1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * Copyright 2012 ADARA Networks, Inc. 4 * Copyright 2017 Dell EMC Isilon 5 * 6 * Portions of this software were developed by Robert N. M. Watson under 7 * contract to ADARA Networks, Inc. 8 * 9 * Permission to use, copy, modify, and distribute this software and 10 * its documentation for any purpose and without fee is hereby 11 * granted, provided that both the above copyright notice and this 12 * permission notice appear in all copies, that both the above 13 * copyright notice and this permission notice appear in all 14 * supporting documentation, and that the name of M.I.T. not be used 15 * in advertising or publicity pertaining to distribution of the 16 * software without specific, written prior permission. M.I.T. makes 17 * no representations about the suitability of this software for any 18 * purpose. It is provided "as is" without express or implied 19 * warranty. 20 * 21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 37 * This is sort of sneaky in the implementation, since 38 * we need to pretend to be enough of an Ethernet implementation 39 * to make arp work. The way we do this is by telling everyone 40 * that we are an Ethernet, and then catch the packets that 41 * ether_output() sends to us via if_transmit(), rewrite them for 42 * use by the real outgoing interface, and ask it to send them. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_inet.h" 49 #include "opt_inet6.h" 50 #include "opt_kern_tls.h" 51 #include "opt_vlan.h" 52 #include "opt_ratelimit.h" 53 54 #include <sys/param.h> 55 #include <sys/eventhandler.h> 56 #include <sys/kernel.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mbuf.h> 60 #include <sys/module.h> 61 #include <sys/rmlock.h> 62 #include <sys/priv.h> 63 #include <sys/queue.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/sysctl.h> 67 #include <sys/systm.h> 68 #include <sys/sx.h> 69 #include <sys/taskqueue.h> 70 71 #include <net/bpf.h> 72 #include <net/ethernet.h> 73 #include <net/if.h> 74 #include <net/if_var.h> 75 #include <net/if_clone.h> 76 #include <net/if_dl.h> 77 #include <net/if_types.h> 78 #include <net/if_vlan_var.h> 79 #include <net/route.h> 80 #include <net/vnet.h> 81 82 #ifdef INET 83 #include <netinet/in.h> 84 #include <netinet/if_ether.h> 85 #endif 86 87 #ifdef INET6 88 /* 89 * XXX: declare here to avoid to include many inet6 related files.. 90 * should be more generalized? 91 */ 92 extern void nd6_setmtu(struct ifnet *); 93 #endif 94 95 #define VLAN_DEF_HWIDTH 4 96 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 97 98 #define UP_AND_RUNNING(ifp) \ 99 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 100 101 CK_SLIST_HEAD(ifvlanhead, ifvlan); 102 103 struct ifvlantrunk { 104 struct ifnet *parent; /* parent interface of this trunk */ 105 struct mtx lock; 106 #ifdef VLAN_ARRAY 107 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 108 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 109 #else 110 struct ifvlanhead *hash; /* dynamic hash-list table */ 111 uint16_t hmask; 112 uint16_t hwidth; 113 #endif 114 int refcnt; 115 }; 116 117 #if defined(KERN_TLS) || defined(RATELIMIT) 118 struct vlan_snd_tag { 119 struct m_snd_tag com; 120 struct m_snd_tag *tag; 121 }; 122 123 static inline struct vlan_snd_tag * 124 mst_to_vst(struct m_snd_tag *mst) 125 { 126 127 return (__containerof(mst, struct vlan_snd_tag, com)); 128 } 129 #endif 130 131 /* 132 * This macro provides a facility to iterate over every vlan on a trunk with 133 * the assumption that none will be added/removed during iteration. 134 */ 135 #ifdef VLAN_ARRAY 136 #define VLAN_FOREACH(_ifv, _trunk) \ 137 size_t _i; \ 138 for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ 139 if (((_ifv) = (_trunk)->vlans[_i]) != NULL) 140 #else /* VLAN_ARRAY */ 141 #define VLAN_FOREACH(_ifv, _trunk) \ 142 struct ifvlan *_next; \ 143 size_t _i; \ 144 for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ 145 CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) 146 #endif /* VLAN_ARRAY */ 147 148 /* 149 * This macro provides a facility to iterate over every vlan on a trunk while 150 * also modifying the number of vlans on the trunk. The iteration continues 151 * until some condition is met or there are no more vlans on the trunk. 152 */ 153 #ifdef VLAN_ARRAY 154 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ 155 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 156 size_t _i; \ 157 for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ 158 if (((_ifv) = (_trunk)->vlans[_i])) 159 #else /* VLAN_ARRAY */ 160 /* 161 * The hash table case is more complicated. We allow for the hash table to be 162 * modified (i.e. vlans removed) while we are iterating over it. To allow for 163 * this we must restart the iteration every time we "touch" something during 164 * the iteration, since removal will resize the hash table and invalidate our 165 * current position. If acting on the touched element causes the trunk to be 166 * emptied, then iteration also stops. 167 */ 168 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 169 size_t _i; \ 170 bool _touch = false; \ 171 for (_i = 0; \ 172 !(_cond) && _i < (1 << (_trunk)->hwidth); \ 173 _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ 174 if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ 175 (_touch = true)) 176 #endif /* VLAN_ARRAY */ 177 178 struct vlan_mc_entry { 179 struct sockaddr_dl mc_addr; 180 CK_SLIST_ENTRY(vlan_mc_entry) mc_entries; 181 struct epoch_context mc_epoch_ctx; 182 }; 183 184 struct ifvlan { 185 struct ifvlantrunk *ifv_trunk; 186 struct ifnet *ifv_ifp; 187 #define TRUNK(ifv) ((ifv)->ifv_trunk) 188 #define PARENT(ifv) (TRUNK(ifv)->parent) 189 void *ifv_cookie; 190 int ifv_pflags; /* special flags we have set on parent */ 191 int ifv_capenable; 192 int ifv_encaplen; /* encapsulation length */ 193 int ifv_mtufudge; /* MTU fudged by this much */ 194 int ifv_mintu; /* min transmission unit */ 195 struct ether_8021q_tag ifv_qtag; 196 #define ifv_proto ifv_qtag.proto 197 #define ifv_vid ifv_qtag.vid 198 #define ifv_pcp ifv_qtag.pcp 199 struct task lladdr_task; 200 CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 201 #ifndef VLAN_ARRAY 202 CK_SLIST_ENTRY(ifvlan) ifv_list; 203 #endif 204 }; 205 206 /* Special flags we should propagate to parent. */ 207 static struct { 208 int flag; 209 int (*func)(struct ifnet *, int); 210 } vlan_pflags[] = { 211 {IFF_PROMISC, ifpromisc}, 212 {IFF_ALLMULTI, if_allmulti}, 213 {0, NULL} 214 }; 215 216 extern int vlan_mtag_pcp; 217 218 static const char vlanname[] = "vlan"; 219 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); 220 221 static eventhandler_tag ifdetach_tag; 222 static eventhandler_tag iflladdr_tag; 223 224 /* 225 * if_vlan uses two module-level synchronizations primitives to allow concurrent 226 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed 227 * while they are being used for tx/rx. To accomplish this in a way that has 228 * acceptable performance and cooperation with other parts of the network stack 229 * there is a non-sleepable epoch(9) and an sx(9). 230 * 231 * The performance-sensitive paths that warrant using the epoch(9) are 232 * vlan_transmit and vlan_input. Both have to check for the vlan interface's 233 * existence using if_vlantrunk, and being in the network tx/rx paths the use 234 * of an epoch(9) gives a measureable improvement in performance. 235 * 236 * The reason for having an sx(9) is mostly because there are still areas that 237 * must be sleepable and also have safe concurrent access to a vlan interface. 238 * Since the sx(9) exists, it is used by default in most paths unless sleeping 239 * is not permitted, or if it is not clear whether sleeping is permitted. 240 * 241 */ 242 #define _VLAN_SX_ID ifv_sx 243 244 static struct sx _VLAN_SX_ID; 245 246 #define VLAN_LOCKING_INIT() \ 247 sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE) 248 249 #define VLAN_LOCKING_DESTROY() \ 250 sx_destroy(&_VLAN_SX_ID) 251 252 #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) 253 #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) 254 #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) 255 #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) 256 #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) 257 #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) 258 #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) 259 260 /* 261 * We also have a per-trunk mutex that should be acquired when changing 262 * its state. 263 */ 264 #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF) 265 #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock) 266 #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock) 267 #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock) 268 #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED); 269 270 /* 271 * The VLAN_ARRAY substitutes the dynamic hash with a static array 272 * with 4096 entries. In theory this can give a boost in processing, 273 * however in practice it does not. Probably this is because the array 274 * is too big to fit into CPU cache. 275 */ 276 #ifndef VLAN_ARRAY 277 static void vlan_inithash(struct ifvlantrunk *trunk); 278 static void vlan_freehash(struct ifvlantrunk *trunk); 279 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 280 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 281 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 282 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 283 uint16_t vid); 284 #endif 285 static void trunk_destroy(struct ifvlantrunk *trunk); 286 287 static void vlan_init(void *foo); 288 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 289 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 290 #if defined(KERN_TLS) || defined(RATELIMIT) 291 static int vlan_snd_tag_alloc(struct ifnet *, 292 union if_snd_tag_alloc_params *, struct m_snd_tag **); 293 static int vlan_snd_tag_modify(struct m_snd_tag *, 294 union if_snd_tag_modify_params *); 295 static int vlan_snd_tag_query(struct m_snd_tag *, 296 union if_snd_tag_query_params *); 297 static void vlan_snd_tag_free(struct m_snd_tag *); 298 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *); 299 static void vlan_ratelimit_query(struct ifnet *, 300 struct if_ratelimit_query_results *); 301 #endif 302 static void vlan_qflush(struct ifnet *ifp); 303 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 304 int (*func)(struct ifnet *, int)); 305 static int vlan_setflags(struct ifnet *ifp, int status); 306 static int vlan_setmulti(struct ifnet *ifp); 307 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); 308 #ifdef ALTQ 309 static void vlan_altq_start(struct ifnet *ifp); 310 static int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m); 311 #endif 312 static int vlan_output(struct ifnet *ifp, struct mbuf *m, 313 const struct sockaddr *dst, struct route *ro); 314 static void vlan_unconfig(struct ifnet *ifp); 315 static void vlan_unconfig_locked(struct ifnet *ifp, int departing); 316 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag, 317 uint16_t proto); 318 static void vlan_link_state(struct ifnet *ifp); 319 static void vlan_capabilities(struct ifvlan *ifv); 320 static void vlan_trunk_capabilities(struct ifnet *ifp); 321 322 static struct ifnet *vlan_clone_match_ethervid(const char *, int *); 323 static int vlan_clone_match(struct if_clone *, const char *); 324 static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); 325 static int vlan_clone_destroy(struct if_clone *, struct ifnet *); 326 327 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 328 static void vlan_iflladdr(void *arg, struct ifnet *ifp); 329 330 static void vlan_lladdr_fn(void *arg, int pending); 331 332 static struct if_clone *vlan_cloner; 333 334 #ifdef VIMAGE 335 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); 336 #define V_vlan_cloner VNET(vlan_cloner) 337 #endif 338 339 #ifdef RATELIMIT 340 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = { 341 .snd_tag_modify = vlan_snd_tag_modify, 342 .snd_tag_query = vlan_snd_tag_query, 343 .snd_tag_free = vlan_snd_tag_free, 344 .next_snd_tag = vlan_next_snd_tag, 345 .type = IF_SND_TAG_TYPE_UNLIMITED 346 }; 347 348 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = { 349 .snd_tag_modify = vlan_snd_tag_modify, 350 .snd_tag_query = vlan_snd_tag_query, 351 .snd_tag_free = vlan_snd_tag_free, 352 .next_snd_tag = vlan_next_snd_tag, 353 .type = IF_SND_TAG_TYPE_RATE_LIMIT 354 }; 355 #endif 356 357 #ifdef KERN_TLS 358 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = { 359 .snd_tag_modify = vlan_snd_tag_modify, 360 .snd_tag_query = vlan_snd_tag_query, 361 .snd_tag_free = vlan_snd_tag_free, 362 .next_snd_tag = vlan_next_snd_tag, 363 .type = IF_SND_TAG_TYPE_TLS 364 }; 365 366 #ifdef RATELIMIT 367 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = { 368 .snd_tag_modify = vlan_snd_tag_modify, 369 .snd_tag_query = vlan_snd_tag_query, 370 .snd_tag_free = vlan_snd_tag_free, 371 .next_snd_tag = vlan_next_snd_tag, 372 .type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT 373 }; 374 #endif 375 #endif 376 377 static void 378 vlan_mc_free(struct epoch_context *ctx) 379 { 380 struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx); 381 free(mc, M_VLAN); 382 } 383 384 #ifndef VLAN_ARRAY 385 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 386 387 static void 388 vlan_inithash(struct ifvlantrunk *trunk) 389 { 390 int i, n; 391 392 /* 393 * The trunk must not be locked here since we call malloc(M_WAITOK). 394 * It is OK in case this function is called before the trunk struct 395 * gets hooked up and becomes visible from other threads. 396 */ 397 398 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 399 ("%s: hash already initialized", __func__)); 400 401 trunk->hwidth = VLAN_DEF_HWIDTH; 402 n = 1 << trunk->hwidth; 403 trunk->hmask = n - 1; 404 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 405 for (i = 0; i < n; i++) 406 CK_SLIST_INIT(&trunk->hash[i]); 407 } 408 409 static void 410 vlan_freehash(struct ifvlantrunk *trunk) 411 { 412 #ifdef INVARIANTS 413 int i; 414 415 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 416 for (i = 0; i < (1 << trunk->hwidth); i++) 417 KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]), 418 ("%s: hash table not empty", __func__)); 419 #endif 420 free(trunk->hash, M_VLAN); 421 trunk->hash = NULL; 422 trunk->hwidth = trunk->hmask = 0; 423 } 424 425 static int 426 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 427 { 428 int i, b; 429 struct ifvlan *ifv2; 430 431 VLAN_XLOCK_ASSERT(); 432 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 433 434 b = 1 << trunk->hwidth; 435 i = HASH(ifv->ifv_vid, trunk->hmask); 436 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 437 if (ifv->ifv_vid == ifv2->ifv_vid) 438 return (EEXIST); 439 440 /* 441 * Grow the hash when the number of vlans exceeds half of the number of 442 * hash buckets squared. This will make the average linked-list length 443 * buckets/2. 444 */ 445 if (trunk->refcnt > (b * b) / 2) { 446 vlan_growhash(trunk, 1); 447 i = HASH(ifv->ifv_vid, trunk->hmask); 448 } 449 CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 450 trunk->refcnt++; 451 452 return (0); 453 } 454 455 static int 456 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 457 { 458 int i, b; 459 struct ifvlan *ifv2; 460 461 VLAN_XLOCK_ASSERT(); 462 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 463 464 b = 1 << trunk->hwidth; 465 i = HASH(ifv->ifv_vid, trunk->hmask); 466 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 467 if (ifv2 == ifv) { 468 trunk->refcnt--; 469 CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list); 470 if (trunk->refcnt < (b * b) / 2) 471 vlan_growhash(trunk, -1); 472 return (0); 473 } 474 475 panic("%s: vlan not found\n", __func__); 476 return (ENOENT); /*NOTREACHED*/ 477 } 478 479 /* 480 * Grow the hash larger or smaller if memory permits. 481 */ 482 static void 483 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 484 { 485 struct ifvlan *ifv; 486 struct ifvlanhead *hash2; 487 int hwidth2, i, j, n, n2; 488 489 VLAN_XLOCK_ASSERT(); 490 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 491 492 if (howmuch == 0) { 493 /* Harmless yet obvious coding error */ 494 printf("%s: howmuch is 0\n", __func__); 495 return; 496 } 497 498 hwidth2 = trunk->hwidth + howmuch; 499 n = 1 << trunk->hwidth; 500 n2 = 1 << hwidth2; 501 /* Do not shrink the table below the default */ 502 if (hwidth2 < VLAN_DEF_HWIDTH) 503 return; 504 505 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK); 506 if (hash2 == NULL) { 507 printf("%s: out of memory -- hash size not changed\n", 508 __func__); 509 return; /* We can live with the old hash table */ 510 } 511 for (j = 0; j < n2; j++) 512 CK_SLIST_INIT(&hash2[j]); 513 for (i = 0; i < n; i++) 514 while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) { 515 CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list); 516 j = HASH(ifv->ifv_vid, n2 - 1); 517 CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 518 } 519 NET_EPOCH_WAIT(); 520 free(trunk->hash, M_VLAN); 521 trunk->hash = hash2; 522 trunk->hwidth = hwidth2; 523 trunk->hmask = n2 - 1; 524 525 if (bootverbose) 526 if_printf(trunk->parent, 527 "VLAN hash table resized from %d to %d buckets\n", n, n2); 528 } 529 530 static __inline struct ifvlan * 531 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 532 { 533 struct ifvlan *ifv; 534 535 NET_EPOCH_ASSERT(); 536 537 CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) 538 if (ifv->ifv_vid == vid) 539 return (ifv); 540 return (NULL); 541 } 542 543 #if 0 544 /* Debugging code to view the hashtables. */ 545 static void 546 vlan_dumphash(struct ifvlantrunk *trunk) 547 { 548 int i; 549 struct ifvlan *ifv; 550 551 for (i = 0; i < (1 << trunk->hwidth); i++) { 552 printf("%d: ", i); 553 CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 554 printf("%s ", ifv->ifv_ifp->if_xname); 555 printf("\n"); 556 } 557 } 558 #endif /* 0 */ 559 #else 560 561 static __inline struct ifvlan * 562 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 563 { 564 565 return trunk->vlans[vid]; 566 } 567 568 static __inline int 569 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 570 { 571 572 if (trunk->vlans[ifv->ifv_vid] != NULL) 573 return EEXIST; 574 trunk->vlans[ifv->ifv_vid] = ifv; 575 trunk->refcnt++; 576 577 return (0); 578 } 579 580 static __inline int 581 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 582 { 583 584 trunk->vlans[ifv->ifv_vid] = NULL; 585 trunk->refcnt--; 586 587 return (0); 588 } 589 590 static __inline void 591 vlan_freehash(struct ifvlantrunk *trunk) 592 { 593 } 594 595 static __inline void 596 vlan_inithash(struct ifvlantrunk *trunk) 597 { 598 } 599 600 #endif /* !VLAN_ARRAY */ 601 602 static void 603 trunk_destroy(struct ifvlantrunk *trunk) 604 { 605 VLAN_XLOCK_ASSERT(); 606 607 vlan_freehash(trunk); 608 trunk->parent->if_vlantrunk = NULL; 609 TRUNK_LOCK_DESTROY(trunk); 610 if_rele(trunk->parent); 611 free(trunk, M_VLAN); 612 } 613 614 /* 615 * Program our multicast filter. What we're actually doing is 616 * programming the multicast filter of the parent. This has the 617 * side effect of causing the parent interface to receive multicast 618 * traffic that it doesn't really want, which ends up being discarded 619 * later by the upper protocol layers. Unfortunately, there's no way 620 * to avoid this: there really is only one physical interface. 621 */ 622 static int 623 vlan_setmulti(struct ifnet *ifp) 624 { 625 struct ifnet *ifp_p; 626 struct ifmultiaddr *ifma; 627 struct ifvlan *sc; 628 struct vlan_mc_entry *mc; 629 int error; 630 631 VLAN_XLOCK_ASSERT(); 632 633 /* Find the parent. */ 634 sc = ifp->if_softc; 635 ifp_p = PARENT(sc); 636 637 CURVNET_SET_QUIET(ifp_p->if_vnet); 638 639 /* First, remove any existing filter entries. */ 640 while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 641 CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 642 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); 643 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 644 } 645 646 /* Now program new ones. */ 647 IF_ADDR_WLOCK(ifp); 648 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 649 if (ifma->ifma_addr->sa_family != AF_LINK) 650 continue; 651 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 652 if (mc == NULL) { 653 IF_ADDR_WUNLOCK(ifp); 654 CURVNET_RESTORE(); 655 return (ENOMEM); 656 } 657 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); 658 mc->mc_addr.sdl_index = ifp_p->if_index; 659 CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 660 } 661 IF_ADDR_WUNLOCK(ifp); 662 CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { 663 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, 664 NULL); 665 if (error) { 666 CURVNET_RESTORE(); 667 return (error); 668 } 669 } 670 671 CURVNET_RESTORE(); 672 return (0); 673 } 674 675 /* 676 * A handler for parent interface link layer address changes. 677 * If the parent interface link layer address is changed we 678 * should also change it on all children vlans. 679 */ 680 static void 681 vlan_iflladdr(void *arg __unused, struct ifnet *ifp) 682 { 683 struct epoch_tracker et; 684 struct ifvlan *ifv; 685 struct ifnet *ifv_ifp; 686 struct ifvlantrunk *trunk; 687 struct sockaddr_dl *sdl; 688 689 /* Need the epoch since this is run on taskqueue_swi. */ 690 NET_EPOCH_ENTER(et); 691 trunk = ifp->if_vlantrunk; 692 if (trunk == NULL) { 693 NET_EPOCH_EXIT(et); 694 return; 695 } 696 697 /* 698 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. 699 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR 700 * ioctl calls on the parent garbling the lladdr of the child vlan. 701 */ 702 TRUNK_WLOCK(trunk); 703 VLAN_FOREACH(ifv, trunk) { 704 /* 705 * Copy new new lladdr into the ifv_ifp, enqueue a task 706 * to actually call if_setlladdr. if_setlladdr needs to 707 * be deferred to a taskqueue because it will call into 708 * the if_vlan ioctl path and try to acquire the global 709 * lock. 710 */ 711 ifv_ifp = ifv->ifv_ifp; 712 bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), 713 ifp->if_addrlen); 714 sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; 715 sdl->sdl_alen = ifp->if_addrlen; 716 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 717 } 718 TRUNK_WUNLOCK(trunk); 719 NET_EPOCH_EXIT(et); 720 } 721 722 /* 723 * A handler for network interface departure events. 724 * Track departure of trunks here so that we don't access invalid 725 * pointers or whatever if a trunk is ripped from under us, e.g., 726 * by ejecting its hot-plug card. However, if an ifnet is simply 727 * being renamed, then there's no need to tear down the state. 728 */ 729 static void 730 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 731 { 732 struct ifvlan *ifv; 733 struct ifvlantrunk *trunk; 734 735 /* If the ifnet is just being renamed, don't do anything. */ 736 if (ifp->if_flags & IFF_RENAMING) 737 return; 738 VLAN_XLOCK(); 739 trunk = ifp->if_vlantrunk; 740 if (trunk == NULL) { 741 VLAN_XUNLOCK(); 742 return; 743 } 744 745 /* 746 * OK, it's a trunk. Loop over and detach all vlan's on it. 747 * Check trunk pointer after each vlan_unconfig() as it will 748 * free it and set to NULL after the last vlan was detached. 749 */ 750 VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, 751 ifp->if_vlantrunk == NULL) 752 vlan_unconfig_locked(ifv->ifv_ifp, 1); 753 754 /* Trunk should have been destroyed in vlan_unconfig(). */ 755 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 756 VLAN_XUNLOCK(); 757 } 758 759 /* 760 * Return the trunk device for a virtual interface. 761 */ 762 static struct ifnet * 763 vlan_trunkdev(struct ifnet *ifp) 764 { 765 struct ifvlan *ifv; 766 767 NET_EPOCH_ASSERT(); 768 769 if (ifp->if_type != IFT_L2VLAN) 770 return (NULL); 771 772 ifv = ifp->if_softc; 773 ifp = NULL; 774 if (ifv->ifv_trunk) 775 ifp = PARENT(ifv); 776 return (ifp); 777 } 778 779 /* 780 * Return the 12-bit VLAN VID for this interface, for use by external 781 * components such as Infiniband. 782 * 783 * XXXRW: Note that the function name here is historical; it should be named 784 * vlan_vid(). 785 */ 786 static int 787 vlan_tag(struct ifnet *ifp, uint16_t *vidp) 788 { 789 struct ifvlan *ifv; 790 791 if (ifp->if_type != IFT_L2VLAN) 792 return (EINVAL); 793 ifv = ifp->if_softc; 794 *vidp = ifv->ifv_vid; 795 return (0); 796 } 797 798 static int 799 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp) 800 { 801 struct ifvlan *ifv; 802 803 if (ifp->if_type != IFT_L2VLAN) 804 return (EINVAL); 805 ifv = ifp->if_softc; 806 *pcpp = ifv->ifv_pcp; 807 return (0); 808 } 809 810 /* 811 * Return a driver specific cookie for this interface. Synchronization 812 * with setcookie must be provided by the driver. 813 */ 814 static void * 815 vlan_cookie(struct ifnet *ifp) 816 { 817 struct ifvlan *ifv; 818 819 if (ifp->if_type != IFT_L2VLAN) 820 return (NULL); 821 ifv = ifp->if_softc; 822 return (ifv->ifv_cookie); 823 } 824 825 /* 826 * Store a cookie in our softc that drivers can use to store driver 827 * private per-instance data in. 828 */ 829 static int 830 vlan_setcookie(struct ifnet *ifp, void *cookie) 831 { 832 struct ifvlan *ifv; 833 834 if (ifp->if_type != IFT_L2VLAN) 835 return (EINVAL); 836 ifv = ifp->if_softc; 837 ifv->ifv_cookie = cookie; 838 return (0); 839 } 840 841 /* 842 * Return the vlan device present at the specific VID. 843 */ 844 static struct ifnet * 845 vlan_devat(struct ifnet *ifp, uint16_t vid) 846 { 847 struct ifvlantrunk *trunk; 848 struct ifvlan *ifv; 849 850 NET_EPOCH_ASSERT(); 851 852 trunk = ifp->if_vlantrunk; 853 if (trunk == NULL) 854 return (NULL); 855 ifp = NULL; 856 ifv = vlan_gethash(trunk, vid); 857 if (ifv) 858 ifp = ifv->ifv_ifp; 859 return (ifp); 860 } 861 862 /* 863 * VLAN support can be loaded as a module. The only place in the 864 * system that's intimately aware of this is ether_input. We hook 865 * into this code through vlan_input_p which is defined there and 866 * set here. No one else in the system should be aware of this so 867 * we use an explicit reference here. 868 */ 869 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 870 871 /* For if_link_state_change() eyes only... */ 872 extern void (*vlan_link_state_p)(struct ifnet *); 873 874 static int 875 vlan_modevent(module_t mod, int type, void *data) 876 { 877 878 switch (type) { 879 case MOD_LOAD: 880 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 881 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 882 if (ifdetach_tag == NULL) 883 return (ENOMEM); 884 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, 885 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 886 if (iflladdr_tag == NULL) 887 return (ENOMEM); 888 VLAN_LOCKING_INIT(); 889 vlan_input_p = vlan_input; 890 vlan_link_state_p = vlan_link_state; 891 vlan_trunk_cap_p = vlan_trunk_capabilities; 892 vlan_trunkdev_p = vlan_trunkdev; 893 vlan_cookie_p = vlan_cookie; 894 vlan_setcookie_p = vlan_setcookie; 895 vlan_tag_p = vlan_tag; 896 vlan_pcp_p = vlan_pcp; 897 vlan_devat_p = vlan_devat; 898 #ifndef VIMAGE 899 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 900 vlan_clone_create, vlan_clone_destroy); 901 #endif 902 if (bootverbose) 903 printf("vlan: initialized, using " 904 #ifdef VLAN_ARRAY 905 "full-size arrays" 906 #else 907 "hash tables with chaining" 908 #endif 909 910 "\n"); 911 break; 912 case MOD_UNLOAD: 913 #ifndef VIMAGE 914 if_clone_detach(vlan_cloner); 915 #endif 916 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 917 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); 918 vlan_input_p = NULL; 919 vlan_link_state_p = NULL; 920 vlan_trunk_cap_p = NULL; 921 vlan_trunkdev_p = NULL; 922 vlan_tag_p = NULL; 923 vlan_cookie_p = NULL; 924 vlan_setcookie_p = NULL; 925 vlan_devat_p = NULL; 926 VLAN_LOCKING_DESTROY(); 927 if (bootverbose) 928 printf("vlan: unloaded\n"); 929 break; 930 default: 931 return (EOPNOTSUPP); 932 } 933 return (0); 934 } 935 936 static moduledata_t vlan_mod = { 937 "if_vlan", 938 vlan_modevent, 939 0 940 }; 941 942 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 943 MODULE_VERSION(if_vlan, 3); 944 945 #ifdef VIMAGE 946 static void 947 vnet_vlan_init(const void *unused __unused) 948 { 949 950 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 951 vlan_clone_create, vlan_clone_destroy); 952 V_vlan_cloner = vlan_cloner; 953 } 954 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 955 vnet_vlan_init, NULL); 956 957 static void 958 vnet_vlan_uninit(const void *unused __unused) 959 { 960 961 if_clone_detach(V_vlan_cloner); 962 } 963 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, 964 vnet_vlan_uninit, NULL); 965 #endif 966 967 /* 968 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names. 969 */ 970 static struct ifnet * 971 vlan_clone_match_ethervid(const char *name, int *vidp) 972 { 973 char ifname[IFNAMSIZ]; 974 char *cp; 975 struct ifnet *ifp; 976 int vid; 977 978 strlcpy(ifname, name, IFNAMSIZ); 979 if ((cp = strrchr(ifname, '.')) == NULL) 980 return (NULL); 981 *cp = '\0'; 982 if ((ifp = ifunit_ref(ifname)) == NULL) 983 return (NULL); 984 /* Parse VID. */ 985 if (*++cp == '\0') { 986 if_rele(ifp); 987 return (NULL); 988 } 989 vid = 0; 990 for(; *cp >= '0' && *cp <= '9'; cp++) 991 vid = (vid * 10) + (*cp - '0'); 992 if (*cp != '\0') { 993 if_rele(ifp); 994 return (NULL); 995 } 996 if (vidp != NULL) 997 *vidp = vid; 998 999 return (ifp); 1000 } 1001 1002 static int 1003 vlan_clone_match(struct if_clone *ifc, const char *name) 1004 { 1005 struct ifnet *ifp; 1006 const char *cp; 1007 1008 ifp = vlan_clone_match_ethervid(name, NULL); 1009 if (ifp != NULL) { 1010 if_rele(ifp); 1011 return (1); 1012 } 1013 1014 if (strncmp(vlanname, name, strlen(vlanname)) != 0) 1015 return (0); 1016 for (cp = name + 4; *cp != '\0'; cp++) { 1017 if (*cp < '0' || *cp > '9') 1018 return (0); 1019 } 1020 1021 return (1); 1022 } 1023 1024 static int 1025 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) 1026 { 1027 char *dp; 1028 bool wildcard = false; 1029 bool subinterface = false; 1030 int unit; 1031 int error; 1032 int vid = 0; 1033 uint16_t proto = ETHERTYPE_VLAN; 1034 struct ifvlan *ifv; 1035 struct ifnet *ifp; 1036 struct ifnet *p = NULL; 1037 struct ifaddr *ifa; 1038 struct sockaddr_dl *sdl; 1039 struct vlanreq vlr; 1040 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 1041 1042 1043 /* 1044 * There are three ways to specify the cloned device: 1045 * o pass a parameter block with the clone request. 1046 * o specify parameters in the text of the clone device name 1047 * o specify no parameters and get an unattached device that 1048 * must be configured separately. 1049 * The first technique is preferred; the latter two are supported 1050 * for backwards compatibility. 1051 * 1052 * XXXRW: Note historic use of the word "tag" here. New ioctls may be 1053 * called for. 1054 */ 1055 1056 if (params) { 1057 error = copyin(params, &vlr, sizeof(vlr)); 1058 if (error) 1059 return error; 1060 vid = vlr.vlr_tag; 1061 proto = vlr.vlr_proto; 1062 1063 #ifdef COMPAT_FREEBSD12 1064 if (proto == 0) 1065 proto = ETHERTYPE_VLAN; 1066 #endif 1067 p = ifunit_ref(vlr.vlr_parent); 1068 if (p == NULL) 1069 return (ENXIO); 1070 } 1071 1072 if ((error = ifc_name2unit(name, &unit)) == 0) { 1073 1074 /* 1075 * vlanX interface. Set wildcard to true if the unit number 1076 * is not fixed (-1) 1077 */ 1078 wildcard = (unit < 0); 1079 } else { 1080 struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid); 1081 if (p_tmp != NULL) { 1082 error = 0; 1083 subinterface = true; 1084 unit = IF_DUNIT_NONE; 1085 wildcard = false; 1086 if (p != NULL) { 1087 if_rele(p_tmp); 1088 if (p != p_tmp) 1089 error = EINVAL; 1090 } else 1091 p = p_tmp; 1092 } else 1093 error = ENXIO; 1094 } 1095 1096 if (error != 0) { 1097 if (p != NULL) 1098 if_rele(p); 1099 return (error); 1100 } 1101 1102 if (!subinterface) { 1103 /* vlanX interface, mark X as busy or allocate new unit # */ 1104 error = ifc_alloc_unit(ifc, &unit); 1105 if (error != 0) { 1106 if (p != NULL) 1107 if_rele(p); 1108 return (error); 1109 } 1110 } 1111 1112 /* In the wildcard case, we need to update the name. */ 1113 if (wildcard) { 1114 for (dp = name; *dp != '\0'; dp++); 1115 if (snprintf(dp, len - (dp-name), "%d", unit) > 1116 len - (dp-name) - 1) { 1117 panic("%s: interface name too long", __func__); 1118 } 1119 } 1120 1121 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 1122 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 1123 if (ifp == NULL) { 1124 if (!subinterface) 1125 ifc_free_unit(ifc, unit); 1126 free(ifv, M_VLAN); 1127 if (p != NULL) 1128 if_rele(p); 1129 return (ENOSPC); 1130 } 1131 CK_SLIST_INIT(&ifv->vlan_mc_listhead); 1132 ifp->if_softc = ifv; 1133 /* 1134 * Set the name manually rather than using if_initname because 1135 * we don't conform to the default naming convention for interfaces. 1136 */ 1137 strlcpy(ifp->if_xname, name, IFNAMSIZ); 1138 ifp->if_dname = vlanname; 1139 ifp->if_dunit = unit; 1140 1141 ifp->if_init = vlan_init; 1142 #ifdef ALTQ 1143 ifp->if_start = vlan_altq_start; 1144 ifp->if_transmit = vlan_altq_transmit; 1145 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 1146 ifp->if_snd.ifq_drv_maxlen = 0; 1147 IFQ_SET_READY(&ifp->if_snd); 1148 #else 1149 ifp->if_transmit = vlan_transmit; 1150 #endif 1151 ifp->if_qflush = vlan_qflush; 1152 ifp->if_ioctl = vlan_ioctl; 1153 #if defined(KERN_TLS) || defined(RATELIMIT) 1154 ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; 1155 ifp->if_ratelimit_query = vlan_ratelimit_query; 1156 #endif 1157 ifp->if_flags = VLAN_IFFLAGS; 1158 ether_ifattach(ifp, eaddr); 1159 /* Now undo some of the damage... */ 1160 ifp->if_baudrate = 0; 1161 ifp->if_type = IFT_L2VLAN; 1162 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 1163 ifa = ifp->if_addr; 1164 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1165 sdl->sdl_type = IFT_L2VLAN; 1166 1167 if (p != NULL) { 1168 error = vlan_config(ifv, p, vid, proto); 1169 if_rele(p); 1170 if (error != 0) { 1171 /* 1172 * Since we've partially failed, we need to back 1173 * out all the way, otherwise userland could get 1174 * confused. Thus, we destroy the interface. 1175 */ 1176 ether_ifdetach(ifp); 1177 vlan_unconfig(ifp); 1178 if_free(ifp); 1179 if (!subinterface) 1180 ifc_free_unit(ifc, unit); 1181 free(ifv, M_VLAN); 1182 1183 return (error); 1184 } 1185 } 1186 1187 return (0); 1188 } 1189 1190 static int 1191 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) 1192 { 1193 struct ifvlan *ifv = ifp->if_softc; 1194 int unit = ifp->if_dunit; 1195 1196 if (ifp->if_vlantrunk) 1197 return (EBUSY); 1198 1199 #ifdef ALTQ 1200 IFQ_PURGE(&ifp->if_snd); 1201 #endif 1202 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 1203 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 1204 /* 1205 * We should have the only reference to the ifv now, so we can now 1206 * drain any remaining lladdr task before freeing the ifnet and the 1207 * ifvlan. 1208 */ 1209 taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); 1210 NET_EPOCH_WAIT(); 1211 if_free(ifp); 1212 free(ifv, M_VLAN); 1213 if (unit != IF_DUNIT_NONE) 1214 ifc_free_unit(ifc, unit); 1215 1216 return (0); 1217 } 1218 1219 /* 1220 * The ifp->if_init entry point for vlan(4) is a no-op. 1221 */ 1222 static void 1223 vlan_init(void *foo __unused) 1224 { 1225 } 1226 1227 /* 1228 * The if_transmit method for vlan(4) interface. 1229 */ 1230 static int 1231 vlan_transmit(struct ifnet *ifp, struct mbuf *m) 1232 { 1233 struct ifvlan *ifv; 1234 struct ifnet *p; 1235 int error, len, mcast; 1236 1237 NET_EPOCH_ASSERT(); 1238 1239 ifv = ifp->if_softc; 1240 if (TRUNK(ifv) == NULL) { 1241 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1242 m_freem(m); 1243 return (ENETDOWN); 1244 } 1245 p = PARENT(ifv); 1246 len = m->m_pkthdr.len; 1247 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; 1248 1249 BPF_MTAP(ifp, m); 1250 1251 #if defined(KERN_TLS) || defined(RATELIMIT) 1252 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1253 struct vlan_snd_tag *vst; 1254 struct m_snd_tag *mst; 1255 1256 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 1257 mst = m->m_pkthdr.snd_tag; 1258 vst = mst_to_vst(mst); 1259 if (vst->tag->ifp != p) { 1260 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1261 m_freem(m); 1262 return (EAGAIN); 1263 } 1264 1265 m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag); 1266 m_snd_tag_rele(mst); 1267 } 1268 #endif 1269 1270 /* 1271 * Do not run parent's if_transmit() if the parent is not up, 1272 * or parent's driver will cause a system crash. 1273 */ 1274 if (!UP_AND_RUNNING(p)) { 1275 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1276 m_freem(m); 1277 return (ENETDOWN); 1278 } 1279 1280 if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) { 1281 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1282 return (0); 1283 } 1284 1285 /* 1286 * Send it, precisely as ether_output() would have. 1287 */ 1288 error = (p->if_transmit)(p, m); 1289 if (error == 0) { 1290 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1291 if_inc_counter(ifp, IFCOUNTER_OBYTES, len); 1292 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); 1293 } else 1294 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1295 return (error); 1296 } 1297 1298 static int 1299 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, 1300 struct route *ro) 1301 { 1302 struct ifvlan *ifv; 1303 struct ifnet *p; 1304 1305 NET_EPOCH_ASSERT(); 1306 1307 /* 1308 * Find the first non-VLAN parent interface. 1309 */ 1310 ifv = ifp->if_softc; 1311 do { 1312 if (TRUNK(ifv) == NULL) { 1313 m_freem(m); 1314 return (ENETDOWN); 1315 } 1316 p = PARENT(ifv); 1317 ifv = p->if_softc; 1318 } while (p->if_type == IFT_L2VLAN); 1319 1320 return p->if_output(ifp, m, dst, ro); 1321 } 1322 1323 #ifdef ALTQ 1324 static void 1325 vlan_altq_start(if_t ifp) 1326 { 1327 struct ifaltq *ifq = &ifp->if_snd; 1328 struct mbuf *m; 1329 1330 IFQ_LOCK(ifq); 1331 IFQ_DEQUEUE_NOLOCK(ifq, m); 1332 while (m != NULL) { 1333 vlan_transmit(ifp, m); 1334 IFQ_DEQUEUE_NOLOCK(ifq, m); 1335 } 1336 IFQ_UNLOCK(ifq); 1337 } 1338 1339 static int 1340 vlan_altq_transmit(if_t ifp, struct mbuf *m) 1341 { 1342 int err; 1343 1344 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 1345 IFQ_ENQUEUE(&ifp->if_snd, m, err); 1346 if (err == 0) 1347 vlan_altq_start(ifp); 1348 } else 1349 err = vlan_transmit(ifp, m); 1350 1351 return (err); 1352 } 1353 #endif /* ALTQ */ 1354 1355 /* 1356 * The ifp->if_qflush entry point for vlan(4) is a no-op. 1357 */ 1358 static void 1359 vlan_qflush(struct ifnet *ifp __unused) 1360 { 1361 } 1362 1363 static void 1364 vlan_input(struct ifnet *ifp, struct mbuf *m) 1365 { 1366 struct ifvlantrunk *trunk; 1367 struct ifvlan *ifv; 1368 struct m_tag *mtag; 1369 uint16_t vid, tag; 1370 1371 NET_EPOCH_ASSERT(); 1372 1373 trunk = ifp->if_vlantrunk; 1374 if (trunk == NULL) { 1375 m_freem(m); 1376 return; 1377 } 1378 1379 if (m->m_flags & M_VLANTAG) { 1380 /* 1381 * Packet is tagged, but m contains a normal 1382 * Ethernet frame; the tag is stored out-of-band. 1383 */ 1384 tag = m->m_pkthdr.ether_vtag; 1385 m->m_flags &= ~M_VLANTAG; 1386 } else { 1387 struct ether_vlan_header *evl; 1388 1389 /* 1390 * Packet is tagged in-band as specified by 802.1q. 1391 */ 1392 switch (ifp->if_type) { 1393 case IFT_ETHER: 1394 if (m->m_len < sizeof(*evl) && 1395 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1396 if_printf(ifp, "cannot pullup VLAN header\n"); 1397 return; 1398 } 1399 evl = mtod(m, struct ether_vlan_header *); 1400 tag = ntohs(evl->evl_tag); 1401 1402 /* 1403 * Remove the 802.1q header by copying the Ethernet 1404 * addresses over it and adjusting the beginning of 1405 * the data in the mbuf. The encapsulated Ethernet 1406 * type field is already in place. 1407 */ 1408 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 1409 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1410 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1411 break; 1412 1413 default: 1414 #ifdef INVARIANTS 1415 panic("%s: %s has unsupported if_type %u", 1416 __func__, ifp->if_xname, ifp->if_type); 1417 #endif 1418 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1419 m_freem(m); 1420 return; 1421 } 1422 } 1423 1424 vid = EVL_VLANOFTAG(tag); 1425 1426 ifv = vlan_gethash(trunk, vid); 1427 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 1428 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1429 m_freem(m); 1430 return; 1431 } 1432 1433 if (vlan_mtag_pcp) { 1434 /* 1435 * While uncommon, it is possible that we will find a 802.1q 1436 * packet encapsulated inside another packet that also had an 1437 * 802.1q header. For example, ethernet tunneled over IPSEC 1438 * arriving over ethernet. In that case, we replace the 1439 * existing 802.1q PCP m_tag value. 1440 */ 1441 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 1442 if (mtag == NULL) { 1443 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, 1444 sizeof(uint8_t), M_NOWAIT); 1445 if (mtag == NULL) { 1446 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1447 m_freem(m); 1448 return; 1449 } 1450 m_tag_prepend(m, mtag); 1451 } 1452 *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); 1453 } 1454 1455 m->m_pkthdr.rcvif = ifv->ifv_ifp; 1456 if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); 1457 1458 /* Pass it back through the parent's input routine. */ 1459 (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); 1460 } 1461 1462 static void 1463 vlan_lladdr_fn(void *arg, int pending __unused) 1464 { 1465 struct ifvlan *ifv; 1466 struct ifnet *ifp; 1467 1468 ifv = (struct ifvlan *)arg; 1469 ifp = ifv->ifv_ifp; 1470 1471 CURVNET_SET(ifp->if_vnet); 1472 1473 /* The ifv_ifp already has the lladdr copied in. */ 1474 if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); 1475 1476 CURVNET_RESTORE(); 1477 } 1478 1479 static int 1480 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid, 1481 uint16_t proto) 1482 { 1483 struct epoch_tracker et; 1484 struct ifvlantrunk *trunk; 1485 struct ifnet *ifp; 1486 int error = 0; 1487 1488 /* 1489 * We can handle non-ethernet hardware types as long as 1490 * they handle the tagging and headers themselves. 1491 */ 1492 if (p->if_type != IFT_ETHER && 1493 p->if_type != IFT_L2VLAN && 1494 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1495 return (EPROTONOSUPPORT); 1496 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 1497 return (EPROTONOSUPPORT); 1498 /* 1499 * Don't let the caller set up a VLAN VID with 1500 * anything except VLID bits. 1501 * VID numbers 0x0 and 0xFFF are reserved. 1502 */ 1503 if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) 1504 return (EINVAL); 1505 if (ifv->ifv_trunk) 1506 return (EBUSY); 1507 1508 VLAN_XLOCK(); 1509 if (p->if_vlantrunk == NULL) { 1510 trunk = malloc(sizeof(struct ifvlantrunk), 1511 M_VLAN, M_WAITOK | M_ZERO); 1512 vlan_inithash(trunk); 1513 TRUNK_LOCK_INIT(trunk); 1514 TRUNK_WLOCK(trunk); 1515 p->if_vlantrunk = trunk; 1516 trunk->parent = p; 1517 if_ref(trunk->parent); 1518 TRUNK_WUNLOCK(trunk); 1519 } else { 1520 trunk = p->if_vlantrunk; 1521 } 1522 1523 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ 1524 ifv->ifv_pcp = 0; /* Default: best effort delivery. */ 1525 error = vlan_inshash(trunk, ifv); 1526 if (error) 1527 goto done; 1528 ifv->ifv_proto = proto; 1529 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1530 ifv->ifv_mintu = ETHERMIN; 1531 ifv->ifv_pflags = 0; 1532 ifv->ifv_capenable = -1; 1533 1534 /* 1535 * If the parent supports the VLAN_MTU capability, 1536 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1537 * use it. 1538 */ 1539 if (p->if_capenable & IFCAP_VLAN_MTU) { 1540 /* 1541 * No need to fudge the MTU since the parent can 1542 * handle extended frames. 1543 */ 1544 ifv->ifv_mtufudge = 0; 1545 } else { 1546 /* 1547 * Fudge the MTU by the encapsulation size. This 1548 * makes us incompatible with strictly compliant 1549 * 802.1Q implementations, but allows us to use 1550 * the feature with other NetBSD implementations, 1551 * which might still be useful. 1552 */ 1553 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1554 } 1555 1556 ifv->ifv_trunk = trunk; 1557 ifp = ifv->ifv_ifp; 1558 /* 1559 * Initialize fields from our parent. This duplicates some 1560 * work with ether_ifattach() but allows for non-ethernet 1561 * interfaces to also work. 1562 */ 1563 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1564 ifp->if_baudrate = p->if_baudrate; 1565 ifp->if_input = p->if_input; 1566 ifp->if_resolvemulti = p->if_resolvemulti; 1567 ifp->if_addrlen = p->if_addrlen; 1568 ifp->if_broadcastaddr = p->if_broadcastaddr; 1569 ifp->if_pcp = ifv->ifv_pcp; 1570 1571 /* 1572 * We wrap the parent's if_output using vlan_output to ensure that it 1573 * can't become stale. 1574 */ 1575 ifp->if_output = vlan_output; 1576 1577 /* 1578 * Copy only a selected subset of flags from the parent. 1579 * Other flags are none of our business. 1580 */ 1581 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1582 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1583 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1584 #undef VLAN_COPY_FLAGS 1585 1586 ifp->if_link_state = p->if_link_state; 1587 1588 NET_EPOCH_ENTER(et); 1589 vlan_capabilities(ifv); 1590 NET_EPOCH_EXIT(et); 1591 1592 /* 1593 * Set up our interface address to reflect the underlying 1594 * physical interface's. 1595 */ 1596 TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); 1597 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = 1598 p->if_addrlen; 1599 1600 /* 1601 * Do not schedule link address update if it was the same 1602 * as previous parent's. This helps avoid updating for each 1603 * associated llentry. 1604 */ 1605 if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) { 1606 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); 1607 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 1608 } 1609 1610 /* We are ready for operation now. */ 1611 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1612 1613 /* Update flags on the parent, if necessary. */ 1614 vlan_setflags(ifp, 1); 1615 1616 /* 1617 * Configure multicast addresses that may already be 1618 * joined on the vlan device. 1619 */ 1620 (void)vlan_setmulti(ifp); 1621 1622 done: 1623 if (error == 0) 1624 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); 1625 VLAN_XUNLOCK(); 1626 1627 return (error); 1628 } 1629 1630 static void 1631 vlan_unconfig(struct ifnet *ifp) 1632 { 1633 1634 VLAN_XLOCK(); 1635 vlan_unconfig_locked(ifp, 0); 1636 VLAN_XUNLOCK(); 1637 } 1638 1639 static void 1640 vlan_unconfig_locked(struct ifnet *ifp, int departing) 1641 { 1642 struct ifvlantrunk *trunk; 1643 struct vlan_mc_entry *mc; 1644 struct ifvlan *ifv; 1645 struct ifnet *parent; 1646 int error; 1647 1648 VLAN_XLOCK_ASSERT(); 1649 1650 ifv = ifp->if_softc; 1651 trunk = ifv->ifv_trunk; 1652 parent = NULL; 1653 1654 if (trunk != NULL) { 1655 parent = trunk->parent; 1656 1657 /* 1658 * Since the interface is being unconfigured, we need to 1659 * empty the list of multicast groups that we may have joined 1660 * while we were alive from the parent's list. 1661 */ 1662 while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1663 /* 1664 * If the parent interface is being detached, 1665 * all its multicast addresses have already 1666 * been removed. Warn about errors if 1667 * if_delmulti() does fail, but don't abort as 1668 * all callers expect vlan destruction to 1669 * succeed. 1670 */ 1671 if (!departing) { 1672 error = if_delmulti(parent, 1673 (struct sockaddr *)&mc->mc_addr); 1674 if (error) 1675 if_printf(ifp, 1676 "Failed to delete multicast address from parent: %d\n", 1677 error); 1678 } 1679 CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1680 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 1681 } 1682 1683 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1684 1685 vlan_remhash(trunk, ifv); 1686 ifv->ifv_trunk = NULL; 1687 1688 /* 1689 * Check if we were the last. 1690 */ 1691 if (trunk->refcnt == 0) { 1692 parent->if_vlantrunk = NULL; 1693 NET_EPOCH_WAIT(); 1694 trunk_destroy(trunk); 1695 } 1696 } 1697 1698 /* Disconnect from parent. */ 1699 if (ifv->ifv_pflags) 1700 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1701 ifp->if_mtu = ETHERMTU; 1702 ifp->if_link_state = LINK_STATE_UNKNOWN; 1703 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1704 1705 /* 1706 * Only dispatch an event if vlan was 1707 * attached, otherwise there is nothing 1708 * to cleanup anyway. 1709 */ 1710 if (parent != NULL) 1711 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); 1712 } 1713 1714 /* Handle a reference counted flag that should be set on the parent as well */ 1715 static int 1716 vlan_setflag(struct ifnet *ifp, int flag, int status, 1717 int (*func)(struct ifnet *, int)) 1718 { 1719 struct ifvlan *ifv; 1720 int error; 1721 1722 VLAN_SXLOCK_ASSERT(); 1723 1724 ifv = ifp->if_softc; 1725 status = status ? (ifp->if_flags & flag) : 0; 1726 /* Now "status" contains the flag value or 0 */ 1727 1728 /* 1729 * See if recorded parent's status is different from what 1730 * we want it to be. If it is, flip it. We record parent's 1731 * status in ifv_pflags so that we won't clear parent's flag 1732 * we haven't set. In fact, we don't clear or set parent's 1733 * flags directly, but get or release references to them. 1734 * That's why we can be sure that recorded flags still are 1735 * in accord with actual parent's flags. 1736 */ 1737 if (status != (ifv->ifv_pflags & flag)) { 1738 error = (*func)(PARENT(ifv), status); 1739 if (error) 1740 return (error); 1741 ifv->ifv_pflags &= ~flag; 1742 ifv->ifv_pflags |= status; 1743 } 1744 return (0); 1745 } 1746 1747 /* 1748 * Handle IFF_* flags that require certain changes on the parent: 1749 * if "status" is true, update parent's flags respective to our if_flags; 1750 * if "status" is false, forcedly clear the flags set on parent. 1751 */ 1752 static int 1753 vlan_setflags(struct ifnet *ifp, int status) 1754 { 1755 int error, i; 1756 1757 for (i = 0; vlan_pflags[i].flag; i++) { 1758 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1759 status, vlan_pflags[i].func); 1760 if (error) 1761 return (error); 1762 } 1763 return (0); 1764 } 1765 1766 /* Inform all vlans that their parent has changed link state */ 1767 static void 1768 vlan_link_state(struct ifnet *ifp) 1769 { 1770 struct epoch_tracker et; 1771 struct ifvlantrunk *trunk; 1772 struct ifvlan *ifv; 1773 1774 NET_EPOCH_ENTER(et); 1775 trunk = ifp->if_vlantrunk; 1776 if (trunk == NULL) { 1777 NET_EPOCH_EXIT(et); 1778 return; 1779 } 1780 1781 TRUNK_WLOCK(trunk); 1782 VLAN_FOREACH(ifv, trunk) { 1783 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 1784 if_link_state_change(ifv->ifv_ifp, 1785 trunk->parent->if_link_state); 1786 } 1787 TRUNK_WUNLOCK(trunk); 1788 NET_EPOCH_EXIT(et); 1789 } 1790 1791 static void 1792 vlan_capabilities(struct ifvlan *ifv) 1793 { 1794 struct ifnet *p; 1795 struct ifnet *ifp; 1796 struct ifnet_hw_tsomax hw_tsomax; 1797 int cap = 0, ena = 0, mena; 1798 u_long hwa = 0; 1799 1800 NET_EPOCH_ASSERT(); 1801 VLAN_SXLOCK_ASSERT(); 1802 1803 p = PARENT(ifv); 1804 ifp = ifv->ifv_ifp; 1805 1806 /* Mask parent interface enabled capabilities disabled by user. */ 1807 mena = p->if_capenable & ifv->ifv_capenable; 1808 1809 /* 1810 * If the parent interface can do checksum offloading 1811 * on VLANs, then propagate its hardware-assisted 1812 * checksumming flags. Also assert that checksum 1813 * offloading requires hardware VLAN tagging. 1814 */ 1815 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1816 cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1817 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 1818 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1819 ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1820 if (ena & IFCAP_TXCSUM) 1821 hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | 1822 CSUM_UDP | CSUM_SCTP); 1823 if (ena & IFCAP_TXCSUM_IPV6) 1824 hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | 1825 CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); 1826 } 1827 1828 /* 1829 * If the parent interface can do TSO on VLANs then 1830 * propagate the hardware-assisted flag. TSO on VLANs 1831 * does not necessarily require hardware VLAN tagging. 1832 */ 1833 memset(&hw_tsomax, 0, sizeof(hw_tsomax)); 1834 if_hw_tsomax_common(p, &hw_tsomax); 1835 if_hw_tsomax_update(ifp, &hw_tsomax); 1836 if (p->if_capabilities & IFCAP_VLAN_HWTSO) 1837 cap |= p->if_capabilities & IFCAP_TSO; 1838 if (p->if_capenable & IFCAP_VLAN_HWTSO) { 1839 ena |= mena & IFCAP_TSO; 1840 if (ena & IFCAP_TSO) 1841 hwa |= p->if_hwassist & CSUM_TSO; 1842 } 1843 1844 /* 1845 * If the parent interface can do LRO and checksum offloading on 1846 * VLANs, then guess it may do LRO on VLANs. False positive here 1847 * cost nothing, while false negative may lead to some confusions. 1848 */ 1849 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1850 cap |= p->if_capabilities & IFCAP_LRO; 1851 if (p->if_capenable & IFCAP_VLAN_HWCSUM) 1852 ena |= p->if_capenable & IFCAP_LRO; 1853 1854 /* 1855 * If the parent interface can offload TCP connections over VLANs then 1856 * propagate its TOE capability to the VLAN interface. 1857 * 1858 * All TOE drivers in the tree today can deal with VLANs. If this 1859 * changes then IFCAP_VLAN_TOE should be promoted to a full capability 1860 * with its own bit. 1861 */ 1862 #define IFCAP_VLAN_TOE IFCAP_TOE 1863 if (p->if_capabilities & IFCAP_VLAN_TOE) 1864 cap |= p->if_capabilities & IFCAP_TOE; 1865 if (p->if_capenable & IFCAP_VLAN_TOE) { 1866 TOEDEV(ifp) = TOEDEV(p); 1867 ena |= mena & IFCAP_TOE; 1868 } 1869 1870 /* 1871 * If the parent interface supports dynamic link state, so does the 1872 * VLAN interface. 1873 */ 1874 cap |= (p->if_capabilities & IFCAP_LINKSTATE); 1875 ena |= (mena & IFCAP_LINKSTATE); 1876 1877 #ifdef RATELIMIT 1878 /* 1879 * If the parent interface supports ratelimiting, so does the 1880 * VLAN interface. 1881 */ 1882 cap |= (p->if_capabilities & IFCAP_TXRTLMT); 1883 ena |= (mena & IFCAP_TXRTLMT); 1884 #endif 1885 1886 /* 1887 * If the parent interface supports unmapped mbufs, so does 1888 * the VLAN interface. Note that this should be fine even for 1889 * interfaces that don't support hardware tagging as headers 1890 * are prepended in normal mbufs to unmapped mbufs holding 1891 * payload data. 1892 */ 1893 cap |= (p->if_capabilities & IFCAP_MEXTPG); 1894 ena |= (mena & IFCAP_MEXTPG); 1895 1896 /* 1897 * If the parent interface can offload encryption and segmentation 1898 * of TLS records over TCP, propagate it's capability to the VLAN 1899 * interface. 1900 * 1901 * All TLS drivers in the tree today can deal with VLANs. If 1902 * this ever changes, then a new IFCAP_VLAN_TXTLS can be 1903 * defined. 1904 */ 1905 if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1906 cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1907 if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1908 ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1909 1910 ifp->if_capabilities = cap; 1911 ifp->if_capenable = ena; 1912 ifp->if_hwassist = hwa; 1913 } 1914 1915 static void 1916 vlan_trunk_capabilities(struct ifnet *ifp) 1917 { 1918 struct epoch_tracker et; 1919 struct ifvlantrunk *trunk; 1920 struct ifvlan *ifv; 1921 1922 VLAN_SLOCK(); 1923 trunk = ifp->if_vlantrunk; 1924 if (trunk == NULL) { 1925 VLAN_SUNLOCK(); 1926 return; 1927 } 1928 NET_EPOCH_ENTER(et); 1929 VLAN_FOREACH(ifv, trunk) 1930 vlan_capabilities(ifv); 1931 NET_EPOCH_EXIT(et); 1932 VLAN_SUNLOCK(); 1933 } 1934 1935 static int 1936 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1937 { 1938 struct ifnet *p; 1939 struct ifreq *ifr; 1940 struct ifaddr *ifa; 1941 struct ifvlan *ifv; 1942 struct ifvlantrunk *trunk; 1943 struct vlanreq vlr; 1944 int error = 0, oldmtu; 1945 1946 ifr = (struct ifreq *)data; 1947 ifa = (struct ifaddr *) data; 1948 ifv = ifp->if_softc; 1949 1950 switch (cmd) { 1951 case SIOCSIFADDR: 1952 ifp->if_flags |= IFF_UP; 1953 #ifdef INET 1954 if (ifa->ifa_addr->sa_family == AF_INET) 1955 arp_ifinit(ifp, ifa); 1956 #endif 1957 break; 1958 case SIOCGIFADDR: 1959 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1960 ifp->if_addrlen); 1961 break; 1962 case SIOCGIFMEDIA: 1963 VLAN_SLOCK(); 1964 if (TRUNK(ifv) != NULL) { 1965 p = PARENT(ifv); 1966 if_ref(p); 1967 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); 1968 if_rele(p); 1969 /* Limit the result to the parent's current config. */ 1970 if (error == 0) { 1971 struct ifmediareq *ifmr; 1972 1973 ifmr = (struct ifmediareq *)data; 1974 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 1975 ifmr->ifm_count = 1; 1976 error = copyout(&ifmr->ifm_current, 1977 ifmr->ifm_ulist, 1978 sizeof(int)); 1979 } 1980 } 1981 } else { 1982 error = EINVAL; 1983 } 1984 VLAN_SUNLOCK(); 1985 break; 1986 1987 case SIOCSIFMEDIA: 1988 error = EINVAL; 1989 break; 1990 1991 case SIOCSIFMTU: 1992 /* 1993 * Set the interface MTU. 1994 */ 1995 VLAN_SLOCK(); 1996 trunk = TRUNK(ifv); 1997 if (trunk != NULL) { 1998 TRUNK_WLOCK(trunk); 1999 if (ifr->ifr_mtu > 2000 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 2001 ifr->ifr_mtu < 2002 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 2003 error = EINVAL; 2004 else 2005 ifp->if_mtu = ifr->ifr_mtu; 2006 TRUNK_WUNLOCK(trunk); 2007 } else 2008 error = EINVAL; 2009 VLAN_SUNLOCK(); 2010 break; 2011 2012 case SIOCSETVLAN: 2013 #ifdef VIMAGE 2014 /* 2015 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN 2016 * interface to be delegated to a jail without allowing the 2017 * jail to change what underlying interface/VID it is 2018 * associated with. We are not entirely convinced that this 2019 * is the right way to accomplish that policy goal. 2020 */ 2021 if (ifp->if_vnet != ifp->if_home_vnet) { 2022 error = EPERM; 2023 break; 2024 } 2025 #endif 2026 error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); 2027 if (error) 2028 break; 2029 if (vlr.vlr_parent[0] == '\0') { 2030 vlan_unconfig(ifp); 2031 break; 2032 } 2033 p = ifunit_ref(vlr.vlr_parent); 2034 if (p == NULL) { 2035 error = ENOENT; 2036 break; 2037 } 2038 #ifdef COMPAT_FREEBSD12 2039 if (vlr.vlr_proto == 0) 2040 vlr.vlr_proto = ETHERTYPE_VLAN; 2041 #endif 2042 oldmtu = ifp->if_mtu; 2043 error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto); 2044 if_rele(p); 2045 2046 /* 2047 * VLAN MTU may change during addition of the vlandev. 2048 * If it did, do network layer specific procedure. 2049 */ 2050 if (ifp->if_mtu != oldmtu) { 2051 #ifdef INET6 2052 nd6_setmtu(ifp); 2053 #endif 2054 rt_updatemtu(ifp); 2055 } 2056 break; 2057 2058 case SIOCGETVLAN: 2059 #ifdef VIMAGE 2060 if (ifp->if_vnet != ifp->if_home_vnet) { 2061 error = EPERM; 2062 break; 2063 } 2064 #endif 2065 bzero(&vlr, sizeof(vlr)); 2066 VLAN_SLOCK(); 2067 if (TRUNK(ifv) != NULL) { 2068 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 2069 sizeof(vlr.vlr_parent)); 2070 vlr.vlr_tag = ifv->ifv_vid; 2071 vlr.vlr_proto = ifv->ifv_proto; 2072 } 2073 VLAN_SUNLOCK(); 2074 error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); 2075 break; 2076 2077 case SIOCSIFFLAGS: 2078 /* 2079 * We should propagate selected flags to the parent, 2080 * e.g., promiscuous mode. 2081 */ 2082 VLAN_XLOCK(); 2083 if (TRUNK(ifv) != NULL) 2084 error = vlan_setflags(ifp, 1); 2085 VLAN_XUNLOCK(); 2086 break; 2087 2088 case SIOCADDMULTI: 2089 case SIOCDELMULTI: 2090 /* 2091 * If we don't have a parent, just remember the membership for 2092 * when we do. 2093 * 2094 * XXX We need the rmlock here to avoid sleeping while 2095 * holding in6_multi_mtx. 2096 */ 2097 VLAN_XLOCK(); 2098 trunk = TRUNK(ifv); 2099 if (trunk != NULL) 2100 error = vlan_setmulti(ifp); 2101 VLAN_XUNLOCK(); 2102 2103 break; 2104 case SIOCGVLANPCP: 2105 #ifdef VIMAGE 2106 if (ifp->if_vnet != ifp->if_home_vnet) { 2107 error = EPERM; 2108 break; 2109 } 2110 #endif 2111 ifr->ifr_vlan_pcp = ifv->ifv_pcp; 2112 break; 2113 2114 case SIOCSVLANPCP: 2115 #ifdef VIMAGE 2116 if (ifp->if_vnet != ifp->if_home_vnet) { 2117 error = EPERM; 2118 break; 2119 } 2120 #endif 2121 error = priv_check(curthread, PRIV_NET_SETVLANPCP); 2122 if (error) 2123 break; 2124 if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) { 2125 error = EINVAL; 2126 break; 2127 } 2128 ifv->ifv_pcp = ifr->ifr_vlan_pcp; 2129 ifp->if_pcp = ifv->ifv_pcp; 2130 /* broadcast event about PCP change */ 2131 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 2132 break; 2133 2134 case SIOCSIFCAP: 2135 VLAN_SLOCK(); 2136 ifv->ifv_capenable = ifr->ifr_reqcap; 2137 trunk = TRUNK(ifv); 2138 if (trunk != NULL) { 2139 struct epoch_tracker et; 2140 2141 NET_EPOCH_ENTER(et); 2142 vlan_capabilities(ifv); 2143 NET_EPOCH_EXIT(et); 2144 } 2145 VLAN_SUNLOCK(); 2146 break; 2147 2148 default: 2149 error = EINVAL; 2150 break; 2151 } 2152 2153 return (error); 2154 } 2155 2156 #if defined(KERN_TLS) || defined(RATELIMIT) 2157 static int 2158 vlan_snd_tag_alloc(struct ifnet *ifp, 2159 union if_snd_tag_alloc_params *params, 2160 struct m_snd_tag **ppmt) 2161 { 2162 struct epoch_tracker et; 2163 const struct if_snd_tag_sw *sw; 2164 struct vlan_snd_tag *vst; 2165 struct ifvlan *ifv; 2166 struct ifnet *parent; 2167 int error; 2168 2169 switch (params->hdr.type) { 2170 #ifdef RATELIMIT 2171 case IF_SND_TAG_TYPE_UNLIMITED: 2172 sw = &vlan_snd_tag_ul_sw; 2173 break; 2174 case IF_SND_TAG_TYPE_RATE_LIMIT: 2175 sw = &vlan_snd_tag_rl_sw; 2176 break; 2177 #endif 2178 #ifdef KERN_TLS 2179 case IF_SND_TAG_TYPE_TLS: 2180 sw = &vlan_snd_tag_tls_sw; 2181 break; 2182 #ifdef RATELIMIT 2183 case IF_SND_TAG_TYPE_TLS_RATE_LIMIT: 2184 sw = &vlan_snd_tag_tls_rl_sw; 2185 break; 2186 #endif 2187 #endif 2188 default: 2189 return (EOPNOTSUPP); 2190 } 2191 2192 NET_EPOCH_ENTER(et); 2193 ifv = ifp->if_softc; 2194 if (ifv->ifv_trunk != NULL) 2195 parent = PARENT(ifv); 2196 else 2197 parent = NULL; 2198 if (parent == NULL) { 2199 NET_EPOCH_EXIT(et); 2200 return (EOPNOTSUPP); 2201 } 2202 if_ref(parent); 2203 NET_EPOCH_EXIT(et); 2204 2205 vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT); 2206 if (vst == NULL) { 2207 if_rele(parent); 2208 return (ENOMEM); 2209 } 2210 2211 error = m_snd_tag_alloc(parent, params, &vst->tag); 2212 if_rele(parent); 2213 if (error) { 2214 free(vst, M_VLAN); 2215 return (error); 2216 } 2217 2218 m_snd_tag_init(&vst->com, ifp, sw); 2219 2220 *ppmt = &vst->com; 2221 return (0); 2222 } 2223 2224 static struct m_snd_tag * 2225 vlan_next_snd_tag(struct m_snd_tag *mst) 2226 { 2227 struct vlan_snd_tag *vst; 2228 2229 vst = mst_to_vst(mst); 2230 return (vst->tag); 2231 } 2232 2233 static int 2234 vlan_snd_tag_modify(struct m_snd_tag *mst, 2235 union if_snd_tag_modify_params *params) 2236 { 2237 struct vlan_snd_tag *vst; 2238 2239 vst = mst_to_vst(mst); 2240 return (vst->tag->sw->snd_tag_modify(vst->tag, params)); 2241 } 2242 2243 static int 2244 vlan_snd_tag_query(struct m_snd_tag *mst, 2245 union if_snd_tag_query_params *params) 2246 { 2247 struct vlan_snd_tag *vst; 2248 2249 vst = mst_to_vst(mst); 2250 return (vst->tag->sw->snd_tag_query(vst->tag, params)); 2251 } 2252 2253 static void 2254 vlan_snd_tag_free(struct m_snd_tag *mst) 2255 { 2256 struct vlan_snd_tag *vst; 2257 2258 vst = mst_to_vst(mst); 2259 m_snd_tag_rele(vst->tag); 2260 free(vst, M_VLAN); 2261 } 2262 2263 static void 2264 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q) 2265 { 2266 /* 2267 * For vlan, we have an indirect 2268 * interface. The caller needs to 2269 * get a ratelimit tag on the actual 2270 * interface the flow will go on. 2271 */ 2272 q->rate_table = NULL; 2273 q->flags = RT_IS_INDIRECT; 2274 q->max_flows = 0; 2275 q->number_of_rates = 0; 2276 } 2277 2278 #endif 2279