gtask;
6178 	info->ifi_ctx = q;
6179 
6180 	NET_GROUPTASK_INIT(gtask, 0, fn, q);
6181 
6182 	/* Allocate interrupts from hardware using parent context */
6183 	err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name);
6184 	if (err != 0) {
6185 		device_printf(dev, "_iflib_irq_alloc failed for subctx %s: %d\n",
6186 		    device_get_nameunit(subdev), err);
6187 		return (err);
6188 	}
6189 
6190 	if (tqrid != -1) {
6191 		err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6192 		    name);
6193 		if (err)
6194 			return (err);
6195 	} else {
6196 		taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6197 	}
6198 
6199 	return (0);
6200 }
6201 
6202 int
iflib_irq_alloc_generic(if_ctx_t ctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6203 iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid,
6204 			iflib_intr_type_t type, driver_filter_t *filter,
6205 			void *filter_arg, int qid, const char *name)
6206 {
6207 	device_t dev;
6208 	struct grouptask *gtask;
6209 	struct taskqgroup *tqg;
6210 	iflib_filter_info_t info;
6211 	gtask_fn_t *fn;
6212 	int tqrid, err;
6213 	driver_filter_t *intr_fast;
6214 	void *q;
6215 
6216 	info = &ctx->ifc_filter_info;
6217 	tqrid = rid;
6218 
6219 	switch (type) {
6220 	/* XXX merge tx/rx for netmap? */
6221 	case IFLIB_INTR_TX:
6222 		q = &ctx->ifc_txqs[qid];
6223 		info = &ctx->ifc_txqs[qid].ift_filter_info;
6224 		gtask = &ctx->ifc_txqs[qid].ift_task;
6225 		tqg = qgroup_if_io_tqg;
6226 		fn = _task_fn_tx;
6227 		intr_fast = iflib_fast_intr;
6228 		GROUPTASK_INIT(gtask, 0, fn, q);
6229 		ctx->ifc_flags |= IFC_NETMAP_TX_IRQ;
6230 		break;
6231 	case IFLIB_INTR_RX:
6232 		q = &ctx->ifc_rxqs[qid];
6233 		info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6234 		gtask = &ctx->ifc_rxqs[qid].ifr_task;
6235 		tqg = qgroup_if_io_tqg;
6236 		fn = _task_fn_rx;
6237 		intr_fast = iflib_fast_intr;
6238 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6239 		break;
6240 	case IFLIB_INTR_RXTX:
6241 		q = &ctx->ifc_rxqs[qid];
6242 		info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6243 		gtask = &ctx->ifc_rxqs[qid].ifr_task;
6244 		tqg = qgroup_if_io_tqg;
6245 		fn = _task_fn_rx;
6246 		intr_fast = iflib_fast_intr_rxtx;
6247 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6248 		break;
6249 	case IFLIB_INTR_ADMIN:
6250 		q = ctx;
6251 		tqrid = -1;
6252 		info = &ctx->ifc_filter_info;
6253 		gtask = NULL;
6254 		intr_fast = iflib_fast_intr_ctx;
6255 		break;
6256 	default:
6257 		device_printf(ctx->ifc_dev, "%s: unknown net intr type\n",
6258 		    __func__);
6259 		return (EINVAL);
6260 	}
6261 
6262 	info->ifi_filter = filter;
6263 	info->ifi_filter_arg = filter_arg;
6264 	info->ifi_task = gtask;
6265 	info->ifi_ctx = q;
6266 
6267 	dev = ctx->ifc_dev;
6268 	err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info,  name);
6269 	if (err != 0) {
6270 		device_printf(dev, "_iflib_irq_alloc failed %d\n", err);
6271 		return (err);
6272 	}
6273 	if (type == IFLIB_INTR_ADMIN)
6274 		return (0);
6275 
6276 	if (tqrid != -1) {
6277 		err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6278 		    name);
6279 		if (err)
6280 			return (err);
6281 	} else {
6282 		taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6283 	}
6284 
6285 	return (0);
6286 }
6287 
6288 void
iflib_softirq_alloc_generic(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,void * arg,int qid,const char * name)6289 iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6290 			    void *arg, int qid, const char *name)
6291 {
6292 	device_t dev;
6293 	struct grouptask *gtask;
6294 	struct taskqgroup *tqg;
6295 	gtask_fn_t *fn;
6296 	void *q;
6297 	int err;
6298 
6299 	switch (type) {
6300 	case IFLIB_INTR_TX:
6301 		q = &ctx->ifc_txqs[qid];
6302 		gtask = &ctx->ifc_txqs[qid].ift_task;
6303 		tqg = qgroup_if_io_tqg;
6304 		fn = _task_fn_tx;
6305 		GROUPTASK_INIT(gtask, 0, fn, q);
6306 		break;
6307 	case IFLIB_INTR_RX:
6308 		q = &ctx->ifc_rxqs[qid];
6309 		gtask = &ctx->ifc_rxqs[qid].ifr_task;
6310 		tqg = qgroup_if_io_tqg;
6311 		fn = _task_fn_rx;
6312 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6313 		break;
6314 	case IFLIB_INTR_IOV:
6315 		TASK_INIT(&ctx->ifc_vflr_task, 0, _task_fn_iov, ctx);
6316 		return;
6317 	default:
6318 		panic("unknown net intr type");
6319 	}
6320 	err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, name);
6321 	if (err) {
6322 		dev = ctx->ifc_dev;
6323 		taskqgroup_attach(tqg, gtask, q, dev, irq ? irq->ii_res : NULL,
6324 		    name);
6325 	}
6326 }
6327 
6328 void
iflib_irq_free(if_ctx_t ctx,if_irq_t irq)6329 iflib_irq_free(if_ctx_t ctx, if_irq_t irq)
6330 {
6331 
6332 	if (irq->ii_tag)
6333 		bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag);
6334 
6335 	if (irq->ii_res)
6336 		bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ,
6337 		    rman_get_rid(irq->ii_res), irq->ii_res);
6338 }
6339 
6340 static int
iflib_legacy_setup(if_ctx_t ctx,driver_filter_t filter,void * filter_arg,int * rid,const char * name)6341 iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name)
6342 {
6343 	iflib_txq_t txq = ctx->ifc_txqs;
6344 	iflib_rxq_t rxq = ctx->ifc_rxqs;
6345 	if_irq_t irq = &ctx->ifc_legacy_irq;
6346 	iflib_filter_info_t info;
6347 	device_t dev;
6348 	struct grouptask *gtask;
6349 	struct resource *res;
6350 	int err, tqrid;
6351 	bool rx_only;
6352 
6353 	info = &rxq->ifr_filter_info;
6354 	gtask = &rxq->ifr_task;
6355 	tqrid = *rid;
6356 	rx_only = (ctx->ifc_sctx->isc_flags & IFLIB_SINGLE_IRQ_RX_ONLY) != 0;
6357 
6358 	ctx->ifc_flags |= IFC_LEGACY;
6359 	info->ifi_filter = filter;
6360 	info->ifi_filter_arg = filter_arg;
6361 	info->ifi_task = gtask;
6362 	info->ifi_ctx = rxq;
6363 
6364 	dev = ctx->ifc_dev;
6365 	/* We allocate a single interrupt resource */
6366 	err = _iflib_irq_alloc(ctx, irq, tqrid, rx_only ? iflib_fast_intr :
6367 	    iflib_fast_intr_rxtx, NULL, info, name);
6368 	if (err != 0)
6369 		return (err);
6370 	NET_GROUPTASK_INIT(gtask, 0, _task_fn_rx, rxq);
6371 	res = irq->ii_res;
6372 	taskqgroup_attach(qgroup_if_io_tqg, gtask, rxq, dev, res, name);
6373 
6374 	GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq);
6375 	taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res,
6376 	    "tx");
6377 	return (0);
6378 }
6379 
6380 void
iflib_led_create(if_ctx_t ctx)6381 iflib_led_create(if_ctx_t ctx)
6382 {
6383 
6384 	ctx->ifc_led_dev = led_create(iflib_led_func, ctx,
6385 	    device_get_nameunit(ctx->ifc_dev));
6386 }
6387 
6388 void
iflib_tx_intr_deferred(if_ctx_t ctx,int txqid)6389 iflib_tx_intr_deferred(if_ctx_t ctx, int txqid)
6390 {
6391 
6392 	GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task);
6393 }
6394 
6395 void
iflib_rx_intr_deferred(if_ctx_t ctx,int rxqid)6396 iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid)
6397 {
6398 
6399 	GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task);
6400 }
6401 
6402 void
iflib_admin_intr_deferred(if_ctx_t ctx)6403 iflib_admin_intr_deferred(if_ctx_t ctx)
6404 {
6405 
6406 	taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task);
6407 }
6408 
6409 void
iflib_iov_intr_deferred(if_ctx_t ctx)6410 iflib_iov_intr_deferred(if_ctx_t ctx)
6411 {
6412 
6413 	taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_vflr_task);
6414 }
6415 
6416 void
iflib_io_tqg_attach(struct grouptask * gt,void * uniq,int cpu,const char * name)6417 iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, const char *name)
6418 {
6419 
6420 	taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL,
6421 	    name);
6422 }
6423 
6424 void
iflib_config_task_init(if_ctx_t ctx,struct task * config_task,task_fn_t * fn)6425 iflib_config_task_init(if_ctx_t ctx, struct task *config_task, task_fn_t *fn)
6426 {
6427 	TASK_INIT(config_task, 0, fn, ctx);
6428 }
6429 
6430 void
iflib_config_task_enqueue(if_ctx_t ctx,struct task * config_task)6431 iflib_config_task_enqueue(if_ctx_t ctx, struct task *config_task)
6432 {
6433 	taskqueue_enqueue(ctx->ifc_tq, config_task);
6434 }
6435 
6436 void
iflib_link_state_change(if_ctx_t ctx,int link_state,uint64_t baudrate)6437 iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate)
6438 {
6439 	if_t ifp = ctx->ifc_ifp;
6440 	iflib_txq_t txq = ctx->ifc_txqs;
6441 
6442 	if_setbaudrate(ifp, baudrate);
6443 	if (baudrate >= IF_Gbps(10)) {
6444 		STATE_LOCK(ctx);
6445 		ctx->ifc_flags |= IFC_PREFETCH;
6446 		STATE_UNLOCK(ctx);
6447 	}
6448 	/* If link down, disable watchdog */
6449 	if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) {
6450 		for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++)
6451 			txq->ift_qstatus = IFLIB_QUEUE_IDLE;
6452 	}
6453 	ctx->ifc_link_state = link_state;
6454 	if_link_state_change(ifp, link_state);
6455 }
6456 
6457 static int
iflib_tx_credits_update(if_ctx_t ctx,iflib_txq_t txq)6458 iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq)
6459 {
6460 	int credits;
6461 #ifdef INVARIANTS
6462 	int credits_pre = txq->ift_cidx_processed;
6463 #endif
6464 
6465 	bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
6466 	    BUS_DMASYNC_POSTREAD);
6467 	if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0)
6468 		return (0);
6469 
6470 	txq->ift_processed += credits;
6471 	txq->ift_cidx_processed += credits;
6472 
6473 	MPASS(credits_pre + credits == txq->ift_cidx_processed);
6474 	if (txq->ift_cidx_processed >= txq->ift_size)
6475 		txq->ift_cidx_processed -= txq->ift_size;
6476 	return (credits);
6477 }
6478 
6479 static int
iflib_rxd_avail(if_ctx_t ctx,iflib_rxq_t rxq,qidx_t cidx,qidx_t budget)6480 iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget)
6481 {
6482 	iflib_fl_t fl;
6483 	u_int i;
6484 
6485 	for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++)
6486 		bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
6487 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6488 	return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx,
6489 	    budget));
6490 }
6491 
6492 void
iflib_add_int_delay_sysctl(if_ctx_t ctx,const char * name,const char * description,if_int_delay_info_t info,int offset,int value)6493 iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name,
6494 	const char *description, if_int_delay_info_t info,
6495 	int offset, int value)
6496 {
6497 	info->iidi_ctx = ctx;
6498 	info->iidi_offset = offset;
6499 	info->iidi_value = value;
6500 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev),
6501 	    SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)),
6502 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
6503 	    info, 0, iflib_sysctl_int_delay, "I", description);
6504 }
6505 
6506 struct sx *
iflib_ctx_lock_get(if_ctx_t ctx)6507 iflib_ctx_lock_get(if_ctx_t ctx)
6508 {
6509 
6510 	return (&ctx->ifc_ctx_sx);
6511 }
6512 
6513 static int
iflib_msix_init(if_ctx_t ctx)6514 iflib_msix_init(if_ctx_t ctx)
6515 {
6516 	device_t dev = ctx->ifc_dev;
6517 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6518 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6519 	int admincnt, bar, err, iflib_num_rx_queues, iflib_num_tx_queues;
6520 	int msgs, queuemsgs, queues, rx_queues, tx_queues, vectors;
6521 
6522 	iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs;
6523 	iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs;
6524 
6525 	if (bootverbose)
6526 		device_printf(dev, "msix_init qsets capped at %d\n",
6527 		    imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets));
6528 
6529 	/* Override by tuneable */
6530 	if (scctx->isc_disable_msix)
6531 		goto msi;
6532 
6533 	/* First try MSI-X */
6534 	if ((msgs = pci_msix_count(dev)) == 0) {
6535 		if (bootverbose)
6536 			device_printf(dev, "MSI-X not supported or disabled\n");
6537 		goto msi;
6538 	}
6539 
6540 	bar = ctx->ifc_softc_ctx.isc_msix_bar;
6541 	/*
6542 	 * bar == -1 => "trust me I know what I'm doing"
6543 	 * Some drivers are for hardware that is so shoddily
6544 	 * documented that no one knows which bars are which
6545 	 * so the developer has to map all bars. This hack
6546 	 * allows shoddy garbage to use MSI-X in this framework.
6547 	 */
6548 	if (bar != -1) {
6549 		ctx->ifc_msix_mem = bus_alloc_resource_any(dev,
6550 		    SYS_RES_MEMORY, &bar, RF_ACTIVE);
6551 		if (ctx->ifc_msix_mem == NULL) {
6552 			device_printf(dev, "Unable to map MSI-X table\n");
6553 			goto msi;
6554 		}
6555 	}
6556 
6557 	admincnt = sctx->isc_admin_intrcnt;
6558 #if IFLIB_DEBUG
6559 	/* use only 1 qset in debug mode */
6560 	queuemsgs = min(msgs - admincnt, 1);
6561 #else
6562 	queuemsgs = msgs - admincnt;
6563 #endif
6564 #ifdef RSS
6565 	queues = imin(queuemsgs, rss_getnumbuckets());
6566 #else
6567 	queues = queuemsgs;
6568 #endif
6569 	queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues);
6570 	if (bootverbose)
6571 		device_printf(dev,
6572 		    "intr CPUs: %d queue msgs: %d admincnt: %d\n",
6573 		    CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt);
6574 #ifdef  RSS
6575 	/* If we're doing RSS, clamp at the number of RSS buckets */
6576 	if (queues > rss_getnumbuckets())
6577 		queues = rss_getnumbuckets();
6578 #endif
6579 	if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt)
6580 		rx_queues = iflib_num_rx_queues;
6581 	else
6582 		rx_queues = queues;
6583 
6584 	if (rx_queues > scctx->isc_nrxqsets)
6585 		rx_queues = scctx->isc_nrxqsets;
6586 
6587 	/*
6588 	 * We want this to be all logical CPUs by default
6589 	 */
6590 	if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues)
6591 		tx_queues = iflib_num_tx_queues;
6592 	else
6593 		tx_queues = mp_ncpus;
6594 
6595 	if (tx_queues > scctx->isc_ntxqsets)
6596 		tx_queues = scctx->isc_ntxqsets;
6597 
6598 	if (ctx->ifc_sysctl_qs_eq_override == 0) {
6599 #ifdef INVARIANTS
6600 		if (tx_queues != rx_queues)
6601 			device_printf(dev,
6602 			    "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n",
6603 			    min(rx_queues, tx_queues), min(rx_queues, tx_queues));
6604 #endif
6605 		tx_queues = min(rx_queues, tx_queues);
6606 		rx_queues = min(rx_queues, tx_queues);
6607 	}
6608 
6609 	vectors = rx_queues + admincnt;
6610 	if (msgs < vectors) {
6611 		device_printf(dev,
6612 		    "insufficient number of MSI-X vectors "
6613 		    "(supported %d, need %d)\n", msgs, vectors);
6614 		goto msi;
6615 	}
6616 
6617 	device_printf(dev, "Using %d RX queues %d TX queues\n", rx_queues,
6618 	    tx_queues);
6619 	msgs = vectors;
6620 	if ((err = pci_alloc_msix(dev, &vectors)) == 0) {
6621 		if (vectors != msgs) {
6622 			device_printf(dev,
6623 			    "Unable to allocate sufficient MSI-X vectors "
6624 			    "(got %d, need %d)\n", vectors, msgs);
6625 			pci_release_msi(dev);
6626 			if (bar != -1) {
6627 				bus_release_resource(dev, SYS_RES_MEMORY, bar,
6628 				    ctx->ifc_msix_mem);
6629 				ctx->ifc_msix_mem = NULL;
6630 			}
6631 			goto msi;
6632 		}
6633 		device_printf(dev, "Using MSI-X interrupts with %d vectors\n",
6634 		    vectors);
6635 		scctx->isc_vectors = vectors;
6636 		scctx->isc_nrxqsets = rx_queues;
6637 		scctx->isc_ntxqsets = tx_queues;
6638 		scctx->isc_intr = IFLIB_INTR_MSIX;
6639 
6640 		return (vectors);
6641 	} else {
6642 		device_printf(dev,
6643 		    "failed to allocate %d MSI-X vectors, err: %d\n", vectors,
6644 		    err);
6645 		if (bar != -1) {
6646 			bus_release_resource(dev, SYS_RES_MEMORY, bar,
6647 			    ctx->ifc_msix_mem);
6648 			ctx->ifc_msix_mem = NULL;
6649 		}
6650 	}
6651 
6652 msi:
6653 	vectors = pci_msi_count(dev);
6654 	scctx->isc_nrxqsets = 1;
6655 	scctx->isc_ntxqsets = 1;
6656 	scctx->isc_vectors = vectors;
6657 	if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) {
6658 		device_printf(dev, "Using an MSI interrupt\n");
6659 		scctx->isc_intr = IFLIB_INTR_MSI;
6660 	} else {
6661 		scctx->isc_vectors = 1;
6662 		device_printf(dev, "Using a Legacy interrupt\n");
6663 		scctx->isc_intr = IFLIB_INTR_LEGACY;
6664 	}
6665 
6666 	return (vectors);
6667 }
6668 
6669 static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" };
6670 
6671 static int
mp_ring_state_handler(SYSCTL_HANDLER_ARGS)6672 mp_ring_state_handler(SYSCTL_HANDLER_ARGS)
6673 {
6674 	int rc;
6675 	uint16_t *state = ((uint16_t *)oidp->oid_arg1);
6676 	struct sbuf *sb;
6677 	const char *ring_state = "UNKNOWN";
6678 
6679 	/* XXX needed ? */
6680 	rc = sysctl_wire_old_buffer(req, 0);
6681 	MPASS(rc == 0);
6682 	if (rc != 0)
6683 		return (rc);
6684 	sb = sbuf_new_for_sysctl(NULL, NULL, 80, req);
6685 	MPASS(sb != NULL);
6686 	if (sb == NULL)
6687 		return (ENOMEM);
6688 	if (state[3] <= 3)
6689 		ring_state = ring_states[state[3]];
6690 
6691 	sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s",
6692 		    state[0], state[1], state[2], ring_state);
6693 	rc = sbuf_finish(sb);
6694 	sbuf_delete(sb);
6695 	return (rc);
6696 }
6697 
6698 enum iflib_ndesc_handler {
6699 	IFLIB_NTXD_HANDLER,
6700 	IFLIB_NRXD_HANDLER,
6701 };
6702 
6703 static int
mp_ndesc_handler(SYSCTL_HANDLER_ARGS)6704 mp_ndesc_handler(SYSCTL_HANDLER_ARGS)
6705 {
6706 	if_ctx_t ctx = (void *)arg1;
6707 	enum iflib_ndesc_handler type = arg2;
6708 	char buf[256] = {0};
6709 	qidx_t *ndesc;
6710 	char *p, *next;
6711 	int nqs, rc, i;
6712 
6713 	nqs = 8;
6714 	switch (type) {
6715 	case IFLIB_NTXD_HANDLER:
6716 		ndesc = ctx->ifc_sysctl_ntxds;
6717 		if (ctx->ifc_sctx)
6718 			nqs = ctx->ifc_sctx->isc_ntxqs;
6719 		break;
6720 	case IFLIB_NRXD_HANDLER:
6721 		ndesc = ctx->ifc_sysctl_nrxds;
6722 		if (ctx->ifc_sctx)
6723 			nqs = ctx->ifc_sctx->isc_nrxqs;
6724 		break;
6725 	default:
6726 		printf("%s: unhandled type\n", __func__);
6727 		return (EINVAL);
6728 	}
6729 	if (nqs == 0)
6730 		nqs = 8;
6731 
6732 	for (i = 0; i < 8; i++) {
6733 		if (i >= nqs)
6734 			break;
6735 		if (i)
6736 			strcat(buf, ",");
6737 		sprintf(strchr(buf, 0), "%d", ndesc[i]);
6738 	}
6739 
6740 	rc = sysctl_handle_string(oidp, buf, sizeof(buf), req);
6741 	if (rc || req->newptr == NULL)
6742 		return (rc);
6743 
6744 	for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p;
6745 	    i++, p = strsep(&next, " ,")) {
6746 		ndesc[i] = strtoul(p, NULL, 10);
6747 	}
6748 
6749 	return (rc);
6750 }
6751 
6752 static int
iflib_handle_tx_reclaim_thresh(SYSCTL_HANDLER_ARGS)6753 iflib_handle_tx_reclaim_thresh(SYSCTL_HANDLER_ARGS)
6754 {
6755 	if_ctx_t ctx = (void *)arg1;
6756 	iflib_txq_t txq;
6757 	int i, err;
6758 	int thresh;
6759 
6760 	thresh = ctx->ifc_sysctl_tx_reclaim_thresh;
6761 	err = sysctl_handle_int(oidp, &thresh, arg2, req);
6762 	if (err != 0) {
6763 		return err;
6764 	}
6765 
6766 	if (thresh == ctx->ifc_sysctl_tx_reclaim_thresh)
6767 		return 0;
6768 
6769 	if (thresh > ctx->ifc_softc_ctx.isc_ntxd[0] / 2) {
6770 		device_printf(ctx->ifc_dev, "TX Reclaim thresh must be <= %d\n",
6771 		    ctx->ifc_softc_ctx.isc_ntxd[0] / 2);
6772 		return (EINVAL);
6773 	}
6774 
6775 	ctx->ifc_sysctl_tx_reclaim_thresh = thresh;
6776 	if (ctx->ifc_txqs == NULL)
6777 		return (err);
6778 
6779 	txq = &ctx->ifc_txqs[0];
6780 	for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
6781 		txq->ift_reclaim_thresh = thresh;
6782 	}
6783 	return (err);
6784 }
6785 
6786 static int
iflib_handle_tx_reclaim_ticks(SYSCTL_HANDLER_ARGS)6787 iflib_handle_tx_reclaim_ticks(SYSCTL_HANDLER_ARGS)
6788 {
6789 	if_ctx_t ctx = (void *)arg1;
6790 	iflib_txq_t txq;
6791 	int i, err;
6792 	int ticks;
6793 
6794 	ticks = ctx->ifc_sysctl_tx_reclaim_ticks;
6795 	err = sysctl_handle_int(oidp, &ticks, arg2, req);
6796 	if (err != 0) {
6797 		return err;
6798 	}
6799 
6800 	if (ticks == ctx->ifc_sysctl_tx_reclaim_ticks)
6801 		return 0;
6802 
6803 	if (ticks > hz) {
6804 		device_printf(ctx->ifc_dev,
6805 		    "TX Reclaim ticks must be <= hz (%d)\n", hz);
6806 		return (EINVAL);
6807 	}
6808 
6809 	ctx->ifc_sysctl_tx_reclaim_ticks = ticks;
6810 	if (ctx->ifc_txqs == NULL)
6811 		return (err);
6812 
6813 	txq = &ctx->ifc_txqs[0];
6814 	for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
6815 		txq->ift_reclaim_ticks = ticks;
6816 	}
6817 	return (err);
6818 }
6819 
6820 #define NAME_BUFLEN 32
6821 static void
iflib_add_device_sysctl_pre(if_ctx_t ctx)6822 iflib_add_device_sysctl_pre(if_ctx_t ctx)
6823 {
6824 	device_t dev = iflib_get_dev(ctx);
6825 	struct sysctl_oid_list *child, *oid_list;
6826 	struct sysctl_ctx_list *ctx_list;
6827 	struct sysctl_oid *node;
6828 
6829 	ctx_list = device_get_sysctl_ctx(dev);
6830 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
6831 	ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child,
6832 	    OID_AUTO, "iflib", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
6833 	    "IFLIB fields");
6834 	oid_list = SYSCTL_CHILDREN(node);
6835 
6836 	SYSCTL_ADD_CONST_STRING(ctx_list, oid_list, OID_AUTO, "driver_version",
6837 	    CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version, "driver version");
6838 
6839 	SYSCTL_ADD_BOOL(ctx_list, oid_list, OID_AUTO, "simple_tx",
6840 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_simple_tx, 0,
6841 	    "use simple tx ring");
6842 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs",
6843 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0,
6844 	    "# of txqs to use, 0 => use default #");
6845 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs",
6846 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0,
6847 	    "# of rxqs to use, 0 => use default #");
6848 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable",
6849 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0,
6850 	    "permit #txq != #rxq");
6851 	SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix",
6852 	    CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0,
6853 	    "disable MSI-X (default 0)");
6854 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget",
6855 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0, "set the RX budget");
6856 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate",
6857 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0,
6858 	    "cause TX to abdicate instead of running to completion");
6859 	ctx->ifc_sysctl_core_offset = CORE_OFFSET_UNSPECIFIED;
6860 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "core_offset",
6861 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_core_offset, 0,
6862 	    "offset to start using cores at");
6863 	SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "separate_txrx",
6864 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_separate_txrx, 0,
6865 	    "use separate cores for TX and RX");
6866 	SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "use_logical_cores",
6867 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_use_logical_cores, 0,
6868 	    "try to make use of logical cores for TX and RX");
6869 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "use_extra_msix_vectors",
6870 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_extra_msix_vectors, 0,
6871 	    "attempt to reserve the given number of extra MSI-X vectors during driver load for the creation of additional interfaces later");
6872 	SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "allocated_msix_vectors",
6873 	    CTLFLAG_RDTUN, &ctx->ifc_softc_ctx.isc_vectors, 0,
6874 	    "total # of MSI-X vectors allocated by driver");
6875 
6876 	/* XXX change for per-queue sizes */
6877 	SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds",
6878 	    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6879 	    IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A",
6880 	    "list of # of TX descriptors to use, 0 = use default #");
6881 	SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds",
6882 	    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6883 	    IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A",
6884 	    "list of # of RX descriptors to use, 0 = use default #");
6885 }
6886 
6887 static void
iflib_add_device_sysctl_post(if_ctx_t ctx)6888 iflib_add_device_sysctl_post(if_ctx_t ctx)
6889 {
6890 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6891 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6892 	device_t dev = iflib_get_dev(ctx);
6893 	struct sysctl_oid_list *child;
6894 	struct sysctl_ctx_list *ctx_list;
6895 	iflib_fl_t fl;
6896 	iflib_txq_t txq;
6897 	iflib_rxq_t rxq;
6898 	int i, j;
6899 	char namebuf[NAME_BUFLEN];
6900 	char *qfmt;
6901 	struct sysctl_oid *queue_node, *fl_node, *node;
6902 	struct sysctl_oid_list *queue_list, *fl_list;
6903 	ctx_list = device_get_sysctl_ctx(dev);
6904 
6905 	node = ctx->ifc_sysctl_node;
6906 	child = SYSCTL_CHILDREN(node);
6907 
6908        SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "tx_reclaim_thresh",
6909            CTLTYPE_INT | CTLFLAG_RWTUN, ctx,
6910            0, iflib_handle_tx_reclaim_thresh, "I",
6911            "Number of TX descs outstanding before reclaim is called");
6912 
6913        SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "tx_reclaim_ticks",
6914            CTLTYPE_INT | CTLFLAG_RWTUN, ctx,
6915            0, iflib_handle_tx_reclaim_ticks, "I",
6916            "Number of ticks before a TX reclaim is forced");
6917 
6918 	if (scctx->isc_ntxqsets > 100)
6919 		qfmt = "txq%03d";
6920 	else if (scctx->isc_ntxqsets > 10)
6921 		qfmt = "txq%02d";
6922 	else
6923 		qfmt = "txq%d";
6924 	for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
6925 		snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6926 		queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
6927 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
6928 		queue_list = SYSCTL_CHILDREN(queue_node);
6929 		SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
6930 		    CTLFLAG_RD, &txq->ift_task.gt_cpu, 0,
6931 		    "cpu this queue is bound to");
6932 #if MEMORY_LOGGING
6933 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued",
6934 		    CTLFLAG_RD, &txq->ift_dequeued, "total mbufs freed");
6935 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued",
6936 		    CTLFLAG_RD, &txq->ift_enqueued, "total mbufs enqueued");
6937 #endif
6938 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag",
6939 		    CTLFLAG_RD, &txq->ift_mbuf_defrag,
6940 		    "# of times m_defrag was called");
6941 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "m_pullups",
6942 		    CTLFLAG_RD, &txq->ift_pullups,
6943 		    "# of times m_pullup was called");
6944 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6945 		    "mbuf_defrag_failed", CTLFLAG_RD,
6946 		    &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed");
6947 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6948 		    "no_desc_avail", CTLFLAG_RD, &txq->ift_no_desc_avail,
6949 		    "# of times no descriptors were available");
6950 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6951 		    "tx_map_failed", CTLFLAG_RD, &txq->ift_map_failed,
6952 		    "# of times DMA map failed");
6953 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6954 		    "txd_encap_efbig", CTLFLAG_RD, &txq->ift_txd_encap_efbig,
6955 		    "# of times txd_encap returned EFBIG");
6956 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6957 		    "no_tx_dma_setup", CTLFLAG_RD, &txq->ift_no_tx_dma_setup,
6958 		    "# of times map failed for other than EFBIG");
6959 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx",
6960 		    CTLFLAG_RD, &txq->ift_pidx, 1, "Producer Index");
6961 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx",
6962 		    CTLFLAG_RD, &txq->ift_cidx, 1, "Consumer Index");
6963 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO,
6964 		    "txq_cidx_processed", CTLFLAG_RD, &txq->ift_cidx_processed,
6965 		    1, "Consumer Index seen by credit update");
6966 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use",
6967 		    CTLFLAG_RD, &txq->ift_in_use, 1, "descriptors in use");
6968 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6969 		    "txq_processed", CTLFLAG_RD, &txq->ift_processed,
6970 		    "descriptors procesed for clean");
6971 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned",
6972 		    CTLFLAG_RD, &txq->ift_cleaned, "total cleaned");
6973 		SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state",
6974 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
6975 		    __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0,
6976 		    mp_ring_state_handler, "A", "soft ring state");
6977 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6978 		    "r_enqueues", CTLFLAG_RD, &txq->ift_br->enqueues,
6979 		    "# of enqueues to the mp_ring for this queue");
6980 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6981 		    "r_drops", CTLFLAG_RD, &txq->ift_br->drops,
6982 		    "# of drops in the mp_ring for this queue");
6983 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6984 		    "r_starts", CTLFLAG_RD, &txq->ift_br->starts,
6985 		    "# of normal consumer starts in mp_ring for this queue");
6986 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6987 		    "r_stalls", CTLFLAG_RD, &txq->ift_br->stalls,
6988 		    "# of consumer stalls in the mp_ring for this queue");
6989 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6990 		    "r_restarts", CTLFLAG_RD, &txq->ift_br->restarts,
6991 		    "# of consumer restarts in the mp_ring for this queue");
6992 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6993 		    "r_abdications", CTLFLAG_RD, &txq->ift_br->abdications,
6994 		    "# of consumer abdications in the mp_ring for this queue");
6995 	}
6996 
6997 	if (scctx->isc_nrxqsets > 100)
6998 		qfmt = "rxq%03d";
6999 	else if (scctx->isc_nrxqsets > 10)
7000 		qfmt = "rxq%02d";
7001 	else
7002 		qfmt = "rxq%d";
7003 	for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
7004 		snprintf(namebuf, NAME_BUFLEN, qfmt, i);
7005 		queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
7006 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
7007 		queue_list = SYSCTL_CHILDREN(queue_node);
7008 		SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
7009 		    CTLFLAG_RD, &rxq->ifr_task.gt_cpu, 0,
7010 		    "cpu this queue is bound to");
7011 		if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
7012 			SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO,
7013 			    "rxq_cq_cidx", CTLFLAG_RD, &rxq->ifr_cq_cidx, 1,
7014 			    "Consumer Index");
7015 		}
7016 
7017 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
7018 			snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j);
7019 			fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list,
7020 			    OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE,
7021 			    NULL, "freelist Name");
7022 			fl_list = SYSCTL_CHILDREN(fl_node);
7023 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx",
7024 			    CTLFLAG_RD, &fl->ifl_pidx, 1, "Producer Index");
7025 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx",
7026 			    CTLFLAG_RD, &fl->ifl_cidx, 1, "Consumer Index");
7027 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits",
7028 			    CTLFLAG_RD, &fl->ifl_credits, 1,
7029 			    "credits available");
7030 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "buf_size",
7031 			    CTLFLAG_RD, &fl->ifl_buf_size, 1, "buffer size");
7032 #if MEMORY_LOGGING
7033 			SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7034 			    "fl_m_enqueued", CTLFLAG_RD, &fl->ifl_m_enqueued,
7035 			    "mbufs allocated");
7036 			SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7037 			    "fl_m_dequeued", CTLFLAG_RD, &fl->ifl_m_dequeued,
7038 			    "mbufs freed");
7039 			SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7040 			    "fl_cl_enqueued", CTLFLAG_RD, &fl->ifl_cl_enqueued,
7041 			    "clusters allocated");
7042 			SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7043 			    "fl_cl_dequeued", CTLFLAG_RD, &fl->ifl_cl_dequeued,
7044 			    "clusters freed");
7045 #endif
7046 		}
7047 	}
7048 
7049 }
7050 
7051 void
iflib_request_reset(if_ctx_t ctx)7052 iflib_request_reset(if_ctx_t ctx)
7053 {
7054 
7055 	STATE_LOCK(ctx);
7056 	ctx->ifc_flags |= IFC_DO_RESET;
7057 	STATE_UNLOCK(ctx);
7058 }
7059 
7060 #ifndef __NO_STRICT_ALIGNMENT
7061 static struct mbuf *
iflib_fixup_rx(struct mbuf * m)7062 iflib_fixup_rx(struct mbuf *m)
7063 {
7064 	struct mbuf *n;
7065 
7066 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
7067 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
7068 		m->m_data += ETHER_HDR_LEN;
7069 		n = m;
7070 	} else {
7071 		MGETHDR(n, M_NOWAIT, MT_DATA);
7072 		if (n == NULL) {
7073 			m_freem(m);
7074 			return (NULL);
7075 		}
7076 		bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
7077 		m->m_data += ETHER_HDR_LEN;
7078 		m->m_len -= ETHER_HDR_LEN;
7079 		n->m_len = ETHER_HDR_LEN;
7080 		M_MOVE_PKTHDR(n, m);
7081 		n->m_next = m;
7082 	}
7083 	return (n);
7084 }
7085 #endif
7086 
7087 #ifdef DEBUGNET
7088 static void
iflib_debugnet_init(if_t ifp,int * nrxr,int * ncl,int * clsize)7089 iflib_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
7090 {
7091 	if_ctx_t ctx;
7092 
7093 	ctx = if_getsoftc(ifp);
7094 	CTX_LOCK(ctx);
7095 	*nrxr = NRXQSETS(ctx);
7096 	*ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size;
7097 	*clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size;
7098 	CTX_UNLOCK(ctx);
7099 }
7100 
7101 static void
iflib_debugnet_event(if_t ifp,enum debugnet_ev event)7102 iflib_debugnet_event(if_t ifp, enum debugnet_ev event)
7103 {
7104 	if_ctx_t ctx;
7105 	if_softc_ctx_t scctx;
7106 	iflib_fl_t fl;
7107 	iflib_rxq_t rxq;
7108 	int i, j;
7109 
7110 	ctx = if_getsoftc(ifp);
7111 	scctx = &ctx->ifc_softc_ctx;
7112 
7113 	switch (event) {
7114 	case DEBUGNET_START:
7115 		for (i = 0; i < scctx->isc_nrxqsets; i++) {
7116 			rxq = &ctx->ifc_rxqs[i];
7117 			for (j = 0; j < rxq->ifr_nfl; j++) {
7118 				fl = rxq->ifr_fl;
7119 				fl->ifl_zone = m_getzone(fl->ifl_buf_size);
7120 			}
7121 		}
7122 		iflib_no_tx_batch = 1;
7123 		break;
7124 	default:
7125 		break;
7126 	}
7127 }
7128 
7129 static int
iflib_debugnet_transmit(if_t ifp,struct mbuf * m)7130 iflib_debugnet_transmit(if_t ifp, struct mbuf *m)
7131 {
7132 	if_ctx_t ctx;
7133 	iflib_txq_t txq;
7134 	int error;
7135 
7136 	ctx = if_getsoftc(ifp);
7137 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7138 	    IFF_DRV_RUNNING)
7139 		return (EBUSY);
7140 
7141 	txq = &ctx->ifc_txqs[0];
7142 	error = iflib_encap(txq, &m);
7143 	if (error == 0)
7144 		(void)iflib_txd_db_check(txq, true);
7145 	return (error);
7146 }
7147 
7148 static int
iflib_debugnet_poll(if_t ifp,int count)7149 iflib_debugnet_poll(if_t ifp, int count)
7150 {
7151 	struct epoch_tracker et;
7152 	if_ctx_t ctx;
7153 	if_softc_ctx_t scctx;
7154 	iflib_txq_t txq;
7155 	int i;
7156 
7157 	ctx = if_getsoftc(ifp);
7158 	scctx = &ctx->ifc_softc_ctx;
7159 
7160 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7161 	    IFF_DRV_RUNNING)
7162 		return (EBUSY);
7163 
7164 	txq = &ctx->ifc_txqs[0];
7165 	(void)iflib_completed_tx_reclaim(txq);
7166 
7167 	NET_EPOCH_ENTER(et);
7168 	for (i = 0; i < scctx->isc_nrxqsets; i++)
7169 		(void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */);
7170 	NET_EPOCH_EXIT(et);
7171 	return (0);
7172 }
7173 #endif /* DEBUGNET */
7174 
7175 #ifndef ALTQ
7176 static inline iflib_txq_t
iflib_simple_select_queue(if_ctx_t ctx,struct mbuf * m)7177 iflib_simple_select_queue(if_ctx_t ctx, struct mbuf *m)
7178 {
7179 	int qidx;
7180 
7181 	if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m))
7182 		qidx = QIDX(ctx, m);
7183 	else
7184 		qidx = NTXQSETS(ctx) + FIRST_QSET(ctx) - 1;
7185 	return (&ctx->ifc_txqs[qidx]);
7186 }
7187 
7188 static int
iflib_simple_transmit(if_t ifp,struct mbuf * m)7189 iflib_simple_transmit(if_t ifp, struct mbuf *m)
7190 {
7191 	if_ctx_t ctx;
7192 	iflib_txq_t txq;
7193 	int error;
7194 	int bytes_sent = 0, pkt_sent = 0, mcast_sent = 0;
7195 
7196 
7197 	ctx = if_getsoftc(ifp);
7198 	if (__predict_false((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0
7199 		|| !LINK_ACTIVE(ctx))) {
7200 		DBG_COUNTER_INC(tx_frees);
7201 		m_freem(m);
7202 		return (ENETDOWN);
7203 	}
7204 
7205 	txq = iflib_simple_select_queue(ctx, m);
7206 	mtx_lock(&txq->ift_mtx);
7207 	error = iflib_encap(txq, &m);
7208 	if (error == 0) {
7209 		pkt_sent++;
7210 		bytes_sent += m->m_pkthdr.len;
7211 		mcast_sent += !!(m->m_flags & M_MCAST);
7212 		(void)iflib_txd_db_check(txq, true);
7213 	} else {
7214 		if (error == ENOBUFS)
7215 			if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
7216 		else
7217 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
7218 	}
7219 	(void)iflib_completed_tx_reclaim(txq);
7220 	mtx_unlock(&txq->ift_mtx);
7221 	if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
7222 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
7223 	if (mcast_sent)
7224 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
7225 
7226 	return (error);
7227 }
7228 #endif
7229