xref: /freebsd/sys/net/if_vlan.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34  * Might be extended some day to also handle IEEE 802.1p priority
35  * tagging.  This is sort of sneaky in the implementation, since
36  * we need to pretend to be enough of an Ethernet implementation
37  * to make arp work.  The way we do this is by telling everyone
38  * that we are an Ethernet, and then catch the packets that
39  * ether_output() left on our output queue when it calls
40  * if_start(), rewrite them for use by the real outgoing interface,
41  * and ask it to send them.
42  */
43 
44 #include "opt_inet.h"
45 #include "opt_vlan.h"
46 
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/module.h>
53 #include <sys/rwlock.h>
54 #include <sys/queue.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 
60 #include <net/bpf.h>
61 #include <net/ethernet.h>
62 #include <net/if.h>
63 #include <net/if_clone.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_vlan_var.h>
68 
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/if_ether.h>
72 #endif
73 
74 #define VLANNAME	"vlan"
75 #define	VLAN_DEF_HWIDTH	4
76 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
77 
78 #define	UP_AND_RUNNING(ifp) \
79     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
80 
81 LIST_HEAD(ifvlanhead, ifvlan);
82 
83 struct ifvlantrunk {
84 	struct	ifnet   *parent;	/* parent interface of this trunk */
85 	struct	rwlock	rw;
86 #ifdef VLAN_ARRAY
87 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
88 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
89 #else
90 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
91 	uint16_t	hmask;
92 	uint16_t	hwidth;
93 #endif
94 	int		refcnt;
95 	LIST_ENTRY(ifvlantrunk) trunk_entry;
96 };
97 static LIST_HEAD(, ifvlantrunk) trunk_list;
98 
99 struct vlan_mc_entry {
100 	struct ether_addr		mc_addr;
101 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
102 };
103 
104 struct	ifvlan {
105 	struct	ifvlantrunk *ifv_trunk;
106 	struct	ifnet *ifv_ifp;
107 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
108 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
109 	int	ifv_pflags;	/* special flags we have set on parent */
110 	struct	ifv_linkmib {
111 		int	ifvm_encaplen;	/* encapsulation length */
112 		int	ifvm_mtufudge;	/* MTU fudged by this much */
113 		int	ifvm_mintu;	/* min transmission unit */
114 		uint16_t ifvm_proto;	/* encapsulation ethertype */
115 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
116 	}	ifv_mib;
117 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
118 	LIST_ENTRY(ifvlan) ifv_list;
119 };
120 #define	ifv_proto	ifv_mib.ifvm_proto
121 #define	ifv_tag		ifv_mib.ifvm_tag
122 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
123 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
124 #define	ifv_mintu	ifv_mib.ifvm_mintu
125 
126 /* Special flags we should propagate to parent. */
127 static struct {
128 	int flag;
129 	int (*func)(struct ifnet *, int);
130 } vlan_pflags[] = {
131 	{IFF_PROMISC, ifpromisc},
132 	{IFF_ALLMULTI, if_allmulti},
133 	{0, NULL}
134 };
135 
136 SYSCTL_DECL(_net_link);
137 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
138 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
139 
140 static int soft_pad = 0;
141 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
142 	   "pad short frames before tagging");
143 
144 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
145 
146 static eventhandler_tag ifdetach_tag;
147 
148 /*
149  * We have a global mutex, that is used to serialize configuration
150  * changes and isn't used in normal packet delivery.
151  *
152  * We also have a per-trunk rwlock, that is locked shared on packet
153  * processing and exclusive when configuration is changed.
154  *
155  * The VLAN_ARRAY substitutes the dynamic hash with a static array
156  * with 4096 entries. In theory this can give a boost in processing,
157  * however on practice it does not. Probably this is because array
158  * is too big to fit into CPU cache.
159  */
160 static struct mtx ifv_mtx;
161 #define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
162 #define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
163 #define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
164 #define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
165 #define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
166 #define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
167 #define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
168 #define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
169 #define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
170 #define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
171 #define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
172 #define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
173 #define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
174 
175 #ifndef VLAN_ARRAY
176 static	void vlan_inithash(struct ifvlantrunk *trunk);
177 static	void vlan_freehash(struct ifvlantrunk *trunk);
178 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
179 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
180 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
181 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
182 	uint16_t tag);
183 #endif
184 static	void trunk_destroy(struct ifvlantrunk *trunk);
185 
186 static	void vlan_start(struct ifnet *ifp);
187 static	void vlan_init(void *foo);
188 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
189 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
190 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
191     int (*func)(struct ifnet *, int));
192 static	int vlan_setflags(struct ifnet *ifp, int status);
193 static	int vlan_setmulti(struct ifnet *ifp);
194 static	int vlan_unconfig(struct ifnet *ifp);
195 static	int vlan_unconfig_locked(struct ifnet *ifp);
196 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
197 static	void vlan_link_state(struct ifnet *ifp, int link);
198 static	void vlan_capabilities(struct ifvlan *ifv);
199 static	void vlan_trunk_capabilities(struct ifnet *ifp);
200 
201 static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
202     const char *, int *);
203 static	int vlan_clone_match(struct if_clone *, const char *);
204 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
205 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
206 
207 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
208 
209 static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
210     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
211 
212 #ifndef VLAN_ARRAY
213 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
214 
215 static void
216 vlan_inithash(struct ifvlantrunk *trunk)
217 {
218 	int i, n;
219 
220 	/*
221 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
222 	 * It is OK in case this function is called before the trunk struct
223 	 * gets hooked up and becomes visible from other threads.
224 	 */
225 
226 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
227 	    ("%s: hash already initialized", __func__));
228 
229 	trunk->hwidth = VLAN_DEF_HWIDTH;
230 	n = 1 << trunk->hwidth;
231 	trunk->hmask = n - 1;
232 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
233 	for (i = 0; i < n; i++)
234 		LIST_INIT(&trunk->hash[i]);
235 }
236 
237 static void
238 vlan_freehash(struct ifvlantrunk *trunk)
239 {
240 #ifdef INVARIANTS
241 	int i;
242 
243 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
244 	for (i = 0; i < (1 << trunk->hwidth); i++)
245 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
246 		    ("%s: hash table not empty", __func__));
247 #endif
248 	free(trunk->hash, M_VLAN);
249 	trunk->hash = NULL;
250 	trunk->hwidth = trunk->hmask = 0;
251 }
252 
253 static int
254 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
255 {
256 	int i, b;
257 	struct ifvlan *ifv2;
258 
259 	TRUNK_LOCK_ASSERT(trunk);
260 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
261 
262 	b = 1 << trunk->hwidth;
263 	i = HASH(ifv->ifv_tag, trunk->hmask);
264 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
265 		if (ifv->ifv_tag == ifv2->ifv_tag)
266 			return (EEXIST);
267 
268 	/*
269 	 * Grow the hash when the number of vlans exceeds half of the number of
270 	 * hash buckets squared. This will make the average linked-list length
271 	 * buckets/2.
272 	 */
273 	if (trunk->refcnt > (b * b) / 2) {
274 		vlan_growhash(trunk, 1);
275 		i = HASH(ifv->ifv_tag, trunk->hmask);
276 	}
277 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
278 	trunk->refcnt++;
279 
280 	return (0);
281 }
282 
283 static int
284 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
285 {
286 	int i, b;
287 	struct ifvlan *ifv2;
288 
289 	TRUNK_LOCK_ASSERT(trunk);
290 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
291 
292 	b = 1 << trunk->hwidth;
293 	i = HASH(ifv->ifv_tag, trunk->hmask);
294 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
295 		if (ifv2 == ifv) {
296 			trunk->refcnt--;
297 			LIST_REMOVE(ifv2, ifv_list);
298 			if (trunk->refcnt < (b * b) / 2)
299 				vlan_growhash(trunk, -1);
300 			return (0);
301 		}
302 
303 	panic("%s: vlan not found\n", __func__);
304 	return (ENOENT); /*NOTREACHED*/
305 }
306 
307 /*
308  * Grow the hash larger or smaller if memory permits.
309  */
310 static void
311 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
312 {
313 
314 	struct ifvlan *ifv;
315 	struct ifvlanhead *hash2;
316 	int hwidth2, i, j, n, n2;
317 
318 	TRUNK_LOCK_ASSERT(trunk);
319 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
320 
321 	if (howmuch == 0) {
322 		/* Harmless yet obvious coding error */
323 		printf("%s: howmuch is 0\n", __func__);
324 		return;
325 	}
326 
327 	hwidth2 = trunk->hwidth + howmuch;
328 	n = 1 << trunk->hwidth;
329 	n2 = 1 << hwidth2;
330 	/* Do not shrink the table below the default */
331 	if (hwidth2 < VLAN_DEF_HWIDTH)
332 		return;
333 
334 	/* M_NOWAIT because we're called with trunk mutex held */
335 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
336 	if (hash2 == NULL) {
337 		printf("%s: out of memory -- hash size not changed\n",
338 		    __func__);
339 		return;		/* We can live with the old hash table */
340 	}
341 	for (j = 0; j < n2; j++)
342 		LIST_INIT(&hash2[j]);
343 	for (i = 0; i < n; i++)
344 		while (!LIST_EMPTY(&trunk->hash[i])) {
345 			ifv = LIST_FIRST(&trunk->hash[i]);
346 			LIST_REMOVE(ifv, ifv_list);
347 			j = HASH(ifv->ifv_tag, n2 - 1);
348 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
349 		}
350 	free(trunk->hash, M_VLAN);
351 	trunk->hash = hash2;
352 	trunk->hwidth = hwidth2;
353 	trunk->hmask = n2 - 1;
354 }
355 
356 static __inline struct ifvlan *
357 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
358 {
359 	struct ifvlan *ifv;
360 
361 	TRUNK_LOCK_RASSERT(trunk);
362 
363 	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
364 		if (ifv->ifv_tag == tag)
365 			return (ifv);
366 	return (NULL);
367 }
368 
369 #if 0
370 /* Debugging code to view the hashtables. */
371 static void
372 vlan_dumphash(struct ifvlantrunk *trunk)
373 {
374 	int i;
375 	struct ifvlan *ifv;
376 
377 	for (i = 0; i < (1 << trunk->hwidth); i++) {
378 		printf("%d: ", i);
379 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
380 			printf("%s ", ifv->ifv_ifp->if_xname);
381 		printf("\n");
382 	}
383 }
384 #endif /* 0 */
385 #endif /* !VLAN_ARRAY */
386 
387 static void
388 trunk_destroy(struct ifvlantrunk *trunk)
389 {
390 	VLAN_LOCK_ASSERT();
391 
392 	TRUNK_LOCK(trunk);
393 #ifndef VLAN_ARRAY
394 	vlan_freehash(trunk);
395 #endif
396 	trunk->parent->if_vlantrunk = NULL;
397 	LIST_REMOVE(trunk, trunk_entry);
398 	TRUNK_UNLOCK(trunk);
399 	TRUNK_LOCK_DESTROY(trunk);
400 	free(trunk, M_VLAN);
401 }
402 
403 /*
404  * Program our multicast filter. What we're actually doing is
405  * programming the multicast filter of the parent. This has the
406  * side effect of causing the parent interface to receive multicast
407  * traffic that it doesn't really want, which ends up being discarded
408  * later by the upper protocol layers. Unfortunately, there's no way
409  * to avoid this: there really is only one physical interface.
410  *
411  * XXX: There is a possible race here if more than one thread is
412  *      modifying the multicast state of the vlan interface at the same time.
413  */
414 static int
415 vlan_setmulti(struct ifnet *ifp)
416 {
417 	struct ifnet		*ifp_p;
418 	struct ifmultiaddr	*ifma, *rifma = NULL;
419 	struct ifvlan		*sc;
420 	struct vlan_mc_entry	*mc = NULL;
421 	struct sockaddr_dl	sdl;
422 	int			error;
423 
424 	/*VLAN_LOCK_ASSERT();*/
425 
426 	/* Find the parent. */
427 	sc = ifp->if_softc;
428 	ifp_p = PARENT(sc);
429 
430 	bzero((char *)&sdl, sizeof(sdl));
431 	sdl.sdl_len = sizeof(sdl);
432 	sdl.sdl_family = AF_LINK;
433 	sdl.sdl_index = ifp_p->if_index;
434 	sdl.sdl_type = IFT_ETHER;
435 	sdl.sdl_alen = ETHER_ADDR_LEN;
436 
437 	/* First, remove any existing filter entries. */
438 	while (SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
439 		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
440 		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
441 		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
442 		if (error)
443 			return (error);
444 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
445 		free(mc, M_VLAN);
446 	}
447 
448 	/* Now program new ones. */
449 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
450 		if (ifma->ifma_addr->sa_family != AF_LINK)
451 			continue;
452 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
453 		if (mc == NULL)
454 			return (ENOMEM);
455 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
456 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
457 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
458 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
459 		    LLADDR(&sdl), ETHER_ADDR_LEN);
460 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
461 		if (error)
462 			return (error);
463 	}
464 
465 	return (0);
466 }
467 
468 /*
469  * A handler for network interface departure events.
470  * Track departure of trunks here so that we don't access invalid
471  * pointers or whatever if a trunk is ripped from under us, e.g.,
472  * by ejecting its hot-plug card.
473  */
474 static void
475 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
476 {
477 	struct ifvlan *ifv;
478 	int i;
479 
480 	/*
481 	 * Check if it's a trunk interface first of all
482 	 * to avoid needless locking.
483 	 */
484 	if (ifp->if_vlantrunk == NULL)
485 		return;
486 
487 	VLAN_LOCK();
488 	/*
489 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
490 	 * Check trunk pointer after each vlan_unconfig() as it will
491 	 * free it and set to NULL after the last vlan was detached.
492 	 */
493 #ifdef VLAN_ARRAY
494 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
495 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
496 			vlan_unconfig_locked(ifv->ifv_ifp);
497 			if (ifp->if_vlantrunk == NULL)
498 				break;
499 		}
500 #else /* VLAN_ARRAY */
501 restart:
502 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
503 		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
504 			vlan_unconfig_locked(ifv->ifv_ifp);
505 			if (ifp->if_vlantrunk)
506 				goto restart;	/* trunk->hwidth can change */
507 			else
508 				break;
509 		}
510 #endif /* VLAN_ARRAY */
511 	/* Trunk should have been destroyed in vlan_unconfig(). */
512 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
513 	VLAN_UNLOCK();
514 }
515 
516 /*
517  * VLAN support can be loaded as a module.  The only place in the
518  * system that's intimately aware of this is ether_input.  We hook
519  * into this code through vlan_input_p which is defined there and
520  * set here.  Noone else in the system should be aware of this so
521  * we use an explicit reference here.
522  */
523 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
524 
525 /* For if_link_state_change() eyes only... */
526 extern	void (*vlan_link_state_p)(struct ifnet *, int);
527 
528 static int
529 vlan_modevent(module_t mod, int type, void *data)
530 {
531 
532 	switch (type) {
533 	case MOD_LOAD:
534 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
535 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
536 		if (ifdetach_tag == NULL)
537 			return (ENOMEM);
538 		LIST_INIT(&trunk_list);
539 		VLAN_LOCK_INIT();
540 		vlan_input_p = vlan_input;
541 		vlan_link_state_p = vlan_link_state;
542 		vlan_trunk_cap_p = vlan_trunk_capabilities;
543 		if_clone_attach(&vlan_cloner);
544 		break;
545 	case MOD_UNLOAD:
546 	    {
547 		struct ifvlantrunk *trunk, *trunk1;
548 
549 		if_clone_detach(&vlan_cloner);
550 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
551 		vlan_input_p = NULL;
552 		vlan_link_state_p = NULL;
553 		vlan_trunk_cap_p = NULL;
554 		VLAN_LOCK();
555 		LIST_FOREACH_SAFE(trunk, &trunk_list, trunk_entry, trunk1)
556 			trunk_destroy(trunk);
557 		VLAN_UNLOCK();
558 		VLAN_LOCK_DESTROY();
559 		break;
560 	    }
561 	default:
562 		return (EOPNOTSUPP);
563 	}
564 	return (0);
565 }
566 
567 static moduledata_t vlan_mod = {
568 	"if_vlan",
569 	vlan_modevent,
570 	0
571 };
572 
573 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
574 MODULE_VERSION(if_vlan, 3);
575 MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
576 
577 static struct ifnet *
578 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
579 {
580 	const char *cp;
581 	struct ifnet *ifp;
582 	int t = 0;
583 
584 	/* Check for <etherif>.<vlan> style interface names. */
585 	IFNET_RLOCK();
586 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
587 		if (ifp->if_type != IFT_ETHER)
588 			continue;
589 		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
590 			continue;
591 		cp = name + strlen(ifp->if_xname);
592 		if (*cp != '.')
593 			continue;
594 		for(; *cp != '\0'; cp++) {
595 			if (*cp < '0' || *cp > '9')
596 				continue;
597 			t = (t * 10) + (*cp - '0');
598 		}
599 		if (tag != NULL)
600 			*tag = t;
601 		break;
602 	}
603 	IFNET_RUNLOCK();
604 
605 	return (ifp);
606 }
607 
608 static int
609 vlan_clone_match(struct if_clone *ifc, const char *name)
610 {
611 	const char *cp;
612 
613 	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
614 		return (1);
615 
616 	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
617 		return (0);
618 	for (cp = name + 4; *cp != '\0'; cp++) {
619 		if (*cp < '0' || *cp > '9')
620 			return (0);
621 	}
622 
623 	return (1);
624 }
625 
626 static int
627 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
628 {
629 	char *dp;
630 	int wildcard;
631 	int unit;
632 	int error;
633 	int tag;
634 	int ethertag;
635 	struct ifvlan *ifv;
636 	struct ifnet *ifp;
637 	struct ifnet *p;
638 	struct vlanreq vlr;
639 	static const u_char eaddr[6];	/* 00:00:00:00:00:00 */
640 
641 	/*
642 	 * There are 3 (ugh) ways to specify the cloned device:
643 	 * o pass a parameter block with the clone request.
644 	 * o specify parameters in the text of the clone device name
645 	 * o specify no parameters and get an unattached device that
646 	 *   must be configured separately.
647 	 * The first technique is preferred; the latter two are
648 	 * supported for backwards compatibilty.
649 	 */
650 	if (params) {
651 		error = copyin(params, &vlr, sizeof(vlr));
652 		if (error)
653 			return error;
654 		p = ifunit(vlr.vlr_parent);
655 		if (p == NULL)
656 			return ENXIO;
657 		/*
658 		 * Don't let the caller set up a VLAN tag with
659 		 * anything except VLID bits.
660 		 */
661 		if (vlr.vlr_tag & ~EVL_VLID_MASK)
662 			return (EINVAL);
663 		error = ifc_name2unit(name, &unit);
664 		if (error != 0)
665 			return (error);
666 
667 		ethertag = 1;
668 		tag = vlr.vlr_tag;
669 		wildcard = (unit < 0);
670 	} else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
671 		ethertag = 1;
672 		unit = -1;
673 		wildcard = 0;
674 
675 		/*
676 		 * Don't let the caller set up a VLAN tag with
677 		 * anything except VLID bits.
678 		 */
679 		if (tag & ~EVL_VLID_MASK)
680 			return (EINVAL);
681 	} else {
682 		ethertag = 0;
683 
684 		error = ifc_name2unit(name, &unit);
685 		if (error != 0)
686 			return (error);
687 
688 		wildcard = (unit < 0);
689 	}
690 
691 	error = ifc_alloc_unit(ifc, &unit);
692 	if (error != 0)
693 		return (error);
694 
695 	/* In the wildcard case, we need to update the name. */
696 	if (wildcard) {
697 		for (dp = name; *dp != '\0'; dp++);
698 		if (snprintf(dp, len - (dp-name), "%d", unit) >
699 		    len - (dp-name) - 1) {
700 			panic("%s: interface name too long", __func__);
701 		}
702 	}
703 
704 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
705 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
706 	if (ifp == NULL) {
707 		ifc_free_unit(ifc, unit);
708 		free(ifv, M_VLAN);
709 		return (ENOSPC);
710 	}
711 	SLIST_INIT(&ifv->vlan_mc_listhead);
712 
713 	ifp->if_softc = ifv;
714 	/*
715 	 * Set the name manually rather than using if_initname because
716 	 * we don't conform to the default naming convention for interfaces.
717 	 */
718 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
719 	ifp->if_dname = ifc->ifc_name;
720 	ifp->if_dunit = unit;
721 	/* NB: flags are not set here */
722 	ifp->if_linkmib = &ifv->ifv_mib;
723 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
724 	/* NB: mtu is not set here */
725 
726 	ifp->if_init = vlan_init;
727 	ifp->if_start = vlan_start;
728 	ifp->if_ioctl = vlan_ioctl;
729 	ifp->if_snd.ifq_maxlen = ifqmaxlen;
730 	ifp->if_flags = VLAN_IFFLAGS;
731 	ether_ifattach(ifp, eaddr);
732 	/* Now undo some of the damage... */
733 	ifp->if_baudrate = 0;
734 	ifp->if_type = IFT_L2VLAN;
735 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
736 
737 	if (ethertag) {
738 		error = vlan_config(ifv, p, tag);
739 		if (error != 0) {
740 			/*
741 			 * Since we've partialy failed, we need to back
742 			 * out all the way, otherwise userland could get
743 			 * confused.  Thus, we destroy the interface.
744 			 */
745 			ether_ifdetach(ifp);
746 			vlan_unconfig(ifp);
747 			if_free_type(ifp, IFT_ETHER);
748 			free(ifv, M_VLAN);
749 
750 			return (error);
751 		}
752 
753 		/* Update flags on the parent, if necessary. */
754 		vlan_setflags(ifp, 1);
755 	}
756 
757 	return (0);
758 }
759 
760 static int
761 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
762 {
763 	struct ifvlan *ifv = ifp->if_softc;
764 	int unit = ifp->if_dunit;
765 
766 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
767 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
768 	if_free_type(ifp, IFT_ETHER);
769 	free(ifv, M_VLAN);
770 	ifc_free_unit(ifc, unit);
771 
772 	return (0);
773 }
774 
775 /*
776  * The ifp->if_init entry point for vlan(4) is a no-op.
777  */
778 static void
779 vlan_init(void *foo __unused)
780 {
781 }
782 
783 /*
784  * The if_start method for vlan(4) interface. It doesn't
785  * raises the IFF_DRV_OACTIVE flag, since it is called
786  * only from IFQ_HANDOFF() macro in ether_output_frame().
787  * If the interface queue is full, and vlan_start() is
788  * not called, the queue would never get emptied and
789  * interface would stall forever.
790  */
791 static void
792 vlan_start(struct ifnet *ifp)
793 {
794 	struct ifvlan *ifv;
795 	struct ifnet *p;
796 	struct mbuf *m;
797 	int error;
798 
799 	ifv = ifp->if_softc;
800 	p = PARENT(ifv);
801 
802 	for (;;) {
803 		IF_DEQUEUE(&ifp->if_snd, m);
804 		if (m == NULL)
805 			break;
806 		BPF_MTAP(ifp, m);
807 
808 		/*
809 		 * Do not run parent's if_start() if the parent is not up,
810 		 * or parent's driver will cause a system crash.
811 		 */
812 		if (!UP_AND_RUNNING(p)) {
813 			m_freem(m);
814 			ifp->if_collisions++;
815 			continue;
816 		}
817 
818 		/*
819 		 * Pad the frame to the minimum size allowed if told to.
820 		 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
821 		 * paragraph C.4.4.3.b.  It can help to work around buggy
822 		 * bridges that violate paragraph C.4.4.3.a from the same
823 		 * document, i.e., fail to pad short frames after untagging.
824 		 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
825 		 * untagging it will produce a 62-byte frame, which is a runt
826 		 * and requires padding.  There are VLAN-enabled network
827 		 * devices that just discard such runts instead or mishandle
828 		 * them somehow.
829 		 */
830 		if (soft_pad) {
831 			static char pad[8];	/* just zeros */
832 			int n;
833 
834 			for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
835 			     n > 0; n -= sizeof(pad))
836 				if (!m_append(m, min(n, sizeof(pad)), pad))
837 					break;
838 
839 			if (n > 0) {
840 				if_printf(ifp, "cannot pad short frame\n");
841 				ifp->if_oerrors++;
842 				m_freem(m);
843 				continue;
844 			}
845 		}
846 
847 		/*
848 		 * If underlying interface can do VLAN tag insertion itself,
849 		 * just pass the packet along. However, we need some way to
850 		 * tell the interface where the packet came from so that it
851 		 * knows how to find the VLAN tag to use, so we attach a
852 		 * packet tag that holds it.
853 		 */
854 		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
855 			m->m_pkthdr.ether_vtag = ifv->ifv_tag;
856 			m->m_flags |= M_VLANTAG;
857 		} else {
858 			struct ether_vlan_header *evl;
859 
860 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
861 			if (m == NULL) {
862 				if_printf(ifp,
863 				    "unable to prepend VLAN header\n");
864 				ifp->if_oerrors++;
865 				continue;
866 			}
867 			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
868 
869 			if (m->m_len < sizeof(*evl)) {
870 				m = m_pullup(m, sizeof(*evl));
871 				if (m == NULL) {
872 					if_printf(ifp,
873 					    "cannot pullup VLAN header\n");
874 					ifp->if_oerrors++;
875 					continue;
876 				}
877 			}
878 
879 			/*
880 			 * Transform the Ethernet header into an Ethernet header
881 			 * with 802.1Q encapsulation.
882 			 */
883 			evl = mtod(m, struct ether_vlan_header *);
884 			bcopy((char *)evl + ifv->ifv_encaplen,
885 			      (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
886 			evl->evl_encap_proto = htons(ifv->ifv_proto);
887 			evl->evl_tag = htons(ifv->ifv_tag);
888 #ifdef DEBUG
889 			printf("%s: %*D\n", __func__, (int)sizeof(*evl),
890 			    (unsigned char *)evl, ":");
891 #endif
892 		}
893 
894 		/*
895 		 * Send it, precisely as ether_output() would have.
896 		 * We are already running at splimp.
897 		 */
898 		IFQ_HANDOFF(p, m, error);
899 		if (!error)
900 			ifp->if_opackets++;
901 		else
902 			ifp->if_oerrors++;
903 	}
904 }
905 
906 static void
907 vlan_input(struct ifnet *ifp, struct mbuf *m)
908 {
909 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
910 	struct ifvlan *ifv;
911 	uint16_t tag;
912 
913 	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
914 
915 	if (m->m_flags & M_VLANTAG) {
916 		/*
917 		 * Packet is tagged, but m contains a normal
918 		 * Ethernet frame; the tag is stored out-of-band.
919 		 */
920 		tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
921 		m->m_flags &= ~M_VLANTAG;
922 	} else {
923 		struct ether_vlan_header *evl;
924 
925 		/*
926 		 * Packet is tagged in-band as specified by 802.1q.
927 		 */
928 		switch (ifp->if_type) {
929 		case IFT_ETHER:
930 			if (m->m_len < sizeof(*evl) &&
931 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
932 				if_printf(ifp, "cannot pullup VLAN header\n");
933 				return;
934 			}
935 			evl = mtod(m, struct ether_vlan_header *);
936 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
937 
938 			/*
939 			 * Remove the 802.1q header by copying the Ethernet
940 			 * addresses over it and adjusting the beginning of
941 			 * the data in the mbuf.  The encapsulated Ethernet
942 			 * type field is already in place.
943 			 */
944 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
945 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
946 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
947 			break;
948 
949 		default:
950 #ifdef INVARIANTS
951 			panic("%s: %s has unsupported if_type %u",
952 			      __func__, ifp->if_xname, ifp->if_type);
953 #endif
954 			m_freem(m);
955 			ifp->if_noproto++;
956 			return;
957 		}
958 	}
959 
960 	TRUNK_RLOCK(trunk);
961 #ifdef VLAN_ARRAY
962 	ifv = trunk->vlans[tag];
963 #else
964 	ifv = vlan_gethash(trunk, tag);
965 #endif
966 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
967 		TRUNK_RUNLOCK(trunk);
968 		m_freem(m);
969 		ifp->if_noproto++;
970 		return;
971 	}
972 	TRUNK_RUNLOCK(trunk);
973 
974 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
975 	ifv->ifv_ifp->if_ipackets++;
976 
977 	/* Pass it back through the parent's input routine. */
978 	(*ifp->if_input)(ifv->ifv_ifp, m);
979 }
980 
981 static int
982 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
983 {
984 	struct ifvlantrunk *trunk;
985 	struct ifnet *ifp;
986 	int error = 0;
987 
988 	/* VID numbers 0x0 and 0xFFF are reserved */
989 	if (tag == 0 || tag == 0xFFF)
990 		return (EINVAL);
991 	if (p->if_type != IFT_ETHER)
992 		return (EPROTONOSUPPORT);
993 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
994 		return (EPROTONOSUPPORT);
995 	if (ifv->ifv_trunk)
996 		return (EBUSY);
997 
998 	if (p->if_vlantrunk == NULL) {
999 		trunk = malloc(sizeof(struct ifvlantrunk),
1000 		    M_VLAN, M_WAITOK | M_ZERO);
1001 #ifndef VLAN_ARRAY
1002 		vlan_inithash(trunk);
1003 #endif
1004 		VLAN_LOCK();
1005 		if (p->if_vlantrunk != NULL) {
1006 			/* A race that that is very unlikely to be hit. */
1007 #ifndef VLAN_ARRAY
1008 			vlan_freehash(trunk);
1009 #endif
1010 			free(trunk, M_VLAN);
1011 			goto exists;
1012 		}
1013 		TRUNK_LOCK_INIT(trunk);
1014 		LIST_INSERT_HEAD(&trunk_list, trunk, trunk_entry);
1015 		TRUNK_LOCK(trunk);
1016 		p->if_vlantrunk = trunk;
1017 		trunk->parent = p;
1018 	} else {
1019 		VLAN_LOCK();
1020 exists:
1021 		trunk = p->if_vlantrunk;
1022 		TRUNK_LOCK(trunk);
1023 	}
1024 
1025 	ifv->ifv_tag = tag;	/* must set this before vlan_inshash() */
1026 #ifdef VLAN_ARRAY
1027 	if (trunk->vlans[tag] != NULL) {
1028 		error = EEXIST;
1029 		goto done;
1030 	}
1031 	trunk->vlans[tag] = ifv;
1032 	trunk->refcnt++;
1033 #else
1034 	error = vlan_inshash(trunk, ifv);
1035 	if (error)
1036 		goto done;
1037 #endif
1038 	ifv->ifv_proto = ETHERTYPE_VLAN;
1039 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1040 	ifv->ifv_mintu = ETHERMIN;
1041 	ifv->ifv_pflags = 0;
1042 
1043 	/*
1044 	 * If the parent supports the VLAN_MTU capability,
1045 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1046 	 * use it.
1047 	 */
1048 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1049 		/*
1050 		 * No need to fudge the MTU since the parent can
1051 		 * handle extended frames.
1052 		 */
1053 		ifv->ifv_mtufudge = 0;
1054 	} else {
1055 		/*
1056 		 * Fudge the MTU by the encapsulation size.  This
1057 		 * makes us incompatible with strictly compliant
1058 		 * 802.1Q implementations, but allows us to use
1059 		 * the feature with other NetBSD implementations,
1060 		 * which might still be useful.
1061 		 */
1062 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1063 	}
1064 
1065 	ifv->ifv_trunk = trunk;
1066 	ifp = ifv->ifv_ifp;
1067 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1068 	ifp->if_baudrate = p->if_baudrate;
1069 	/*
1070 	 * Copy only a selected subset of flags from the parent.
1071 	 * Other flags are none of our business.
1072 	 */
1073 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1074 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1075 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1076 #undef VLAN_COPY_FLAGS
1077 
1078 	ifp->if_link_state = p->if_link_state;
1079 
1080 	vlan_capabilities(ifv);
1081 
1082 	/*
1083 	 * Set up our ``Ethernet address'' to reflect the underlying
1084 	 * physical interface's.
1085 	 */
1086 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
1087 
1088 	/*
1089 	 * Configure multicast addresses that may already be
1090 	 * joined on the vlan device.
1091 	 */
1092 	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1093 
1094 	/* We are ready for operation now. */
1095 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1096 done:
1097 	TRUNK_UNLOCK(trunk);
1098 	VLAN_UNLOCK();
1099 
1100 	return (error);
1101 }
1102 
1103 static int
1104 vlan_unconfig(struct ifnet *ifp)
1105 {
1106 	int ret;
1107 
1108 	VLAN_LOCK();
1109 	ret = vlan_unconfig_locked(ifp);
1110 	VLAN_UNLOCK();
1111 	return (ret);
1112 }
1113 
1114 static int
1115 vlan_unconfig_locked(struct ifnet *ifp)
1116 {
1117 	struct ifvlantrunk *trunk;
1118 	struct vlan_mc_entry *mc;
1119 	struct ifvlan *ifv;
1120 	int error;
1121 
1122 	VLAN_LOCK_ASSERT();
1123 
1124 	ifv = ifp->if_softc;
1125 	trunk = ifv->ifv_trunk;
1126 
1127 	if (trunk) {
1128 		struct sockaddr_dl sdl;
1129 		struct ifnet *p = trunk->parent;
1130 
1131 		TRUNK_LOCK(trunk);
1132 
1133 		/*
1134 		 * Since the interface is being unconfigured, we need to
1135 		 * empty the list of multicast groups that we may have joined
1136 		 * while we were alive from the parent's list.
1137 		 */
1138 		bzero((char *)&sdl, sizeof(sdl));
1139 		sdl.sdl_len = sizeof(sdl);
1140 		sdl.sdl_family = AF_LINK;
1141 		sdl.sdl_index = p->if_index;
1142 		sdl.sdl_type = IFT_ETHER;
1143 		sdl.sdl_alen = ETHER_ADDR_LEN;
1144 
1145 		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
1146 			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
1147 			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1148 			    ETHER_ADDR_LEN);
1149 			error = if_delmulti(p, (struct sockaddr *)&sdl);
1150 			if (error)
1151 				return (error);
1152 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1153 			free(mc, M_VLAN);
1154 		}
1155 
1156 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1157 #ifdef VLAN_ARRAY
1158 		trunk->vlans[ifv->ifv_tag] = NULL;
1159 		trunk->refcnt--;
1160 #else
1161 		vlan_remhash(trunk, ifv);
1162 #endif
1163 		ifv->ifv_trunk = NULL;
1164 
1165 		/*
1166 		 * Check if we were the last.
1167 		 */
1168 		if (trunk->refcnt == 0) {
1169 			trunk->parent->if_vlantrunk = NULL;
1170 			/*
1171 			 * XXXGL: If some ithread has already entered
1172 			 * vlan_input() and is now blocked on the trunk
1173 			 * lock, then it should preempt us right after
1174 			 * unlock and finish its work. Then we will acquire
1175 			 * lock again in trunk_destroy().
1176 			 */
1177 			TRUNK_UNLOCK(trunk);
1178 			trunk_destroy(trunk);
1179 		} else
1180 			TRUNK_UNLOCK(trunk);
1181 	}
1182 
1183 	/* Disconnect from parent. */
1184 	if (ifv->ifv_pflags)
1185 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1186 	ifp->if_mtu = ETHERMTU;
1187 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1188 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1189 
1190 	return (0);
1191 }
1192 
1193 /* Handle a reference counted flag that should be set on the parent as well */
1194 static int
1195 vlan_setflag(struct ifnet *ifp, int flag, int status,
1196 	     int (*func)(struct ifnet *, int))
1197 {
1198 	struct ifvlan *ifv;
1199 	int error;
1200 
1201 	/* XXX VLAN_LOCK_ASSERT(); */
1202 
1203 	ifv = ifp->if_softc;
1204 	status = status ? (ifp->if_flags & flag) : 0;
1205 	/* Now "status" contains the flag value or 0 */
1206 
1207 	/*
1208 	 * See if recorded parent's status is different from what
1209 	 * we want it to be.  If it is, flip it.  We record parent's
1210 	 * status in ifv_pflags so that we won't clear parent's flag
1211 	 * we haven't set.  In fact, we don't clear or set parent's
1212 	 * flags directly, but get or release references to them.
1213 	 * That's why we can be sure that recorded flags still are
1214 	 * in accord with actual parent's flags.
1215 	 */
1216 	if (status != (ifv->ifv_pflags & flag)) {
1217 		error = (*func)(PARENT(ifv), status);
1218 		if (error)
1219 			return (error);
1220 		ifv->ifv_pflags &= ~flag;
1221 		ifv->ifv_pflags |= status;
1222 	}
1223 	return (0);
1224 }
1225 
1226 /*
1227  * Handle IFF_* flags that require certain changes on the parent:
1228  * if "status" is true, update parent's flags respective to our if_flags;
1229  * if "status" is false, forcedly clear the flags set on parent.
1230  */
1231 static int
1232 vlan_setflags(struct ifnet *ifp, int status)
1233 {
1234 	int error, i;
1235 
1236 	for (i = 0; vlan_pflags[i].flag; i++) {
1237 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1238 				     status, vlan_pflags[i].func);
1239 		if (error)
1240 			return (error);
1241 	}
1242 	return (0);
1243 }
1244 
1245 /* Inform all vlans that their parent has changed link state */
1246 static void
1247 vlan_link_state(struct ifnet *ifp, int link)
1248 {
1249 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1250 	struct ifvlan *ifv;
1251 	int i;
1252 
1253 	TRUNK_LOCK(trunk);
1254 #ifdef VLAN_ARRAY
1255 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1256 		if (trunk->vlans[i] != NULL) {
1257 			ifv = trunk->vlans[i];
1258 #else
1259 	for (i = 0; i < (1 << trunk->hwidth); i++)
1260 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1261 #endif
1262 			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1263 			if_link_state_change(ifv->ifv_ifp,
1264 			    trunk->parent->if_link_state);
1265 		}
1266 	TRUNK_UNLOCK(trunk);
1267 }
1268 
1269 static void
1270 vlan_capabilities(struct ifvlan *ifv)
1271 {
1272 	struct ifnet *p = PARENT(ifv);
1273 	struct ifnet *ifp = ifv->ifv_ifp;
1274 
1275 	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1276 
1277 	/*
1278 	 * If the parent interface can do checksum offloading
1279 	 * on VLANs, then propagate its hardware-assisted
1280 	 * checksumming flags. Also assert that checksum
1281 	 * offloading requires hardware VLAN tagging.
1282 	 */
1283 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1284 		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1285 
1286 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1287 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1288 		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1289 		ifp->if_hwassist = p->if_hwassist;
1290 	} else {
1291 		ifp->if_capenable = 0;
1292 		ifp->if_hwassist = 0;
1293 	}
1294 }
1295 
1296 static void
1297 vlan_trunk_capabilities(struct ifnet *ifp)
1298 {
1299 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1300 	struct ifvlan *ifv;
1301 	int i;
1302 
1303 	TRUNK_LOCK(trunk);
1304 #ifdef VLAN_ARRAY
1305 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1306 		if (trunk->vlans[i] != NULL) {
1307 			ifv = trunk->vlans[i];
1308 #else
1309 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1310 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1311 #endif
1312 			vlan_capabilities(ifv);
1313 	}
1314 	TRUNK_UNLOCK(trunk);
1315 }
1316 
1317 static int
1318 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1319 {
1320 	struct ifaddr *ifa;
1321 	struct ifnet *p;
1322 	struct ifreq *ifr;
1323 	struct ifvlan *ifv;
1324 	struct vlanreq vlr;
1325 	int error = 0;
1326 
1327 	ifr = (struct ifreq *)data;
1328 	ifa = (struct ifaddr *)data;
1329 	ifv = ifp->if_softc;
1330 
1331 	switch (cmd) {
1332 	case SIOCSIFADDR:
1333 		ifp->if_flags |= IFF_UP;
1334 
1335 		switch (ifa->ifa_addr->sa_family) {
1336 #ifdef INET
1337 		case AF_INET:
1338 			arp_ifinit(ifv->ifv_ifp, ifa);
1339 			break;
1340 #endif
1341 		default:
1342 			break;
1343 		}
1344 		break;
1345 
1346 	case SIOCGIFADDR:
1347 		{
1348 			struct sockaddr *sa;
1349 
1350 			sa = (struct sockaddr *) &ifr->ifr_data;
1351 			bcopy(IF_LLADDR(ifp), (caddr_t)sa->sa_data,
1352 			    ETHER_ADDR_LEN);
1353 		}
1354 		break;
1355 
1356 	case SIOCGIFMEDIA:
1357 		VLAN_LOCK();
1358 		if (TRUNK(ifv) != NULL) {
1359 			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1360 					SIOCGIFMEDIA, data);
1361 			VLAN_UNLOCK();
1362 			/* Limit the result to the parent's current config. */
1363 			if (error == 0) {
1364 				struct ifmediareq *ifmr;
1365 
1366 				ifmr = (struct ifmediareq *)data;
1367 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1368 					ifmr->ifm_count = 1;
1369 					error = copyout(&ifmr->ifm_current,
1370 						ifmr->ifm_ulist,
1371 						sizeof(int));
1372 				}
1373 			}
1374 		} else {
1375 			VLAN_UNLOCK();
1376 			error = EINVAL;
1377 		}
1378 		break;
1379 
1380 	case SIOCSIFMEDIA:
1381 		error = EINVAL;
1382 		break;
1383 
1384 	case SIOCSIFMTU:
1385 		/*
1386 		 * Set the interface MTU.
1387 		 */
1388 		VLAN_LOCK();
1389 		if (TRUNK(ifv) != NULL) {
1390 			if (ifr->ifr_mtu >
1391 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1392 			    ifr->ifr_mtu <
1393 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1394 				error = EINVAL;
1395 			else
1396 				ifp->if_mtu = ifr->ifr_mtu;
1397 		} else
1398 			error = EINVAL;
1399 		VLAN_UNLOCK();
1400 		break;
1401 
1402 	case SIOCSETVLAN:
1403 		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1404 		if (error)
1405 			break;
1406 		if (vlr.vlr_parent[0] == '\0') {
1407 			vlan_unconfig(ifp);
1408 			break;
1409 		}
1410 		p = ifunit(vlr.vlr_parent);
1411 		if (p == 0) {
1412 			error = ENOENT;
1413 			break;
1414 		}
1415 		/*
1416 		 * Don't let the caller set up a VLAN tag with
1417 		 * anything except VLID bits.
1418 		 */
1419 		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1420 			error = EINVAL;
1421 			break;
1422 		}
1423 		error = vlan_config(ifv, p, vlr.vlr_tag);
1424 		if (error)
1425 			break;
1426 
1427 		/* Update flags on the parent, if necessary. */
1428 		vlan_setflags(ifp, 1);
1429 		break;
1430 
1431 	case SIOCGETVLAN:
1432 		bzero(&vlr, sizeof(vlr));
1433 		VLAN_LOCK();
1434 		if (TRUNK(ifv) != NULL) {
1435 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1436 			    sizeof(vlr.vlr_parent));
1437 			vlr.vlr_tag = ifv->ifv_tag;
1438 		}
1439 		VLAN_UNLOCK();
1440 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1441 		break;
1442 
1443 	case SIOCSIFFLAGS:
1444 		/*
1445 		 * We should propagate selected flags to the parent,
1446 		 * e.g., promiscuous mode.
1447 		 */
1448 		if (TRUNK(ifv) != NULL)
1449 			error = vlan_setflags(ifp, 1);
1450 		break;
1451 
1452 	case SIOCADDMULTI:
1453 	case SIOCDELMULTI:
1454 		/*
1455 		 * If we don't have a parent, just remember the membership for
1456 		 * when we do.
1457 		 */
1458 		if (TRUNK(ifv) != NULL)
1459 			error = vlan_setmulti(ifp);
1460 		break;
1461 
1462 	default:
1463 		error = EINVAL;
1464 	}
1465 
1466 	return (error);
1467 }
1468