xref: /freebsd/sys/net/if_vlan.c (revision dba6dd177bdee890cf445fbe21a5dccefd5de18e)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34  * Might be extended some day to also handle IEEE 802.1p priority
35  * tagging.  This is sort of sneaky in the implementation, since
36  * we need to pretend to be enough of an Ethernet implementation
37  * to make arp work.  The way we do this is by telling everyone
38  * that we are an Ethernet, and then catch the packets that
39  * ether_output() left on our output queue when it calls
40  * if_start(), rewrite them for use by the real outgoing interface,
41  * and ask it to send them.
42  */
43 
44 #include "opt_inet.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/module.h>
51 #include <sys/queue.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #include <net/bpf.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 #include <net/route.h>
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_ether.h>
69 #endif
70 
71 #define VLANNAME	"vlan"
72 
73 struct vlan_mc_entry {
74 	struct ether_addr		mc_addr;
75 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
76 };
77 
78 struct	ifvlan {
79 	struct	arpcom ifv_ac;	/* make this an interface */
80 	struct	ifnet *ifv_p;	/* parent inteface of this vlan */
81 	struct	ifv_linkmib {
82 		int	ifvm_parent;
83 		int	ifvm_encaplen;	/* encapsulation length */
84 		int	ifvm_mtufudge;	/* MTU fudged by this much */
85 		int	ifvm_mintu;	/* min transmission unit */
86 		u_int16_t ifvm_proto; /* encapsulation ethertype */
87 		u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
88 	}	ifv_mib;
89 	SLIST_HEAD(__vlan_mchead, vlan_mc_entry)	vlan_mc_listhead;
90 	LIST_ENTRY(ifvlan) ifv_list;
91 	int	ifv_flags;
92 };
93 #define	ifv_if	ifv_ac.ac_if
94 #define	ifv_tag	ifv_mib.ifvm_tag
95 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
96 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
97 #define	ifv_mintu	ifv_mib.ifvm_mintu
98 
99 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
100 
101 SYSCTL_DECL(_net_link);
102 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
103 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
104 
105 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
106 static LIST_HEAD(, ifvlan) ifv_list;
107 
108 /*
109  * Locking: one lock is used to guard both the ifv_list and modification
110  * to vlan data structures.  We are rather conservative here; probably
111  * more than necessary.
112  */
113 static struct mtx ifv_mtx;
114 #define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, VLANNAME, NULL, MTX_DEF)
115 #define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
116 #define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
117 #define	VLAN_LOCK()	mtx_lock(&ifv_mtx)
118 #define	VLAN_UNLOCK()	mtx_unlock(&ifv_mtx)
119 
120 static	int vlan_clone_create(struct if_clone *, int);
121 static	void vlan_clone_destroy(struct ifnet *);
122 static	void vlan_start(struct ifnet *ifp);
123 static	void vlan_ifinit(void *foo);
124 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
125 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
126 static	int vlan_setmulti(struct ifnet *ifp);
127 static	int vlan_unconfig(struct ifnet *ifp);
128 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p);
129 static	void vlan_link_state(struct ifnet *ifp, int link);
130 
131 struct if_clone vlan_cloner = IF_CLONE_INITIALIZER(VLANNAME,
132     vlan_clone_create, vlan_clone_destroy, 0, IF_MAXUNIT);
133 
134 /*
135  * Program our multicast filter. What we're actually doing is
136  * programming the multicast filter of the parent. This has the
137  * side effect of causing the parent interface to receive multicast
138  * traffic that it doesn't really want, which ends up being discarded
139  * later by the upper protocol layers. Unfortunately, there's no way
140  * to avoid this: there really is only one physical interface.
141  */
142 static int
143 vlan_setmulti(struct ifnet *ifp)
144 {
145 	struct ifnet		*ifp_p;
146 	struct ifmultiaddr	*ifma, *rifma = NULL;
147 	struct ifvlan		*sc;
148 	struct vlan_mc_entry	*mc = NULL;
149 	struct sockaddr_dl	sdl;
150 	int			error;
151 
152 	/* Find the parent. */
153 	sc = ifp->if_softc;
154 	ifp_p = sc->ifv_p;
155 
156 	/*
157 	 * If we don't have a parent, just remember the membership for
158 	 * when we do.
159 	 */
160 	if (ifp_p == NULL)
161 		return(0);
162 
163 	bzero((char *)&sdl, sizeof sdl);
164 	sdl.sdl_len = sizeof sdl;
165 	sdl.sdl_family = AF_LINK;
166 	sdl.sdl_index = ifp_p->if_index;
167 	sdl.sdl_type = IFT_ETHER;
168 	sdl.sdl_alen = ETHER_ADDR_LEN;
169 
170 	/* First, remove any existing filter entries. */
171 	while(SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
172 		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
173 		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
174 		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
175 		if (error)
176 			return(error);
177 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
178 		free(mc, M_VLAN);
179 	}
180 
181 	/* Now program new ones. */
182 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
183 		if (ifma->ifma_addr->sa_family != AF_LINK)
184 			continue;
185 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
186 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
187 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
188 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
189 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
190 		    LLADDR(&sdl), ETHER_ADDR_LEN);
191 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
192 		if (error)
193 			return(error);
194 	}
195 
196 	return(0);
197 }
198 
199 /*
200  * VLAN support can be loaded as a module.  The only place in the
201  * system that's intimately aware of this is ether_input.  We hook
202  * into this code through vlan_input_p which is defined there and
203  * set here.  Noone else in the system should be aware of this so
204  * we use an explicit reference here.
205  *
206  * NB: Noone should ever need to check if vlan_input_p is null or
207  *     not.  This is because interfaces have a count of the number
208  *     of active vlans (if_nvlans) and this should never be bumped
209  *     except by vlan_config--which is in this module so therefore
210  *     the module must be loaded and vlan_input_p must be non-NULL.
211  */
212 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
213 
214 /* For MII eyes only... */
215 extern	void (*vlan_link_state_p)(struct ifnet *, int);
216 
217 static int
218 vlan_modevent(module_t mod, int type, void *data)
219 {
220 
221 	switch (type) {
222 	case MOD_LOAD:
223 		LIST_INIT(&ifv_list);
224 		VLAN_LOCK_INIT();
225 		vlan_input_p = vlan_input;
226 		vlan_link_state_p = vlan_link_state;
227 		if_clone_attach(&vlan_cloner);
228 		break;
229 	case MOD_UNLOAD:
230 		if_clone_detach(&vlan_cloner);
231 		vlan_input_p = NULL;
232 		vlan_link_state_p = NULL;
233 		while (!LIST_EMPTY(&ifv_list))
234 			vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if);
235 		VLAN_LOCK_DESTROY();
236 		break;
237 	}
238 	return 0;
239 }
240 
241 static moduledata_t vlan_mod = {
242 	"if_vlan",
243 	vlan_modevent,
244 	0
245 };
246 
247 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
248 MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
249 
250 static int
251 vlan_clone_create(struct if_clone *ifc, int unit)
252 {
253 	struct ifvlan *ifv;
254 	struct ifnet *ifp;
255 
256 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
257 	ifp = &ifv->ifv_if;
258 	SLIST_INIT(&ifv->vlan_mc_listhead);
259 
260 	ifp->if_softc = ifv;
261 	if_initname(ifp, ifc->ifc_name, unit);
262 	/* NB: flags are not set here */
263 	ifp->if_linkmib = &ifv->ifv_mib;
264 	ifp->if_linkmiblen = sizeof ifv->ifv_mib;
265 	/* NB: mtu is not set here */
266 
267 	ifp->if_init = vlan_ifinit;
268 	ifp->if_start = vlan_start;
269 	ifp->if_ioctl = vlan_ioctl;
270 	ifp->if_snd.ifq_maxlen = ifqmaxlen;
271 	ether_ifattach(ifp, ifv->ifv_ac.ac_enaddr);
272 	/* Now undo some of the damage... */
273 	ifp->if_baudrate = 0;
274 	ifp->if_type = IFT_L2VLAN;
275 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
276 
277 	VLAN_LOCK();
278 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
279 	VLAN_UNLOCK();
280 
281 	return (0);
282 }
283 
284 static void
285 vlan_clone_destroy(struct ifnet *ifp)
286 {
287 	struct ifvlan *ifv = ifp->if_softc;
288 
289 	VLAN_LOCK();
290 	LIST_REMOVE(ifv, ifv_list);
291 	vlan_unconfig(ifp);
292 	VLAN_UNLOCK();
293 
294 	ether_ifdetach(ifp);
295 
296 	free(ifv, M_VLAN);
297 }
298 
299 static void
300 vlan_ifinit(void *foo)
301 {
302 	return;
303 }
304 
305 static void
306 vlan_start(struct ifnet *ifp)
307 {
308 	struct ifvlan *ifv;
309 	struct ifnet *p;
310 	struct ether_vlan_header *evl;
311 	struct mbuf *m;
312 
313 	ifv = ifp->if_softc;
314 	p = ifv->ifv_p;
315 
316 	ifp->if_flags |= IFF_OACTIVE;
317 	for (;;) {
318 		IF_DEQUEUE(&ifp->if_snd, m);
319 		if (m == 0)
320 			break;
321 		BPF_MTAP(ifp, m);
322 
323 		/*
324 		 * Do not run parent's if_start() if the parent is not up,
325 		 * or parent's driver will cause a system crash.
326 		 */
327 		if ((p->if_flags & (IFF_UP | IFF_RUNNING)) !=
328 					(IFF_UP | IFF_RUNNING)) {
329 			m_freem(m);
330 			ifp->if_collisions++;
331 			continue;
332 		}
333 
334 		/*
335 		 * If underlying interface can do VLAN tag insertion itself,
336 		 * just pass the packet along. However, we need some way to
337 		 * tell the interface where the packet came from so that it
338 		 * knows how to find the VLAN tag to use, so we attach a
339 		 * packet tag that holds it.
340 		 */
341 		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
342 			struct m_tag *mtag = m_tag_alloc(MTAG_VLAN,
343 							 MTAG_VLAN_TAG,
344 							 sizeof (u_int),
345 							 M_NOWAIT);
346 			if (mtag == NULL) {
347 				ifp->if_oerrors++;
348 				m_freem(m);
349 				continue;
350 			}
351 			*(u_int*)(mtag+1) = ifv->ifv_tag;
352 			m_tag_prepend(m, mtag);
353 		} else {
354 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
355 			if (m == NULL) {
356 				if_printf(ifp, "unable to prepend VLAN header");
357 				ifp->if_oerrors++;
358 				continue;
359 			}
360 			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
361 
362 			if (m->m_len < sizeof(*evl)) {
363 				m = m_pullup(m, sizeof(*evl));
364 				if (m == NULL) {
365 					if_printf(ifp,
366 					    "cannot pullup VLAN header");
367 					ifp->if_oerrors++;
368 					continue;
369 				}
370 			}
371 
372 			/*
373 			 * Transform the Ethernet header into an Ethernet header
374 			 * with 802.1Q encapsulation.
375 			 */
376 			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
377 			      mtod(m, char *), ETHER_HDR_LEN);
378 			evl = mtod(m, struct ether_vlan_header *);
379 			evl->evl_proto = evl->evl_encap_proto;
380 			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
381 			evl->evl_tag = htons(ifv->ifv_tag);
382 #ifdef DEBUG
383 			printf("vlan_start: %*D\n", (int)sizeof *evl,
384 			    (unsigned char *)evl, ":");
385 #endif
386 		}
387 
388 		/*
389 		 * Send it, precisely as ether_output() would have.
390 		 * We are already running at splimp.
391 		 */
392 		if (IF_HANDOFF(&p->if_snd, m, p))
393 			ifp->if_opackets++;
394 		else
395 			ifp->if_oerrors++;
396 	}
397 	ifp->if_flags &= ~IFF_OACTIVE;
398 
399 	return;
400 }
401 
402 static void
403 vlan_input(struct ifnet *ifp, struct mbuf *m)
404 {
405 	struct ether_vlan_header *evl;
406 	struct ifvlan *ifv;
407 	struct m_tag *mtag;
408 	u_int tag;
409 
410 	mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
411 	if (mtag != NULL) {
412 		/*
413 		 * Packet is tagged, m contains a normal
414 		 * Ethernet frame; the tag is stored out-of-band.
415 		 */
416 		tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag));
417 		m_tag_delete(m, mtag);
418 	} else {
419 		switch (ifp->if_type) {
420 		case IFT_ETHER:
421 			if (m->m_len < sizeof (*evl) &&
422 			    (m = m_pullup(m, sizeof (*evl))) == NULL) {
423 				if_printf(ifp, "cannot pullup VLAN header\n");
424 				return;
425 			}
426 			evl = mtod(m, struct ether_vlan_header *);
427 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
428 				("vlan_input: bad encapsulated protocols (%u)",
429 				 ntohs(evl->evl_encap_proto)));
430 
431 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
432 
433 			/*
434 			 * Restore the original ethertype.  We'll remove
435 			 * the encapsulation after we've found the vlan
436 			 * interface corresponding to the tag.
437 			 */
438 			evl->evl_encap_proto = evl->evl_proto;
439 			break;
440 		default:
441 			tag = (u_int) -1;
442 #ifdef DIAGNOSTIC
443 			panic("vlan_input: unsupported if type %u", ifp->if_type);
444 #endif
445 			break;
446 		}
447 	}
448 
449 	VLAN_LOCK();
450 	LIST_FOREACH(ifv, &ifv_list, ifv_list)
451 		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
452 			break;
453 
454 	if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
455 		VLAN_UNLOCK();
456 		m_freem(m);
457 		ifp->if_noproto++;
458 		return;
459 	}
460 	VLAN_UNLOCK();		/* XXX extend below? */
461 
462 	if (mtag == NULL) {
463 		/*
464 		 * Packet had an in-line encapsulation header;
465 		 * remove it.  The original header has already
466 		 * been fixed up above.
467 		 */
468 		bcopy(mtod(m, caddr_t),
469 		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
470 		      ETHER_HDR_LEN);
471 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
472 	}
473 
474 	m->m_pkthdr.rcvif = &ifv->ifv_if;
475 	ifv->ifv_if.if_ipackets++;
476 
477 	/* Pass it back through the parent's input routine. */
478 	(*ifp->if_input)(&ifv->ifv_if, m);
479 }
480 
481 static int
482 vlan_config(struct ifvlan *ifv, struct ifnet *p)
483 {
484 	struct ifaddr *ifa1, *ifa2;
485 	struct sockaddr_dl *sdl1, *sdl2;
486 
487 	VLAN_LOCK_ASSERT();
488 
489 	if (p->if_data.ifi_type != IFT_ETHER)
490 		return EPROTONOSUPPORT;
491 	if (ifv->ifv_p)
492 		return EBUSY;
493 
494 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
495 	ifv->ifv_mintu = ETHERMIN;
496 	ifv->ifv_flags = 0;
497 
498 	/*
499 	 * If the parent supports the VLAN_MTU capability,
500 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
501 	 * use it.
502 	 * First of all, enable Tx/Rx of such extended frames on the
503 	 * parent if it's disabled and we're the first to attach.
504 	 */
505 	p->if_nvlans++;
506 	if (p->if_nvlans == 1 &&
507 	    (p->if_capabilities & IFCAP_VLAN_MTU) &&
508 	    (p->if_capenable & IFCAP_VLAN_MTU) == 0) {
509 		struct ifreq ifr;
510 		int error;
511 
512 		ifr.ifr_reqcap = p->if_capenable | IFCAP_VLAN_MTU;
513 		error = (*p->if_ioctl)(p, SIOCSIFCAP, (caddr_t) &ifr);
514 		if (error) {
515 			p->if_nvlans--;
516 			return (error);
517 		}
518 	}
519 	if (p->if_capenable & IFCAP_VLAN_MTU) {
520 		/*
521 		 * No need to fudge the MTU since the parent can
522 		 * handle extended frames.
523 		 */
524 		ifv->ifv_mtufudge = 0;
525 	} else {
526 		/*
527 		 * Fudge the MTU by the encapsulation size.  This
528 		 * makes us incompatible with strictly compliant
529 		 * 802.1Q implementations, but allows us to use
530 		 * the feature with other NetBSD implementations,
531 		 * which might still be useful.
532 		 */
533 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
534 	}
535 
536 	ifv->ifv_p = p;
537 	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
538 	/*
539 	 * Copy only a selected subset of flags from the parent.
540 	 * Other flags are none of our business.
541 	 */
542 	ifv->ifv_if.if_flags = (p->if_flags &
543 	    (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT));
544 	ifv->ifv_if.if_link_state = p->if_link_state;
545 
546 #if 0
547 	/*
548 	 * Not ready yet.  We need notification from the parent
549 	 * when hw checksumming flags in its if_capenable change.
550 	 * Flags set in if_capabilities only are useless.
551 	 */
552 	/*
553 	 * If the parent interface can do hardware-assisted
554 	 * VLAN encapsulation, then propagate its hardware-
555 	 * assisted checksumming flags.
556 	 */
557 	if (p->if_capabilities & IFCAP_VLAN_HWTAGGING)
558 		ifv->ifv_if.if_capabilities |= p->if_capabilities & IFCAP_HWCSUM;
559 #endif
560 
561 	/*
562 	 * Set up our ``Ethernet address'' to reflect the underlying
563 	 * physical interface's.
564 	 */
565 	ifa1 = ifaddr_byindex(ifv->ifv_if.if_index);
566 	ifa2 = ifaddr_byindex(p->if_index);
567 	sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
568 	sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
569 	sdl1->sdl_type = IFT_ETHER;
570 	sdl1->sdl_alen = ETHER_ADDR_LEN;
571 	bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
572 	bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
573 
574 	/*
575 	 * Configure multicast addresses that may already be
576 	 * joined on the vlan device.
577 	 */
578 	(void)vlan_setmulti(&ifv->ifv_if);
579 
580 	return 0;
581 }
582 
583 static int
584 vlan_unconfig(struct ifnet *ifp)
585 {
586 	struct ifaddr *ifa;
587 	struct sockaddr_dl *sdl;
588 	struct vlan_mc_entry *mc;
589 	struct ifvlan *ifv;
590 	struct ifnet *p;
591 	int error;
592 
593 	VLAN_LOCK_ASSERT();
594 
595 	ifv = ifp->if_softc;
596 	p = ifv->ifv_p;
597 
598 	if (p) {
599 		struct sockaddr_dl sdl;
600 
601 		/*
602 		 * Since the interface is being unconfigured, we need to
603 		 * empty the list of multicast groups that we may have joined
604 		 * while we were alive from the parent's list.
605 		 */
606 		bzero((char *)&sdl, sizeof sdl);
607 		sdl.sdl_len = sizeof sdl;
608 		sdl.sdl_family = AF_LINK;
609 		sdl.sdl_index = p->if_index;
610 		sdl.sdl_type = IFT_ETHER;
611 		sdl.sdl_alen = ETHER_ADDR_LEN;
612 
613 		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
614 			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
615 			bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
616 			error = if_delmulti(p, (struct sockaddr *)&sdl);
617 			if (error)
618 				return(error);
619 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
620 			free(mc, M_VLAN);
621 		}
622 
623 		p->if_nvlans--;
624 		if (p->if_nvlans == 0) {
625 			struct ifreq ifr;
626 
627 			/*
628 			 * Try to disable Tx/Rx of VLAN-sized frames.
629 			 * This may have no effect for some interfaces,
630 			 * but only the parent driver knows that.
631 			 */
632 			ifr.ifr_reqcap = p->if_capenable & ~IFCAP_VLAN_MTU;
633 			(*p->if_ioctl)(p, SIOCSIFCAP, (caddr_t) &ifr);
634 		}
635 	}
636 
637 	/* Disconnect from parent. */
638 	ifv->ifv_p = NULL;
639 	ifv->ifv_if.if_mtu = ETHERMTU;		/* XXX why not 0? */
640 	ifv->ifv_flags = 0;
641 	ifv->ifv_if.if_link_state = LINK_STATE_UNKNOWN;
642 
643 	/* Clear our MAC address. */
644 	ifa = ifaddr_byindex(ifv->ifv_if.if_index);
645 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
646 	sdl->sdl_type = IFT_ETHER;
647 	sdl->sdl_alen = ETHER_ADDR_LEN;
648 	bzero(LLADDR(sdl), ETHER_ADDR_LEN);
649 	bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
650 
651 	return 0;
652 }
653 
654 static int
655 vlan_set_promisc(struct ifnet *ifp)
656 {
657 	struct ifvlan *ifv = ifp->if_softc;
658 	int error = 0;
659 
660 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
661 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
662 			error = ifpromisc(ifv->ifv_p, 1);
663 			if (error == 0)
664 				ifv->ifv_flags |= IFVF_PROMISC;
665 		}
666 	} else {
667 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
668 			error = ifpromisc(ifv->ifv_p, 0);
669 			if (error == 0)
670 				ifv->ifv_flags &= ~IFVF_PROMISC;
671 		}
672 	}
673 
674 	return (error);
675 }
676 
677 /* Inform all vlans that their parent has changed link state */
678 static void
679 vlan_link_state(struct ifnet *ifp, int link)
680 {
681 	struct ifvlan *ifv;
682 
683 	VLAN_LOCK();
684 	LIST_FOREACH(ifv, &ifv_list, ifv_list) {
685 		if (ifv->ifv_p == ifp) {
686 			ifv->ifv_if.if_link_state = ifv->ifv_p->if_link_state;
687 			rt_ifmsg(&(ifv->ifv_if));
688 			KNOTE(&ifp->if_klist, link);
689 		}
690 	}
691 	VLAN_UNLOCK();
692 }
693 
694 static int
695 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
696 {
697 	struct ifaddr *ifa;
698 	struct ifnet *p;
699 	struct ifreq *ifr;
700 	struct ifvlan *ifv;
701 	struct vlanreq vlr;
702 	int error = 0;
703 
704 	ifr = (struct ifreq *)data;
705 	ifa = (struct ifaddr *)data;
706 	ifv = ifp->if_softc;
707 
708 	switch (cmd) {
709 	case SIOCSIFADDR:
710 		ifp->if_flags |= IFF_UP;
711 
712 		switch (ifa->ifa_addr->sa_family) {
713 #ifdef INET
714 		case AF_INET:
715 			arp_ifinit(&ifv->ifv_if, ifa);
716 			break;
717 #endif
718 		default:
719 			break;
720 		}
721 		break;
722 
723 	case SIOCGIFADDR:
724 		{
725 			struct sockaddr *sa;
726 
727 			sa = (struct sockaddr *) &ifr->ifr_data;
728 			bcopy(IFP2AC(ifp)->ac_enaddr,
729 			      (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
730 		}
731 		break;
732 
733 	case SIOCGIFMEDIA:
734 		VLAN_LOCK();
735 		if (ifv->ifv_p != NULL) {
736 			error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
737 					SIOCGIFMEDIA, data);
738 			VLAN_UNLOCK();
739 			/* Limit the result to the parent's current config. */
740 			if (error == 0) {
741 				struct ifmediareq *ifmr;
742 
743 				ifmr = (struct ifmediareq *) data;
744 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
745 					ifmr->ifm_count = 1;
746 					error = copyout(&ifmr->ifm_current,
747 						ifmr->ifm_ulist,
748 						sizeof(int));
749 				}
750 			}
751 		} else {
752 			VLAN_UNLOCK();
753 			error = EINVAL;
754 		}
755 		break;
756 
757 	case SIOCSIFMEDIA:
758 		error = EINVAL;
759 		break;
760 
761 	case SIOCSIFMTU:
762 		/*
763 		 * Set the interface MTU.
764 		 */
765 		VLAN_LOCK();
766 		if (ifv->ifv_p != NULL) {
767 			if (ifr->ifr_mtu >
768 			     (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
769 			    ifr->ifr_mtu <
770 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
771 				error = EINVAL;
772 			else
773 				ifp->if_mtu = ifr->ifr_mtu;
774 		} else
775 			error = EINVAL;
776 		VLAN_UNLOCK();
777 		break;
778 
779 	case SIOCSETVLAN:
780 		error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
781 		if (error)
782 			break;
783 		if (vlr.vlr_parent[0] == '\0') {
784 			VLAN_LOCK();
785 			vlan_unconfig(ifp);
786 			if (ifp->if_flags & IFF_UP)
787 				if_down(ifp);
788 			ifp->if_flags &= ~IFF_RUNNING;
789 			VLAN_UNLOCK();
790 			break;
791 		}
792 		p = ifunit(vlr.vlr_parent);
793 		if (p == 0) {
794 			error = ENOENT;
795 			break;
796 		}
797 		/*
798 		 * Don't let the caller set up a VLAN tag with
799 		 * anything except VLID bits.
800 		 */
801 		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
802 			error = EINVAL;
803 			break;
804 		}
805 		VLAN_LOCK();
806 		error = vlan_config(ifv, p);
807 		if (error) {
808 			VLAN_UNLOCK();
809 			break;
810 		}
811 		ifv->ifv_tag = vlr.vlr_tag;
812 		ifp->if_flags |= IFF_RUNNING;
813 		VLAN_UNLOCK();
814 
815 		/* Update promiscuous mode, if necessary. */
816 		vlan_set_promisc(ifp);
817 		break;
818 
819 	case SIOCGETVLAN:
820 		bzero(&vlr, sizeof vlr);
821 		VLAN_LOCK();
822 		if (ifv->ifv_p) {
823 			strlcpy(vlr.vlr_parent, ifv->ifv_p->if_xname,
824 			    sizeof(vlr.vlr_parent));
825 			vlr.vlr_tag = ifv->ifv_tag;
826 		}
827 		VLAN_UNLOCK();
828 		error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
829 		break;
830 
831 	case SIOCSIFFLAGS:
832 		/*
833 		 * For promiscuous mode, we enable promiscuous mode on
834 		 * the parent if we need promiscuous on the VLAN interface.
835 		 */
836 		if (ifv->ifv_p != NULL)
837 			error = vlan_set_promisc(ifp);
838 		break;
839 
840 	case SIOCADDMULTI:
841 	case SIOCDELMULTI:
842 		error = vlan_setmulti(ifp);
843 		break;
844 	default:
845 		error = EINVAL;
846 	}
847 	return error;
848 }
849