xref: /freebsd/sys/net/if_vlan.c (revision f7c32ed617858bcd22f8d1b03199099d50125721)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_inet.h"
49 #include "opt_inet6.h"
50 #include "opt_kern_tls.h"
51 #include "opt_vlan.h"
52 #include "opt_ratelimit.h"
53 
54 #include <sys/param.h>
55 #include <sys/eventhandler.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/rmlock.h>
62 #include <sys/priv.h>
63 #include <sys/queue.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/sysctl.h>
67 #include <sys/systm.h>
68 #include <sys/sx.h>
69 #include <sys/taskqueue.h>
70 
71 #include <net/bpf.h>
72 #include <net/ethernet.h>
73 #include <net/if.h>
74 #include <net/if_var.h>
75 #include <net/if_clone.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78 #include <net/if_vlan_var.h>
79 #include <net/route.h>
80 #include <net/vnet.h>
81 
82 #ifdef INET
83 #include <netinet/in.h>
84 #include <netinet/if_ether.h>
85 #endif
86 
87 #ifdef INET6
88 /*
89  * XXX: declare here to avoid to include many inet6 related files..
90  * should be more generalized?
91  */
92 extern void	nd6_setmtu(struct ifnet *);
93 #endif
94 
95 #define	VLAN_DEF_HWIDTH	4
96 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
97 
98 #define	UP_AND_RUNNING(ifp) \
99     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
100 
101 CK_SLIST_HEAD(ifvlanhead, ifvlan);
102 
103 struct ifvlantrunk {
104 	struct	ifnet   *parent;	/* parent interface of this trunk */
105 	struct	mtx	lock;
106 #ifdef VLAN_ARRAY
107 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
108 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
109 #else
110 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
111 	uint16_t	hmask;
112 	uint16_t	hwidth;
113 #endif
114 	int		refcnt;
115 };
116 
117 #if defined(KERN_TLS) || defined(RATELIMIT)
118 struct vlan_snd_tag {
119 	struct m_snd_tag com;
120 	struct m_snd_tag *tag;
121 };
122 
123 static inline struct vlan_snd_tag *
124 mst_to_vst(struct m_snd_tag *mst)
125 {
126 
127 	return (__containerof(mst, struct vlan_snd_tag, com));
128 }
129 #endif
130 
131 /*
132  * This macro provides a facility to iterate over every vlan on a trunk with
133  * the assumption that none will be added/removed during iteration.
134  */
135 #ifdef VLAN_ARRAY
136 #define VLAN_FOREACH(_ifv, _trunk) \
137 	size_t _i; \
138 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
139 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
140 #else /* VLAN_ARRAY */
141 #define VLAN_FOREACH(_ifv, _trunk) \
142 	struct ifvlan *_next; \
143 	size_t _i; \
144 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
145 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
146 #endif /* VLAN_ARRAY */
147 
148 /*
149  * This macro provides a facility to iterate over every vlan on a trunk while
150  * also modifying the number of vlans on the trunk. The iteration continues
151  * until some condition is met or there are no more vlans on the trunk.
152  */
153 #ifdef VLAN_ARRAY
154 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
155 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
156 	size_t _i; \
157 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
158 		if (((_ifv) = (_trunk)->vlans[_i]))
159 #else /* VLAN_ARRAY */
160 /*
161  * The hash table case is more complicated. We allow for the hash table to be
162  * modified (i.e. vlans removed) while we are iterating over it. To allow for
163  * this we must restart the iteration every time we "touch" something during
164  * the iteration, since removal will resize the hash table and invalidate our
165  * current position. If acting on the touched element causes the trunk to be
166  * emptied, then iteration also stops.
167  */
168 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
169 	size_t _i; \
170 	bool _touch = false; \
171 	for (_i = 0; \
172 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
173 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
174 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
175 		    (_touch = true))
176 #endif /* VLAN_ARRAY */
177 
178 struct vlan_mc_entry {
179 	struct sockaddr_dl		mc_addr;
180 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
181 	struct epoch_context		mc_epoch_ctx;
182 };
183 
184 struct ifvlan {
185 	struct	ifvlantrunk *ifv_trunk;
186 	struct	ifnet *ifv_ifp;
187 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
188 #define	PARENT(ifv)	(TRUNK(ifv)->parent)
189 	void	*ifv_cookie;
190 	int	ifv_pflags;	/* special flags we have set on parent */
191 	int	ifv_capenable;
192 	int	ifv_encaplen;	/* encapsulation length */
193 	int	ifv_mtufudge;	/* MTU fudged by this much */
194 	int	ifv_mintu;	/* min transmission unit */
195 	struct  ether_8021q_tag ifv_qtag;
196 #define ifv_proto	ifv_qtag.proto
197 #define ifv_vid		ifv_qtag.vid
198 #define ifv_pcp		ifv_qtag.pcp
199 	struct task lladdr_task;
200 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
201 #ifndef VLAN_ARRAY
202 	CK_SLIST_ENTRY(ifvlan) ifv_list;
203 #endif
204 };
205 
206 /* Special flags we should propagate to parent. */
207 static struct {
208 	int flag;
209 	int (*func)(struct ifnet *, int);
210 } vlan_pflags[] = {
211 	{IFF_PROMISC, ifpromisc},
212 	{IFF_ALLMULTI, if_allmulti},
213 	{0, NULL}
214 };
215 
216 extern int vlan_mtag_pcp;
217 
218 static const char vlanname[] = "vlan";
219 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
220 
221 static eventhandler_tag ifdetach_tag;
222 static eventhandler_tag iflladdr_tag;
223 
224 /*
225  * if_vlan uses two module-level synchronizations primitives to allow concurrent
226  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
227  * while they are being used for tx/rx. To accomplish this in a way that has
228  * acceptable performance and cooperation with other parts of the network stack
229  * there is a non-sleepable epoch(9) and an sx(9).
230  *
231  * The performance-sensitive paths that warrant using the epoch(9) are
232  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
233  * existence using if_vlantrunk, and being in the network tx/rx paths the use
234  * of an epoch(9) gives a measureable improvement in performance.
235  *
236  * The reason for having an sx(9) is mostly because there are still areas that
237  * must be sleepable and also have safe concurrent access to a vlan interface.
238  * Since the sx(9) exists, it is used by default in most paths unless sleeping
239  * is not permitted, or if it is not clear whether sleeping is permitted.
240  *
241  */
242 #define _VLAN_SX_ID ifv_sx
243 
244 static struct sx _VLAN_SX_ID;
245 
246 #define VLAN_LOCKING_INIT() \
247 	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
248 
249 #define VLAN_LOCKING_DESTROY() \
250 	sx_destroy(&_VLAN_SX_ID)
251 
252 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
253 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
254 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
255 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
256 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
257 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
258 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
259 
260 /*
261  * We also have a per-trunk mutex that should be acquired when changing
262  * its state.
263  */
264 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
265 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
266 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
267 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
268 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
269 
270 /*
271  * The VLAN_ARRAY substitutes the dynamic hash with a static array
272  * with 4096 entries. In theory this can give a boost in processing,
273  * however in practice it does not. Probably this is because the array
274  * is too big to fit into CPU cache.
275  */
276 #ifndef VLAN_ARRAY
277 static	void vlan_inithash(struct ifvlantrunk *trunk);
278 static	void vlan_freehash(struct ifvlantrunk *trunk);
279 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
280 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
281 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
282 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
283 	uint16_t vid);
284 #endif
285 static	void trunk_destroy(struct ifvlantrunk *trunk);
286 
287 static	void vlan_init(void *foo);
288 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
289 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
290 #if defined(KERN_TLS) || defined(RATELIMIT)
291 static	int vlan_snd_tag_alloc(struct ifnet *,
292     union if_snd_tag_alloc_params *, struct m_snd_tag **);
293 static	int vlan_snd_tag_modify(struct m_snd_tag *,
294     union if_snd_tag_modify_params *);
295 static	int vlan_snd_tag_query(struct m_snd_tag *,
296     union if_snd_tag_query_params *);
297 static	void vlan_snd_tag_free(struct m_snd_tag *);
298 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
299 static void vlan_ratelimit_query(struct ifnet *,
300     struct if_ratelimit_query_results *);
301 #endif
302 static	void vlan_qflush(struct ifnet *ifp);
303 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
304     int (*func)(struct ifnet *, int));
305 static	int vlan_setflags(struct ifnet *ifp, int status);
306 static	int vlan_setmulti(struct ifnet *ifp);
307 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
308 #ifdef ALTQ
309 static void vlan_altq_start(struct ifnet *ifp);
310 static	int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m);
311 #endif
312 static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
313     const struct sockaddr *dst, struct route *ro);
314 static	void vlan_unconfig(struct ifnet *ifp);
315 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
316 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
317 	uint16_t proto);
318 static	void vlan_link_state(struct ifnet *ifp);
319 static	void vlan_capabilities(struct ifvlan *ifv);
320 static	void vlan_trunk_capabilities(struct ifnet *ifp);
321 
322 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
323 static	int vlan_clone_match(struct if_clone *, const char *);
324 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
325 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
326 
327 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
328 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
329 
330 static  void vlan_lladdr_fn(void *arg, int pending);
331 
332 static struct if_clone *vlan_cloner;
333 
334 #ifdef VIMAGE
335 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
336 #define	V_vlan_cloner	VNET(vlan_cloner)
337 #endif
338 
339 #ifdef RATELIMIT
340 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = {
341 	.snd_tag_modify = vlan_snd_tag_modify,
342 	.snd_tag_query = vlan_snd_tag_query,
343 	.snd_tag_free = vlan_snd_tag_free,
344 	.next_snd_tag = vlan_next_snd_tag,
345 	.type = IF_SND_TAG_TYPE_UNLIMITED
346 };
347 
348 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = {
349 	.snd_tag_modify = vlan_snd_tag_modify,
350 	.snd_tag_query = vlan_snd_tag_query,
351 	.snd_tag_free = vlan_snd_tag_free,
352 	.next_snd_tag = vlan_next_snd_tag,
353 	.type = IF_SND_TAG_TYPE_RATE_LIMIT
354 };
355 #endif
356 
357 #ifdef KERN_TLS
358 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = {
359 	.snd_tag_modify = vlan_snd_tag_modify,
360 	.snd_tag_query = vlan_snd_tag_query,
361 	.snd_tag_free = vlan_snd_tag_free,
362 	.next_snd_tag = vlan_next_snd_tag,
363 	.type = IF_SND_TAG_TYPE_TLS
364 };
365 
366 #ifdef RATELIMIT
367 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = {
368 	.snd_tag_modify = vlan_snd_tag_modify,
369 	.snd_tag_query = vlan_snd_tag_query,
370 	.snd_tag_free = vlan_snd_tag_free,
371 	.next_snd_tag = vlan_next_snd_tag,
372 	.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT
373 };
374 #endif
375 #endif
376 
377 static void
378 vlan_mc_free(struct epoch_context *ctx)
379 {
380 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
381 	free(mc, M_VLAN);
382 }
383 
384 #ifndef VLAN_ARRAY
385 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
386 
387 static void
388 vlan_inithash(struct ifvlantrunk *trunk)
389 {
390 	int i, n;
391 
392 	/*
393 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
394 	 * It is OK in case this function is called before the trunk struct
395 	 * gets hooked up and becomes visible from other threads.
396 	 */
397 
398 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
399 	    ("%s: hash already initialized", __func__));
400 
401 	trunk->hwidth = VLAN_DEF_HWIDTH;
402 	n = 1 << trunk->hwidth;
403 	trunk->hmask = n - 1;
404 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
405 	for (i = 0; i < n; i++)
406 		CK_SLIST_INIT(&trunk->hash[i]);
407 }
408 
409 static void
410 vlan_freehash(struct ifvlantrunk *trunk)
411 {
412 #ifdef INVARIANTS
413 	int i;
414 
415 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
416 	for (i = 0; i < (1 << trunk->hwidth); i++)
417 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
418 		    ("%s: hash table not empty", __func__));
419 #endif
420 	free(trunk->hash, M_VLAN);
421 	trunk->hash = NULL;
422 	trunk->hwidth = trunk->hmask = 0;
423 }
424 
425 static int
426 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
427 {
428 	int i, b;
429 	struct ifvlan *ifv2;
430 
431 	VLAN_XLOCK_ASSERT();
432 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
433 
434 	b = 1 << trunk->hwidth;
435 	i = HASH(ifv->ifv_vid, trunk->hmask);
436 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
437 		if (ifv->ifv_vid == ifv2->ifv_vid)
438 			return (EEXIST);
439 
440 	/*
441 	 * Grow the hash when the number of vlans exceeds half of the number of
442 	 * hash buckets squared. This will make the average linked-list length
443 	 * buckets/2.
444 	 */
445 	if (trunk->refcnt > (b * b) / 2) {
446 		vlan_growhash(trunk, 1);
447 		i = HASH(ifv->ifv_vid, trunk->hmask);
448 	}
449 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
450 	trunk->refcnt++;
451 
452 	return (0);
453 }
454 
455 static int
456 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
457 {
458 	int i, b;
459 	struct ifvlan *ifv2;
460 
461 	VLAN_XLOCK_ASSERT();
462 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
463 
464 	b = 1 << trunk->hwidth;
465 	i = HASH(ifv->ifv_vid, trunk->hmask);
466 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
467 		if (ifv2 == ifv) {
468 			trunk->refcnt--;
469 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
470 			if (trunk->refcnt < (b * b) / 2)
471 				vlan_growhash(trunk, -1);
472 			return (0);
473 		}
474 
475 	panic("%s: vlan not found\n", __func__);
476 	return (ENOENT); /*NOTREACHED*/
477 }
478 
479 /*
480  * Grow the hash larger or smaller if memory permits.
481  */
482 static void
483 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
484 {
485 	struct ifvlan *ifv;
486 	struct ifvlanhead *hash2;
487 	int hwidth2, i, j, n, n2;
488 
489 	VLAN_XLOCK_ASSERT();
490 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
491 
492 	if (howmuch == 0) {
493 		/* Harmless yet obvious coding error */
494 		printf("%s: howmuch is 0\n", __func__);
495 		return;
496 	}
497 
498 	hwidth2 = trunk->hwidth + howmuch;
499 	n = 1 << trunk->hwidth;
500 	n2 = 1 << hwidth2;
501 	/* Do not shrink the table below the default */
502 	if (hwidth2 < VLAN_DEF_HWIDTH)
503 		return;
504 
505 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
506 	if (hash2 == NULL) {
507 		printf("%s: out of memory -- hash size not changed\n",
508 		    __func__);
509 		return;		/* We can live with the old hash table */
510 	}
511 	for (j = 0; j < n2; j++)
512 		CK_SLIST_INIT(&hash2[j]);
513 	for (i = 0; i < n; i++)
514 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
515 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
516 			j = HASH(ifv->ifv_vid, n2 - 1);
517 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
518 		}
519 	NET_EPOCH_WAIT();
520 	free(trunk->hash, M_VLAN);
521 	trunk->hash = hash2;
522 	trunk->hwidth = hwidth2;
523 	trunk->hmask = n2 - 1;
524 
525 	if (bootverbose)
526 		if_printf(trunk->parent,
527 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
528 }
529 
530 static __inline struct ifvlan *
531 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
532 {
533 	struct ifvlan *ifv;
534 
535 	NET_EPOCH_ASSERT();
536 
537 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
538 		if (ifv->ifv_vid == vid)
539 			return (ifv);
540 	return (NULL);
541 }
542 
543 #if 0
544 /* Debugging code to view the hashtables. */
545 static void
546 vlan_dumphash(struct ifvlantrunk *trunk)
547 {
548 	int i;
549 	struct ifvlan *ifv;
550 
551 	for (i = 0; i < (1 << trunk->hwidth); i++) {
552 		printf("%d: ", i);
553 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
554 			printf("%s ", ifv->ifv_ifp->if_xname);
555 		printf("\n");
556 	}
557 }
558 #endif /* 0 */
559 #else
560 
561 static __inline struct ifvlan *
562 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
563 {
564 
565 	return trunk->vlans[vid];
566 }
567 
568 static __inline int
569 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
570 {
571 
572 	if (trunk->vlans[ifv->ifv_vid] != NULL)
573 		return EEXIST;
574 	trunk->vlans[ifv->ifv_vid] = ifv;
575 	trunk->refcnt++;
576 
577 	return (0);
578 }
579 
580 static __inline int
581 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
582 {
583 
584 	trunk->vlans[ifv->ifv_vid] = NULL;
585 	trunk->refcnt--;
586 
587 	return (0);
588 }
589 
590 static __inline void
591 vlan_freehash(struct ifvlantrunk *trunk)
592 {
593 }
594 
595 static __inline void
596 vlan_inithash(struct ifvlantrunk *trunk)
597 {
598 }
599 
600 #endif /* !VLAN_ARRAY */
601 
602 static void
603 trunk_destroy(struct ifvlantrunk *trunk)
604 {
605 	VLAN_XLOCK_ASSERT();
606 
607 	vlan_freehash(trunk);
608 	trunk->parent->if_vlantrunk = NULL;
609 	TRUNK_LOCK_DESTROY(trunk);
610 	if_rele(trunk->parent);
611 	free(trunk, M_VLAN);
612 }
613 
614 /*
615  * Program our multicast filter. What we're actually doing is
616  * programming the multicast filter of the parent. This has the
617  * side effect of causing the parent interface to receive multicast
618  * traffic that it doesn't really want, which ends up being discarded
619  * later by the upper protocol layers. Unfortunately, there's no way
620  * to avoid this: there really is only one physical interface.
621  */
622 static int
623 vlan_setmulti(struct ifnet *ifp)
624 {
625 	struct ifnet		*ifp_p;
626 	struct ifmultiaddr	*ifma;
627 	struct ifvlan		*sc;
628 	struct vlan_mc_entry	*mc;
629 	int			error;
630 
631 	VLAN_XLOCK_ASSERT();
632 
633 	/* Find the parent. */
634 	sc = ifp->if_softc;
635 	ifp_p = PARENT(sc);
636 
637 	CURVNET_SET_QUIET(ifp_p->if_vnet);
638 
639 	/* First, remove any existing filter entries. */
640 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
641 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
642 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
643 		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
644 	}
645 
646 	/* Now program new ones. */
647 	IF_ADDR_WLOCK(ifp);
648 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
649 		if (ifma->ifma_addr->sa_family != AF_LINK)
650 			continue;
651 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
652 		if (mc == NULL) {
653 			IF_ADDR_WUNLOCK(ifp);
654 			CURVNET_RESTORE();
655 			return (ENOMEM);
656 		}
657 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
658 		mc->mc_addr.sdl_index = ifp_p->if_index;
659 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
660 	}
661 	IF_ADDR_WUNLOCK(ifp);
662 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
663 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
664 		    NULL);
665 		if (error) {
666 			CURVNET_RESTORE();
667 			return (error);
668 		}
669 	}
670 
671 	CURVNET_RESTORE();
672 	return (0);
673 }
674 
675 /*
676  * A handler for parent interface link layer address changes.
677  * If the parent interface link layer address is changed we
678  * should also change it on all children vlans.
679  */
680 static void
681 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
682 {
683 	struct epoch_tracker et;
684 	struct ifvlan *ifv;
685 	struct ifnet *ifv_ifp;
686 	struct ifvlantrunk *trunk;
687 	struct sockaddr_dl *sdl;
688 
689 	/* Need the epoch since this is run on taskqueue_swi. */
690 	NET_EPOCH_ENTER(et);
691 	trunk = ifp->if_vlantrunk;
692 	if (trunk == NULL) {
693 		NET_EPOCH_EXIT(et);
694 		return;
695 	}
696 
697 	/*
698 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
699 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
700 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
701 	 */
702 	TRUNK_WLOCK(trunk);
703 	VLAN_FOREACH(ifv, trunk) {
704 		/*
705 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
706 		 * to actually call if_setlladdr. if_setlladdr needs to
707 		 * be deferred to a taskqueue because it will call into
708 		 * the if_vlan ioctl path and try to acquire the global
709 		 * lock.
710 		 */
711 		ifv_ifp = ifv->ifv_ifp;
712 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
713 		    ifp->if_addrlen);
714 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
715 		sdl->sdl_alen = ifp->if_addrlen;
716 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
717 	}
718 	TRUNK_WUNLOCK(trunk);
719 	NET_EPOCH_EXIT(et);
720 }
721 
722 /*
723  * A handler for network interface departure events.
724  * Track departure of trunks here so that we don't access invalid
725  * pointers or whatever if a trunk is ripped from under us, e.g.,
726  * by ejecting its hot-plug card.  However, if an ifnet is simply
727  * being renamed, then there's no need to tear down the state.
728  */
729 static void
730 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
731 {
732 	struct ifvlan *ifv;
733 	struct ifvlantrunk *trunk;
734 
735 	/* If the ifnet is just being renamed, don't do anything. */
736 	if (ifp->if_flags & IFF_RENAMING)
737 		return;
738 	VLAN_XLOCK();
739 	trunk = ifp->if_vlantrunk;
740 	if (trunk == NULL) {
741 		VLAN_XUNLOCK();
742 		return;
743 	}
744 
745 	/*
746 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
747 	 * Check trunk pointer after each vlan_unconfig() as it will
748 	 * free it and set to NULL after the last vlan was detached.
749 	 */
750 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
751 	    ifp->if_vlantrunk == NULL)
752 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
753 
754 	/* Trunk should have been destroyed in vlan_unconfig(). */
755 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
756 	VLAN_XUNLOCK();
757 }
758 
759 /*
760  * Return the trunk device for a virtual interface.
761  */
762 static struct ifnet  *
763 vlan_trunkdev(struct ifnet *ifp)
764 {
765 	struct ifvlan *ifv;
766 
767 	NET_EPOCH_ASSERT();
768 
769 	if (ifp->if_type != IFT_L2VLAN)
770 		return (NULL);
771 
772 	ifv = ifp->if_softc;
773 	ifp = NULL;
774 	if (ifv->ifv_trunk)
775 		ifp = PARENT(ifv);
776 	return (ifp);
777 }
778 
779 /*
780  * Return the 12-bit VLAN VID for this interface, for use by external
781  * components such as Infiniband.
782  *
783  * XXXRW: Note that the function name here is historical; it should be named
784  * vlan_vid().
785  */
786 static int
787 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
788 {
789 	struct ifvlan *ifv;
790 
791 	if (ifp->if_type != IFT_L2VLAN)
792 		return (EINVAL);
793 	ifv = ifp->if_softc;
794 	*vidp = ifv->ifv_vid;
795 	return (0);
796 }
797 
798 static int
799 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
800 {
801 	struct ifvlan *ifv;
802 
803 	if (ifp->if_type != IFT_L2VLAN)
804 		return (EINVAL);
805 	ifv = ifp->if_softc;
806 	*pcpp = ifv->ifv_pcp;
807 	return (0);
808 }
809 
810 /*
811  * Return a driver specific cookie for this interface.  Synchronization
812  * with setcookie must be provided by the driver.
813  */
814 static void *
815 vlan_cookie(struct ifnet *ifp)
816 {
817 	struct ifvlan *ifv;
818 
819 	if (ifp->if_type != IFT_L2VLAN)
820 		return (NULL);
821 	ifv = ifp->if_softc;
822 	return (ifv->ifv_cookie);
823 }
824 
825 /*
826  * Store a cookie in our softc that drivers can use to store driver
827  * private per-instance data in.
828  */
829 static int
830 vlan_setcookie(struct ifnet *ifp, void *cookie)
831 {
832 	struct ifvlan *ifv;
833 
834 	if (ifp->if_type != IFT_L2VLAN)
835 		return (EINVAL);
836 	ifv = ifp->if_softc;
837 	ifv->ifv_cookie = cookie;
838 	return (0);
839 }
840 
841 /*
842  * Return the vlan device present at the specific VID.
843  */
844 static struct ifnet *
845 vlan_devat(struct ifnet *ifp, uint16_t vid)
846 {
847 	struct ifvlantrunk *trunk;
848 	struct ifvlan *ifv;
849 
850 	NET_EPOCH_ASSERT();
851 
852 	trunk = ifp->if_vlantrunk;
853 	if (trunk == NULL)
854 		return (NULL);
855 	ifp = NULL;
856 	ifv = vlan_gethash(trunk, vid);
857 	if (ifv)
858 		ifp = ifv->ifv_ifp;
859 	return (ifp);
860 }
861 
862 /*
863  * VLAN support can be loaded as a module.  The only place in the
864  * system that's intimately aware of this is ether_input.  We hook
865  * into this code through vlan_input_p which is defined there and
866  * set here.  No one else in the system should be aware of this so
867  * we use an explicit reference here.
868  */
869 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
870 
871 /* For if_link_state_change() eyes only... */
872 extern	void (*vlan_link_state_p)(struct ifnet *);
873 
874 static int
875 vlan_modevent(module_t mod, int type, void *data)
876 {
877 
878 	switch (type) {
879 	case MOD_LOAD:
880 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
881 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
882 		if (ifdetach_tag == NULL)
883 			return (ENOMEM);
884 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
885 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
886 		if (iflladdr_tag == NULL)
887 			return (ENOMEM);
888 		VLAN_LOCKING_INIT();
889 		vlan_input_p = vlan_input;
890 		vlan_link_state_p = vlan_link_state;
891 		vlan_trunk_cap_p = vlan_trunk_capabilities;
892 		vlan_trunkdev_p = vlan_trunkdev;
893 		vlan_cookie_p = vlan_cookie;
894 		vlan_setcookie_p = vlan_setcookie;
895 		vlan_tag_p = vlan_tag;
896 		vlan_pcp_p = vlan_pcp;
897 		vlan_devat_p = vlan_devat;
898 #ifndef VIMAGE
899 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
900 		    vlan_clone_create, vlan_clone_destroy);
901 #endif
902 		if (bootverbose)
903 			printf("vlan: initialized, using "
904 #ifdef VLAN_ARRAY
905 			       "full-size arrays"
906 #else
907 			       "hash tables with chaining"
908 #endif
909 
910 			       "\n");
911 		break;
912 	case MOD_UNLOAD:
913 #ifndef VIMAGE
914 		if_clone_detach(vlan_cloner);
915 #endif
916 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
917 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
918 		vlan_input_p = NULL;
919 		vlan_link_state_p = NULL;
920 		vlan_trunk_cap_p = NULL;
921 		vlan_trunkdev_p = NULL;
922 		vlan_tag_p = NULL;
923 		vlan_cookie_p = NULL;
924 		vlan_setcookie_p = NULL;
925 		vlan_devat_p = NULL;
926 		VLAN_LOCKING_DESTROY();
927 		if (bootverbose)
928 			printf("vlan: unloaded\n");
929 		break;
930 	default:
931 		return (EOPNOTSUPP);
932 	}
933 	return (0);
934 }
935 
936 static moduledata_t vlan_mod = {
937 	"if_vlan",
938 	vlan_modevent,
939 	0
940 };
941 
942 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
943 MODULE_VERSION(if_vlan, 3);
944 
945 #ifdef VIMAGE
946 static void
947 vnet_vlan_init(const void *unused __unused)
948 {
949 
950 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
951 		    vlan_clone_create, vlan_clone_destroy);
952 	V_vlan_cloner = vlan_cloner;
953 }
954 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
955     vnet_vlan_init, NULL);
956 
957 static void
958 vnet_vlan_uninit(const void *unused __unused)
959 {
960 
961 	if_clone_detach(V_vlan_cloner);
962 }
963 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
964     vnet_vlan_uninit, NULL);
965 #endif
966 
967 /*
968  * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
969  */
970 static struct ifnet *
971 vlan_clone_match_ethervid(const char *name, int *vidp)
972 {
973 	char ifname[IFNAMSIZ];
974 	char *cp;
975 	struct ifnet *ifp;
976 	int vid;
977 
978 	strlcpy(ifname, name, IFNAMSIZ);
979 	if ((cp = strrchr(ifname, '.')) == NULL)
980 		return (NULL);
981 	*cp = '\0';
982 	if ((ifp = ifunit_ref(ifname)) == NULL)
983 		return (NULL);
984 	/* Parse VID. */
985 	if (*++cp == '\0') {
986 		if_rele(ifp);
987 		return (NULL);
988 	}
989 	vid = 0;
990 	for(; *cp >= '0' && *cp <= '9'; cp++)
991 		vid = (vid * 10) + (*cp - '0');
992 	if (*cp != '\0') {
993 		if_rele(ifp);
994 		return (NULL);
995 	}
996 	if (vidp != NULL)
997 		*vidp = vid;
998 
999 	return (ifp);
1000 }
1001 
1002 static int
1003 vlan_clone_match(struct if_clone *ifc, const char *name)
1004 {
1005 	struct ifnet *ifp;
1006 	const char *cp;
1007 
1008 	ifp = vlan_clone_match_ethervid(name, NULL);
1009 	if (ifp != NULL) {
1010 		if_rele(ifp);
1011 		return (1);
1012 	}
1013 
1014 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
1015 		return (0);
1016 	for (cp = name + 4; *cp != '\0'; cp++) {
1017 		if (*cp < '0' || *cp > '9')
1018 			return (0);
1019 	}
1020 
1021 	return (1);
1022 }
1023 
1024 static int
1025 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
1026 {
1027 	char *dp;
1028 	bool wildcard = false;
1029 	bool subinterface = false;
1030 	int unit;
1031 	int error;
1032 	int vid = 0;
1033 	uint16_t proto = ETHERTYPE_VLAN;
1034 	struct ifvlan *ifv;
1035 	struct ifnet *ifp;
1036 	struct ifnet *p = NULL;
1037 	struct ifaddr *ifa;
1038 	struct sockaddr_dl *sdl;
1039 	struct vlanreq vlr;
1040 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
1041 
1042 
1043 	/*
1044 	 * There are three ways to specify the cloned device:
1045 	 * o pass a parameter block with the clone request.
1046 	 * o specify parameters in the text of the clone device name
1047 	 * o specify no parameters and get an unattached device that
1048 	 *   must be configured separately.
1049 	 * The first technique is preferred; the latter two are supported
1050 	 * for backwards compatibility.
1051 	 *
1052 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1053 	 * called for.
1054 	 */
1055 
1056 	if (params) {
1057 		error = copyin(params, &vlr, sizeof(vlr));
1058 		if (error)
1059 			return error;
1060 		vid = vlr.vlr_tag;
1061 		proto = vlr.vlr_proto;
1062 
1063 #ifdef COMPAT_FREEBSD12
1064 		if (proto == 0)
1065 			proto = ETHERTYPE_VLAN;
1066 #endif
1067 		p = ifunit_ref(vlr.vlr_parent);
1068 		if (p == NULL)
1069 			return (ENXIO);
1070 	}
1071 
1072 	if ((error = ifc_name2unit(name, &unit)) == 0) {
1073 
1074 		/*
1075 		 * vlanX interface. Set wildcard to true if the unit number
1076 		 * is not fixed (-1)
1077 		 */
1078 		wildcard = (unit < 0);
1079 	} else {
1080 		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1081 		if (p_tmp != NULL) {
1082 			error = 0;
1083 			subinterface = true;
1084 			unit = IF_DUNIT_NONE;
1085 			wildcard = false;
1086 			if (p != NULL) {
1087 				if_rele(p_tmp);
1088 				if (p != p_tmp)
1089 					error = EINVAL;
1090 			} else
1091 				p = p_tmp;
1092 		} else
1093 			error = ENXIO;
1094 	}
1095 
1096 	if (error != 0) {
1097 		if (p != NULL)
1098 			if_rele(p);
1099 		return (error);
1100 	}
1101 
1102 	if (!subinterface) {
1103 		/* vlanX interface, mark X as busy or allocate new unit # */
1104 		error = ifc_alloc_unit(ifc, &unit);
1105 		if (error != 0) {
1106 			if (p != NULL)
1107 				if_rele(p);
1108 			return (error);
1109 		}
1110 	}
1111 
1112 	/* In the wildcard case, we need to update the name. */
1113 	if (wildcard) {
1114 		for (dp = name; *dp != '\0'; dp++);
1115 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1116 		    len - (dp-name) - 1) {
1117 			panic("%s: interface name too long", __func__);
1118 		}
1119 	}
1120 
1121 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1122 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1123 	if (ifp == NULL) {
1124 		if (!subinterface)
1125 			ifc_free_unit(ifc, unit);
1126 		free(ifv, M_VLAN);
1127 		if (p != NULL)
1128 			if_rele(p);
1129 		return (ENOSPC);
1130 	}
1131 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1132 	ifp->if_softc = ifv;
1133 	/*
1134 	 * Set the name manually rather than using if_initname because
1135 	 * we don't conform to the default naming convention for interfaces.
1136 	 */
1137 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1138 	ifp->if_dname = vlanname;
1139 	ifp->if_dunit = unit;
1140 
1141 	ifp->if_init = vlan_init;
1142 #ifdef ALTQ
1143 	ifp->if_start = vlan_altq_start;
1144 	ifp->if_transmit = vlan_altq_transmit;
1145 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
1146 	ifp->if_snd.ifq_drv_maxlen = 0;
1147 	IFQ_SET_READY(&ifp->if_snd);
1148 #else
1149 	ifp->if_transmit = vlan_transmit;
1150 #endif
1151 	ifp->if_qflush = vlan_qflush;
1152 	ifp->if_ioctl = vlan_ioctl;
1153 #if defined(KERN_TLS) || defined(RATELIMIT)
1154 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1155 	ifp->if_ratelimit_query = vlan_ratelimit_query;
1156 #endif
1157 	ifp->if_flags = VLAN_IFFLAGS;
1158 	ether_ifattach(ifp, eaddr);
1159 	/* Now undo some of the damage... */
1160 	ifp->if_baudrate = 0;
1161 	ifp->if_type = IFT_L2VLAN;
1162 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1163 	ifa = ifp->if_addr;
1164 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1165 	sdl->sdl_type = IFT_L2VLAN;
1166 
1167 	if (p != NULL) {
1168 		error = vlan_config(ifv, p, vid, proto);
1169 		if_rele(p);
1170 		if (error != 0) {
1171 			/*
1172 			 * Since we've partially failed, we need to back
1173 			 * out all the way, otherwise userland could get
1174 			 * confused.  Thus, we destroy the interface.
1175 			 */
1176 			ether_ifdetach(ifp);
1177 			vlan_unconfig(ifp);
1178 			if_free(ifp);
1179 			if (!subinterface)
1180 				ifc_free_unit(ifc, unit);
1181 			free(ifv, M_VLAN);
1182 
1183 			return (error);
1184 		}
1185 	}
1186 
1187 	return (0);
1188 }
1189 
1190 static int
1191 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1192 {
1193 	struct ifvlan *ifv = ifp->if_softc;
1194 	int unit = ifp->if_dunit;
1195 
1196 	if (ifp->if_vlantrunk)
1197 		return (EBUSY);
1198 
1199 #ifdef ALTQ
1200 	IFQ_PURGE(&ifp->if_snd);
1201 #endif
1202 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1203 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1204 	/*
1205 	 * We should have the only reference to the ifv now, so we can now
1206 	 * drain any remaining lladdr task before freeing the ifnet and the
1207 	 * ifvlan.
1208 	 */
1209 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1210 	NET_EPOCH_WAIT();
1211 	if_free(ifp);
1212 	free(ifv, M_VLAN);
1213 	if (unit != IF_DUNIT_NONE)
1214 		ifc_free_unit(ifc, unit);
1215 
1216 	return (0);
1217 }
1218 
1219 /*
1220  * The ifp->if_init entry point for vlan(4) is a no-op.
1221  */
1222 static void
1223 vlan_init(void *foo __unused)
1224 {
1225 }
1226 
1227 /*
1228  * The if_transmit method for vlan(4) interface.
1229  */
1230 static int
1231 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1232 {
1233 	struct ifvlan *ifv;
1234 	struct ifnet *p;
1235 	int error, len, mcast;
1236 
1237 	NET_EPOCH_ASSERT();
1238 
1239 	ifv = ifp->if_softc;
1240 	if (TRUNK(ifv) == NULL) {
1241 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1242 		m_freem(m);
1243 		return (ENETDOWN);
1244 	}
1245 	p = PARENT(ifv);
1246 	len = m->m_pkthdr.len;
1247 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1248 
1249 	BPF_MTAP(ifp, m);
1250 
1251 #if defined(KERN_TLS) || defined(RATELIMIT)
1252 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1253 		struct vlan_snd_tag *vst;
1254 		struct m_snd_tag *mst;
1255 
1256 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1257 		mst = m->m_pkthdr.snd_tag;
1258 		vst = mst_to_vst(mst);
1259 		if (vst->tag->ifp != p) {
1260 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1261 			m_freem(m);
1262 			return (EAGAIN);
1263 		}
1264 
1265 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1266 		m_snd_tag_rele(mst);
1267 	}
1268 #endif
1269 
1270 	/*
1271 	 * Do not run parent's if_transmit() if the parent is not up,
1272 	 * or parent's driver will cause a system crash.
1273 	 */
1274 	if (!UP_AND_RUNNING(p)) {
1275 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1276 		m_freem(m);
1277 		return (ENETDOWN);
1278 	}
1279 
1280 	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1281 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1282 		return (0);
1283 	}
1284 
1285 	/*
1286 	 * Send it, precisely as ether_output() would have.
1287 	 */
1288 	error = (p->if_transmit)(p, m);
1289 	if (error == 0) {
1290 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1291 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1292 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1293 	} else
1294 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1295 	return (error);
1296 }
1297 
1298 static int
1299 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1300     struct route *ro)
1301 {
1302 	struct ifvlan *ifv;
1303 	struct ifnet *p;
1304 
1305 	NET_EPOCH_ASSERT();
1306 
1307 	/*
1308 	 * Find the first non-VLAN parent interface.
1309 	 */
1310 	ifv = ifp->if_softc;
1311 	do {
1312 		if (TRUNK(ifv) == NULL) {
1313 			m_freem(m);
1314 			return (ENETDOWN);
1315 		}
1316 		p = PARENT(ifv);
1317 		ifv = p->if_softc;
1318 	} while (p->if_type == IFT_L2VLAN);
1319 
1320 	return p->if_output(ifp, m, dst, ro);
1321 }
1322 
1323 #ifdef ALTQ
1324 static void
1325 vlan_altq_start(if_t ifp)
1326 {
1327 	struct ifaltq *ifq = &ifp->if_snd;
1328 	struct mbuf *m;
1329 
1330 	IFQ_LOCK(ifq);
1331 	IFQ_DEQUEUE_NOLOCK(ifq, m);
1332 	while (m != NULL) {
1333 		vlan_transmit(ifp, m);
1334 		IFQ_DEQUEUE_NOLOCK(ifq, m);
1335 	}
1336 	IFQ_UNLOCK(ifq);
1337 }
1338 
1339 static int
1340 vlan_altq_transmit(if_t ifp, struct mbuf *m)
1341 {
1342 	int err;
1343 
1344 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
1345 		IFQ_ENQUEUE(&ifp->if_snd, m, err);
1346 		if (err == 0)
1347 			vlan_altq_start(ifp);
1348 	} else
1349 		err = vlan_transmit(ifp, m);
1350 
1351 	return (err);
1352 }
1353 #endif	/* ALTQ */
1354 
1355 /*
1356  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1357  */
1358 static void
1359 vlan_qflush(struct ifnet *ifp __unused)
1360 {
1361 }
1362 
1363 static void
1364 vlan_input(struct ifnet *ifp, struct mbuf *m)
1365 {
1366 	struct ifvlantrunk *trunk;
1367 	struct ifvlan *ifv;
1368 	struct m_tag *mtag;
1369 	uint16_t vid, tag;
1370 
1371 	NET_EPOCH_ASSERT();
1372 
1373 	trunk = ifp->if_vlantrunk;
1374 	if (trunk == NULL) {
1375 		m_freem(m);
1376 		return;
1377 	}
1378 
1379 	if (m->m_flags & M_VLANTAG) {
1380 		/*
1381 		 * Packet is tagged, but m contains a normal
1382 		 * Ethernet frame; the tag is stored out-of-band.
1383 		 */
1384 		tag = m->m_pkthdr.ether_vtag;
1385 		m->m_flags &= ~M_VLANTAG;
1386 	} else {
1387 		struct ether_vlan_header *evl;
1388 
1389 		/*
1390 		 * Packet is tagged in-band as specified by 802.1q.
1391 		 */
1392 		switch (ifp->if_type) {
1393 		case IFT_ETHER:
1394 			if (m->m_len < sizeof(*evl) &&
1395 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1396 				if_printf(ifp, "cannot pullup VLAN header\n");
1397 				return;
1398 			}
1399 			evl = mtod(m, struct ether_vlan_header *);
1400 			tag = ntohs(evl->evl_tag);
1401 
1402 			/*
1403 			 * Remove the 802.1q header by copying the Ethernet
1404 			 * addresses over it and adjusting the beginning of
1405 			 * the data in the mbuf.  The encapsulated Ethernet
1406 			 * type field is already in place.
1407 			 */
1408 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1409 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1410 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1411 			break;
1412 
1413 		default:
1414 #ifdef INVARIANTS
1415 			panic("%s: %s has unsupported if_type %u",
1416 			      __func__, ifp->if_xname, ifp->if_type);
1417 #endif
1418 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1419 			m_freem(m);
1420 			return;
1421 		}
1422 	}
1423 
1424 	vid = EVL_VLANOFTAG(tag);
1425 
1426 	ifv = vlan_gethash(trunk, vid);
1427 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1428 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1429 		m_freem(m);
1430 		return;
1431 	}
1432 
1433 	if (vlan_mtag_pcp) {
1434 		/*
1435 		 * While uncommon, it is possible that we will find a 802.1q
1436 		 * packet encapsulated inside another packet that also had an
1437 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1438 		 * arriving over ethernet.  In that case, we replace the
1439 		 * existing 802.1q PCP m_tag value.
1440 		 */
1441 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1442 		if (mtag == NULL) {
1443 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1444 			    sizeof(uint8_t), M_NOWAIT);
1445 			if (mtag == NULL) {
1446 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1447 				m_freem(m);
1448 				return;
1449 			}
1450 			m_tag_prepend(m, mtag);
1451 		}
1452 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1453 	}
1454 
1455 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1456 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1457 
1458 	/* Pass it back through the parent's input routine. */
1459 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1460 }
1461 
1462 static void
1463 vlan_lladdr_fn(void *arg, int pending __unused)
1464 {
1465 	struct ifvlan *ifv;
1466 	struct ifnet *ifp;
1467 
1468 	ifv = (struct ifvlan *)arg;
1469 	ifp = ifv->ifv_ifp;
1470 
1471 	CURVNET_SET(ifp->if_vnet);
1472 
1473 	/* The ifv_ifp already has the lladdr copied in. */
1474 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1475 
1476 	CURVNET_RESTORE();
1477 }
1478 
1479 static int
1480 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1481 	uint16_t proto)
1482 {
1483 	struct epoch_tracker et;
1484 	struct ifvlantrunk *trunk;
1485 	struct ifnet *ifp;
1486 	int error = 0;
1487 
1488 	/*
1489 	 * We can handle non-ethernet hardware types as long as
1490 	 * they handle the tagging and headers themselves.
1491 	 */
1492 	if (p->if_type != IFT_ETHER &&
1493 	    p->if_type != IFT_L2VLAN &&
1494 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1495 		return (EPROTONOSUPPORT);
1496 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1497 		return (EPROTONOSUPPORT);
1498 	/*
1499 	 * Don't let the caller set up a VLAN VID with
1500 	 * anything except VLID bits.
1501 	 * VID numbers 0x0 and 0xFFF are reserved.
1502 	 */
1503 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1504 		return (EINVAL);
1505 	if (ifv->ifv_trunk)
1506 		return (EBUSY);
1507 
1508 	VLAN_XLOCK();
1509 	if (p->if_vlantrunk == NULL) {
1510 		trunk = malloc(sizeof(struct ifvlantrunk),
1511 		    M_VLAN, M_WAITOK | M_ZERO);
1512 		vlan_inithash(trunk);
1513 		TRUNK_LOCK_INIT(trunk);
1514 		TRUNK_WLOCK(trunk);
1515 		p->if_vlantrunk = trunk;
1516 		trunk->parent = p;
1517 		if_ref(trunk->parent);
1518 		TRUNK_WUNLOCK(trunk);
1519 	} else {
1520 		trunk = p->if_vlantrunk;
1521 	}
1522 
1523 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1524 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1525 	error = vlan_inshash(trunk, ifv);
1526 	if (error)
1527 		goto done;
1528 	ifv->ifv_proto = proto;
1529 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1530 	ifv->ifv_mintu = ETHERMIN;
1531 	ifv->ifv_pflags = 0;
1532 	ifv->ifv_capenable = -1;
1533 
1534 	/*
1535 	 * If the parent supports the VLAN_MTU capability,
1536 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1537 	 * use it.
1538 	 */
1539 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1540 		/*
1541 		 * No need to fudge the MTU since the parent can
1542 		 * handle extended frames.
1543 		 */
1544 		ifv->ifv_mtufudge = 0;
1545 	} else {
1546 		/*
1547 		 * Fudge the MTU by the encapsulation size.  This
1548 		 * makes us incompatible with strictly compliant
1549 		 * 802.1Q implementations, but allows us to use
1550 		 * the feature with other NetBSD implementations,
1551 		 * which might still be useful.
1552 		 */
1553 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1554 	}
1555 
1556 	ifv->ifv_trunk = trunk;
1557 	ifp = ifv->ifv_ifp;
1558 	/*
1559 	 * Initialize fields from our parent.  This duplicates some
1560 	 * work with ether_ifattach() but allows for non-ethernet
1561 	 * interfaces to also work.
1562 	 */
1563 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1564 	ifp->if_baudrate = p->if_baudrate;
1565 	ifp->if_input = p->if_input;
1566 	ifp->if_resolvemulti = p->if_resolvemulti;
1567 	ifp->if_addrlen = p->if_addrlen;
1568 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1569 	ifp->if_pcp = ifv->ifv_pcp;
1570 
1571 	/*
1572 	 * We wrap the parent's if_output using vlan_output to ensure that it
1573 	 * can't become stale.
1574 	 */
1575 	ifp->if_output = vlan_output;
1576 
1577 	/*
1578 	 * Copy only a selected subset of flags from the parent.
1579 	 * Other flags are none of our business.
1580 	 */
1581 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1582 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1583 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1584 #undef VLAN_COPY_FLAGS
1585 
1586 	ifp->if_link_state = p->if_link_state;
1587 
1588 	NET_EPOCH_ENTER(et);
1589 	vlan_capabilities(ifv);
1590 	NET_EPOCH_EXIT(et);
1591 
1592 	/*
1593 	 * Set up our interface address to reflect the underlying
1594 	 * physical interface's.
1595 	 */
1596 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1597 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1598 	    p->if_addrlen;
1599 
1600 	/*
1601 	 * Do not schedule link address update if it was the same
1602 	 * as previous parent's. This helps avoid updating for each
1603 	 * associated llentry.
1604 	 */
1605 	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1606 		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1607 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1608 	}
1609 
1610 	/* We are ready for operation now. */
1611 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1612 
1613 	/* Update flags on the parent, if necessary. */
1614 	vlan_setflags(ifp, 1);
1615 
1616 	/*
1617 	 * Configure multicast addresses that may already be
1618 	 * joined on the vlan device.
1619 	 */
1620 	(void)vlan_setmulti(ifp);
1621 
1622 done:
1623 	if (error == 0)
1624 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1625 	VLAN_XUNLOCK();
1626 
1627 	return (error);
1628 }
1629 
1630 static void
1631 vlan_unconfig(struct ifnet *ifp)
1632 {
1633 
1634 	VLAN_XLOCK();
1635 	vlan_unconfig_locked(ifp, 0);
1636 	VLAN_XUNLOCK();
1637 }
1638 
1639 static void
1640 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1641 {
1642 	struct ifvlantrunk *trunk;
1643 	struct vlan_mc_entry *mc;
1644 	struct ifvlan *ifv;
1645 	struct ifnet  *parent;
1646 	int error;
1647 
1648 	VLAN_XLOCK_ASSERT();
1649 
1650 	ifv = ifp->if_softc;
1651 	trunk = ifv->ifv_trunk;
1652 	parent = NULL;
1653 
1654 	if (trunk != NULL) {
1655 		parent = trunk->parent;
1656 
1657 		/*
1658 		 * Since the interface is being unconfigured, we need to
1659 		 * empty the list of multicast groups that we may have joined
1660 		 * while we were alive from the parent's list.
1661 		 */
1662 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1663 			/*
1664 			 * If the parent interface is being detached,
1665 			 * all its multicast addresses have already
1666 			 * been removed.  Warn about errors if
1667 			 * if_delmulti() does fail, but don't abort as
1668 			 * all callers expect vlan destruction to
1669 			 * succeed.
1670 			 */
1671 			if (!departing) {
1672 				error = if_delmulti(parent,
1673 				    (struct sockaddr *)&mc->mc_addr);
1674 				if (error)
1675 					if_printf(ifp,
1676 		    "Failed to delete multicast address from parent: %d\n",
1677 					    error);
1678 			}
1679 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1680 			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1681 		}
1682 
1683 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1684 
1685 		vlan_remhash(trunk, ifv);
1686 		ifv->ifv_trunk = NULL;
1687 
1688 		/*
1689 		 * Check if we were the last.
1690 		 */
1691 		if (trunk->refcnt == 0) {
1692 			parent->if_vlantrunk = NULL;
1693 			NET_EPOCH_WAIT();
1694 			trunk_destroy(trunk);
1695 		}
1696 	}
1697 
1698 	/* Disconnect from parent. */
1699 	if (ifv->ifv_pflags)
1700 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1701 	ifp->if_mtu = ETHERMTU;
1702 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1703 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1704 
1705 	/*
1706 	 * Only dispatch an event if vlan was
1707 	 * attached, otherwise there is nothing
1708 	 * to cleanup anyway.
1709 	 */
1710 	if (parent != NULL)
1711 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1712 }
1713 
1714 /* Handle a reference counted flag that should be set on the parent as well */
1715 static int
1716 vlan_setflag(struct ifnet *ifp, int flag, int status,
1717 	     int (*func)(struct ifnet *, int))
1718 {
1719 	struct ifvlan *ifv;
1720 	int error;
1721 
1722 	VLAN_SXLOCK_ASSERT();
1723 
1724 	ifv = ifp->if_softc;
1725 	status = status ? (ifp->if_flags & flag) : 0;
1726 	/* Now "status" contains the flag value or 0 */
1727 
1728 	/*
1729 	 * See if recorded parent's status is different from what
1730 	 * we want it to be.  If it is, flip it.  We record parent's
1731 	 * status in ifv_pflags so that we won't clear parent's flag
1732 	 * we haven't set.  In fact, we don't clear or set parent's
1733 	 * flags directly, but get or release references to them.
1734 	 * That's why we can be sure that recorded flags still are
1735 	 * in accord with actual parent's flags.
1736 	 */
1737 	if (status != (ifv->ifv_pflags & flag)) {
1738 		error = (*func)(PARENT(ifv), status);
1739 		if (error)
1740 			return (error);
1741 		ifv->ifv_pflags &= ~flag;
1742 		ifv->ifv_pflags |= status;
1743 	}
1744 	return (0);
1745 }
1746 
1747 /*
1748  * Handle IFF_* flags that require certain changes on the parent:
1749  * if "status" is true, update parent's flags respective to our if_flags;
1750  * if "status" is false, forcedly clear the flags set on parent.
1751  */
1752 static int
1753 vlan_setflags(struct ifnet *ifp, int status)
1754 {
1755 	int error, i;
1756 
1757 	for (i = 0; vlan_pflags[i].flag; i++) {
1758 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1759 				     status, vlan_pflags[i].func);
1760 		if (error)
1761 			return (error);
1762 	}
1763 	return (0);
1764 }
1765 
1766 /* Inform all vlans that their parent has changed link state */
1767 static void
1768 vlan_link_state(struct ifnet *ifp)
1769 {
1770 	struct epoch_tracker et;
1771 	struct ifvlantrunk *trunk;
1772 	struct ifvlan *ifv;
1773 
1774 	NET_EPOCH_ENTER(et);
1775 	trunk = ifp->if_vlantrunk;
1776 	if (trunk == NULL) {
1777 		NET_EPOCH_EXIT(et);
1778 		return;
1779 	}
1780 
1781 	TRUNK_WLOCK(trunk);
1782 	VLAN_FOREACH(ifv, trunk) {
1783 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1784 		if_link_state_change(ifv->ifv_ifp,
1785 		    trunk->parent->if_link_state);
1786 	}
1787 	TRUNK_WUNLOCK(trunk);
1788 	NET_EPOCH_EXIT(et);
1789 }
1790 
1791 static void
1792 vlan_capabilities(struct ifvlan *ifv)
1793 {
1794 	struct ifnet *p;
1795 	struct ifnet *ifp;
1796 	struct ifnet_hw_tsomax hw_tsomax;
1797 	int cap = 0, ena = 0, mena;
1798 	u_long hwa = 0;
1799 
1800 	NET_EPOCH_ASSERT();
1801 	VLAN_SXLOCK_ASSERT();
1802 
1803 	p = PARENT(ifv);
1804 	ifp = ifv->ifv_ifp;
1805 
1806 	/* Mask parent interface enabled capabilities disabled by user. */
1807 	mena = p->if_capenable & ifv->ifv_capenable;
1808 
1809 	/*
1810 	 * If the parent interface can do checksum offloading
1811 	 * on VLANs, then propagate its hardware-assisted
1812 	 * checksumming flags. Also assert that checksum
1813 	 * offloading requires hardware VLAN tagging.
1814 	 */
1815 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1816 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1817 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1818 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1819 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1820 		if (ena & IFCAP_TXCSUM)
1821 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1822 			    CSUM_UDP | CSUM_SCTP);
1823 		if (ena & IFCAP_TXCSUM_IPV6)
1824 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1825 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1826 	}
1827 
1828 	/*
1829 	 * If the parent interface can do TSO on VLANs then
1830 	 * propagate the hardware-assisted flag. TSO on VLANs
1831 	 * does not necessarily require hardware VLAN tagging.
1832 	 */
1833 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1834 	if_hw_tsomax_common(p, &hw_tsomax);
1835 	if_hw_tsomax_update(ifp, &hw_tsomax);
1836 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1837 		cap |= p->if_capabilities & IFCAP_TSO;
1838 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1839 		ena |= mena & IFCAP_TSO;
1840 		if (ena & IFCAP_TSO)
1841 			hwa |= p->if_hwassist & CSUM_TSO;
1842 	}
1843 
1844 	/*
1845 	 * If the parent interface can do LRO and checksum offloading on
1846 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1847 	 * cost nothing, while false negative may lead to some confusions.
1848 	 */
1849 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1850 		cap |= p->if_capabilities & IFCAP_LRO;
1851 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1852 		ena |= p->if_capenable & IFCAP_LRO;
1853 
1854 	/*
1855 	 * If the parent interface can offload TCP connections over VLANs then
1856 	 * propagate its TOE capability to the VLAN interface.
1857 	 *
1858 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1859 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1860 	 * with its own bit.
1861 	 */
1862 #define	IFCAP_VLAN_TOE IFCAP_TOE
1863 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1864 		cap |= p->if_capabilities & IFCAP_TOE;
1865 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1866 		TOEDEV(ifp) = TOEDEV(p);
1867 		ena |= mena & IFCAP_TOE;
1868 	}
1869 
1870 	/*
1871 	 * If the parent interface supports dynamic link state, so does the
1872 	 * VLAN interface.
1873 	 */
1874 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1875 	ena |= (mena & IFCAP_LINKSTATE);
1876 
1877 #ifdef RATELIMIT
1878 	/*
1879 	 * If the parent interface supports ratelimiting, so does the
1880 	 * VLAN interface.
1881 	 */
1882 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1883 	ena |= (mena & IFCAP_TXRTLMT);
1884 #endif
1885 
1886 	/*
1887 	 * If the parent interface supports unmapped mbufs, so does
1888 	 * the VLAN interface.  Note that this should be fine even for
1889 	 * interfaces that don't support hardware tagging as headers
1890 	 * are prepended in normal mbufs to unmapped mbufs holding
1891 	 * payload data.
1892 	 */
1893 	cap |= (p->if_capabilities & IFCAP_MEXTPG);
1894 	ena |= (mena & IFCAP_MEXTPG);
1895 
1896 	/*
1897 	 * If the parent interface can offload encryption and segmentation
1898 	 * of TLS records over TCP, propagate it's capability to the VLAN
1899 	 * interface.
1900 	 *
1901 	 * All TLS drivers in the tree today can deal with VLANs.  If
1902 	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
1903 	 * defined.
1904 	 */
1905 	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1906 		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1907 	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1908 		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1909 
1910 	ifp->if_capabilities = cap;
1911 	ifp->if_capenable = ena;
1912 	ifp->if_hwassist = hwa;
1913 }
1914 
1915 static void
1916 vlan_trunk_capabilities(struct ifnet *ifp)
1917 {
1918 	struct epoch_tracker et;
1919 	struct ifvlantrunk *trunk;
1920 	struct ifvlan *ifv;
1921 
1922 	VLAN_SLOCK();
1923 	trunk = ifp->if_vlantrunk;
1924 	if (trunk == NULL) {
1925 		VLAN_SUNLOCK();
1926 		return;
1927 	}
1928 	NET_EPOCH_ENTER(et);
1929 	VLAN_FOREACH(ifv, trunk)
1930 		vlan_capabilities(ifv);
1931 	NET_EPOCH_EXIT(et);
1932 	VLAN_SUNLOCK();
1933 }
1934 
1935 static int
1936 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1937 {
1938 	struct ifnet *p;
1939 	struct ifreq *ifr;
1940 	struct ifaddr *ifa;
1941 	struct ifvlan *ifv;
1942 	struct ifvlantrunk *trunk;
1943 	struct vlanreq vlr;
1944 	int error = 0, oldmtu;
1945 
1946 	ifr = (struct ifreq *)data;
1947 	ifa = (struct ifaddr *) data;
1948 	ifv = ifp->if_softc;
1949 
1950 	switch (cmd) {
1951 	case SIOCSIFADDR:
1952 		ifp->if_flags |= IFF_UP;
1953 #ifdef INET
1954 		if (ifa->ifa_addr->sa_family == AF_INET)
1955 			arp_ifinit(ifp, ifa);
1956 #endif
1957 		break;
1958 	case SIOCGIFADDR:
1959 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1960 		    ifp->if_addrlen);
1961 		break;
1962 	case SIOCGIFMEDIA:
1963 		VLAN_SLOCK();
1964 		if (TRUNK(ifv) != NULL) {
1965 			p = PARENT(ifv);
1966 			if_ref(p);
1967 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1968 			if_rele(p);
1969 			/* Limit the result to the parent's current config. */
1970 			if (error == 0) {
1971 				struct ifmediareq *ifmr;
1972 
1973 				ifmr = (struct ifmediareq *)data;
1974 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1975 					ifmr->ifm_count = 1;
1976 					error = copyout(&ifmr->ifm_current,
1977 						ifmr->ifm_ulist,
1978 						sizeof(int));
1979 				}
1980 			}
1981 		} else {
1982 			error = EINVAL;
1983 		}
1984 		VLAN_SUNLOCK();
1985 		break;
1986 
1987 	case SIOCSIFMEDIA:
1988 		error = EINVAL;
1989 		break;
1990 
1991 	case SIOCSIFMTU:
1992 		/*
1993 		 * Set the interface MTU.
1994 		 */
1995 		VLAN_SLOCK();
1996 		trunk = TRUNK(ifv);
1997 		if (trunk != NULL) {
1998 			TRUNK_WLOCK(trunk);
1999 			if (ifr->ifr_mtu >
2000 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
2001 			    ifr->ifr_mtu <
2002 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
2003 				error = EINVAL;
2004 			else
2005 				ifp->if_mtu = ifr->ifr_mtu;
2006 			TRUNK_WUNLOCK(trunk);
2007 		} else
2008 			error = EINVAL;
2009 		VLAN_SUNLOCK();
2010 		break;
2011 
2012 	case SIOCSETVLAN:
2013 #ifdef VIMAGE
2014 		/*
2015 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
2016 		 * interface to be delegated to a jail without allowing the
2017 		 * jail to change what underlying interface/VID it is
2018 		 * associated with.  We are not entirely convinced that this
2019 		 * is the right way to accomplish that policy goal.
2020 		 */
2021 		if (ifp->if_vnet != ifp->if_home_vnet) {
2022 			error = EPERM;
2023 			break;
2024 		}
2025 #endif
2026 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
2027 		if (error)
2028 			break;
2029 		if (vlr.vlr_parent[0] == '\0') {
2030 			vlan_unconfig(ifp);
2031 			break;
2032 		}
2033 		p = ifunit_ref(vlr.vlr_parent);
2034 		if (p == NULL) {
2035 			error = ENOENT;
2036 			break;
2037 		}
2038 #ifdef COMPAT_FREEBSD12
2039 		if (vlr.vlr_proto == 0)
2040 			vlr.vlr_proto = ETHERTYPE_VLAN;
2041 #endif
2042 		oldmtu = ifp->if_mtu;
2043 		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
2044 		if_rele(p);
2045 
2046 		/*
2047 		 * VLAN MTU may change during addition of the vlandev.
2048 		 * If it did, do network layer specific procedure.
2049 		 */
2050 		if (ifp->if_mtu != oldmtu) {
2051 #ifdef INET6
2052 			nd6_setmtu(ifp);
2053 #endif
2054 			rt_updatemtu(ifp);
2055 		}
2056 		break;
2057 
2058 	case SIOCGETVLAN:
2059 #ifdef VIMAGE
2060 		if (ifp->if_vnet != ifp->if_home_vnet) {
2061 			error = EPERM;
2062 			break;
2063 		}
2064 #endif
2065 		bzero(&vlr, sizeof(vlr));
2066 		VLAN_SLOCK();
2067 		if (TRUNK(ifv) != NULL) {
2068 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
2069 			    sizeof(vlr.vlr_parent));
2070 			vlr.vlr_tag = ifv->ifv_vid;
2071 			vlr.vlr_proto = ifv->ifv_proto;
2072 		}
2073 		VLAN_SUNLOCK();
2074 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
2075 		break;
2076 
2077 	case SIOCSIFFLAGS:
2078 		/*
2079 		 * We should propagate selected flags to the parent,
2080 		 * e.g., promiscuous mode.
2081 		 */
2082 		VLAN_XLOCK();
2083 		if (TRUNK(ifv) != NULL)
2084 			error = vlan_setflags(ifp, 1);
2085 		VLAN_XUNLOCK();
2086 		break;
2087 
2088 	case SIOCADDMULTI:
2089 	case SIOCDELMULTI:
2090 		/*
2091 		 * If we don't have a parent, just remember the membership for
2092 		 * when we do.
2093 		 *
2094 		 * XXX We need the rmlock here to avoid sleeping while
2095 		 * holding in6_multi_mtx.
2096 		 */
2097 		VLAN_XLOCK();
2098 		trunk = TRUNK(ifv);
2099 		if (trunk != NULL)
2100 			error = vlan_setmulti(ifp);
2101 		VLAN_XUNLOCK();
2102 
2103 		break;
2104 	case SIOCGVLANPCP:
2105 #ifdef VIMAGE
2106 		if (ifp->if_vnet != ifp->if_home_vnet) {
2107 			error = EPERM;
2108 			break;
2109 		}
2110 #endif
2111 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2112 		break;
2113 
2114 	case SIOCSVLANPCP:
2115 #ifdef VIMAGE
2116 		if (ifp->if_vnet != ifp->if_home_vnet) {
2117 			error = EPERM;
2118 			break;
2119 		}
2120 #endif
2121 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2122 		if (error)
2123 			break;
2124 		if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) {
2125 			error = EINVAL;
2126 			break;
2127 		}
2128 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2129 		ifp->if_pcp = ifv->ifv_pcp;
2130 		/* broadcast event about PCP change */
2131 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2132 		break;
2133 
2134 	case SIOCSIFCAP:
2135 		VLAN_SLOCK();
2136 		ifv->ifv_capenable = ifr->ifr_reqcap;
2137 		trunk = TRUNK(ifv);
2138 		if (trunk != NULL) {
2139 			struct epoch_tracker et;
2140 
2141 			NET_EPOCH_ENTER(et);
2142 			vlan_capabilities(ifv);
2143 			NET_EPOCH_EXIT(et);
2144 		}
2145 		VLAN_SUNLOCK();
2146 		break;
2147 
2148 	default:
2149 		error = EINVAL;
2150 		break;
2151 	}
2152 
2153 	return (error);
2154 }
2155 
2156 #if defined(KERN_TLS) || defined(RATELIMIT)
2157 static int
2158 vlan_snd_tag_alloc(struct ifnet *ifp,
2159     union if_snd_tag_alloc_params *params,
2160     struct m_snd_tag **ppmt)
2161 {
2162 	struct epoch_tracker et;
2163 	const struct if_snd_tag_sw *sw;
2164 	struct vlan_snd_tag *vst;
2165 	struct ifvlan *ifv;
2166 	struct ifnet *parent;
2167 	int error;
2168 
2169 	switch (params->hdr.type) {
2170 #ifdef RATELIMIT
2171 	case IF_SND_TAG_TYPE_UNLIMITED:
2172 		sw = &vlan_snd_tag_ul_sw;
2173 		break;
2174 	case IF_SND_TAG_TYPE_RATE_LIMIT:
2175 		sw = &vlan_snd_tag_rl_sw;
2176 		break;
2177 #endif
2178 #ifdef KERN_TLS
2179 	case IF_SND_TAG_TYPE_TLS:
2180 		sw = &vlan_snd_tag_tls_sw;
2181 		break;
2182 #ifdef RATELIMIT
2183 	case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
2184 		sw = &vlan_snd_tag_tls_rl_sw;
2185 		break;
2186 #endif
2187 #endif
2188 	default:
2189 		return (EOPNOTSUPP);
2190 	}
2191 
2192 	NET_EPOCH_ENTER(et);
2193 	ifv = ifp->if_softc;
2194 	if (ifv->ifv_trunk != NULL)
2195 		parent = PARENT(ifv);
2196 	else
2197 		parent = NULL;
2198 	if (parent == NULL) {
2199 		NET_EPOCH_EXIT(et);
2200 		return (EOPNOTSUPP);
2201 	}
2202 	if_ref(parent);
2203 	NET_EPOCH_EXIT(et);
2204 
2205 	vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2206 	if (vst == NULL) {
2207 		if_rele(parent);
2208 		return (ENOMEM);
2209 	}
2210 
2211 	error = m_snd_tag_alloc(parent, params, &vst->tag);
2212 	if_rele(parent);
2213 	if (error) {
2214 		free(vst, M_VLAN);
2215 		return (error);
2216 	}
2217 
2218 	m_snd_tag_init(&vst->com, ifp, sw);
2219 
2220 	*ppmt = &vst->com;
2221 	return (0);
2222 }
2223 
2224 static struct m_snd_tag *
2225 vlan_next_snd_tag(struct m_snd_tag *mst)
2226 {
2227 	struct vlan_snd_tag *vst;
2228 
2229 	vst = mst_to_vst(mst);
2230 	return (vst->tag);
2231 }
2232 
2233 static int
2234 vlan_snd_tag_modify(struct m_snd_tag *mst,
2235     union if_snd_tag_modify_params *params)
2236 {
2237 	struct vlan_snd_tag *vst;
2238 
2239 	vst = mst_to_vst(mst);
2240 	return (vst->tag->sw->snd_tag_modify(vst->tag, params));
2241 }
2242 
2243 static int
2244 vlan_snd_tag_query(struct m_snd_tag *mst,
2245     union if_snd_tag_query_params *params)
2246 {
2247 	struct vlan_snd_tag *vst;
2248 
2249 	vst = mst_to_vst(mst);
2250 	return (vst->tag->sw->snd_tag_query(vst->tag, params));
2251 }
2252 
2253 static void
2254 vlan_snd_tag_free(struct m_snd_tag *mst)
2255 {
2256 	struct vlan_snd_tag *vst;
2257 
2258 	vst = mst_to_vst(mst);
2259 	m_snd_tag_rele(vst->tag);
2260 	free(vst, M_VLAN);
2261 }
2262 
2263 static void
2264 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
2265 {
2266 	/*
2267 	 * For vlan, we have an indirect
2268 	 * interface. The caller needs to
2269 	 * get a ratelimit tag on the actual
2270 	 * interface the flow will go on.
2271 	 */
2272 	q->rate_table = NULL;
2273 	q->flags = RT_IS_INDIRECT;
2274 	q->max_flows = 0;
2275 	q->number_of_rates = 0;
2276 }
2277 
2278 #endif
2279