1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 32 * Might be extended some day to also handle IEEE 802.1p priority 33 * tagging. This is sort of sneaky in the implementation, since 34 * we need to pretend to be enough of an Ethernet implementation 35 * to make arp work. The way we do this is by telling everyone 36 * that we are an Ethernet, and then catch the packets that 37 * ether_output() sends to us via if_transmit(), rewrite them for 38 * use by the real outgoing interface, and ask it to send them. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_inet.h" 45 #include "opt_vlan.h" 46 47 #include <sys/param.h> 48 #include <sys/eventhandler.h> 49 #include <sys/kernel.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/module.h> 54 #include <sys/rmlock.h> 55 #include <sys/queue.h> 56 #include <sys/socket.h> 57 #include <sys/sockio.h> 58 #include <sys/sysctl.h> 59 #include <sys/systm.h> 60 #include <sys/sx.h> 61 62 #include <net/bpf.h> 63 #include <net/ethernet.h> 64 #include <net/if.h> 65 #include <net/if_var.h> 66 #include <net/if_clone.h> 67 #include <net/if_dl.h> 68 #include <net/if_types.h> 69 #include <net/if_vlan_var.h> 70 #include <net/vnet.h> 71 72 #ifdef INET 73 #include <netinet/in.h> 74 #include <netinet/if_ether.h> 75 #endif 76 77 #define VLAN_DEF_HWIDTH 4 78 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 79 80 #define UP_AND_RUNNING(ifp) \ 81 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 82 83 LIST_HEAD(ifvlanhead, ifvlan); 84 85 struct ifvlantrunk { 86 struct ifnet *parent; /* parent interface of this trunk */ 87 struct rmlock lock; 88 #ifdef VLAN_ARRAY 89 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 90 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 91 #else 92 struct ifvlanhead *hash; /* dynamic hash-list table */ 93 uint16_t hmask; 94 uint16_t hwidth; 95 #endif 96 int refcnt; 97 }; 98 99 struct vlan_mc_entry { 100 struct sockaddr_dl mc_addr; 101 SLIST_ENTRY(vlan_mc_entry) mc_entries; 102 }; 103 104 struct ifvlan { 105 struct ifvlantrunk *ifv_trunk; 106 struct ifnet *ifv_ifp; 107 counter_u64_t ifv_ipackets; 108 counter_u64_t ifv_ibytes; 109 counter_u64_t ifv_opackets; 110 counter_u64_t ifv_obytes; 111 counter_u64_t ifv_omcasts; 112 counter_u64_t ifv_oerrors; 113 #define TRUNK(ifv) ((ifv)->ifv_trunk) 114 #define PARENT(ifv) ((ifv)->ifv_trunk->parent) 115 void *ifv_cookie; 116 int ifv_pflags; /* special flags we have set on parent */ 117 struct ifv_linkmib { 118 int ifvm_encaplen; /* encapsulation length */ 119 int ifvm_mtufudge; /* MTU fudged by this much */ 120 int ifvm_mintu; /* min transmission unit */ 121 uint16_t ifvm_proto; /* encapsulation ethertype */ 122 uint16_t ifvm_tag; /* tag to apply on packets leaving if */ 123 } ifv_mib; 124 SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 125 #ifndef VLAN_ARRAY 126 LIST_ENTRY(ifvlan) ifv_list; 127 #endif 128 }; 129 #define ifv_proto ifv_mib.ifvm_proto 130 #define ifv_vid ifv_mib.ifvm_tag 131 #define ifv_encaplen ifv_mib.ifvm_encaplen 132 #define ifv_mtufudge ifv_mib.ifvm_mtufudge 133 #define ifv_mintu ifv_mib.ifvm_mintu 134 135 /* Special flags we should propagate to parent. */ 136 static struct { 137 int flag; 138 int (*func)(struct ifnet *, int); 139 } vlan_pflags[] = { 140 {IFF_PROMISC, ifpromisc}, 141 {IFF_ALLMULTI, if_allmulti}, 142 {0, NULL} 143 }; 144 145 SYSCTL_DECL(_net_link); 146 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, 147 "IEEE 802.1Q VLAN"); 148 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, 149 "for consistency"); 150 151 static int soft_pad = 0; 152 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0, 153 "pad short frames before tagging"); 154 155 static const char vlanname[] = "vlan"; 156 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); 157 158 static eventhandler_tag ifdetach_tag; 159 static eventhandler_tag iflladdr_tag; 160 161 /* 162 * We have a global mutex, that is used to serialize configuration 163 * changes and isn't used in normal packet delivery. 164 * 165 * We also have a per-trunk rwlock, that is locked shared on packet 166 * processing and exclusive when configuration is changed. 167 * 168 * The VLAN_ARRAY substitutes the dynamic hash with a static array 169 * with 4096 entries. In theory this can give a boost in processing, 170 * however on practice it does not. Probably this is because array 171 * is too big to fit into CPU cache. 172 */ 173 static struct sx ifv_lock; 174 #define VLAN_LOCK_INIT() sx_init(&ifv_lock, "vlan_global") 175 #define VLAN_LOCK_DESTROY() sx_destroy(&ifv_lock) 176 #define VLAN_LOCK_ASSERT() sx_assert(&ifv_lock, SA_LOCKED) 177 #define VLAN_LOCK() sx_xlock(&ifv_lock) 178 #define VLAN_UNLOCK() sx_xunlock(&ifv_lock) 179 #define TRUNK_LOCK_INIT(trunk) rm_init(&(trunk)->lock, vlanname) 180 #define TRUNK_LOCK_DESTROY(trunk) rm_destroy(&(trunk)->lock) 181 #define TRUNK_LOCK(trunk) rm_wlock(&(trunk)->lock) 182 #define TRUNK_UNLOCK(trunk) rm_wunlock(&(trunk)->lock) 183 #define TRUNK_LOCK_ASSERT(trunk) rm_assert(&(trunk)->lock, RA_WLOCKED) 184 #define TRUNK_RLOCK(trunk) rm_rlock(&(trunk)->lock, &tracker) 185 #define TRUNK_RUNLOCK(trunk) rm_runlock(&(trunk)->lock, &tracker) 186 #define TRUNK_LOCK_RASSERT(trunk) rm_assert(&(trunk)->lock, RA_RLOCKED) 187 #define TRUNK_LOCK_READER struct rm_priotracker tracker 188 189 #ifndef VLAN_ARRAY 190 static void vlan_inithash(struct ifvlantrunk *trunk); 191 static void vlan_freehash(struct ifvlantrunk *trunk); 192 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 193 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 194 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 195 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 196 uint16_t vid); 197 #endif 198 static void trunk_destroy(struct ifvlantrunk *trunk); 199 200 static void vlan_init(void *foo); 201 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 202 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 203 static void vlan_qflush(struct ifnet *ifp); 204 static uint64_t vlan_get_counter(struct ifnet *ifp, ift_counter cnt); 205 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 206 int (*func)(struct ifnet *, int)); 207 static int vlan_setflags(struct ifnet *ifp, int status); 208 static int vlan_setmulti(struct ifnet *ifp); 209 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); 210 static void vlan_unconfig(struct ifnet *ifp); 211 static void vlan_unconfig_locked(struct ifnet *ifp, int departing); 212 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag); 213 static void vlan_link_state(struct ifnet *ifp); 214 static void vlan_capabilities(struct ifvlan *ifv); 215 static void vlan_trunk_capabilities(struct ifnet *ifp); 216 217 static struct ifnet *vlan_clone_match_ethervid(struct if_clone *, 218 const char *, int *); 219 static int vlan_clone_match(struct if_clone *, const char *); 220 static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); 221 static int vlan_clone_destroy(struct if_clone *, struct ifnet *); 222 223 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 224 static void vlan_iflladdr(void *arg, struct ifnet *ifp); 225 226 static struct if_clone *vlan_cloner; 227 228 #ifdef VIMAGE 229 static VNET_DEFINE(struct if_clone *, vlan_cloner); 230 #define V_vlan_cloner VNET(vlan_cloner) 231 #endif 232 233 #ifndef VLAN_ARRAY 234 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 235 236 static void 237 vlan_inithash(struct ifvlantrunk *trunk) 238 { 239 int i, n; 240 241 /* 242 * The trunk must not be locked here since we call malloc(M_WAITOK). 243 * It is OK in case this function is called before the trunk struct 244 * gets hooked up and becomes visible from other threads. 245 */ 246 247 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 248 ("%s: hash already initialized", __func__)); 249 250 trunk->hwidth = VLAN_DEF_HWIDTH; 251 n = 1 << trunk->hwidth; 252 trunk->hmask = n - 1; 253 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 254 for (i = 0; i < n; i++) 255 LIST_INIT(&trunk->hash[i]); 256 } 257 258 static void 259 vlan_freehash(struct ifvlantrunk *trunk) 260 { 261 #ifdef INVARIANTS 262 int i; 263 264 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 265 for (i = 0; i < (1 << trunk->hwidth); i++) 266 KASSERT(LIST_EMPTY(&trunk->hash[i]), 267 ("%s: hash table not empty", __func__)); 268 #endif 269 free(trunk->hash, M_VLAN); 270 trunk->hash = NULL; 271 trunk->hwidth = trunk->hmask = 0; 272 } 273 274 static int 275 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 276 { 277 int i, b; 278 struct ifvlan *ifv2; 279 280 TRUNK_LOCK_ASSERT(trunk); 281 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 282 283 b = 1 << trunk->hwidth; 284 i = HASH(ifv->ifv_vid, trunk->hmask); 285 LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 286 if (ifv->ifv_vid == ifv2->ifv_vid) 287 return (EEXIST); 288 289 /* 290 * Grow the hash when the number of vlans exceeds half of the number of 291 * hash buckets squared. This will make the average linked-list length 292 * buckets/2. 293 */ 294 if (trunk->refcnt > (b * b) / 2) { 295 vlan_growhash(trunk, 1); 296 i = HASH(ifv->ifv_vid, trunk->hmask); 297 } 298 LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 299 trunk->refcnt++; 300 301 return (0); 302 } 303 304 static int 305 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 306 { 307 int i, b; 308 struct ifvlan *ifv2; 309 310 TRUNK_LOCK_ASSERT(trunk); 311 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 312 313 b = 1 << trunk->hwidth; 314 i = HASH(ifv->ifv_vid, trunk->hmask); 315 LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 316 if (ifv2 == ifv) { 317 trunk->refcnt--; 318 LIST_REMOVE(ifv2, ifv_list); 319 if (trunk->refcnt < (b * b) / 2) 320 vlan_growhash(trunk, -1); 321 return (0); 322 } 323 324 panic("%s: vlan not found\n", __func__); 325 return (ENOENT); /*NOTREACHED*/ 326 } 327 328 /* 329 * Grow the hash larger or smaller if memory permits. 330 */ 331 static void 332 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 333 { 334 struct ifvlan *ifv; 335 struct ifvlanhead *hash2; 336 int hwidth2, i, j, n, n2; 337 338 TRUNK_LOCK_ASSERT(trunk); 339 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 340 341 if (howmuch == 0) { 342 /* Harmless yet obvious coding error */ 343 printf("%s: howmuch is 0\n", __func__); 344 return; 345 } 346 347 hwidth2 = trunk->hwidth + howmuch; 348 n = 1 << trunk->hwidth; 349 n2 = 1 << hwidth2; 350 /* Do not shrink the table below the default */ 351 if (hwidth2 < VLAN_DEF_HWIDTH) 352 return; 353 354 /* M_NOWAIT because we're called with trunk mutex held */ 355 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT); 356 if (hash2 == NULL) { 357 printf("%s: out of memory -- hash size not changed\n", 358 __func__); 359 return; /* We can live with the old hash table */ 360 } 361 for (j = 0; j < n2; j++) 362 LIST_INIT(&hash2[j]); 363 for (i = 0; i < n; i++) 364 while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) { 365 LIST_REMOVE(ifv, ifv_list); 366 j = HASH(ifv->ifv_vid, n2 - 1); 367 LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 368 } 369 free(trunk->hash, M_VLAN); 370 trunk->hash = hash2; 371 trunk->hwidth = hwidth2; 372 trunk->hmask = n2 - 1; 373 374 if (bootverbose) 375 if_printf(trunk->parent, 376 "VLAN hash table resized from %d to %d buckets\n", n, n2); 377 } 378 379 static __inline struct ifvlan * 380 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 381 { 382 struct ifvlan *ifv; 383 384 TRUNK_LOCK_RASSERT(trunk); 385 386 LIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) 387 if (ifv->ifv_vid == vid) 388 return (ifv); 389 return (NULL); 390 } 391 392 #if 0 393 /* Debugging code to view the hashtables. */ 394 static void 395 vlan_dumphash(struct ifvlantrunk *trunk) 396 { 397 int i; 398 struct ifvlan *ifv; 399 400 for (i = 0; i < (1 << trunk->hwidth); i++) { 401 printf("%d: ", i); 402 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 403 printf("%s ", ifv->ifv_ifp->if_xname); 404 printf("\n"); 405 } 406 } 407 #endif /* 0 */ 408 #else 409 410 static __inline struct ifvlan * 411 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 412 { 413 414 return trunk->vlans[vid]; 415 } 416 417 static __inline int 418 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 419 { 420 421 if (trunk->vlans[ifv->ifv_vid] != NULL) 422 return EEXIST; 423 trunk->vlans[ifv->ifv_vid] = ifv; 424 trunk->refcnt++; 425 426 return (0); 427 } 428 429 static __inline int 430 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 431 { 432 433 trunk->vlans[ifv->ifv_vid] = NULL; 434 trunk->refcnt--; 435 436 return (0); 437 } 438 439 static __inline void 440 vlan_freehash(struct ifvlantrunk *trunk) 441 { 442 } 443 444 static __inline void 445 vlan_inithash(struct ifvlantrunk *trunk) 446 { 447 } 448 449 #endif /* !VLAN_ARRAY */ 450 451 static void 452 trunk_destroy(struct ifvlantrunk *trunk) 453 { 454 VLAN_LOCK_ASSERT(); 455 456 TRUNK_LOCK(trunk); 457 vlan_freehash(trunk); 458 trunk->parent->if_vlantrunk = NULL; 459 TRUNK_UNLOCK(trunk); 460 TRUNK_LOCK_DESTROY(trunk); 461 free(trunk, M_VLAN); 462 } 463 464 /* 465 * Program our multicast filter. What we're actually doing is 466 * programming the multicast filter of the parent. This has the 467 * side effect of causing the parent interface to receive multicast 468 * traffic that it doesn't really want, which ends up being discarded 469 * later by the upper protocol layers. Unfortunately, there's no way 470 * to avoid this: there really is only one physical interface. 471 */ 472 static int 473 vlan_setmulti(struct ifnet *ifp) 474 { 475 struct ifnet *ifp_p; 476 struct ifmultiaddr *ifma; 477 struct ifvlan *sc; 478 struct vlan_mc_entry *mc; 479 int error; 480 481 /* Find the parent. */ 482 sc = ifp->if_softc; 483 TRUNK_LOCK_ASSERT(TRUNK(sc)); 484 ifp_p = PARENT(sc); 485 486 CURVNET_SET_QUIET(ifp_p->if_vnet); 487 488 /* First, remove any existing filter entries. */ 489 while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 490 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 491 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); 492 free(mc, M_VLAN); 493 } 494 495 /* Now program new ones. */ 496 IF_ADDR_WLOCK(ifp); 497 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 498 if (ifma->ifma_addr->sa_family != AF_LINK) 499 continue; 500 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 501 if (mc == NULL) { 502 IF_ADDR_WUNLOCK(ifp); 503 return (ENOMEM); 504 } 505 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); 506 mc->mc_addr.sdl_index = ifp_p->if_index; 507 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 508 } 509 IF_ADDR_WUNLOCK(ifp); 510 SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { 511 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, 512 NULL); 513 if (error) 514 return (error); 515 } 516 517 CURVNET_RESTORE(); 518 return (0); 519 } 520 521 /* 522 * A handler for parent interface link layer address changes. 523 * If the parent interface link layer address is changed we 524 * should also change it on all children vlans. 525 */ 526 static void 527 vlan_iflladdr(void *arg __unused, struct ifnet *ifp) 528 { 529 struct ifvlan *ifv; 530 #ifndef VLAN_ARRAY 531 struct ifvlan *next; 532 #endif 533 int i; 534 535 /* 536 * Check if it's a trunk interface first of all 537 * to avoid needless locking. 538 */ 539 if (ifp->if_vlantrunk == NULL) 540 return; 541 542 VLAN_LOCK(); 543 /* 544 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. 545 */ 546 #ifdef VLAN_ARRAY 547 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 548 if ((ifv = ifp->if_vlantrunk->vlans[i])) { 549 #else /* VLAN_ARRAY */ 550 for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++) 551 LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) { 552 #endif /* VLAN_ARRAY */ 553 VLAN_UNLOCK(); 554 if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp), 555 ifp->if_addrlen); 556 VLAN_LOCK(); 557 } 558 VLAN_UNLOCK(); 559 560 } 561 562 /* 563 * A handler for network interface departure events. 564 * Track departure of trunks here so that we don't access invalid 565 * pointers or whatever if a trunk is ripped from under us, e.g., 566 * by ejecting its hot-plug card. However, if an ifnet is simply 567 * being renamed, then there's no need to tear down the state. 568 */ 569 static void 570 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 571 { 572 struct ifvlan *ifv; 573 int i; 574 575 /* 576 * Check if it's a trunk interface first of all 577 * to avoid needless locking. 578 */ 579 if (ifp->if_vlantrunk == NULL) 580 return; 581 582 /* If the ifnet is just being renamed, don't do anything. */ 583 if (ifp->if_flags & IFF_RENAMING) 584 return; 585 586 VLAN_LOCK(); 587 /* 588 * OK, it's a trunk. Loop over and detach all vlan's on it. 589 * Check trunk pointer after each vlan_unconfig() as it will 590 * free it and set to NULL after the last vlan was detached. 591 */ 592 #ifdef VLAN_ARRAY 593 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 594 if ((ifv = ifp->if_vlantrunk->vlans[i])) { 595 vlan_unconfig_locked(ifv->ifv_ifp, 1); 596 if (ifp->if_vlantrunk == NULL) 597 break; 598 } 599 #else /* VLAN_ARRAY */ 600 restart: 601 for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++) 602 if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) { 603 vlan_unconfig_locked(ifv->ifv_ifp, 1); 604 if (ifp->if_vlantrunk) 605 goto restart; /* trunk->hwidth can change */ 606 else 607 break; 608 } 609 #endif /* VLAN_ARRAY */ 610 /* Trunk should have been destroyed in vlan_unconfig(). */ 611 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 612 VLAN_UNLOCK(); 613 } 614 615 /* 616 * Return the trunk device for a virtual interface. 617 */ 618 static struct ifnet * 619 vlan_trunkdev(struct ifnet *ifp) 620 { 621 struct ifvlan *ifv; 622 623 if (ifp->if_type != IFT_L2VLAN) 624 return (NULL); 625 ifv = ifp->if_softc; 626 ifp = NULL; 627 VLAN_LOCK(); 628 if (ifv->ifv_trunk) 629 ifp = PARENT(ifv); 630 VLAN_UNLOCK(); 631 return (ifp); 632 } 633 634 /* 635 * Return the 12-bit VLAN VID for this interface, for use by external 636 * components such as Infiniband. 637 * 638 * XXXRW: Note that the function name here is historical; it should be named 639 * vlan_vid(). 640 */ 641 static int 642 vlan_tag(struct ifnet *ifp, uint16_t *vidp) 643 { 644 struct ifvlan *ifv; 645 646 if (ifp->if_type != IFT_L2VLAN) 647 return (EINVAL); 648 ifv = ifp->if_softc; 649 *vidp = ifv->ifv_vid; 650 return (0); 651 } 652 653 /* 654 * Return a driver specific cookie for this interface. Synchronization 655 * with setcookie must be provided by the driver. 656 */ 657 static void * 658 vlan_cookie(struct ifnet *ifp) 659 { 660 struct ifvlan *ifv; 661 662 if (ifp->if_type != IFT_L2VLAN) 663 return (NULL); 664 ifv = ifp->if_softc; 665 return (ifv->ifv_cookie); 666 } 667 668 /* 669 * Store a cookie in our softc that drivers can use to store driver 670 * private per-instance data in. 671 */ 672 static int 673 vlan_setcookie(struct ifnet *ifp, void *cookie) 674 { 675 struct ifvlan *ifv; 676 677 if (ifp->if_type != IFT_L2VLAN) 678 return (EINVAL); 679 ifv = ifp->if_softc; 680 ifv->ifv_cookie = cookie; 681 return (0); 682 } 683 684 /* 685 * Return the vlan device present at the specific VID. 686 */ 687 static struct ifnet * 688 vlan_devat(struct ifnet *ifp, uint16_t vid) 689 { 690 struct ifvlantrunk *trunk; 691 struct ifvlan *ifv; 692 TRUNK_LOCK_READER; 693 694 trunk = ifp->if_vlantrunk; 695 if (trunk == NULL) 696 return (NULL); 697 ifp = NULL; 698 TRUNK_RLOCK(trunk); 699 ifv = vlan_gethash(trunk, vid); 700 if (ifv) 701 ifp = ifv->ifv_ifp; 702 TRUNK_RUNLOCK(trunk); 703 return (ifp); 704 } 705 706 /* 707 * VLAN support can be loaded as a module. The only place in the 708 * system that's intimately aware of this is ether_input. We hook 709 * into this code through vlan_input_p which is defined there and 710 * set here. Noone else in the system should be aware of this so 711 * we use an explicit reference here. 712 */ 713 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 714 715 /* For if_link_state_change() eyes only... */ 716 extern void (*vlan_link_state_p)(struct ifnet *); 717 718 static int 719 vlan_modevent(module_t mod, int type, void *data) 720 { 721 722 switch (type) { 723 case MOD_LOAD: 724 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 725 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 726 if (ifdetach_tag == NULL) 727 return (ENOMEM); 728 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, 729 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 730 if (iflladdr_tag == NULL) 731 return (ENOMEM); 732 VLAN_LOCK_INIT(); 733 vlan_input_p = vlan_input; 734 vlan_link_state_p = vlan_link_state; 735 vlan_trunk_cap_p = vlan_trunk_capabilities; 736 vlan_trunkdev_p = vlan_trunkdev; 737 vlan_cookie_p = vlan_cookie; 738 vlan_setcookie_p = vlan_setcookie; 739 vlan_tag_p = vlan_tag; 740 vlan_devat_p = vlan_devat; 741 #ifndef VIMAGE 742 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 743 vlan_clone_create, vlan_clone_destroy); 744 #endif 745 if (bootverbose) 746 printf("vlan: initialized, using " 747 #ifdef VLAN_ARRAY 748 "full-size arrays" 749 #else 750 "hash tables with chaining" 751 #endif 752 753 "\n"); 754 break; 755 case MOD_UNLOAD: 756 #ifndef VIMAGE 757 if_clone_detach(vlan_cloner); 758 #endif 759 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 760 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); 761 vlan_input_p = NULL; 762 vlan_link_state_p = NULL; 763 vlan_trunk_cap_p = NULL; 764 vlan_trunkdev_p = NULL; 765 vlan_tag_p = NULL; 766 vlan_cookie_p = NULL; 767 vlan_setcookie_p = NULL; 768 vlan_devat_p = NULL; 769 VLAN_LOCK_DESTROY(); 770 if (bootverbose) 771 printf("vlan: unloaded\n"); 772 break; 773 default: 774 return (EOPNOTSUPP); 775 } 776 return (0); 777 } 778 779 static moduledata_t vlan_mod = { 780 "if_vlan", 781 vlan_modevent, 782 0 783 }; 784 785 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 786 MODULE_VERSION(if_vlan, 3); 787 788 #ifdef VIMAGE 789 static void 790 vnet_vlan_init(const void *unused __unused) 791 { 792 793 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 794 vlan_clone_create, vlan_clone_destroy); 795 V_vlan_cloner = vlan_cloner; 796 } 797 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 798 vnet_vlan_init, NULL); 799 800 static void 801 vnet_vlan_uninit(const void *unused __unused) 802 { 803 804 if_clone_detach(V_vlan_cloner); 805 } 806 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST, 807 vnet_vlan_uninit, NULL); 808 #endif 809 810 static struct ifnet * 811 vlan_clone_match_ethervid(struct if_clone *ifc, const char *name, int *vidp) 812 { 813 const char *cp; 814 struct ifnet *ifp; 815 int vid; 816 817 /* Check for <etherif>.<vlan> style interface names. */ 818 IFNET_RLOCK_NOSLEEP(); 819 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 820 /* 821 * We can handle non-ethernet hardware types as long as 822 * they handle the tagging and headers themselves. 823 */ 824 if (ifp->if_type != IFT_ETHER && 825 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 826 continue; 827 if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0) 828 continue; 829 cp = name + strlen(ifp->if_xname); 830 if (*cp++ != '.') 831 continue; 832 if (*cp == '\0') 833 continue; 834 vid = 0; 835 for(; *cp >= '0' && *cp <= '9'; cp++) 836 vid = (vid * 10) + (*cp - '0'); 837 if (*cp != '\0') 838 continue; 839 if (vidp != NULL) 840 *vidp = vid; 841 break; 842 } 843 IFNET_RUNLOCK_NOSLEEP(); 844 845 return (ifp); 846 } 847 848 static int 849 vlan_clone_match(struct if_clone *ifc, const char *name) 850 { 851 const char *cp; 852 853 if (vlan_clone_match_ethervid(ifc, name, NULL) != NULL) 854 return (1); 855 856 if (strncmp(vlanname, name, strlen(vlanname)) != 0) 857 return (0); 858 for (cp = name + 4; *cp != '\0'; cp++) { 859 if (*cp < '0' || *cp > '9') 860 return (0); 861 } 862 863 return (1); 864 } 865 866 static int 867 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) 868 { 869 char *dp; 870 int wildcard; 871 int unit; 872 int error; 873 int vid; 874 int ethertag; 875 struct ifvlan *ifv; 876 struct ifnet *ifp; 877 struct ifnet *p; 878 struct ifaddr *ifa; 879 struct sockaddr_dl *sdl; 880 struct vlanreq vlr; 881 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 882 883 /* 884 * There are 3 (ugh) ways to specify the cloned device: 885 * o pass a parameter block with the clone request. 886 * o specify parameters in the text of the clone device name 887 * o specify no parameters and get an unattached device that 888 * must be configured separately. 889 * The first technique is preferred; the latter two are 890 * supported for backwards compatibilty. 891 * 892 * XXXRW: Note historic use of the word "tag" here. New ioctls may be 893 * called for. 894 */ 895 if (params) { 896 error = copyin(params, &vlr, sizeof(vlr)); 897 if (error) 898 return error; 899 p = ifunit(vlr.vlr_parent); 900 if (p == NULL) 901 return ENXIO; 902 /* 903 * Don't let the caller set up a VLAN VID with 904 * anything except VLID bits. 905 */ 906 if (vlr.vlr_tag & ~EVL_VLID_MASK) 907 return (EINVAL); 908 error = ifc_name2unit(name, &unit); 909 if (error != 0) 910 return (error); 911 912 ethertag = 1; 913 vid = vlr.vlr_tag; 914 wildcard = (unit < 0); 915 } else if ((p = vlan_clone_match_ethervid(ifc, name, &vid)) != NULL) { 916 ethertag = 1; 917 unit = -1; 918 wildcard = 0; 919 920 /* 921 * Don't let the caller set up a VLAN VID with 922 * anything except VLID bits. 923 */ 924 if (vid & ~EVL_VLID_MASK) 925 return (EINVAL); 926 } else { 927 ethertag = 0; 928 929 error = ifc_name2unit(name, &unit); 930 if (error != 0) 931 return (error); 932 933 wildcard = (unit < 0); 934 } 935 936 error = ifc_alloc_unit(ifc, &unit); 937 if (error != 0) 938 return (error); 939 940 /* In the wildcard case, we need to update the name. */ 941 if (wildcard) { 942 for (dp = name; *dp != '\0'; dp++); 943 if (snprintf(dp, len - (dp-name), "%d", unit) > 944 len - (dp-name) - 1) { 945 panic("%s: interface name too long", __func__); 946 } 947 } 948 949 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 950 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 951 if (ifp == NULL) { 952 ifc_free_unit(ifc, unit); 953 free(ifv, M_VLAN); 954 return (ENOSPC); 955 } 956 SLIST_INIT(&ifv->vlan_mc_listhead); 957 /* Prepare pcpu counters */ 958 ifv->ifv_ipackets = counter_u64_alloc(M_WAITOK); 959 ifv->ifv_opackets = counter_u64_alloc(M_WAITOK); 960 ifv->ifv_ibytes = counter_u64_alloc(M_WAITOK); 961 ifv->ifv_obytes = counter_u64_alloc(M_WAITOK); 962 ifv->ifv_omcasts = counter_u64_alloc(M_WAITOK); 963 ifv->ifv_oerrors = counter_u64_alloc(M_WAITOK); 964 965 ifp->if_softc = ifv; 966 /* 967 * Set the name manually rather than using if_initname because 968 * we don't conform to the default naming convention for interfaces. 969 */ 970 strlcpy(ifp->if_xname, name, IFNAMSIZ); 971 ifp->if_dname = vlanname; 972 ifp->if_dunit = unit; 973 /* NB: flags are not set here */ 974 ifp->if_linkmib = &ifv->ifv_mib; 975 ifp->if_linkmiblen = sizeof(ifv->ifv_mib); 976 /* NB: mtu is not set here */ 977 978 ifp->if_init = vlan_init; 979 ifp->if_transmit = vlan_transmit; 980 ifp->if_qflush = vlan_qflush; 981 ifp->if_ioctl = vlan_ioctl; 982 ifp->if_flags = VLAN_IFFLAGS; 983 ifp->if_get_counter = vlan_get_counter; 984 ether_ifattach(ifp, eaddr); 985 /* Now undo some of the damage... */ 986 ifp->if_baudrate = 0; 987 ifp->if_type = IFT_L2VLAN; 988 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 989 ifa = ifp->if_addr; 990 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 991 sdl->sdl_type = IFT_L2VLAN; 992 993 if (ethertag) { 994 error = vlan_config(ifv, p, vid); 995 if (error != 0) { 996 /* 997 * Since we've partially failed, we need to back 998 * out all the way, otherwise userland could get 999 * confused. Thus, we destroy the interface. 1000 */ 1001 ether_ifdetach(ifp); 1002 vlan_unconfig(ifp); 1003 if_free(ifp); 1004 ifc_free_unit(ifc, unit); 1005 free(ifv, M_VLAN); 1006 1007 return (error); 1008 } 1009 1010 /* Update flags on the parent, if necessary. */ 1011 vlan_setflags(ifp, 1); 1012 } 1013 1014 return (0); 1015 } 1016 1017 static int 1018 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) 1019 { 1020 struct ifvlan *ifv = ifp->if_softc; 1021 int unit = ifp->if_dunit; 1022 1023 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 1024 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 1025 if_free(ifp); 1026 counter_u64_free(ifv->ifv_ipackets); 1027 counter_u64_free(ifv->ifv_opackets); 1028 counter_u64_free(ifv->ifv_ibytes); 1029 counter_u64_free(ifv->ifv_obytes); 1030 counter_u64_free(ifv->ifv_omcasts); 1031 counter_u64_free(ifv->ifv_oerrors); 1032 free(ifv, M_VLAN); 1033 ifc_free_unit(ifc, unit); 1034 1035 return (0); 1036 } 1037 1038 /* 1039 * The ifp->if_init entry point for vlan(4) is a no-op. 1040 */ 1041 static void 1042 vlan_init(void *foo __unused) 1043 { 1044 } 1045 1046 /* 1047 * The if_transmit method for vlan(4) interface. 1048 */ 1049 static int 1050 vlan_transmit(struct ifnet *ifp, struct mbuf *m) 1051 { 1052 struct ifvlan *ifv; 1053 struct ifnet *p; 1054 int error, len, mcast; 1055 1056 ifv = ifp->if_softc; 1057 p = PARENT(ifv); 1058 len = m->m_pkthdr.len; 1059 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; 1060 1061 BPF_MTAP(ifp, m); 1062 1063 /* 1064 * Do not run parent's if_transmit() if the parent is not up, 1065 * or parent's driver will cause a system crash. 1066 */ 1067 if (!UP_AND_RUNNING(p)) { 1068 m_freem(m); 1069 counter_u64_add(ifv->ifv_oerrors, 1); 1070 return (ENETDOWN); 1071 } 1072 1073 /* 1074 * Pad the frame to the minimum size allowed if told to. 1075 * This option is in accord with IEEE Std 802.1Q, 2003 Ed., 1076 * paragraph C.4.4.3.b. It can help to work around buggy 1077 * bridges that violate paragraph C.4.4.3.a from the same 1078 * document, i.e., fail to pad short frames after untagging. 1079 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but 1080 * untagging it will produce a 62-byte frame, which is a runt 1081 * and requires padding. There are VLAN-enabled network 1082 * devices that just discard such runts instead or mishandle 1083 * them somehow. 1084 */ 1085 if (soft_pad && p->if_type == IFT_ETHER) { 1086 static char pad[8]; /* just zeros */ 1087 int n; 1088 1089 for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len; 1090 n > 0; n -= sizeof(pad)) 1091 if (!m_append(m, min(n, sizeof(pad)), pad)) 1092 break; 1093 1094 if (n > 0) { 1095 if_printf(ifp, "cannot pad short frame\n"); 1096 counter_u64_add(ifv->ifv_oerrors, 1); 1097 m_freem(m); 1098 return (0); 1099 } 1100 } 1101 1102 /* 1103 * If underlying interface can do VLAN tag insertion itself, 1104 * just pass the packet along. However, we need some way to 1105 * tell the interface where the packet came from so that it 1106 * knows how to find the VLAN tag to use, so we attach a 1107 * packet tag that holds it. 1108 */ 1109 if (p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1110 m->m_pkthdr.ether_vtag = ifv->ifv_vid; 1111 m->m_flags |= M_VLANTAG; 1112 } else { 1113 m = ether_vlanencap(m, ifv->ifv_vid); 1114 if (m == NULL) { 1115 if_printf(ifp, "unable to prepend VLAN header\n"); 1116 counter_u64_add(ifv->ifv_oerrors, 1); 1117 return (0); 1118 } 1119 } 1120 1121 /* 1122 * Send it, precisely as ether_output() would have. 1123 */ 1124 error = (p->if_transmit)(p, m); 1125 if (error == 0) { 1126 counter_u64_add(ifv->ifv_opackets, 1); 1127 counter_u64_add(ifv->ifv_obytes, len); 1128 counter_u64_add(ifv->ifv_omcasts, mcast); 1129 } else 1130 counter_u64_add(ifv->ifv_oerrors, 1); 1131 return (error); 1132 } 1133 1134 static uint64_t 1135 vlan_get_counter(struct ifnet *ifp, ift_counter cnt) 1136 { 1137 struct ifvlan *ifv; 1138 1139 ifv = ifp->if_softc; 1140 1141 switch (cnt) { 1142 case IFCOUNTER_IPACKETS: 1143 return (counter_u64_fetch(ifv->ifv_ipackets)); 1144 case IFCOUNTER_OPACKETS: 1145 return (counter_u64_fetch(ifv->ifv_opackets)); 1146 case IFCOUNTER_IBYTES: 1147 return (counter_u64_fetch(ifv->ifv_ibytes)); 1148 case IFCOUNTER_OBYTES: 1149 return (counter_u64_fetch(ifv->ifv_obytes)); 1150 case IFCOUNTER_OMCASTS: 1151 return (counter_u64_fetch(ifv->ifv_omcasts)); 1152 case IFCOUNTER_OERRORS: 1153 return (counter_u64_fetch(ifv->ifv_oerrors)); 1154 default: 1155 return (if_get_counter_default(ifp, cnt)); 1156 } 1157 /* NOTREACHED */ 1158 } 1159 1160 /* 1161 * The ifp->if_qflush entry point for vlan(4) is a no-op. 1162 */ 1163 static void 1164 vlan_qflush(struct ifnet *ifp __unused) 1165 { 1166 } 1167 1168 static void 1169 vlan_input(struct ifnet *ifp, struct mbuf *m) 1170 { 1171 struct ifvlantrunk *trunk = ifp->if_vlantrunk; 1172 struct ifvlan *ifv; 1173 TRUNK_LOCK_READER; 1174 uint16_t vid; 1175 1176 KASSERT(trunk != NULL, ("%s: no trunk", __func__)); 1177 1178 if (m->m_flags & M_VLANTAG) { 1179 /* 1180 * Packet is tagged, but m contains a normal 1181 * Ethernet frame; the tag is stored out-of-band. 1182 */ 1183 vid = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag); 1184 m->m_flags &= ~M_VLANTAG; 1185 } else { 1186 struct ether_vlan_header *evl; 1187 1188 /* 1189 * Packet is tagged in-band as specified by 802.1q. 1190 */ 1191 switch (ifp->if_type) { 1192 case IFT_ETHER: 1193 if (m->m_len < sizeof(*evl) && 1194 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1195 if_printf(ifp, "cannot pullup VLAN header\n"); 1196 return; 1197 } 1198 evl = mtod(m, struct ether_vlan_header *); 1199 vid = EVL_VLANOFTAG(ntohs(evl->evl_tag)); 1200 1201 /* 1202 * Remove the 802.1q header by copying the Ethernet 1203 * addresses over it and adjusting the beginning of 1204 * the data in the mbuf. The encapsulated Ethernet 1205 * type field is already in place. 1206 */ 1207 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 1208 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1209 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1210 break; 1211 1212 default: 1213 #ifdef INVARIANTS 1214 panic("%s: %s has unsupported if_type %u", 1215 __func__, ifp->if_xname, ifp->if_type); 1216 #endif 1217 m_freem(m); 1218 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1219 return; 1220 } 1221 } 1222 1223 TRUNK_RLOCK(trunk); 1224 ifv = vlan_gethash(trunk, vid); 1225 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 1226 TRUNK_RUNLOCK(trunk); 1227 m_freem(m); 1228 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1229 return; 1230 } 1231 TRUNK_RUNLOCK(trunk); 1232 1233 m->m_pkthdr.rcvif = ifv->ifv_ifp; 1234 counter_u64_add(ifv->ifv_ipackets, 1); 1235 counter_u64_add(ifv->ifv_ibytes, m->m_pkthdr.len); 1236 1237 /* Pass it back through the parent's input routine. */ 1238 (*ifp->if_input)(ifv->ifv_ifp, m); 1239 } 1240 1241 static int 1242 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid) 1243 { 1244 struct ifvlantrunk *trunk; 1245 struct ifnet *ifp; 1246 int error = 0; 1247 1248 /* VID numbers 0x0 and 0xFFF are reserved */ 1249 if (vid == 0 || vid == 0xFFF) 1250 return (EINVAL); 1251 if (p->if_type != IFT_ETHER && 1252 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1253 return (EPROTONOSUPPORT); 1254 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 1255 return (EPROTONOSUPPORT); 1256 if (ifv->ifv_trunk) 1257 return (EBUSY); 1258 1259 if (p->if_vlantrunk == NULL) { 1260 trunk = malloc(sizeof(struct ifvlantrunk), 1261 M_VLAN, M_WAITOK | M_ZERO); 1262 vlan_inithash(trunk); 1263 VLAN_LOCK(); 1264 if (p->if_vlantrunk != NULL) { 1265 /* A race that that is very unlikely to be hit. */ 1266 vlan_freehash(trunk); 1267 free(trunk, M_VLAN); 1268 goto exists; 1269 } 1270 TRUNK_LOCK_INIT(trunk); 1271 TRUNK_LOCK(trunk); 1272 p->if_vlantrunk = trunk; 1273 trunk->parent = p; 1274 } else { 1275 VLAN_LOCK(); 1276 exists: 1277 trunk = p->if_vlantrunk; 1278 TRUNK_LOCK(trunk); 1279 } 1280 1281 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ 1282 error = vlan_inshash(trunk, ifv); 1283 if (error) 1284 goto done; 1285 ifv->ifv_proto = ETHERTYPE_VLAN; 1286 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1287 ifv->ifv_mintu = ETHERMIN; 1288 ifv->ifv_pflags = 0; 1289 1290 /* 1291 * If the parent supports the VLAN_MTU capability, 1292 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1293 * use it. 1294 */ 1295 if (p->if_capenable & IFCAP_VLAN_MTU) { 1296 /* 1297 * No need to fudge the MTU since the parent can 1298 * handle extended frames. 1299 */ 1300 ifv->ifv_mtufudge = 0; 1301 } else { 1302 /* 1303 * Fudge the MTU by the encapsulation size. This 1304 * makes us incompatible with strictly compliant 1305 * 802.1Q implementations, but allows us to use 1306 * the feature with other NetBSD implementations, 1307 * which might still be useful. 1308 */ 1309 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1310 } 1311 1312 ifv->ifv_trunk = trunk; 1313 ifp = ifv->ifv_ifp; 1314 /* 1315 * Initialize fields from our parent. This duplicates some 1316 * work with ether_ifattach() but allows for non-ethernet 1317 * interfaces to also work. 1318 */ 1319 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1320 ifp->if_baudrate = p->if_baudrate; 1321 ifp->if_output = p->if_output; 1322 ifp->if_input = p->if_input; 1323 ifp->if_resolvemulti = p->if_resolvemulti; 1324 ifp->if_addrlen = p->if_addrlen; 1325 ifp->if_broadcastaddr = p->if_broadcastaddr; 1326 1327 /* 1328 * Copy only a selected subset of flags from the parent. 1329 * Other flags are none of our business. 1330 */ 1331 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1332 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1333 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1334 #undef VLAN_COPY_FLAGS 1335 1336 ifp->if_link_state = p->if_link_state; 1337 1338 vlan_capabilities(ifv); 1339 1340 /* 1341 * Set up our interface address to reflect the underlying 1342 * physical interface's. 1343 */ 1344 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); 1345 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = 1346 p->if_addrlen; 1347 1348 /* 1349 * Configure multicast addresses that may already be 1350 * joined on the vlan device. 1351 */ 1352 (void)vlan_setmulti(ifp); /* XXX: VLAN lock held */ 1353 1354 /* We are ready for operation now. */ 1355 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1356 done: 1357 TRUNK_UNLOCK(trunk); 1358 if (error == 0) 1359 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); 1360 VLAN_UNLOCK(); 1361 1362 return (error); 1363 } 1364 1365 static void 1366 vlan_unconfig(struct ifnet *ifp) 1367 { 1368 1369 VLAN_LOCK(); 1370 vlan_unconfig_locked(ifp, 0); 1371 VLAN_UNLOCK(); 1372 } 1373 1374 static void 1375 vlan_unconfig_locked(struct ifnet *ifp, int departing) 1376 { 1377 struct ifvlantrunk *trunk; 1378 struct vlan_mc_entry *mc; 1379 struct ifvlan *ifv; 1380 struct ifnet *parent; 1381 int error; 1382 1383 VLAN_LOCK_ASSERT(); 1384 1385 ifv = ifp->if_softc; 1386 trunk = ifv->ifv_trunk; 1387 parent = NULL; 1388 1389 if (trunk != NULL) { 1390 1391 TRUNK_LOCK(trunk); 1392 parent = trunk->parent; 1393 1394 /* 1395 * Since the interface is being unconfigured, we need to 1396 * empty the list of multicast groups that we may have joined 1397 * while we were alive from the parent's list. 1398 */ 1399 while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1400 /* 1401 * If the parent interface is being detached, 1402 * all its multicast addresses have already 1403 * been removed. Warn about errors if 1404 * if_delmulti() does fail, but don't abort as 1405 * all callers expect vlan destruction to 1406 * succeed. 1407 */ 1408 if (!departing) { 1409 error = if_delmulti(parent, 1410 (struct sockaddr *)&mc->mc_addr); 1411 if (error) 1412 if_printf(ifp, 1413 "Failed to delete multicast address from parent: %d\n", 1414 error); 1415 } 1416 SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1417 free(mc, M_VLAN); 1418 } 1419 1420 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1421 vlan_remhash(trunk, ifv); 1422 ifv->ifv_trunk = NULL; 1423 1424 /* 1425 * Check if we were the last. 1426 */ 1427 if (trunk->refcnt == 0) { 1428 parent->if_vlantrunk = NULL; 1429 /* 1430 * XXXGL: If some ithread has already entered 1431 * vlan_input() and is now blocked on the trunk 1432 * lock, then it should preempt us right after 1433 * unlock and finish its work. Then we will acquire 1434 * lock again in trunk_destroy(). 1435 */ 1436 TRUNK_UNLOCK(trunk); 1437 trunk_destroy(trunk); 1438 } else 1439 TRUNK_UNLOCK(trunk); 1440 } 1441 1442 /* Disconnect from parent. */ 1443 if (ifv->ifv_pflags) 1444 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1445 ifp->if_mtu = ETHERMTU; 1446 ifp->if_link_state = LINK_STATE_UNKNOWN; 1447 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1448 1449 /* 1450 * Only dispatch an event if vlan was 1451 * attached, otherwise there is nothing 1452 * to cleanup anyway. 1453 */ 1454 if (parent != NULL) 1455 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); 1456 } 1457 1458 /* Handle a reference counted flag that should be set on the parent as well */ 1459 static int 1460 vlan_setflag(struct ifnet *ifp, int flag, int status, 1461 int (*func)(struct ifnet *, int)) 1462 { 1463 struct ifvlan *ifv; 1464 int error; 1465 1466 /* XXX VLAN_LOCK_ASSERT(); */ 1467 1468 ifv = ifp->if_softc; 1469 status = status ? (ifp->if_flags & flag) : 0; 1470 /* Now "status" contains the flag value or 0 */ 1471 1472 /* 1473 * See if recorded parent's status is different from what 1474 * we want it to be. If it is, flip it. We record parent's 1475 * status in ifv_pflags so that we won't clear parent's flag 1476 * we haven't set. In fact, we don't clear or set parent's 1477 * flags directly, but get or release references to them. 1478 * That's why we can be sure that recorded flags still are 1479 * in accord with actual parent's flags. 1480 */ 1481 if (status != (ifv->ifv_pflags & flag)) { 1482 error = (*func)(PARENT(ifv), status); 1483 if (error) 1484 return (error); 1485 ifv->ifv_pflags &= ~flag; 1486 ifv->ifv_pflags |= status; 1487 } 1488 return (0); 1489 } 1490 1491 /* 1492 * Handle IFF_* flags that require certain changes on the parent: 1493 * if "status" is true, update parent's flags respective to our if_flags; 1494 * if "status" is false, forcedly clear the flags set on parent. 1495 */ 1496 static int 1497 vlan_setflags(struct ifnet *ifp, int status) 1498 { 1499 int error, i; 1500 1501 for (i = 0; vlan_pflags[i].flag; i++) { 1502 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1503 status, vlan_pflags[i].func); 1504 if (error) 1505 return (error); 1506 } 1507 return (0); 1508 } 1509 1510 /* Inform all vlans that their parent has changed link state */ 1511 static void 1512 vlan_link_state(struct ifnet *ifp) 1513 { 1514 struct ifvlantrunk *trunk = ifp->if_vlantrunk; 1515 struct ifvlan *ifv; 1516 int i; 1517 1518 TRUNK_LOCK(trunk); 1519 #ifdef VLAN_ARRAY 1520 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 1521 if (trunk->vlans[i] != NULL) { 1522 ifv = trunk->vlans[i]; 1523 #else 1524 for (i = 0; i < (1 << trunk->hwidth); i++) 1525 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) { 1526 #endif 1527 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 1528 if_link_state_change(ifv->ifv_ifp, 1529 trunk->parent->if_link_state); 1530 } 1531 TRUNK_UNLOCK(trunk); 1532 } 1533 1534 static void 1535 vlan_capabilities(struct ifvlan *ifv) 1536 { 1537 struct ifnet *p = PARENT(ifv); 1538 struct ifnet *ifp = ifv->ifv_ifp; 1539 struct ifnet_hw_tsomax hw_tsomax; 1540 1541 TRUNK_LOCK_ASSERT(TRUNK(ifv)); 1542 1543 /* 1544 * If the parent interface can do checksum offloading 1545 * on VLANs, then propagate its hardware-assisted 1546 * checksumming flags. Also assert that checksum 1547 * offloading requires hardware VLAN tagging. 1548 */ 1549 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1550 ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM; 1551 1552 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 1553 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1554 ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM; 1555 ifp->if_hwassist = p->if_hwassist & (CSUM_IP | CSUM_TCP | 1556 CSUM_UDP | CSUM_SCTP); 1557 } else { 1558 ifp->if_capenable = 0; 1559 ifp->if_hwassist = 0; 1560 } 1561 /* 1562 * If the parent interface can do TSO on VLANs then 1563 * propagate the hardware-assisted flag. TSO on VLANs 1564 * does not necessarily require hardware VLAN tagging. 1565 */ 1566 memset(&hw_tsomax, 0, sizeof(hw_tsomax)); 1567 if_hw_tsomax_common(p, &hw_tsomax); 1568 if_hw_tsomax_update(ifp, &hw_tsomax); 1569 if (p->if_capabilities & IFCAP_VLAN_HWTSO) 1570 ifp->if_capabilities |= p->if_capabilities & IFCAP_TSO; 1571 if (p->if_capenable & IFCAP_VLAN_HWTSO) { 1572 ifp->if_capenable |= p->if_capenable & IFCAP_TSO; 1573 ifp->if_hwassist |= p->if_hwassist & CSUM_TSO; 1574 } else { 1575 ifp->if_capenable &= ~(p->if_capenable & IFCAP_TSO); 1576 ifp->if_hwassist &= ~(p->if_hwassist & CSUM_TSO); 1577 } 1578 1579 /* 1580 * If the parent interface can offload TCP connections over VLANs then 1581 * propagate its TOE capability to the VLAN interface. 1582 * 1583 * All TOE drivers in the tree today can deal with VLANs. If this 1584 * changes then IFCAP_VLAN_TOE should be promoted to a full capability 1585 * with its own bit. 1586 */ 1587 #define IFCAP_VLAN_TOE IFCAP_TOE 1588 if (p->if_capabilities & IFCAP_VLAN_TOE) 1589 ifp->if_capabilities |= p->if_capabilities & IFCAP_TOE; 1590 if (p->if_capenable & IFCAP_VLAN_TOE) { 1591 TOEDEV(ifp) = TOEDEV(p); 1592 ifp->if_capenable |= p->if_capenable & IFCAP_TOE; 1593 } 1594 } 1595 1596 static void 1597 vlan_trunk_capabilities(struct ifnet *ifp) 1598 { 1599 struct ifvlantrunk *trunk = ifp->if_vlantrunk; 1600 struct ifvlan *ifv; 1601 int i; 1602 1603 TRUNK_LOCK(trunk); 1604 #ifdef VLAN_ARRAY 1605 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 1606 if (trunk->vlans[i] != NULL) { 1607 ifv = trunk->vlans[i]; 1608 #else 1609 for (i = 0; i < (1 << trunk->hwidth); i++) { 1610 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 1611 #endif 1612 vlan_capabilities(ifv); 1613 } 1614 TRUNK_UNLOCK(trunk); 1615 } 1616 1617 static int 1618 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1619 { 1620 struct ifnet *p; 1621 struct ifreq *ifr; 1622 struct ifaddr *ifa; 1623 struct ifvlan *ifv; 1624 struct ifvlantrunk *trunk; 1625 struct vlanreq vlr; 1626 int error = 0; 1627 1628 ifr = (struct ifreq *)data; 1629 ifa = (struct ifaddr *) data; 1630 ifv = ifp->if_softc; 1631 1632 switch (cmd) { 1633 case SIOCSIFADDR: 1634 ifp->if_flags |= IFF_UP; 1635 #ifdef INET 1636 if (ifa->ifa_addr->sa_family == AF_INET) 1637 arp_ifinit(ifp, ifa); 1638 #endif 1639 break; 1640 case SIOCGIFADDR: 1641 { 1642 struct sockaddr *sa; 1643 1644 sa = (struct sockaddr *)&ifr->ifr_data; 1645 bcopy(IF_LLADDR(ifp), sa->sa_data, ifp->if_addrlen); 1646 } 1647 break; 1648 case SIOCGIFMEDIA: 1649 VLAN_LOCK(); 1650 if (TRUNK(ifv) != NULL) { 1651 p = PARENT(ifv); 1652 VLAN_UNLOCK(); 1653 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); 1654 /* Limit the result to the parent's current config. */ 1655 if (error == 0) { 1656 struct ifmediareq *ifmr; 1657 1658 ifmr = (struct ifmediareq *)data; 1659 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 1660 ifmr->ifm_count = 1; 1661 error = copyout(&ifmr->ifm_current, 1662 ifmr->ifm_ulist, 1663 sizeof(int)); 1664 } 1665 } 1666 } else { 1667 VLAN_UNLOCK(); 1668 error = EINVAL; 1669 } 1670 break; 1671 1672 case SIOCSIFMEDIA: 1673 error = EINVAL; 1674 break; 1675 1676 case SIOCSIFMTU: 1677 /* 1678 * Set the interface MTU. 1679 */ 1680 VLAN_LOCK(); 1681 if (TRUNK(ifv) != NULL) { 1682 if (ifr->ifr_mtu > 1683 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 1684 ifr->ifr_mtu < 1685 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 1686 error = EINVAL; 1687 else 1688 ifp->if_mtu = ifr->ifr_mtu; 1689 } else 1690 error = EINVAL; 1691 VLAN_UNLOCK(); 1692 break; 1693 1694 case SIOCSETVLAN: 1695 #ifdef VIMAGE 1696 /* 1697 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN 1698 * interface to be delegated to a jail without allowing the 1699 * jail to change what underlying interface/VID it is 1700 * associated with. We are not entirely convinced that this 1701 * is the right way to accomplish that policy goal. 1702 */ 1703 if (ifp->if_vnet != ifp->if_home_vnet) { 1704 error = EPERM; 1705 break; 1706 } 1707 #endif 1708 error = copyin(ifr->ifr_data, &vlr, sizeof(vlr)); 1709 if (error) 1710 break; 1711 if (vlr.vlr_parent[0] == '\0') { 1712 vlan_unconfig(ifp); 1713 break; 1714 } 1715 p = ifunit(vlr.vlr_parent); 1716 if (p == NULL) { 1717 error = ENOENT; 1718 break; 1719 } 1720 /* 1721 * Don't let the caller set up a VLAN VID with 1722 * anything except VLID bits. 1723 */ 1724 if (vlr.vlr_tag & ~EVL_VLID_MASK) { 1725 error = EINVAL; 1726 break; 1727 } 1728 error = vlan_config(ifv, p, vlr.vlr_tag); 1729 if (error) 1730 break; 1731 1732 /* Update flags on the parent, if necessary. */ 1733 vlan_setflags(ifp, 1); 1734 break; 1735 1736 case SIOCGETVLAN: 1737 #ifdef VIMAGE 1738 if (ifp->if_vnet != ifp->if_home_vnet) { 1739 error = EPERM; 1740 break; 1741 } 1742 #endif 1743 bzero(&vlr, sizeof(vlr)); 1744 VLAN_LOCK(); 1745 if (TRUNK(ifv) != NULL) { 1746 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 1747 sizeof(vlr.vlr_parent)); 1748 vlr.vlr_tag = ifv->ifv_vid; 1749 } 1750 VLAN_UNLOCK(); 1751 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr)); 1752 break; 1753 1754 case SIOCSIFFLAGS: 1755 /* 1756 * We should propagate selected flags to the parent, 1757 * e.g., promiscuous mode. 1758 */ 1759 if (TRUNK(ifv) != NULL) 1760 error = vlan_setflags(ifp, 1); 1761 break; 1762 1763 case SIOCADDMULTI: 1764 case SIOCDELMULTI: 1765 /* 1766 * If we don't have a parent, just remember the membership for 1767 * when we do. 1768 */ 1769 trunk = TRUNK(ifv); 1770 if (trunk != NULL) { 1771 TRUNK_LOCK(trunk); 1772 error = vlan_setmulti(ifp); 1773 TRUNK_UNLOCK(trunk); 1774 } 1775 break; 1776 1777 default: 1778 error = EINVAL; 1779 break; 1780 } 1781 1782 return (error); 1783 } 1784