xref: /freebsd/sys/net/if_vlan.c (revision f061a2215f9bf0bea98ac601a34750f89428db67)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  *
5  * Portions of this software were developed by Robert N. M. Watson under
6  * contract to ADARA Networks, Inc.
7  *
8  * Permission to use, copy, modify, and distribute this software and
9  * its documentation for any purpose and without fee is hereby
10  * granted, provided that both the above copyright notice and this
11  * permission notice appear in all copies, that both the above
12  * copyright notice and this permission notice appear in all
13  * supporting documentation, and that the name of M.I.T. not be used
14  * in advertising or publicity pertaining to distribution of the
15  * software without specific, written prior permission.  M.I.T. makes
16  * no representations about the suitability of this software for any
17  * purpose.  It is provided "as is" without express or implied
18  * warranty.
19  *
20  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
21  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
22  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
24  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
27  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
36  * This is sort of sneaky in the implementation, since
37  * we need to pretend to be enough of an Ethernet implementation
38  * to make arp work.  The way we do this is by telling everyone
39  * that we are an Ethernet, and then catch the packets that
40  * ether_output() sends to us via if_transmit(), rewrite them for
41  * use by the real outgoing interface, and ask it to send them.
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_inet.h"
48 #include "opt_vlan.h"
49 
50 #include <sys/param.h>
51 #include <sys/eventhandler.h>
52 #include <sys/kernel.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/module.h>
57 #include <sys/rmlock.h>
58 #include <sys/priv.h>
59 #include <sys/queue.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64 #include <sys/sx.h>
65 
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_clone.h>
71 #include <net/if_dl.h>
72 #include <net/if_types.h>
73 #include <net/if_vlan_var.h>
74 #include <net/vnet.h>
75 
76 #ifdef INET
77 #include <netinet/in.h>
78 #include <netinet/if_ether.h>
79 #endif
80 
81 #define	VLAN_DEF_HWIDTH	4
82 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
83 
84 #define	UP_AND_RUNNING(ifp) \
85     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
86 
87 LIST_HEAD(ifvlanhead, ifvlan);
88 
89 struct ifvlantrunk {
90 	struct	ifnet   *parent;	/* parent interface of this trunk */
91 	struct	rmlock	lock;
92 #ifdef VLAN_ARRAY
93 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
94 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
95 #else
96 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
97 	uint16_t	hmask;
98 	uint16_t	hwidth;
99 #endif
100 	int		refcnt;
101 };
102 
103 struct vlan_mc_entry {
104 	struct sockaddr_dl		mc_addr;
105 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
106 };
107 
108 struct	ifvlan {
109 	struct	ifvlantrunk *ifv_trunk;
110 	struct	ifnet *ifv_ifp;
111 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
112 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
113 	void	*ifv_cookie;
114 	int	ifv_pflags;	/* special flags we have set on parent */
115 	struct	ifv_linkmib {
116 		int	ifvm_encaplen;	/* encapsulation length */
117 		int	ifvm_mtufudge;	/* MTU fudged by this much */
118 		int	ifvm_mintu;	/* min transmission unit */
119 		uint16_t ifvm_proto;	/* encapsulation ethertype */
120 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
121               	uint16_t ifvm_vid;	/* VLAN ID */
122 		uint8_t	ifvm_pcp;	/* Priority Code Point (PCP). */
123 	}	ifv_mib;
124 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
125 #ifndef VLAN_ARRAY
126 	LIST_ENTRY(ifvlan) ifv_list;
127 #endif
128 };
129 #define	ifv_proto	ifv_mib.ifvm_proto
130 #define	ifv_tag		ifv_mib.ifvm_tag
131 #define	ifv_vid 	ifv_mib.ifvm_vid
132 #define	ifv_pcp		ifv_mib.ifvm_pcp
133 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
134 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
135 #define	ifv_mintu	ifv_mib.ifvm_mintu
136 
137 /* Special flags we should propagate to parent. */
138 static struct {
139 	int flag;
140 	int (*func)(struct ifnet *, int);
141 } vlan_pflags[] = {
142 	{IFF_PROMISC, ifpromisc},
143 	{IFF_ALLMULTI, if_allmulti},
144 	{0, NULL}
145 };
146 
147 SYSCTL_DECL(_net_link);
148 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0,
149     "IEEE 802.1Q VLAN");
150 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0,
151     "for consistency");
152 
153 static VNET_DEFINE(int, soft_pad);
154 #define	V_soft_pad	VNET(soft_pad)
155 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
156     &VNET_NAME(soft_pad), 0, "pad short frames before tagging");
157 
158 /*
159  * For now, make preserving PCP via an mbuf tag optional, as it increases
160  * per-packet memory allocations and frees.  In the future, it would be
161  * preferable to reuse ether_vtag for this, or similar.
162  */
163 static int vlan_mtag_pcp = 0;
164 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, &vlan_mtag_pcp, 0,
165 	"Retain VLAN PCP information as packets are passed up the stack");
166 
167 static const char vlanname[] = "vlan";
168 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
169 
170 static eventhandler_tag ifdetach_tag;
171 static eventhandler_tag iflladdr_tag;
172 
173 /*
174  * We have a global mutex, that is used to serialize configuration
175  * changes and isn't used in normal packet delivery.
176  *
177  * We also have a per-trunk rmlock(9), that is locked shared on packet
178  * processing and exclusive when configuration is changed.
179  *
180  * The VLAN_ARRAY substitutes the dynamic hash with a static array
181  * with 4096 entries. In theory this can give a boost in processing,
182  * however on practice it does not. Probably this is because array
183  * is too big to fit into CPU cache.
184  */
185 static struct sx ifv_lock;
186 #define	VLAN_LOCK_INIT()	sx_init(&ifv_lock, "vlan_global")
187 #define	VLAN_LOCK_DESTROY()	sx_destroy(&ifv_lock)
188 #define	VLAN_LOCK_ASSERT()	sx_assert(&ifv_lock, SA_LOCKED)
189 #define	VLAN_LOCK()		sx_xlock(&ifv_lock)
190 #define	VLAN_UNLOCK()		sx_xunlock(&ifv_lock)
191 #define	TRUNK_LOCK_INIT(trunk)	rm_init(&(trunk)->lock, vlanname)
192 #define	TRUNK_LOCK_DESTROY(trunk) rm_destroy(&(trunk)->lock)
193 #define	TRUNK_LOCK(trunk)	rm_wlock(&(trunk)->lock)
194 #define	TRUNK_UNLOCK(trunk)	rm_wunlock(&(trunk)->lock)
195 #define	TRUNK_LOCK_ASSERT(trunk) rm_assert(&(trunk)->lock, RA_WLOCKED)
196 #define	TRUNK_RLOCK(trunk)	rm_rlock(&(trunk)->lock, &tracker)
197 #define	TRUNK_RUNLOCK(trunk)	rm_runlock(&(trunk)->lock, &tracker)
198 #define	TRUNK_LOCK_RASSERT(trunk) rm_assert(&(trunk)->lock, RA_RLOCKED)
199 #define	TRUNK_LOCK_READER	struct rm_priotracker tracker
200 
201 #ifndef VLAN_ARRAY
202 static	void vlan_inithash(struct ifvlantrunk *trunk);
203 static	void vlan_freehash(struct ifvlantrunk *trunk);
204 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
205 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
206 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
207 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
208 	uint16_t vid);
209 #endif
210 static	void trunk_destroy(struct ifvlantrunk *trunk);
211 
212 static	void vlan_init(void *foo);
213 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
214 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
215 static	void vlan_qflush(struct ifnet *ifp);
216 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
217     int (*func)(struct ifnet *, int));
218 static	int vlan_setflags(struct ifnet *ifp, int status);
219 static	int vlan_setmulti(struct ifnet *ifp);
220 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
221 static	void vlan_unconfig(struct ifnet *ifp);
222 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
223 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
224 static	void vlan_link_state(struct ifnet *ifp);
225 static	void vlan_capabilities(struct ifvlan *ifv);
226 static	void vlan_trunk_capabilities(struct ifnet *ifp);
227 
228 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
229 static	int vlan_clone_match(struct if_clone *, const char *);
230 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
231 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
232 
233 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
234 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
235 
236 static struct if_clone *vlan_cloner;
237 
238 #ifdef VIMAGE
239 static VNET_DEFINE(struct if_clone *, vlan_cloner);
240 #define	V_vlan_cloner	VNET(vlan_cloner)
241 #endif
242 
243 #ifndef VLAN_ARRAY
244 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
245 
246 static void
247 vlan_inithash(struct ifvlantrunk *trunk)
248 {
249 	int i, n;
250 
251 	/*
252 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
253 	 * It is OK in case this function is called before the trunk struct
254 	 * gets hooked up and becomes visible from other threads.
255 	 */
256 
257 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
258 	    ("%s: hash already initialized", __func__));
259 
260 	trunk->hwidth = VLAN_DEF_HWIDTH;
261 	n = 1 << trunk->hwidth;
262 	trunk->hmask = n - 1;
263 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
264 	for (i = 0; i < n; i++)
265 		LIST_INIT(&trunk->hash[i]);
266 }
267 
268 static void
269 vlan_freehash(struct ifvlantrunk *trunk)
270 {
271 #ifdef INVARIANTS
272 	int i;
273 
274 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
275 	for (i = 0; i < (1 << trunk->hwidth); i++)
276 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
277 		    ("%s: hash table not empty", __func__));
278 #endif
279 	free(trunk->hash, M_VLAN);
280 	trunk->hash = NULL;
281 	trunk->hwidth = trunk->hmask = 0;
282 }
283 
284 static int
285 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
286 {
287 	int i, b;
288 	struct ifvlan *ifv2;
289 
290 	TRUNK_LOCK_ASSERT(trunk);
291 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
292 
293 	b = 1 << trunk->hwidth;
294 	i = HASH(ifv->ifv_vid, trunk->hmask);
295 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
296 		if (ifv->ifv_vid == ifv2->ifv_vid)
297 			return (EEXIST);
298 
299 	/*
300 	 * Grow the hash when the number of vlans exceeds half of the number of
301 	 * hash buckets squared. This will make the average linked-list length
302 	 * buckets/2.
303 	 */
304 	if (trunk->refcnt > (b * b) / 2) {
305 		vlan_growhash(trunk, 1);
306 		i = HASH(ifv->ifv_vid, trunk->hmask);
307 	}
308 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
309 	trunk->refcnt++;
310 
311 	return (0);
312 }
313 
314 static int
315 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
316 {
317 	int i, b;
318 	struct ifvlan *ifv2;
319 
320 	TRUNK_LOCK_ASSERT(trunk);
321 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
322 
323 	b = 1 << trunk->hwidth;
324 	i = HASH(ifv->ifv_vid, trunk->hmask);
325 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
326 		if (ifv2 == ifv) {
327 			trunk->refcnt--;
328 			LIST_REMOVE(ifv2, ifv_list);
329 			if (trunk->refcnt < (b * b) / 2)
330 				vlan_growhash(trunk, -1);
331 			return (0);
332 		}
333 
334 	panic("%s: vlan not found\n", __func__);
335 	return (ENOENT); /*NOTREACHED*/
336 }
337 
338 /*
339  * Grow the hash larger or smaller if memory permits.
340  */
341 static void
342 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
343 {
344 	struct ifvlan *ifv;
345 	struct ifvlanhead *hash2;
346 	int hwidth2, i, j, n, n2;
347 
348 	TRUNK_LOCK_ASSERT(trunk);
349 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
350 
351 	if (howmuch == 0) {
352 		/* Harmless yet obvious coding error */
353 		printf("%s: howmuch is 0\n", __func__);
354 		return;
355 	}
356 
357 	hwidth2 = trunk->hwidth + howmuch;
358 	n = 1 << trunk->hwidth;
359 	n2 = 1 << hwidth2;
360 	/* Do not shrink the table below the default */
361 	if (hwidth2 < VLAN_DEF_HWIDTH)
362 		return;
363 
364 	/* M_NOWAIT because we're called with trunk mutex held */
365 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
366 	if (hash2 == NULL) {
367 		printf("%s: out of memory -- hash size not changed\n",
368 		    __func__);
369 		return;		/* We can live with the old hash table */
370 	}
371 	for (j = 0; j < n2; j++)
372 		LIST_INIT(&hash2[j]);
373 	for (i = 0; i < n; i++)
374 		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
375 			LIST_REMOVE(ifv, ifv_list);
376 			j = HASH(ifv->ifv_vid, n2 - 1);
377 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
378 		}
379 	free(trunk->hash, M_VLAN);
380 	trunk->hash = hash2;
381 	trunk->hwidth = hwidth2;
382 	trunk->hmask = n2 - 1;
383 
384 	if (bootverbose)
385 		if_printf(trunk->parent,
386 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
387 }
388 
389 static __inline struct ifvlan *
390 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
391 {
392 	struct ifvlan *ifv;
393 
394 	TRUNK_LOCK_RASSERT(trunk);
395 
396 	LIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
397 		if (ifv->ifv_vid == vid)
398 			return (ifv);
399 	return (NULL);
400 }
401 
402 #if 0
403 /* Debugging code to view the hashtables. */
404 static void
405 vlan_dumphash(struct ifvlantrunk *trunk)
406 {
407 	int i;
408 	struct ifvlan *ifv;
409 
410 	for (i = 0; i < (1 << trunk->hwidth); i++) {
411 		printf("%d: ", i);
412 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
413 			printf("%s ", ifv->ifv_ifp->if_xname);
414 		printf("\n");
415 	}
416 }
417 #endif /* 0 */
418 #else
419 
420 static __inline struct ifvlan *
421 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
422 {
423 
424 	return trunk->vlans[vid];
425 }
426 
427 static __inline int
428 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
429 {
430 
431 	if (trunk->vlans[ifv->ifv_vid] != NULL)
432 		return EEXIST;
433 	trunk->vlans[ifv->ifv_vid] = ifv;
434 	trunk->refcnt++;
435 
436 	return (0);
437 }
438 
439 static __inline int
440 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
441 {
442 
443 	trunk->vlans[ifv->ifv_vid] = NULL;
444 	trunk->refcnt--;
445 
446 	return (0);
447 }
448 
449 static __inline void
450 vlan_freehash(struct ifvlantrunk *trunk)
451 {
452 }
453 
454 static __inline void
455 vlan_inithash(struct ifvlantrunk *trunk)
456 {
457 }
458 
459 #endif /* !VLAN_ARRAY */
460 
461 static void
462 trunk_destroy(struct ifvlantrunk *trunk)
463 {
464 	VLAN_LOCK_ASSERT();
465 
466 	TRUNK_LOCK(trunk);
467 	vlan_freehash(trunk);
468 	trunk->parent->if_vlantrunk = NULL;
469 	TRUNK_UNLOCK(trunk);
470 	TRUNK_LOCK_DESTROY(trunk);
471 	free(trunk, M_VLAN);
472 }
473 
474 /*
475  * Program our multicast filter. What we're actually doing is
476  * programming the multicast filter of the parent. This has the
477  * side effect of causing the parent interface to receive multicast
478  * traffic that it doesn't really want, which ends up being discarded
479  * later by the upper protocol layers. Unfortunately, there's no way
480  * to avoid this: there really is only one physical interface.
481  */
482 static int
483 vlan_setmulti(struct ifnet *ifp)
484 {
485 	struct ifnet		*ifp_p;
486 	struct ifmultiaddr	*ifma;
487 	struct ifvlan		*sc;
488 	struct vlan_mc_entry	*mc;
489 	int			error;
490 
491 	/* Find the parent. */
492 	sc = ifp->if_softc;
493 	TRUNK_LOCK_ASSERT(TRUNK(sc));
494 	ifp_p = PARENT(sc);
495 
496 	CURVNET_SET_QUIET(ifp_p->if_vnet);
497 
498 	/* First, remove any existing filter entries. */
499 	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
500 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
501 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
502 		free(mc, M_VLAN);
503 	}
504 
505 	/* Now program new ones. */
506 	IF_ADDR_WLOCK(ifp);
507 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
508 		if (ifma->ifma_addr->sa_family != AF_LINK)
509 			continue;
510 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
511 		if (mc == NULL) {
512 			IF_ADDR_WUNLOCK(ifp);
513 			return (ENOMEM);
514 		}
515 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
516 		mc->mc_addr.sdl_index = ifp_p->if_index;
517 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
518 	}
519 	IF_ADDR_WUNLOCK(ifp);
520 	SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
521 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
522 		    NULL);
523 		if (error)
524 			return (error);
525 	}
526 
527 	CURVNET_RESTORE();
528 	return (0);
529 }
530 
531 /*
532  * A handler for parent interface link layer address changes.
533  * If the parent interface link layer address is changed we
534  * should also change it on all children vlans.
535  */
536 static void
537 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
538 {
539 	struct ifvlan *ifv;
540 #ifndef VLAN_ARRAY
541 	struct ifvlan *next;
542 #endif
543 	int i;
544 
545 	/*
546 	 * Check if it's a trunk interface first of all
547 	 * to avoid needless locking.
548 	 */
549 	if (ifp->if_vlantrunk == NULL)
550 		return;
551 
552 	VLAN_LOCK();
553 	/*
554 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
555 	 */
556 #ifdef VLAN_ARRAY
557 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
558 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
559 #else /* VLAN_ARRAY */
560 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
561 		LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) {
562 #endif /* VLAN_ARRAY */
563 			VLAN_UNLOCK();
564 			if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp),
565 			    ifp->if_addrlen);
566 			VLAN_LOCK();
567 		}
568 	VLAN_UNLOCK();
569 
570 }
571 
572 /*
573  * A handler for network interface departure events.
574  * Track departure of trunks here so that we don't access invalid
575  * pointers or whatever if a trunk is ripped from under us, e.g.,
576  * by ejecting its hot-plug card.  However, if an ifnet is simply
577  * being renamed, then there's no need to tear down the state.
578  */
579 static void
580 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
581 {
582 	struct ifvlan *ifv;
583 	int i;
584 
585 	/*
586 	 * Check if it's a trunk interface first of all
587 	 * to avoid needless locking.
588 	 */
589 	if (ifp->if_vlantrunk == NULL)
590 		return;
591 
592 	/* If the ifnet is just being renamed, don't do anything. */
593 	if (ifp->if_flags & IFF_RENAMING)
594 		return;
595 
596 	VLAN_LOCK();
597 	/*
598 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
599 	 * Check trunk pointer after each vlan_unconfig() as it will
600 	 * free it and set to NULL after the last vlan was detached.
601 	 */
602 #ifdef VLAN_ARRAY
603 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
604 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
605 			vlan_unconfig_locked(ifv->ifv_ifp, 1);
606 			if (ifp->if_vlantrunk == NULL)
607 				break;
608 		}
609 #else /* VLAN_ARRAY */
610 restart:
611 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
612 		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
613 			vlan_unconfig_locked(ifv->ifv_ifp, 1);
614 			if (ifp->if_vlantrunk)
615 				goto restart;	/* trunk->hwidth can change */
616 			else
617 				break;
618 		}
619 #endif /* VLAN_ARRAY */
620 	/* Trunk should have been destroyed in vlan_unconfig(). */
621 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
622 	VLAN_UNLOCK();
623 }
624 
625 /*
626  * Return the trunk device for a virtual interface.
627  */
628 static struct ifnet  *
629 vlan_trunkdev(struct ifnet *ifp)
630 {
631 	struct ifvlan *ifv;
632 
633 	if (ifp->if_type != IFT_L2VLAN)
634 		return (NULL);
635 	ifv = ifp->if_softc;
636 	ifp = NULL;
637 	VLAN_LOCK();
638 	if (ifv->ifv_trunk)
639 		ifp = PARENT(ifv);
640 	VLAN_UNLOCK();
641 	return (ifp);
642 }
643 
644 /*
645  * Return the 12-bit VLAN VID for this interface, for use by external
646  * components such as Infiniband.
647  *
648  * XXXRW: Note that the function name here is historical; it should be named
649  * vlan_vid().
650  */
651 static int
652 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
653 {
654 	struct ifvlan *ifv;
655 
656 	if (ifp->if_type != IFT_L2VLAN)
657 		return (EINVAL);
658 	ifv = ifp->if_softc;
659 	*vidp = ifv->ifv_vid;
660 	return (0);
661 }
662 
663 /*
664  * Return a driver specific cookie for this interface.  Synchronization
665  * with setcookie must be provided by the driver.
666  */
667 static void *
668 vlan_cookie(struct ifnet *ifp)
669 {
670 	struct ifvlan *ifv;
671 
672 	if (ifp->if_type != IFT_L2VLAN)
673 		return (NULL);
674 	ifv = ifp->if_softc;
675 	return (ifv->ifv_cookie);
676 }
677 
678 /*
679  * Store a cookie in our softc that drivers can use to store driver
680  * private per-instance data in.
681  */
682 static int
683 vlan_setcookie(struct ifnet *ifp, void *cookie)
684 {
685 	struct ifvlan *ifv;
686 
687 	if (ifp->if_type != IFT_L2VLAN)
688 		return (EINVAL);
689 	ifv = ifp->if_softc;
690 	ifv->ifv_cookie = cookie;
691 	return (0);
692 }
693 
694 /*
695  * Return the vlan device present at the specific VID.
696  */
697 static struct ifnet *
698 vlan_devat(struct ifnet *ifp, uint16_t vid)
699 {
700 	struct ifvlantrunk *trunk;
701 	struct ifvlan *ifv;
702 	TRUNK_LOCK_READER;
703 
704 	trunk = ifp->if_vlantrunk;
705 	if (trunk == NULL)
706 		return (NULL);
707 	ifp = NULL;
708 	TRUNK_RLOCK(trunk);
709 	ifv = vlan_gethash(trunk, vid);
710 	if (ifv)
711 		ifp = ifv->ifv_ifp;
712 	TRUNK_RUNLOCK(trunk);
713 	return (ifp);
714 }
715 
716 /*
717  * Recalculate the cached VLAN tag exposed via the MIB.
718  */
719 static void
720 vlan_tag_recalculate(struct ifvlan *ifv)
721 {
722 
723        ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0);
724 }
725 
726 /*
727  * VLAN support can be loaded as a module.  The only place in the
728  * system that's intimately aware of this is ether_input.  We hook
729  * into this code through vlan_input_p which is defined there and
730  * set here.  No one else in the system should be aware of this so
731  * we use an explicit reference here.
732  */
733 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
734 
735 /* For if_link_state_change() eyes only... */
736 extern	void (*vlan_link_state_p)(struct ifnet *);
737 
738 static int
739 vlan_modevent(module_t mod, int type, void *data)
740 {
741 
742 	switch (type) {
743 	case MOD_LOAD:
744 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
745 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
746 		if (ifdetach_tag == NULL)
747 			return (ENOMEM);
748 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
749 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
750 		if (iflladdr_tag == NULL)
751 			return (ENOMEM);
752 		VLAN_LOCK_INIT();
753 		vlan_input_p = vlan_input;
754 		vlan_link_state_p = vlan_link_state;
755 		vlan_trunk_cap_p = vlan_trunk_capabilities;
756 		vlan_trunkdev_p = vlan_trunkdev;
757 		vlan_cookie_p = vlan_cookie;
758 		vlan_setcookie_p = vlan_setcookie;
759 		vlan_tag_p = vlan_tag;
760 		vlan_devat_p = vlan_devat;
761 #ifndef VIMAGE
762 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
763 		    vlan_clone_create, vlan_clone_destroy);
764 #endif
765 		if (bootverbose)
766 			printf("vlan: initialized, using "
767 #ifdef VLAN_ARRAY
768 			       "full-size arrays"
769 #else
770 			       "hash tables with chaining"
771 #endif
772 
773 			       "\n");
774 		break;
775 	case MOD_UNLOAD:
776 #ifndef VIMAGE
777 		if_clone_detach(vlan_cloner);
778 #endif
779 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
780 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
781 		vlan_input_p = NULL;
782 		vlan_link_state_p = NULL;
783 		vlan_trunk_cap_p = NULL;
784 		vlan_trunkdev_p = NULL;
785 		vlan_tag_p = NULL;
786 		vlan_cookie_p = NULL;
787 		vlan_setcookie_p = NULL;
788 		vlan_devat_p = NULL;
789 		VLAN_LOCK_DESTROY();
790 		if (bootverbose)
791 			printf("vlan: unloaded\n");
792 		break;
793 	default:
794 		return (EOPNOTSUPP);
795 	}
796 	return (0);
797 }
798 
799 static moduledata_t vlan_mod = {
800 	"if_vlan",
801 	vlan_modevent,
802 	0
803 };
804 
805 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
806 MODULE_VERSION(if_vlan, 3);
807 
808 #ifdef VIMAGE
809 static void
810 vnet_vlan_init(const void *unused __unused)
811 {
812 
813 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
814 		    vlan_clone_create, vlan_clone_destroy);
815 	V_vlan_cloner = vlan_cloner;
816 }
817 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
818     vnet_vlan_init, NULL);
819 
820 static void
821 vnet_vlan_uninit(const void *unused __unused)
822 {
823 
824 	if_clone_detach(V_vlan_cloner);
825 }
826 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
827     vnet_vlan_uninit, NULL);
828 #endif
829 
830 /*
831  * Check for <etherif>.<vlan> style interface names.
832  */
833 static struct ifnet *
834 vlan_clone_match_ethervid(const char *name, int *vidp)
835 {
836 	char ifname[IFNAMSIZ];
837 	char *cp;
838 	struct ifnet *ifp;
839 	int vid;
840 
841 	strlcpy(ifname, name, IFNAMSIZ);
842 	if ((cp = strchr(ifname, '.')) == NULL)
843 		return (NULL);
844 	*cp = '\0';
845 	if ((ifp = ifunit(ifname)) == NULL)
846 		return (NULL);
847 	/* Parse VID. */
848 	if (*++cp == '\0')
849 		return (NULL);
850 	vid = 0;
851 	for(; *cp >= '0' && *cp <= '9'; cp++)
852 		vid = (vid * 10) + (*cp - '0');
853 	if (*cp != '\0')
854 		return (NULL);
855 	if (vidp != NULL)
856 		*vidp = vid;
857 
858 	return (ifp);
859 }
860 
861 static int
862 vlan_clone_match(struct if_clone *ifc, const char *name)
863 {
864 	const char *cp;
865 
866 	if (vlan_clone_match_ethervid(name, NULL) != NULL)
867 		return (1);
868 
869 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
870 		return (0);
871 	for (cp = name + 4; *cp != '\0'; cp++) {
872 		if (*cp < '0' || *cp > '9')
873 			return (0);
874 	}
875 
876 	return (1);
877 }
878 
879 static int
880 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
881 {
882 	char *dp;
883 	int wildcard;
884 	int unit;
885 	int error;
886 	int vid;
887 	int ethertag;
888 	struct ifvlan *ifv;
889 	struct ifnet *ifp;
890 	struct ifnet *p;
891 	struct ifaddr *ifa;
892 	struct sockaddr_dl *sdl;
893 	struct vlanreq vlr;
894 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
895 
896 	/*
897 	 * There are 3 (ugh) ways to specify the cloned device:
898 	 * o pass a parameter block with the clone request.
899 	 * o specify parameters in the text of the clone device name
900 	 * o specify no parameters and get an unattached device that
901 	 *   must be configured separately.
902 	 * The first technique is preferred; the latter two are
903 	 * supported for backwards compatibility.
904 	 *
905 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
906 	 * called for.
907 	 */
908 	if (params) {
909 		error = copyin(params, &vlr, sizeof(vlr));
910 		if (error)
911 			return error;
912 		p = ifunit(vlr.vlr_parent);
913 		if (p == NULL)
914 			return (ENXIO);
915 		error = ifc_name2unit(name, &unit);
916 		if (error != 0)
917 			return (error);
918 
919 		ethertag = 1;
920 		vid = vlr.vlr_tag;
921 		wildcard = (unit < 0);
922 	} else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) {
923 		ethertag = 1;
924 		unit = -1;
925 		wildcard = 0;
926 	} else {
927 		ethertag = 0;
928 
929 		error = ifc_name2unit(name, &unit);
930 		if (error != 0)
931 			return (error);
932 
933 		wildcard = (unit < 0);
934 	}
935 
936 	error = ifc_alloc_unit(ifc, &unit);
937 	if (error != 0)
938 		return (error);
939 
940 	/* In the wildcard case, we need to update the name. */
941 	if (wildcard) {
942 		for (dp = name; *dp != '\0'; dp++);
943 		if (snprintf(dp, len - (dp-name), "%d", unit) >
944 		    len - (dp-name) - 1) {
945 			panic("%s: interface name too long", __func__);
946 		}
947 	}
948 
949 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
950 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
951 	if (ifp == NULL) {
952 		ifc_free_unit(ifc, unit);
953 		free(ifv, M_VLAN);
954 		return (ENOSPC);
955 	}
956 	SLIST_INIT(&ifv->vlan_mc_listhead);
957 	ifp->if_softc = ifv;
958 	/*
959 	 * Set the name manually rather than using if_initname because
960 	 * we don't conform to the default naming convention for interfaces.
961 	 */
962 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
963 	ifp->if_dname = vlanname;
964 	ifp->if_dunit = unit;
965 	/* NB: flags are not set here */
966 	ifp->if_linkmib = &ifv->ifv_mib;
967 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
968 	/* NB: mtu is not set here */
969 
970 	ifp->if_init = vlan_init;
971 	ifp->if_transmit = vlan_transmit;
972 	ifp->if_qflush = vlan_qflush;
973 	ifp->if_ioctl = vlan_ioctl;
974 	ifp->if_flags = VLAN_IFFLAGS;
975 	ether_ifattach(ifp, eaddr);
976 	/* Now undo some of the damage... */
977 	ifp->if_baudrate = 0;
978 	ifp->if_type = IFT_L2VLAN;
979 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
980 	ifa = ifp->if_addr;
981 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
982 	sdl->sdl_type = IFT_L2VLAN;
983 
984 	if (ethertag) {
985 		error = vlan_config(ifv, p, vid);
986 		if (error != 0) {
987 			/*
988 			 * Since we've partially failed, we need to back
989 			 * out all the way, otherwise userland could get
990 			 * confused.  Thus, we destroy the interface.
991 			 */
992 			ether_ifdetach(ifp);
993 			vlan_unconfig(ifp);
994 			if_free(ifp);
995 			ifc_free_unit(ifc, unit);
996 			free(ifv, M_VLAN);
997 
998 			return (error);
999 		}
1000 
1001 		/* Update flags on the parent, if necessary. */
1002 		vlan_setflags(ifp, 1);
1003 	}
1004 
1005 	return (0);
1006 }
1007 
1008 static int
1009 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1010 {
1011 	struct ifvlan *ifv = ifp->if_softc;
1012 	int unit = ifp->if_dunit;
1013 
1014 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1015 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1016 	if_free(ifp);
1017 	free(ifv, M_VLAN);
1018 	ifc_free_unit(ifc, unit);
1019 
1020 	return (0);
1021 }
1022 
1023 /*
1024  * The ifp->if_init entry point for vlan(4) is a no-op.
1025  */
1026 static void
1027 vlan_init(void *foo __unused)
1028 {
1029 }
1030 
1031 /*
1032  * The if_transmit method for vlan(4) interface.
1033  */
1034 static int
1035 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1036 {
1037 	struct ifvlan *ifv;
1038 	struct ifnet *p;
1039 	struct m_tag *mtag;
1040 	uint16_t tag;
1041 	int error, len, mcast;
1042 
1043 	ifv = ifp->if_softc;
1044 	p = PARENT(ifv);
1045 	len = m->m_pkthdr.len;
1046 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1047 
1048 	BPF_MTAP(ifp, m);
1049 
1050 	/*
1051 	 * Do not run parent's if_transmit() if the parent is not up,
1052 	 * or parent's driver will cause a system crash.
1053 	 */
1054 	if (!UP_AND_RUNNING(p)) {
1055 		m_freem(m);
1056 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1057 		return (ENETDOWN);
1058 	}
1059 
1060 	/*
1061 	 * Pad the frame to the minimum size allowed if told to.
1062 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1063 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1064 	 * bridges that violate paragraph C.4.4.3.a from the same
1065 	 * document, i.e., fail to pad short frames after untagging.
1066 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1067 	 * untagging it will produce a 62-byte frame, which is a runt
1068 	 * and requires padding.  There are VLAN-enabled network
1069 	 * devices that just discard such runts instead or mishandle
1070 	 * them somehow.
1071 	 */
1072 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1073 		static char pad[8];	/* just zeros */
1074 		int n;
1075 
1076 		for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
1077 		     n > 0; n -= sizeof(pad))
1078 			if (!m_append(m, min(n, sizeof(pad)), pad))
1079 				break;
1080 
1081 		if (n > 0) {
1082 			if_printf(ifp, "cannot pad short frame\n");
1083 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1084 			m_freem(m);
1085 			return (0);
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * If underlying interface can do VLAN tag insertion itself,
1091 	 * just pass the packet along. However, we need some way to
1092 	 * tell the interface where the packet came from so that it
1093 	 * knows how to find the VLAN tag to use, so we attach a
1094 	 * packet tag that holds it.
1095 	 */
1096 	if (vlan_mtag_pcp && (mtag = m_tag_locate(m, MTAG_8021Q,
1097 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1098 		tag = EVL_MAKETAG(ifv->ifv_vid, *(uint8_t *)(mtag + 1), 0);
1099 	else
1100               tag = ifv->ifv_tag;
1101 	if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1102 		m->m_pkthdr.ether_vtag = tag;
1103 		m->m_flags |= M_VLANTAG;
1104 	} else {
1105 		m = ether_vlanencap(m, tag);
1106 		if (m == NULL) {
1107 			if_printf(ifp, "unable to prepend VLAN header\n");
1108 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1109 			return (0);
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Send it, precisely as ether_output() would have.
1115 	 */
1116 	error = (p->if_transmit)(p, m);
1117 	if (error == 0) {
1118 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1119 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1120 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1121 	} else
1122 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1123 	return (error);
1124 }
1125 
1126 /*
1127  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1128  */
1129 static void
1130 vlan_qflush(struct ifnet *ifp __unused)
1131 {
1132 }
1133 
1134 static void
1135 vlan_input(struct ifnet *ifp, struct mbuf *m)
1136 {
1137 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1138 	struct ifvlan *ifv;
1139 	TRUNK_LOCK_READER;
1140 	struct m_tag *mtag;
1141 	uint16_t vid, tag;
1142 
1143 	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
1144 
1145 	if (m->m_flags & M_VLANTAG) {
1146 		/*
1147 		 * Packet is tagged, but m contains a normal
1148 		 * Ethernet frame; the tag is stored out-of-band.
1149 		 */
1150 		tag = m->m_pkthdr.ether_vtag;
1151 		m->m_flags &= ~M_VLANTAG;
1152 	} else {
1153 		struct ether_vlan_header *evl;
1154 
1155 		/*
1156 		 * Packet is tagged in-band as specified by 802.1q.
1157 		 */
1158 		switch (ifp->if_type) {
1159 		case IFT_ETHER:
1160 			if (m->m_len < sizeof(*evl) &&
1161 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1162 				if_printf(ifp, "cannot pullup VLAN header\n");
1163 				return;
1164 			}
1165 			evl = mtod(m, struct ether_vlan_header *);
1166 			tag = ntohs(evl->evl_tag);
1167 
1168 			/*
1169 			 * Remove the 802.1q header by copying the Ethernet
1170 			 * addresses over it and adjusting the beginning of
1171 			 * the data in the mbuf.  The encapsulated Ethernet
1172 			 * type field is already in place.
1173 			 */
1174 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1175 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1176 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1177 			break;
1178 
1179 		default:
1180 #ifdef INVARIANTS
1181 			panic("%s: %s has unsupported if_type %u",
1182 			      __func__, ifp->if_xname, ifp->if_type);
1183 #endif
1184 			m_freem(m);
1185 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1186 			return;
1187 		}
1188 	}
1189 
1190 	vid = EVL_VLANOFTAG(tag);
1191 
1192 	TRUNK_RLOCK(trunk);
1193 	ifv = vlan_gethash(trunk, vid);
1194 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1195 		TRUNK_RUNLOCK(trunk);
1196 		m_freem(m);
1197 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1198 		return;
1199 	}
1200 	TRUNK_RUNLOCK(trunk);
1201 
1202 	if (vlan_mtag_pcp) {
1203 		/*
1204 		 * While uncommon, it is possible that we will find a 802.1q
1205 		 * packet encapsulated inside another packet that also had an
1206 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1207 		 * arriving over ethernet.  In that case, we replace the
1208 		 * existing 802.1q PCP m_tag value.
1209 		 */
1210 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1211 		if (mtag == NULL) {
1212 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1213 			    sizeof(uint8_t), M_NOWAIT);
1214 			if (mtag == NULL) {
1215 				m_freem(m);
1216 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1217 				return;
1218 			}
1219 			m_tag_prepend(m, mtag);
1220 		}
1221 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1222 	}
1223 
1224 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1225 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1226 
1227 	/* Pass it back through the parent's input routine. */
1228 	(*ifp->if_input)(ifv->ifv_ifp, m);
1229 }
1230 
1231 static int
1232 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid)
1233 {
1234 	struct ifvlantrunk *trunk;
1235 	struct ifnet *ifp;
1236 	int error = 0;
1237 
1238 	/*
1239 	 * We can handle non-ethernet hardware types as long as
1240 	 * they handle the tagging and headers themselves.
1241 	 */
1242 	if (p->if_type != IFT_ETHER &&
1243 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1244 		return (EPROTONOSUPPORT);
1245 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1246 		return (EPROTONOSUPPORT);
1247 	/*
1248 	 * Don't let the caller set up a VLAN VID with
1249 	 * anything except VLID bits.
1250 	 * VID numbers 0x0 and 0xFFF are reserved.
1251 	 */
1252 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1253 		return (EINVAL);
1254 	if (ifv->ifv_trunk)
1255 		return (EBUSY);
1256 
1257 	if (p->if_vlantrunk == NULL) {
1258 		trunk = malloc(sizeof(struct ifvlantrunk),
1259 		    M_VLAN, M_WAITOK | M_ZERO);
1260 		vlan_inithash(trunk);
1261 		VLAN_LOCK();
1262 		if (p->if_vlantrunk != NULL) {
1263 			/* A race that is very unlikely to be hit. */
1264 			vlan_freehash(trunk);
1265 			free(trunk, M_VLAN);
1266 			goto exists;
1267 		}
1268 		TRUNK_LOCK_INIT(trunk);
1269 		TRUNK_LOCK(trunk);
1270 		p->if_vlantrunk = trunk;
1271 		trunk->parent = p;
1272 	} else {
1273 		VLAN_LOCK();
1274 exists:
1275 		trunk = p->if_vlantrunk;
1276 		TRUNK_LOCK(trunk);
1277 	}
1278 
1279 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1280 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1281 	vlan_tag_recalculate(ifv);
1282 	error = vlan_inshash(trunk, ifv);
1283 	if (error)
1284 		goto done;
1285 	ifv->ifv_proto = ETHERTYPE_VLAN;
1286 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1287 	ifv->ifv_mintu = ETHERMIN;
1288 	ifv->ifv_pflags = 0;
1289 
1290 	/*
1291 	 * If the parent supports the VLAN_MTU capability,
1292 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1293 	 * use it.
1294 	 */
1295 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1296 		/*
1297 		 * No need to fudge the MTU since the parent can
1298 		 * handle extended frames.
1299 		 */
1300 		ifv->ifv_mtufudge = 0;
1301 	} else {
1302 		/*
1303 		 * Fudge the MTU by the encapsulation size.  This
1304 		 * makes us incompatible with strictly compliant
1305 		 * 802.1Q implementations, but allows us to use
1306 		 * the feature with other NetBSD implementations,
1307 		 * which might still be useful.
1308 		 */
1309 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1310 	}
1311 
1312 	ifv->ifv_trunk = trunk;
1313 	ifp = ifv->ifv_ifp;
1314 	/*
1315 	 * Initialize fields from our parent.  This duplicates some
1316 	 * work with ether_ifattach() but allows for non-ethernet
1317 	 * interfaces to also work.
1318 	 */
1319 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1320 	ifp->if_baudrate = p->if_baudrate;
1321 	ifp->if_output = p->if_output;
1322 	ifp->if_input = p->if_input;
1323 	ifp->if_resolvemulti = p->if_resolvemulti;
1324 	ifp->if_addrlen = p->if_addrlen;
1325 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1326 
1327 	/*
1328 	 * Copy only a selected subset of flags from the parent.
1329 	 * Other flags are none of our business.
1330 	 */
1331 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1332 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1333 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1334 #undef VLAN_COPY_FLAGS
1335 
1336 	ifp->if_link_state = p->if_link_state;
1337 
1338 	vlan_capabilities(ifv);
1339 
1340 	/*
1341 	 * Set up our interface address to reflect the underlying
1342 	 * physical interface's.
1343 	 */
1344 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1345 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1346 	    p->if_addrlen;
1347 
1348 	/*
1349 	 * Configure multicast addresses that may already be
1350 	 * joined on the vlan device.
1351 	 */
1352 	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1353 
1354 	/* We are ready for operation now. */
1355 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1356 done:
1357 	TRUNK_UNLOCK(trunk);
1358 	if (error == 0)
1359 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1360 	VLAN_UNLOCK();
1361 
1362 	return (error);
1363 }
1364 
1365 static void
1366 vlan_unconfig(struct ifnet *ifp)
1367 {
1368 
1369 	VLAN_LOCK();
1370 	vlan_unconfig_locked(ifp, 0);
1371 	VLAN_UNLOCK();
1372 }
1373 
1374 static void
1375 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1376 {
1377 	struct ifvlantrunk *trunk;
1378 	struct vlan_mc_entry *mc;
1379 	struct ifvlan *ifv;
1380 	struct ifnet  *parent;
1381 	int error;
1382 
1383 	VLAN_LOCK_ASSERT();
1384 
1385 	ifv = ifp->if_softc;
1386 	trunk = ifv->ifv_trunk;
1387 	parent = NULL;
1388 
1389 	if (trunk != NULL) {
1390 
1391 		TRUNK_LOCK(trunk);
1392 		parent = trunk->parent;
1393 
1394 		/*
1395 		 * Since the interface is being unconfigured, we need to
1396 		 * empty the list of multicast groups that we may have joined
1397 		 * while we were alive from the parent's list.
1398 		 */
1399 		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1400 			/*
1401 			 * If the parent interface is being detached,
1402 			 * all its multicast addresses have already
1403 			 * been removed.  Warn about errors if
1404 			 * if_delmulti() does fail, but don't abort as
1405 			 * all callers expect vlan destruction to
1406 			 * succeed.
1407 			 */
1408 			if (!departing) {
1409 				error = if_delmulti(parent,
1410 				    (struct sockaddr *)&mc->mc_addr);
1411 				if (error)
1412 					if_printf(ifp,
1413 		    "Failed to delete multicast address from parent: %d\n",
1414 					    error);
1415 			}
1416 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1417 			free(mc, M_VLAN);
1418 		}
1419 
1420 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1421 		vlan_remhash(trunk, ifv);
1422 		ifv->ifv_trunk = NULL;
1423 
1424 		/*
1425 		 * Check if we were the last.
1426 		 */
1427 		if (trunk->refcnt == 0) {
1428 			parent->if_vlantrunk = NULL;
1429 			/*
1430 			 * XXXGL: If some ithread has already entered
1431 			 * vlan_input() and is now blocked on the trunk
1432 			 * lock, then it should preempt us right after
1433 			 * unlock and finish its work. Then we will acquire
1434 			 * lock again in trunk_destroy().
1435 			 */
1436 			TRUNK_UNLOCK(trunk);
1437 			trunk_destroy(trunk);
1438 		} else
1439 			TRUNK_UNLOCK(trunk);
1440 	}
1441 
1442 	/* Disconnect from parent. */
1443 	if (ifv->ifv_pflags)
1444 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1445 	ifp->if_mtu = ETHERMTU;
1446 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1447 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1448 
1449 	/*
1450 	 * Only dispatch an event if vlan was
1451 	 * attached, otherwise there is nothing
1452 	 * to cleanup anyway.
1453 	 */
1454 	if (parent != NULL)
1455 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1456 }
1457 
1458 /* Handle a reference counted flag that should be set on the parent as well */
1459 static int
1460 vlan_setflag(struct ifnet *ifp, int flag, int status,
1461 	     int (*func)(struct ifnet *, int))
1462 {
1463 	struct ifvlan *ifv;
1464 	int error;
1465 
1466 	/* XXX VLAN_LOCK_ASSERT(); */
1467 
1468 	ifv = ifp->if_softc;
1469 	status = status ? (ifp->if_flags & flag) : 0;
1470 	/* Now "status" contains the flag value or 0 */
1471 
1472 	/*
1473 	 * See if recorded parent's status is different from what
1474 	 * we want it to be.  If it is, flip it.  We record parent's
1475 	 * status in ifv_pflags so that we won't clear parent's flag
1476 	 * we haven't set.  In fact, we don't clear or set parent's
1477 	 * flags directly, but get or release references to them.
1478 	 * That's why we can be sure that recorded flags still are
1479 	 * in accord with actual parent's flags.
1480 	 */
1481 	if (status != (ifv->ifv_pflags & flag)) {
1482 		error = (*func)(PARENT(ifv), status);
1483 		if (error)
1484 			return (error);
1485 		ifv->ifv_pflags &= ~flag;
1486 		ifv->ifv_pflags |= status;
1487 	}
1488 	return (0);
1489 }
1490 
1491 /*
1492  * Handle IFF_* flags that require certain changes on the parent:
1493  * if "status" is true, update parent's flags respective to our if_flags;
1494  * if "status" is false, forcedly clear the flags set on parent.
1495  */
1496 static int
1497 vlan_setflags(struct ifnet *ifp, int status)
1498 {
1499 	int error, i;
1500 
1501 	for (i = 0; vlan_pflags[i].flag; i++) {
1502 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1503 				     status, vlan_pflags[i].func);
1504 		if (error)
1505 			return (error);
1506 	}
1507 	return (0);
1508 }
1509 
1510 /* Inform all vlans that their parent has changed link state */
1511 static void
1512 vlan_link_state(struct ifnet *ifp)
1513 {
1514 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1515 	struct ifvlan *ifv;
1516 	int i;
1517 
1518 	TRUNK_LOCK(trunk);
1519 #ifdef VLAN_ARRAY
1520 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1521 		if (trunk->vlans[i] != NULL) {
1522 			ifv = trunk->vlans[i];
1523 #else
1524 	for (i = 0; i < (1 << trunk->hwidth); i++)
1525 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1526 #endif
1527 			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1528 			if_link_state_change(ifv->ifv_ifp,
1529 			    trunk->parent->if_link_state);
1530 		}
1531 	TRUNK_UNLOCK(trunk);
1532 }
1533 
1534 static void
1535 vlan_capabilities(struct ifvlan *ifv)
1536 {
1537 	struct ifnet *p = PARENT(ifv);
1538 	struct ifnet *ifp = ifv->ifv_ifp;
1539 	struct ifnet_hw_tsomax hw_tsomax;
1540 
1541 	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1542 
1543 	/*
1544 	 * If the parent interface can do checksum offloading
1545 	 * on VLANs, then propagate its hardware-assisted
1546 	 * checksumming flags. Also assert that checksum
1547 	 * offloading requires hardware VLAN tagging.
1548 	 */
1549 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1550 		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1551 
1552 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1553 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1554 		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1555 		ifp->if_hwassist = p->if_hwassist & (CSUM_IP | CSUM_TCP |
1556 		    CSUM_UDP | CSUM_SCTP);
1557 	} else {
1558 		ifp->if_capenable = 0;
1559 		ifp->if_hwassist = 0;
1560 	}
1561 	/*
1562 	 * If the parent interface can do TSO on VLANs then
1563 	 * propagate the hardware-assisted flag. TSO on VLANs
1564 	 * does not necessarily require hardware VLAN tagging.
1565 	 */
1566 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1567 	if_hw_tsomax_common(p, &hw_tsomax);
1568 	if_hw_tsomax_update(ifp, &hw_tsomax);
1569 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1570 		ifp->if_capabilities |= p->if_capabilities & IFCAP_TSO;
1571 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1572 		ifp->if_capenable |= p->if_capenable & IFCAP_TSO;
1573 		ifp->if_hwassist |= p->if_hwassist & CSUM_TSO;
1574 	} else {
1575 		ifp->if_capenable &= ~(p->if_capenable & IFCAP_TSO);
1576 		ifp->if_hwassist &= ~(p->if_hwassist & CSUM_TSO);
1577 	}
1578 
1579 	/*
1580 	 * If the parent interface can offload TCP connections over VLANs then
1581 	 * propagate its TOE capability to the VLAN interface.
1582 	 *
1583 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1584 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1585 	 * with its own bit.
1586 	 */
1587 #define	IFCAP_VLAN_TOE IFCAP_TOE
1588 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1589 		ifp->if_capabilities |= p->if_capabilities & IFCAP_TOE;
1590 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1591 		TOEDEV(ifp) = TOEDEV(p);
1592 		ifp->if_capenable |= p->if_capenable & IFCAP_TOE;
1593 	}
1594 }
1595 
1596 static void
1597 vlan_trunk_capabilities(struct ifnet *ifp)
1598 {
1599 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1600 	struct ifvlan *ifv;
1601 	int i;
1602 
1603 	TRUNK_LOCK(trunk);
1604 #ifdef VLAN_ARRAY
1605 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1606 		if (trunk->vlans[i] != NULL) {
1607 			ifv = trunk->vlans[i];
1608 #else
1609 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1610 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1611 #endif
1612 			vlan_capabilities(ifv);
1613 	}
1614 	TRUNK_UNLOCK(trunk);
1615 }
1616 
1617 static int
1618 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1619 {
1620 	struct ifnet *p;
1621 	struct ifreq *ifr;
1622 	struct ifaddr *ifa;
1623 	struct ifvlan *ifv;
1624 	struct ifvlantrunk *trunk;
1625 	struct vlanreq vlr;
1626 	int error = 0;
1627 
1628 	ifr = (struct ifreq *)data;
1629 	ifa = (struct ifaddr *) data;
1630 	ifv = ifp->if_softc;
1631 
1632 	switch (cmd) {
1633 	case SIOCSIFADDR:
1634 		ifp->if_flags |= IFF_UP;
1635 #ifdef INET
1636 		if (ifa->ifa_addr->sa_family == AF_INET)
1637 			arp_ifinit(ifp, ifa);
1638 #endif
1639 		break;
1640 	case SIOCGIFADDR:
1641                 {
1642 			struct sockaddr *sa;
1643 
1644 			sa = (struct sockaddr *)&ifr->ifr_data;
1645 			bcopy(IF_LLADDR(ifp), sa->sa_data, ifp->if_addrlen);
1646                 }
1647 		break;
1648 	case SIOCGIFMEDIA:
1649 		VLAN_LOCK();
1650 		if (TRUNK(ifv) != NULL) {
1651 			p = PARENT(ifv);
1652 			VLAN_UNLOCK();
1653 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1654 			/* Limit the result to the parent's current config. */
1655 			if (error == 0) {
1656 				struct ifmediareq *ifmr;
1657 
1658 				ifmr = (struct ifmediareq *)data;
1659 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1660 					ifmr->ifm_count = 1;
1661 					error = copyout(&ifmr->ifm_current,
1662 						ifmr->ifm_ulist,
1663 						sizeof(int));
1664 				}
1665 			}
1666 		} else {
1667 			VLAN_UNLOCK();
1668 			error = EINVAL;
1669 		}
1670 		break;
1671 
1672 	case SIOCSIFMEDIA:
1673 		error = EINVAL;
1674 		break;
1675 
1676 	case SIOCSIFMTU:
1677 		/*
1678 		 * Set the interface MTU.
1679 		 */
1680 		VLAN_LOCK();
1681 		if (TRUNK(ifv) != NULL) {
1682 			if (ifr->ifr_mtu >
1683 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1684 			    ifr->ifr_mtu <
1685 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1686 				error = EINVAL;
1687 			else
1688 				ifp->if_mtu = ifr->ifr_mtu;
1689 		} else
1690 			error = EINVAL;
1691 		VLAN_UNLOCK();
1692 		break;
1693 
1694 	case SIOCSETVLAN:
1695 #ifdef VIMAGE
1696 		/*
1697 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1698 		 * interface to be delegated to a jail without allowing the
1699 		 * jail to change what underlying interface/VID it is
1700 		 * associated with.  We are not entirely convinced that this
1701 		 * is the right way to accomplish that policy goal.
1702 		 */
1703 		if (ifp->if_vnet != ifp->if_home_vnet) {
1704 			error = EPERM;
1705 			break;
1706 		}
1707 #endif
1708 		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1709 		if (error)
1710 			break;
1711 		if (vlr.vlr_parent[0] == '\0') {
1712 			vlan_unconfig(ifp);
1713 			break;
1714 		}
1715 		p = ifunit(vlr.vlr_parent);
1716 		if (p == NULL) {
1717 			error = ENOENT;
1718 			break;
1719 		}
1720 		error = vlan_config(ifv, p, vlr.vlr_tag);
1721 		if (error)
1722 			break;
1723 
1724 		/* Update flags on the parent, if necessary. */
1725 		vlan_setflags(ifp, 1);
1726 		break;
1727 
1728 	case SIOCGETVLAN:
1729 #ifdef VIMAGE
1730 		if (ifp->if_vnet != ifp->if_home_vnet) {
1731 			error = EPERM;
1732 			break;
1733 		}
1734 #endif
1735 		bzero(&vlr, sizeof(vlr));
1736 		VLAN_LOCK();
1737 		if (TRUNK(ifv) != NULL) {
1738 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1739 			    sizeof(vlr.vlr_parent));
1740 			vlr.vlr_tag = ifv->ifv_vid;
1741 		}
1742 		VLAN_UNLOCK();
1743 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1744 		break;
1745 
1746 	case SIOCSIFFLAGS:
1747 		/*
1748 		 * We should propagate selected flags to the parent,
1749 		 * e.g., promiscuous mode.
1750 		 */
1751 		if (TRUNK(ifv) != NULL)
1752 			error = vlan_setflags(ifp, 1);
1753 		break;
1754 
1755 	case SIOCADDMULTI:
1756 	case SIOCDELMULTI:
1757 		/*
1758 		 * If we don't have a parent, just remember the membership for
1759 		 * when we do.
1760 		 */
1761 		trunk = TRUNK(ifv);
1762 		if (trunk != NULL) {
1763 			TRUNK_LOCK(trunk);
1764 			error = vlan_setmulti(ifp);
1765 			TRUNK_UNLOCK(trunk);
1766 		}
1767 		break;
1768 
1769 	case SIOCGVLANPCP:
1770 #ifdef VIMAGE
1771 		if (ifp->if_vnet != ifp->if_home_vnet) {
1772 			error = EPERM;
1773 			break;
1774 		}
1775 #endif
1776 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
1777 		break;
1778 
1779 	case SIOCSVLANPCP:
1780 #ifdef VIMAGE
1781 		if (ifp->if_vnet != ifp->if_home_vnet) {
1782 			error = EPERM;
1783 			break;
1784 		}
1785 #endif
1786 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
1787 		if (error)
1788 			break;
1789 		if (ifr->ifr_vlan_pcp > 7) {
1790 			error = EINVAL;
1791 			break;
1792 		}
1793 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
1794 		vlan_tag_recalculate(ifv);
1795 		break;
1796 
1797 	default:
1798 		error = EINVAL;
1799 		break;
1800 	}
1801 
1802 	return (error);
1803 }
1804