1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * Copyright 2012 ADARA Networks, Inc. 4 * Copyright 2017 Dell EMC Isilon 5 * 6 * Portions of this software were developed by Robert N. M. Watson under 7 * contract to ADARA Networks, Inc. 8 * 9 * Permission to use, copy, modify, and distribute this software and 10 * its documentation for any purpose and without fee is hereby 11 * granted, provided that both the above copyright notice and this 12 * permission notice appear in all copies, that both the above 13 * copyright notice and this permission notice appear in all 14 * supporting documentation, and that the name of M.I.T. not be used 15 * in advertising or publicity pertaining to distribution of the 16 * software without specific, written prior permission. M.I.T. makes 17 * no representations about the suitability of this software for any 18 * purpose. It is provided "as is" without express or implied 19 * warranty. 20 * 21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 37 * This is sort of sneaky in the implementation, since 38 * we need to pretend to be enough of an Ethernet implementation 39 * to make arp work. The way we do this is by telling everyone 40 * that we are an Ethernet, and then catch the packets that 41 * ether_output() sends to us via if_transmit(), rewrite them for 42 * use by the real outgoing interface, and ask it to send them. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_inet.h" 49 #include "opt_inet6.h" 50 #include "opt_kern_tls.h" 51 #include "opt_vlan.h" 52 #include "opt_ratelimit.h" 53 54 #include <sys/param.h> 55 #include <sys/eventhandler.h> 56 #include <sys/kernel.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mbuf.h> 60 #include <sys/module.h> 61 #include <sys/rmlock.h> 62 #include <sys/priv.h> 63 #include <sys/queue.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/sysctl.h> 67 #include <sys/systm.h> 68 #include <sys/sx.h> 69 #include <sys/taskqueue.h> 70 71 #include <net/bpf.h> 72 #include <net/ethernet.h> 73 #include <net/if.h> 74 #include <net/if_var.h> 75 #include <net/if_clone.h> 76 #include <net/if_dl.h> 77 #include <net/if_types.h> 78 #include <net/if_vlan_var.h> 79 #include <net/route.h> 80 #include <net/vnet.h> 81 82 #ifdef INET 83 #include <netinet/in.h> 84 #include <netinet/if_ether.h> 85 #endif 86 87 #ifdef INET6 88 /* 89 * XXX: declare here to avoid to include many inet6 related files.. 90 * should be more generalized? 91 */ 92 extern void nd6_setmtu(struct ifnet *); 93 #endif 94 95 #define VLAN_DEF_HWIDTH 4 96 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 97 98 #define UP_AND_RUNNING(ifp) \ 99 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 100 101 CK_SLIST_HEAD(ifvlanhead, ifvlan); 102 103 struct ifvlantrunk { 104 struct ifnet *parent; /* parent interface of this trunk */ 105 struct mtx lock; 106 #ifdef VLAN_ARRAY 107 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 108 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 109 #else 110 struct ifvlanhead *hash; /* dynamic hash-list table */ 111 uint16_t hmask; 112 uint16_t hwidth; 113 #endif 114 int refcnt; 115 }; 116 117 #if defined(KERN_TLS) || defined(RATELIMIT) 118 struct vlan_snd_tag { 119 struct m_snd_tag com; 120 struct m_snd_tag *tag; 121 }; 122 123 static inline struct vlan_snd_tag * 124 mst_to_vst(struct m_snd_tag *mst) 125 { 126 127 return (__containerof(mst, struct vlan_snd_tag, com)); 128 } 129 #endif 130 131 /* 132 * This macro provides a facility to iterate over every vlan on a trunk with 133 * the assumption that none will be added/removed during iteration. 134 */ 135 #ifdef VLAN_ARRAY 136 #define VLAN_FOREACH(_ifv, _trunk) \ 137 size_t _i; \ 138 for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ 139 if (((_ifv) = (_trunk)->vlans[_i]) != NULL) 140 #else /* VLAN_ARRAY */ 141 #define VLAN_FOREACH(_ifv, _trunk) \ 142 struct ifvlan *_next; \ 143 size_t _i; \ 144 for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ 145 CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) 146 #endif /* VLAN_ARRAY */ 147 148 /* 149 * This macro provides a facility to iterate over every vlan on a trunk while 150 * also modifying the number of vlans on the trunk. The iteration continues 151 * until some condition is met or there are no more vlans on the trunk. 152 */ 153 #ifdef VLAN_ARRAY 154 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ 155 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 156 size_t _i; \ 157 for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ 158 if (((_ifv) = (_trunk)->vlans[_i])) 159 #else /* VLAN_ARRAY */ 160 /* 161 * The hash table case is more complicated. We allow for the hash table to be 162 * modified (i.e. vlans removed) while we are iterating over it. To allow for 163 * this we must restart the iteration every time we "touch" something during 164 * the iteration, since removal will resize the hash table and invalidate our 165 * current position. If acting on the touched element causes the trunk to be 166 * emptied, then iteration also stops. 167 */ 168 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 169 size_t _i; \ 170 bool _touch = false; \ 171 for (_i = 0; \ 172 !(_cond) && _i < (1 << (_trunk)->hwidth); \ 173 _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ 174 if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ 175 (_touch = true)) 176 #endif /* VLAN_ARRAY */ 177 178 struct vlan_mc_entry { 179 struct sockaddr_dl mc_addr; 180 CK_SLIST_ENTRY(vlan_mc_entry) mc_entries; 181 struct epoch_context mc_epoch_ctx; 182 }; 183 184 struct ifvlan { 185 struct ifvlantrunk *ifv_trunk; 186 struct ifnet *ifv_ifp; 187 #define TRUNK(ifv) ((ifv)->ifv_trunk) 188 #define PARENT(ifv) (TRUNK(ifv)->parent) 189 void *ifv_cookie; 190 int ifv_pflags; /* special flags we have set on parent */ 191 int ifv_capenable; 192 int ifv_encaplen; /* encapsulation length */ 193 int ifv_mtufudge; /* MTU fudged by this much */ 194 int ifv_mintu; /* min transmission unit */ 195 struct ether_8021q_tag ifv_qtag; 196 #define ifv_proto ifv_qtag.proto 197 #define ifv_vid ifv_qtag.vid 198 #define ifv_pcp ifv_qtag.pcp 199 struct task lladdr_task; 200 CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 201 #ifndef VLAN_ARRAY 202 CK_SLIST_ENTRY(ifvlan) ifv_list; 203 #endif 204 }; 205 206 /* Special flags we should propagate to parent. */ 207 static struct { 208 int flag; 209 int (*func)(struct ifnet *, int); 210 } vlan_pflags[] = { 211 {IFF_PROMISC, ifpromisc}, 212 {IFF_ALLMULTI, if_allmulti}, 213 {0, NULL} 214 }; 215 216 VNET_DECLARE(int, vlan_mtag_pcp); 217 #define V_vlan_mtag_pcp VNET(vlan_mtag_pcp) 218 219 static const char vlanname[] = "vlan"; 220 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); 221 222 static eventhandler_tag ifdetach_tag; 223 static eventhandler_tag iflladdr_tag; 224 static eventhandler_tag ifevent_tag; 225 226 /* 227 * if_vlan uses two module-level synchronizations primitives to allow concurrent 228 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed 229 * while they are being used for tx/rx. To accomplish this in a way that has 230 * acceptable performance and cooperation with other parts of the network stack 231 * there is a non-sleepable epoch(9) and an sx(9). 232 * 233 * The performance-sensitive paths that warrant using the epoch(9) are 234 * vlan_transmit and vlan_input. Both have to check for the vlan interface's 235 * existence using if_vlantrunk, and being in the network tx/rx paths the use 236 * of an epoch(9) gives a measureable improvement in performance. 237 * 238 * The reason for having an sx(9) is mostly because there are still areas that 239 * must be sleepable and also have safe concurrent access to a vlan interface. 240 * Since the sx(9) exists, it is used by default in most paths unless sleeping 241 * is not permitted, or if it is not clear whether sleeping is permitted. 242 * 243 */ 244 #define _VLAN_SX_ID ifv_sx 245 246 static struct sx _VLAN_SX_ID; 247 248 #define VLAN_LOCKING_INIT() \ 249 sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE) 250 251 #define VLAN_LOCKING_DESTROY() \ 252 sx_destroy(&_VLAN_SX_ID) 253 254 #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) 255 #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) 256 #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) 257 #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) 258 #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) 259 #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) 260 #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) 261 262 /* 263 * We also have a per-trunk mutex that should be acquired when changing 264 * its state. 265 */ 266 #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF) 267 #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock) 268 #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock) 269 #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock) 270 #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED); 271 272 /* 273 * The VLAN_ARRAY substitutes the dynamic hash with a static array 274 * with 4096 entries. In theory this can give a boost in processing, 275 * however in practice it does not. Probably this is because the array 276 * is too big to fit into CPU cache. 277 */ 278 #ifndef VLAN_ARRAY 279 static void vlan_inithash(struct ifvlantrunk *trunk); 280 static void vlan_freehash(struct ifvlantrunk *trunk); 281 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 282 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 283 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 284 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 285 uint16_t vid); 286 #endif 287 static void trunk_destroy(struct ifvlantrunk *trunk); 288 289 static void vlan_init(void *foo); 290 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 291 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 292 #if defined(KERN_TLS) || defined(RATELIMIT) 293 static int vlan_snd_tag_alloc(struct ifnet *, 294 union if_snd_tag_alloc_params *, struct m_snd_tag **); 295 static int vlan_snd_tag_modify(struct m_snd_tag *, 296 union if_snd_tag_modify_params *); 297 static int vlan_snd_tag_query(struct m_snd_tag *, 298 union if_snd_tag_query_params *); 299 static void vlan_snd_tag_free(struct m_snd_tag *); 300 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *); 301 static void vlan_ratelimit_query(struct ifnet *, 302 struct if_ratelimit_query_results *); 303 #endif 304 static void vlan_qflush(struct ifnet *ifp); 305 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 306 int (*func)(struct ifnet *, int)); 307 static int vlan_setflags(struct ifnet *ifp, int status); 308 static int vlan_setmulti(struct ifnet *ifp); 309 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); 310 #ifdef ALTQ 311 static void vlan_altq_start(struct ifnet *ifp); 312 static int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m); 313 #endif 314 static int vlan_output(struct ifnet *ifp, struct mbuf *m, 315 const struct sockaddr *dst, struct route *ro); 316 static void vlan_unconfig(struct ifnet *ifp); 317 static void vlan_unconfig_locked(struct ifnet *ifp, int departing); 318 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag, 319 uint16_t proto); 320 static void vlan_link_state(struct ifnet *ifp); 321 static void vlan_capabilities(struct ifvlan *ifv); 322 static void vlan_trunk_capabilities(struct ifnet *ifp); 323 324 static struct ifnet *vlan_clone_match_ethervid(const char *, int *); 325 static int vlan_clone_match(struct if_clone *, const char *); 326 static int vlan_clone_create(struct if_clone *, char *, size_t, 327 struct ifc_data *, struct ifnet **); 328 static int vlan_clone_destroy(struct if_clone *, struct ifnet *, uint32_t); 329 330 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 331 static void vlan_iflladdr(void *arg, struct ifnet *ifp); 332 static void vlan_ifevent(void *arg, struct ifnet *ifp, int event); 333 334 static void vlan_lladdr_fn(void *arg, int pending); 335 336 static struct if_clone *vlan_cloner; 337 338 #ifdef VIMAGE 339 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); 340 #define V_vlan_cloner VNET(vlan_cloner) 341 #endif 342 343 #ifdef RATELIMIT 344 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = { 345 .snd_tag_modify = vlan_snd_tag_modify, 346 .snd_tag_query = vlan_snd_tag_query, 347 .snd_tag_free = vlan_snd_tag_free, 348 .next_snd_tag = vlan_next_snd_tag, 349 .type = IF_SND_TAG_TYPE_UNLIMITED 350 }; 351 352 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = { 353 .snd_tag_modify = vlan_snd_tag_modify, 354 .snd_tag_query = vlan_snd_tag_query, 355 .snd_tag_free = vlan_snd_tag_free, 356 .next_snd_tag = vlan_next_snd_tag, 357 .type = IF_SND_TAG_TYPE_RATE_LIMIT 358 }; 359 #endif 360 361 #ifdef KERN_TLS 362 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = { 363 .snd_tag_modify = vlan_snd_tag_modify, 364 .snd_tag_query = vlan_snd_tag_query, 365 .snd_tag_free = vlan_snd_tag_free, 366 .next_snd_tag = vlan_next_snd_tag, 367 .type = IF_SND_TAG_TYPE_TLS 368 }; 369 370 #ifdef RATELIMIT 371 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = { 372 .snd_tag_modify = vlan_snd_tag_modify, 373 .snd_tag_query = vlan_snd_tag_query, 374 .snd_tag_free = vlan_snd_tag_free, 375 .next_snd_tag = vlan_next_snd_tag, 376 .type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT 377 }; 378 #endif 379 #endif 380 381 static void 382 vlan_mc_free(struct epoch_context *ctx) 383 { 384 struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx); 385 free(mc, M_VLAN); 386 } 387 388 #ifndef VLAN_ARRAY 389 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 390 391 static void 392 vlan_inithash(struct ifvlantrunk *trunk) 393 { 394 int i, n; 395 396 /* 397 * The trunk must not be locked here since we call malloc(M_WAITOK). 398 * It is OK in case this function is called before the trunk struct 399 * gets hooked up and becomes visible from other threads. 400 */ 401 402 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 403 ("%s: hash already initialized", __func__)); 404 405 trunk->hwidth = VLAN_DEF_HWIDTH; 406 n = 1 << trunk->hwidth; 407 trunk->hmask = n - 1; 408 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 409 for (i = 0; i < n; i++) 410 CK_SLIST_INIT(&trunk->hash[i]); 411 } 412 413 static void 414 vlan_freehash(struct ifvlantrunk *trunk) 415 { 416 #ifdef INVARIANTS 417 int i; 418 419 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 420 for (i = 0; i < (1 << trunk->hwidth); i++) 421 KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]), 422 ("%s: hash table not empty", __func__)); 423 #endif 424 free(trunk->hash, M_VLAN); 425 trunk->hash = NULL; 426 trunk->hwidth = trunk->hmask = 0; 427 } 428 429 static int 430 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 431 { 432 int i, b; 433 struct ifvlan *ifv2; 434 435 VLAN_XLOCK_ASSERT(); 436 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 437 438 b = 1 << trunk->hwidth; 439 i = HASH(ifv->ifv_vid, trunk->hmask); 440 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 441 if (ifv->ifv_vid == ifv2->ifv_vid) 442 return (EEXIST); 443 444 /* 445 * Grow the hash when the number of vlans exceeds half of the number of 446 * hash buckets squared. This will make the average linked-list length 447 * buckets/2. 448 */ 449 if (trunk->refcnt > (b * b) / 2) { 450 vlan_growhash(trunk, 1); 451 i = HASH(ifv->ifv_vid, trunk->hmask); 452 } 453 CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 454 trunk->refcnt++; 455 456 return (0); 457 } 458 459 static int 460 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 461 { 462 int i, b; 463 struct ifvlan *ifv2; 464 465 VLAN_XLOCK_ASSERT(); 466 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 467 468 b = 1 << (trunk->hwidth - 1); 469 i = HASH(ifv->ifv_vid, trunk->hmask); 470 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 471 if (ifv2 == ifv) { 472 trunk->refcnt--; 473 CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list); 474 if (trunk->refcnt < (b * b) / 2) 475 vlan_growhash(trunk, -1); 476 return (0); 477 } 478 479 panic("%s: vlan not found\n", __func__); 480 return (ENOENT); /*NOTREACHED*/ 481 } 482 483 /* 484 * Grow the hash larger or smaller if memory permits. 485 */ 486 static void 487 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 488 { 489 struct ifvlan *ifv; 490 struct ifvlanhead *hash2; 491 int hwidth2, i, j, n, n2; 492 493 VLAN_XLOCK_ASSERT(); 494 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 495 496 if (howmuch == 0) { 497 /* Harmless yet obvious coding error */ 498 printf("%s: howmuch is 0\n", __func__); 499 return; 500 } 501 502 hwidth2 = trunk->hwidth + howmuch; 503 n = 1 << trunk->hwidth; 504 n2 = 1 << hwidth2; 505 /* Do not shrink the table below the default */ 506 if (hwidth2 < VLAN_DEF_HWIDTH) 507 return; 508 509 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK); 510 if (hash2 == NULL) { 511 printf("%s: out of memory -- hash size not changed\n", 512 __func__); 513 return; /* We can live with the old hash table */ 514 } 515 for (j = 0; j < n2; j++) 516 CK_SLIST_INIT(&hash2[j]); 517 for (i = 0; i < n; i++) 518 while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) { 519 CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list); 520 j = HASH(ifv->ifv_vid, n2 - 1); 521 CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 522 } 523 NET_EPOCH_WAIT(); 524 free(trunk->hash, M_VLAN); 525 trunk->hash = hash2; 526 trunk->hwidth = hwidth2; 527 trunk->hmask = n2 - 1; 528 529 if (bootverbose) 530 if_printf(trunk->parent, 531 "VLAN hash table resized from %d to %d buckets\n", n, n2); 532 } 533 534 static __inline struct ifvlan * 535 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 536 { 537 struct ifvlan *ifv; 538 539 NET_EPOCH_ASSERT(); 540 541 CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) 542 if (ifv->ifv_vid == vid) 543 return (ifv); 544 return (NULL); 545 } 546 547 #if 0 548 /* Debugging code to view the hashtables. */ 549 static void 550 vlan_dumphash(struct ifvlantrunk *trunk) 551 { 552 int i; 553 struct ifvlan *ifv; 554 555 for (i = 0; i < (1 << trunk->hwidth); i++) { 556 printf("%d: ", i); 557 CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 558 printf("%s ", ifv->ifv_ifp->if_xname); 559 printf("\n"); 560 } 561 } 562 #endif /* 0 */ 563 #else 564 565 static __inline struct ifvlan * 566 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 567 { 568 569 return trunk->vlans[vid]; 570 } 571 572 static __inline int 573 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 574 { 575 576 if (trunk->vlans[ifv->ifv_vid] != NULL) 577 return EEXIST; 578 trunk->vlans[ifv->ifv_vid] = ifv; 579 trunk->refcnt++; 580 581 return (0); 582 } 583 584 static __inline int 585 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 586 { 587 588 trunk->vlans[ifv->ifv_vid] = NULL; 589 trunk->refcnt--; 590 591 return (0); 592 } 593 594 static __inline void 595 vlan_freehash(struct ifvlantrunk *trunk) 596 { 597 } 598 599 static __inline void 600 vlan_inithash(struct ifvlantrunk *trunk) 601 { 602 } 603 604 #endif /* !VLAN_ARRAY */ 605 606 static void 607 trunk_destroy(struct ifvlantrunk *trunk) 608 { 609 VLAN_XLOCK_ASSERT(); 610 611 vlan_freehash(trunk); 612 trunk->parent->if_vlantrunk = NULL; 613 TRUNK_LOCK_DESTROY(trunk); 614 if_rele(trunk->parent); 615 free(trunk, M_VLAN); 616 } 617 618 /* 619 * Program our multicast filter. What we're actually doing is 620 * programming the multicast filter of the parent. This has the 621 * side effect of causing the parent interface to receive multicast 622 * traffic that it doesn't really want, which ends up being discarded 623 * later by the upper protocol layers. Unfortunately, there's no way 624 * to avoid this: there really is only one physical interface. 625 */ 626 static int 627 vlan_setmulti(struct ifnet *ifp) 628 { 629 struct ifnet *ifp_p; 630 struct ifmultiaddr *ifma; 631 struct ifvlan *sc; 632 struct vlan_mc_entry *mc; 633 int error; 634 635 VLAN_XLOCK_ASSERT(); 636 637 /* Find the parent. */ 638 sc = ifp->if_softc; 639 ifp_p = PARENT(sc); 640 641 CURVNET_SET_QUIET(ifp_p->if_vnet); 642 643 /* First, remove any existing filter entries. */ 644 while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 645 CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 646 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); 647 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 648 } 649 650 /* Now program new ones. */ 651 IF_ADDR_WLOCK(ifp); 652 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 653 if (ifma->ifma_addr->sa_family != AF_LINK) 654 continue; 655 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 656 if (mc == NULL) { 657 IF_ADDR_WUNLOCK(ifp); 658 CURVNET_RESTORE(); 659 return (ENOMEM); 660 } 661 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); 662 mc->mc_addr.sdl_index = ifp_p->if_index; 663 CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 664 } 665 IF_ADDR_WUNLOCK(ifp); 666 CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { 667 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, 668 NULL); 669 if (error) { 670 CURVNET_RESTORE(); 671 return (error); 672 } 673 } 674 675 CURVNET_RESTORE(); 676 return (0); 677 } 678 679 /* 680 * A handler for interface ifnet events. 681 */ 682 static void 683 vlan_ifevent(void *arg __unused, struct ifnet *ifp, int event) 684 { 685 struct epoch_tracker et; 686 struct ifvlan *ifv; 687 struct ifvlantrunk *trunk; 688 689 if (event != IFNET_EVENT_UPDATE_BAUDRATE) 690 return; 691 692 NET_EPOCH_ENTER(et); 693 trunk = ifp->if_vlantrunk; 694 if (trunk == NULL) { 695 NET_EPOCH_EXIT(et); 696 return; 697 } 698 699 TRUNK_WLOCK(trunk); 700 VLAN_FOREACH(ifv, trunk) { 701 ifv->ifv_ifp->if_baudrate = ifp->if_baudrate; 702 } 703 TRUNK_WUNLOCK(trunk); 704 NET_EPOCH_EXIT(et); 705 } 706 707 /* 708 * A handler for parent interface link layer address changes. 709 * If the parent interface link layer address is changed we 710 * should also change it on all children vlans. 711 */ 712 static void 713 vlan_iflladdr(void *arg __unused, struct ifnet *ifp) 714 { 715 struct epoch_tracker et; 716 struct ifvlan *ifv; 717 struct ifnet *ifv_ifp; 718 struct ifvlantrunk *trunk; 719 struct sockaddr_dl *sdl; 720 721 /* Need the epoch since this is run on taskqueue_swi. */ 722 NET_EPOCH_ENTER(et); 723 trunk = ifp->if_vlantrunk; 724 if (trunk == NULL) { 725 NET_EPOCH_EXIT(et); 726 return; 727 } 728 729 /* 730 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. 731 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR 732 * ioctl calls on the parent garbling the lladdr of the child vlan. 733 */ 734 TRUNK_WLOCK(trunk); 735 VLAN_FOREACH(ifv, trunk) { 736 /* 737 * Copy new new lladdr into the ifv_ifp, enqueue a task 738 * to actually call if_setlladdr. if_setlladdr needs to 739 * be deferred to a taskqueue because it will call into 740 * the if_vlan ioctl path and try to acquire the global 741 * lock. 742 */ 743 ifv_ifp = ifv->ifv_ifp; 744 bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), 745 ifp->if_addrlen); 746 sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; 747 sdl->sdl_alen = ifp->if_addrlen; 748 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 749 } 750 TRUNK_WUNLOCK(trunk); 751 NET_EPOCH_EXIT(et); 752 } 753 754 /* 755 * A handler for network interface departure events. 756 * Track departure of trunks here so that we don't access invalid 757 * pointers or whatever if a trunk is ripped from under us, e.g., 758 * by ejecting its hot-plug card. However, if an ifnet is simply 759 * being renamed, then there's no need to tear down the state. 760 */ 761 static void 762 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 763 { 764 struct ifvlan *ifv; 765 struct ifvlantrunk *trunk; 766 767 /* If the ifnet is just being renamed, don't do anything. */ 768 if (ifp->if_flags & IFF_RENAMING) 769 return; 770 VLAN_XLOCK(); 771 trunk = ifp->if_vlantrunk; 772 if (trunk == NULL) { 773 VLAN_XUNLOCK(); 774 return; 775 } 776 777 /* 778 * OK, it's a trunk. Loop over and detach all vlan's on it. 779 * Check trunk pointer after each vlan_unconfig() as it will 780 * free it and set to NULL after the last vlan was detached. 781 */ 782 VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, 783 ifp->if_vlantrunk == NULL) 784 vlan_unconfig_locked(ifv->ifv_ifp, 1); 785 786 /* Trunk should have been destroyed in vlan_unconfig(). */ 787 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 788 VLAN_XUNLOCK(); 789 } 790 791 /* 792 * Return the trunk device for a virtual interface. 793 */ 794 static struct ifnet * 795 vlan_trunkdev(struct ifnet *ifp) 796 { 797 struct ifvlan *ifv; 798 799 NET_EPOCH_ASSERT(); 800 801 if (ifp->if_type != IFT_L2VLAN) 802 return (NULL); 803 804 ifv = ifp->if_softc; 805 ifp = NULL; 806 if (ifv->ifv_trunk) 807 ifp = PARENT(ifv); 808 return (ifp); 809 } 810 811 /* 812 * Return the 12-bit VLAN VID for this interface, for use by external 813 * components such as Infiniband. 814 * 815 * XXXRW: Note that the function name here is historical; it should be named 816 * vlan_vid(). 817 */ 818 static int 819 vlan_tag(struct ifnet *ifp, uint16_t *vidp) 820 { 821 struct ifvlan *ifv; 822 823 if (ifp->if_type != IFT_L2VLAN) 824 return (EINVAL); 825 ifv = ifp->if_softc; 826 *vidp = ifv->ifv_vid; 827 return (0); 828 } 829 830 static int 831 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp) 832 { 833 struct ifvlan *ifv; 834 835 if (ifp->if_type != IFT_L2VLAN) 836 return (EINVAL); 837 ifv = ifp->if_softc; 838 *pcpp = ifv->ifv_pcp; 839 return (0); 840 } 841 842 /* 843 * Return a driver specific cookie for this interface. Synchronization 844 * with setcookie must be provided by the driver. 845 */ 846 static void * 847 vlan_cookie(struct ifnet *ifp) 848 { 849 struct ifvlan *ifv; 850 851 if (ifp->if_type != IFT_L2VLAN) 852 return (NULL); 853 ifv = ifp->if_softc; 854 return (ifv->ifv_cookie); 855 } 856 857 /* 858 * Store a cookie in our softc that drivers can use to store driver 859 * private per-instance data in. 860 */ 861 static int 862 vlan_setcookie(struct ifnet *ifp, void *cookie) 863 { 864 struct ifvlan *ifv; 865 866 if (ifp->if_type != IFT_L2VLAN) 867 return (EINVAL); 868 ifv = ifp->if_softc; 869 ifv->ifv_cookie = cookie; 870 return (0); 871 } 872 873 /* 874 * Return the vlan device present at the specific VID. 875 */ 876 static struct ifnet * 877 vlan_devat(struct ifnet *ifp, uint16_t vid) 878 { 879 struct ifvlantrunk *trunk; 880 struct ifvlan *ifv; 881 882 NET_EPOCH_ASSERT(); 883 884 trunk = ifp->if_vlantrunk; 885 if (trunk == NULL) 886 return (NULL); 887 ifp = NULL; 888 ifv = vlan_gethash(trunk, vid); 889 if (ifv) 890 ifp = ifv->ifv_ifp; 891 return (ifp); 892 } 893 894 /* 895 * VLAN support can be loaded as a module. The only place in the 896 * system that's intimately aware of this is ether_input. We hook 897 * into this code through vlan_input_p which is defined there and 898 * set here. No one else in the system should be aware of this so 899 * we use an explicit reference here. 900 */ 901 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 902 903 /* For if_link_state_change() eyes only... */ 904 extern void (*vlan_link_state_p)(struct ifnet *); 905 906 static struct if_clone_addreq vlan_addreq = { 907 .match_f = vlan_clone_match, 908 .create_f = vlan_clone_create, 909 .destroy_f = vlan_clone_destroy, 910 }; 911 912 static int 913 vlan_modevent(module_t mod, int type, void *data) 914 { 915 916 switch (type) { 917 case MOD_LOAD: 918 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 919 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 920 if (ifdetach_tag == NULL) 921 return (ENOMEM); 922 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, 923 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 924 if (iflladdr_tag == NULL) 925 return (ENOMEM); 926 ifevent_tag = EVENTHANDLER_REGISTER(ifnet_event, 927 vlan_ifevent, NULL, EVENTHANDLER_PRI_ANY); 928 if (ifevent_tag == NULL) 929 return (ENOMEM); 930 VLAN_LOCKING_INIT(); 931 vlan_input_p = vlan_input; 932 vlan_link_state_p = vlan_link_state; 933 vlan_trunk_cap_p = vlan_trunk_capabilities; 934 vlan_trunkdev_p = vlan_trunkdev; 935 vlan_cookie_p = vlan_cookie; 936 vlan_setcookie_p = vlan_setcookie; 937 vlan_tag_p = vlan_tag; 938 vlan_pcp_p = vlan_pcp; 939 vlan_devat_p = vlan_devat; 940 #ifndef VIMAGE 941 vlan_cloner = ifc_attach_cloner(vlanname, &vlan_addreq); 942 #endif 943 if (bootverbose) 944 printf("vlan: initialized, using " 945 #ifdef VLAN_ARRAY 946 "full-size arrays" 947 #else 948 "hash tables with chaining" 949 #endif 950 951 "\n"); 952 break; 953 case MOD_UNLOAD: 954 #ifndef VIMAGE 955 ifc_detach_cloner(vlan_cloner); 956 #endif 957 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 958 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); 959 EVENTHANDLER_DEREGISTER(ifnet_event, ifevent_tag); 960 vlan_input_p = NULL; 961 vlan_link_state_p = NULL; 962 vlan_trunk_cap_p = NULL; 963 vlan_trunkdev_p = NULL; 964 vlan_tag_p = NULL; 965 vlan_cookie_p = NULL; 966 vlan_setcookie_p = NULL; 967 vlan_devat_p = NULL; 968 VLAN_LOCKING_DESTROY(); 969 if (bootverbose) 970 printf("vlan: unloaded\n"); 971 break; 972 default: 973 return (EOPNOTSUPP); 974 } 975 return (0); 976 } 977 978 static moduledata_t vlan_mod = { 979 "if_vlan", 980 vlan_modevent, 981 0 982 }; 983 984 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 985 MODULE_VERSION(if_vlan, 3); 986 987 #ifdef VIMAGE 988 static void 989 vnet_vlan_init(const void *unused __unused) 990 { 991 vlan_cloner = ifc_attach_cloner(vlanname, &vlan_addreq); 992 V_vlan_cloner = vlan_cloner; 993 } 994 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 995 vnet_vlan_init, NULL); 996 997 static void 998 vnet_vlan_uninit(const void *unused __unused) 999 { 1000 1001 ifc_detach_cloner(V_vlan_cloner); 1002 } 1003 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, 1004 vnet_vlan_uninit, NULL); 1005 #endif 1006 1007 /* 1008 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names. 1009 */ 1010 static struct ifnet * 1011 vlan_clone_match_ethervid(const char *name, int *vidp) 1012 { 1013 char ifname[IFNAMSIZ]; 1014 char *cp; 1015 struct ifnet *ifp; 1016 int vid; 1017 1018 strlcpy(ifname, name, IFNAMSIZ); 1019 if ((cp = strrchr(ifname, '.')) == NULL) 1020 return (NULL); 1021 *cp = '\0'; 1022 if ((ifp = ifunit_ref(ifname)) == NULL) 1023 return (NULL); 1024 /* Parse VID. */ 1025 if (*++cp == '\0') { 1026 if_rele(ifp); 1027 return (NULL); 1028 } 1029 vid = 0; 1030 for(; *cp >= '0' && *cp <= '9'; cp++) 1031 vid = (vid * 10) + (*cp - '0'); 1032 if (*cp != '\0') { 1033 if_rele(ifp); 1034 return (NULL); 1035 } 1036 if (vidp != NULL) 1037 *vidp = vid; 1038 1039 return (ifp); 1040 } 1041 1042 static int 1043 vlan_clone_match(struct if_clone *ifc, const char *name) 1044 { 1045 struct ifnet *ifp; 1046 const char *cp; 1047 1048 ifp = vlan_clone_match_ethervid(name, NULL); 1049 if (ifp != NULL) { 1050 if_rele(ifp); 1051 return (1); 1052 } 1053 1054 if (strncmp(vlanname, name, strlen(vlanname)) != 0) 1055 return (0); 1056 for (cp = name + 4; *cp != '\0'; cp++) { 1057 if (*cp < '0' || *cp > '9') 1058 return (0); 1059 } 1060 1061 return (1); 1062 } 1063 1064 static int 1065 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, 1066 struct ifc_data *ifd, struct ifnet **ifpp) 1067 { 1068 char *dp; 1069 bool wildcard = false; 1070 bool subinterface = false; 1071 int unit; 1072 int error; 1073 int vid = 0; 1074 uint16_t proto = ETHERTYPE_VLAN; 1075 struct ifvlan *ifv; 1076 struct ifnet *ifp; 1077 struct ifnet *p = NULL; 1078 struct ifaddr *ifa; 1079 struct sockaddr_dl *sdl; 1080 struct vlanreq vlr; 1081 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 1082 1083 1084 /* 1085 * There are three ways to specify the cloned device: 1086 * o pass a parameter block with the clone request. 1087 * o specify parameters in the text of the clone device name 1088 * o specify no parameters and get an unattached device that 1089 * must be configured separately. 1090 * The first technique is preferred; the latter two are supported 1091 * for backwards compatibility. 1092 * 1093 * XXXRW: Note historic use of the word "tag" here. New ioctls may be 1094 * called for. 1095 */ 1096 1097 if (ifd->params != NULL) { 1098 error = ifc_copyin(ifd, &vlr, sizeof(vlr)); 1099 if (error) 1100 return error; 1101 vid = vlr.vlr_tag; 1102 proto = vlr.vlr_proto; 1103 1104 #ifdef COMPAT_FREEBSD12 1105 if (proto == 0) 1106 proto = ETHERTYPE_VLAN; 1107 #endif 1108 p = ifunit_ref(vlr.vlr_parent); 1109 if (p == NULL) 1110 return (ENXIO); 1111 } 1112 1113 if ((error = ifc_name2unit(name, &unit)) == 0) { 1114 1115 /* 1116 * vlanX interface. Set wildcard to true if the unit number 1117 * is not fixed (-1) 1118 */ 1119 wildcard = (unit < 0); 1120 } else { 1121 struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid); 1122 if (p_tmp != NULL) { 1123 error = 0; 1124 subinterface = true; 1125 unit = IF_DUNIT_NONE; 1126 wildcard = false; 1127 if (p != NULL) { 1128 if_rele(p_tmp); 1129 if (p != p_tmp) 1130 error = EINVAL; 1131 } else 1132 p = p_tmp; 1133 } else 1134 error = ENXIO; 1135 } 1136 1137 if (error != 0) { 1138 if (p != NULL) 1139 if_rele(p); 1140 return (error); 1141 } 1142 1143 if (!subinterface) { 1144 /* vlanX interface, mark X as busy or allocate new unit # */ 1145 error = ifc_alloc_unit(ifc, &unit); 1146 if (error != 0) { 1147 if (p != NULL) 1148 if_rele(p); 1149 return (error); 1150 } 1151 } 1152 1153 /* In the wildcard case, we need to update the name. */ 1154 if (wildcard) { 1155 for (dp = name; *dp != '\0'; dp++); 1156 if (snprintf(dp, len - (dp-name), "%d", unit) > 1157 len - (dp-name) - 1) { 1158 panic("%s: interface name too long", __func__); 1159 } 1160 } 1161 1162 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 1163 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 1164 if (ifp == NULL) { 1165 if (!subinterface) 1166 ifc_free_unit(ifc, unit); 1167 free(ifv, M_VLAN); 1168 if (p != NULL) 1169 if_rele(p); 1170 return (ENOSPC); 1171 } 1172 CK_SLIST_INIT(&ifv->vlan_mc_listhead); 1173 ifp->if_softc = ifv; 1174 /* 1175 * Set the name manually rather than using if_initname because 1176 * we don't conform to the default naming convention for interfaces. 1177 */ 1178 strlcpy(ifp->if_xname, name, IFNAMSIZ); 1179 ifp->if_dname = vlanname; 1180 ifp->if_dunit = unit; 1181 1182 ifp->if_init = vlan_init; 1183 #ifdef ALTQ 1184 ifp->if_start = vlan_altq_start; 1185 ifp->if_transmit = vlan_altq_transmit; 1186 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 1187 ifp->if_snd.ifq_drv_maxlen = 0; 1188 IFQ_SET_READY(&ifp->if_snd); 1189 #else 1190 ifp->if_transmit = vlan_transmit; 1191 #endif 1192 ifp->if_qflush = vlan_qflush; 1193 ifp->if_ioctl = vlan_ioctl; 1194 #if defined(KERN_TLS) || defined(RATELIMIT) 1195 ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; 1196 ifp->if_ratelimit_query = vlan_ratelimit_query; 1197 #endif 1198 ifp->if_flags = VLAN_IFFLAGS; 1199 ether_ifattach(ifp, eaddr); 1200 /* Now undo some of the damage... */ 1201 ifp->if_baudrate = 0; 1202 ifp->if_type = IFT_L2VLAN; 1203 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 1204 ifa = ifp->if_addr; 1205 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1206 sdl->sdl_type = IFT_L2VLAN; 1207 1208 if (p != NULL) { 1209 error = vlan_config(ifv, p, vid, proto); 1210 if_rele(p); 1211 if (error != 0) { 1212 /* 1213 * Since we've partially failed, we need to back 1214 * out all the way, otherwise userland could get 1215 * confused. Thus, we destroy the interface. 1216 */ 1217 ether_ifdetach(ifp); 1218 vlan_unconfig(ifp); 1219 if_free(ifp); 1220 if (!subinterface) 1221 ifc_free_unit(ifc, unit); 1222 free(ifv, M_VLAN); 1223 1224 return (error); 1225 } 1226 } 1227 *ifpp = ifp; 1228 1229 return (0); 1230 } 1231 1232 static int 1233 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags) 1234 { 1235 struct ifvlan *ifv = ifp->if_softc; 1236 int unit = ifp->if_dunit; 1237 1238 if (ifp->if_vlantrunk) 1239 return (EBUSY); 1240 1241 #ifdef ALTQ 1242 IFQ_PURGE(&ifp->if_snd); 1243 #endif 1244 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 1245 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 1246 /* 1247 * We should have the only reference to the ifv now, so we can now 1248 * drain any remaining lladdr task before freeing the ifnet and the 1249 * ifvlan. 1250 */ 1251 taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); 1252 NET_EPOCH_WAIT(); 1253 if_free(ifp); 1254 free(ifv, M_VLAN); 1255 if (unit != IF_DUNIT_NONE) 1256 ifc_free_unit(ifc, unit); 1257 1258 return (0); 1259 } 1260 1261 /* 1262 * The ifp->if_init entry point for vlan(4) is a no-op. 1263 */ 1264 static void 1265 vlan_init(void *foo __unused) 1266 { 1267 } 1268 1269 /* 1270 * The if_transmit method for vlan(4) interface. 1271 */ 1272 static int 1273 vlan_transmit(struct ifnet *ifp, struct mbuf *m) 1274 { 1275 struct ifvlan *ifv; 1276 struct ifnet *p; 1277 int error, len, mcast; 1278 1279 NET_EPOCH_ASSERT(); 1280 1281 ifv = ifp->if_softc; 1282 if (TRUNK(ifv) == NULL) { 1283 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1284 m_freem(m); 1285 return (ENETDOWN); 1286 } 1287 p = PARENT(ifv); 1288 len = m->m_pkthdr.len; 1289 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; 1290 1291 BPF_MTAP(ifp, m); 1292 1293 #if defined(KERN_TLS) || defined(RATELIMIT) 1294 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1295 struct vlan_snd_tag *vst; 1296 struct m_snd_tag *mst; 1297 1298 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 1299 mst = m->m_pkthdr.snd_tag; 1300 vst = mst_to_vst(mst); 1301 if (vst->tag->ifp != p) { 1302 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1303 m_freem(m); 1304 return (EAGAIN); 1305 } 1306 1307 m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag); 1308 m_snd_tag_rele(mst); 1309 } 1310 #endif 1311 1312 /* 1313 * Do not run parent's if_transmit() if the parent is not up, 1314 * or parent's driver will cause a system crash. 1315 */ 1316 if (!UP_AND_RUNNING(p)) { 1317 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1318 m_freem(m); 1319 return (ENETDOWN); 1320 } 1321 1322 if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) { 1323 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1324 return (0); 1325 } 1326 1327 /* 1328 * Send it, precisely as ether_output() would have. 1329 */ 1330 error = (p->if_transmit)(p, m); 1331 if (error == 0) { 1332 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1333 if_inc_counter(ifp, IFCOUNTER_OBYTES, len); 1334 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); 1335 } else 1336 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1337 return (error); 1338 } 1339 1340 static int 1341 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, 1342 struct route *ro) 1343 { 1344 struct ifvlan *ifv; 1345 struct ifnet *p; 1346 1347 NET_EPOCH_ASSERT(); 1348 1349 /* 1350 * Find the first non-VLAN parent interface. 1351 */ 1352 ifv = ifp->if_softc; 1353 do { 1354 if (TRUNK(ifv) == NULL) { 1355 m_freem(m); 1356 return (ENETDOWN); 1357 } 1358 p = PARENT(ifv); 1359 ifv = p->if_softc; 1360 } while (p->if_type == IFT_L2VLAN); 1361 1362 return p->if_output(ifp, m, dst, ro); 1363 } 1364 1365 #ifdef ALTQ 1366 static void 1367 vlan_altq_start(if_t ifp) 1368 { 1369 struct ifaltq *ifq = &ifp->if_snd; 1370 struct mbuf *m; 1371 1372 IFQ_LOCK(ifq); 1373 IFQ_DEQUEUE_NOLOCK(ifq, m); 1374 while (m != NULL) { 1375 vlan_transmit(ifp, m); 1376 IFQ_DEQUEUE_NOLOCK(ifq, m); 1377 } 1378 IFQ_UNLOCK(ifq); 1379 } 1380 1381 static int 1382 vlan_altq_transmit(if_t ifp, struct mbuf *m) 1383 { 1384 int err; 1385 1386 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 1387 IFQ_ENQUEUE(&ifp->if_snd, m, err); 1388 if (err == 0) 1389 vlan_altq_start(ifp); 1390 } else 1391 err = vlan_transmit(ifp, m); 1392 1393 return (err); 1394 } 1395 #endif /* ALTQ */ 1396 1397 /* 1398 * The ifp->if_qflush entry point for vlan(4) is a no-op. 1399 */ 1400 static void 1401 vlan_qflush(struct ifnet *ifp __unused) 1402 { 1403 } 1404 1405 static void 1406 vlan_input(struct ifnet *ifp, struct mbuf *m) 1407 { 1408 struct ifvlantrunk *trunk; 1409 struct ifvlan *ifv; 1410 struct m_tag *mtag; 1411 uint16_t vid, tag; 1412 1413 NET_EPOCH_ASSERT(); 1414 1415 trunk = ifp->if_vlantrunk; 1416 if (trunk == NULL) { 1417 m_freem(m); 1418 return; 1419 } 1420 1421 if (m->m_flags & M_VLANTAG) { 1422 /* 1423 * Packet is tagged, but m contains a normal 1424 * Ethernet frame; the tag is stored out-of-band. 1425 */ 1426 tag = m->m_pkthdr.ether_vtag; 1427 m->m_flags &= ~M_VLANTAG; 1428 } else { 1429 struct ether_vlan_header *evl; 1430 1431 /* 1432 * Packet is tagged in-band as specified by 802.1q. 1433 */ 1434 switch (ifp->if_type) { 1435 case IFT_ETHER: 1436 if (m->m_len < sizeof(*evl) && 1437 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1438 if_printf(ifp, "cannot pullup VLAN header\n"); 1439 return; 1440 } 1441 evl = mtod(m, struct ether_vlan_header *); 1442 tag = ntohs(evl->evl_tag); 1443 1444 /* 1445 * Remove the 802.1q header by copying the Ethernet 1446 * addresses over it and adjusting the beginning of 1447 * the data in the mbuf. The encapsulated Ethernet 1448 * type field is already in place. 1449 */ 1450 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 1451 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1452 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1453 break; 1454 1455 default: 1456 #ifdef INVARIANTS 1457 panic("%s: %s has unsupported if_type %u", 1458 __func__, ifp->if_xname, ifp->if_type); 1459 #endif 1460 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1461 m_freem(m); 1462 return; 1463 } 1464 } 1465 1466 vid = EVL_VLANOFTAG(tag); 1467 1468 ifv = vlan_gethash(trunk, vid); 1469 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 1470 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1471 m_freem(m); 1472 return; 1473 } 1474 1475 if (V_vlan_mtag_pcp) { 1476 /* 1477 * While uncommon, it is possible that we will find a 802.1q 1478 * packet encapsulated inside another packet that also had an 1479 * 802.1q header. For example, ethernet tunneled over IPSEC 1480 * arriving over ethernet. In that case, we replace the 1481 * existing 802.1q PCP m_tag value. 1482 */ 1483 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 1484 if (mtag == NULL) { 1485 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, 1486 sizeof(uint8_t), M_NOWAIT); 1487 if (mtag == NULL) { 1488 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1489 m_freem(m); 1490 return; 1491 } 1492 m_tag_prepend(m, mtag); 1493 } 1494 *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); 1495 } 1496 1497 m->m_pkthdr.rcvif = ifv->ifv_ifp; 1498 if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); 1499 1500 /* Pass it back through the parent's input routine. */ 1501 (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); 1502 } 1503 1504 static void 1505 vlan_lladdr_fn(void *arg, int pending __unused) 1506 { 1507 struct ifvlan *ifv; 1508 struct ifnet *ifp; 1509 1510 ifv = (struct ifvlan *)arg; 1511 ifp = ifv->ifv_ifp; 1512 1513 CURVNET_SET(ifp->if_vnet); 1514 1515 /* The ifv_ifp already has the lladdr copied in. */ 1516 if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); 1517 1518 CURVNET_RESTORE(); 1519 } 1520 1521 static int 1522 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid, 1523 uint16_t proto) 1524 { 1525 struct epoch_tracker et; 1526 struct ifvlantrunk *trunk; 1527 struct ifnet *ifp; 1528 int error = 0; 1529 1530 /* 1531 * We can handle non-ethernet hardware types as long as 1532 * they handle the tagging and headers themselves. 1533 */ 1534 if (p->if_type != IFT_ETHER && 1535 p->if_type != IFT_L2VLAN && 1536 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1537 return (EPROTONOSUPPORT); 1538 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 1539 return (EPROTONOSUPPORT); 1540 /* 1541 * Don't let the caller set up a VLAN VID with 1542 * anything except VLID bits. 1543 * VID numbers 0x0 and 0xFFF are reserved. 1544 */ 1545 if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) 1546 return (EINVAL); 1547 if (ifv->ifv_trunk) { 1548 trunk = ifv->ifv_trunk; 1549 if (trunk->parent != p) 1550 return (EBUSY); 1551 1552 VLAN_XLOCK(); 1553 1554 ifv->ifv_proto = proto; 1555 1556 if (ifv->ifv_vid != vid) { 1557 /* Re-hash */ 1558 vlan_remhash(trunk, ifv); 1559 ifv->ifv_vid = vid; 1560 error = vlan_inshash(trunk, ifv); 1561 } 1562 /* Will unlock */ 1563 goto done; 1564 } 1565 1566 VLAN_XLOCK(); 1567 if (p->if_vlantrunk == NULL) { 1568 trunk = malloc(sizeof(struct ifvlantrunk), 1569 M_VLAN, M_WAITOK | M_ZERO); 1570 vlan_inithash(trunk); 1571 TRUNK_LOCK_INIT(trunk); 1572 TRUNK_WLOCK(trunk); 1573 p->if_vlantrunk = trunk; 1574 trunk->parent = p; 1575 if_ref(trunk->parent); 1576 TRUNK_WUNLOCK(trunk); 1577 } else { 1578 trunk = p->if_vlantrunk; 1579 } 1580 1581 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ 1582 ifv->ifv_pcp = 0; /* Default: best effort delivery. */ 1583 error = vlan_inshash(trunk, ifv); 1584 if (error) 1585 goto done; 1586 ifv->ifv_proto = proto; 1587 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1588 ifv->ifv_mintu = ETHERMIN; 1589 ifv->ifv_pflags = 0; 1590 ifv->ifv_capenable = -1; 1591 1592 /* 1593 * If the parent supports the VLAN_MTU capability, 1594 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1595 * use it. 1596 */ 1597 if (p->if_capenable & IFCAP_VLAN_MTU) { 1598 /* 1599 * No need to fudge the MTU since the parent can 1600 * handle extended frames. 1601 */ 1602 ifv->ifv_mtufudge = 0; 1603 } else { 1604 /* 1605 * Fudge the MTU by the encapsulation size. This 1606 * makes us incompatible with strictly compliant 1607 * 802.1Q implementations, but allows us to use 1608 * the feature with other NetBSD implementations, 1609 * which might still be useful. 1610 */ 1611 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1612 } 1613 1614 ifv->ifv_trunk = trunk; 1615 ifp = ifv->ifv_ifp; 1616 /* 1617 * Initialize fields from our parent. This duplicates some 1618 * work with ether_ifattach() but allows for non-ethernet 1619 * interfaces to also work. 1620 */ 1621 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1622 ifp->if_baudrate = p->if_baudrate; 1623 ifp->if_input = p->if_input; 1624 ifp->if_resolvemulti = p->if_resolvemulti; 1625 ifp->if_addrlen = p->if_addrlen; 1626 ifp->if_broadcastaddr = p->if_broadcastaddr; 1627 ifp->if_pcp = ifv->ifv_pcp; 1628 1629 /* 1630 * We wrap the parent's if_output using vlan_output to ensure that it 1631 * can't become stale. 1632 */ 1633 ifp->if_output = vlan_output; 1634 1635 /* 1636 * Copy only a selected subset of flags from the parent. 1637 * Other flags are none of our business. 1638 */ 1639 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1640 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1641 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1642 #undef VLAN_COPY_FLAGS 1643 1644 ifp->if_link_state = p->if_link_state; 1645 1646 NET_EPOCH_ENTER(et); 1647 vlan_capabilities(ifv); 1648 NET_EPOCH_EXIT(et); 1649 1650 /* 1651 * Set up our interface address to reflect the underlying 1652 * physical interface's. 1653 */ 1654 TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); 1655 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = 1656 p->if_addrlen; 1657 1658 /* 1659 * Do not schedule link address update if it was the same 1660 * as previous parent's. This helps avoid updating for each 1661 * associated llentry. 1662 */ 1663 if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) { 1664 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); 1665 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 1666 } 1667 1668 /* We are ready for operation now. */ 1669 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1670 1671 /* Update flags on the parent, if necessary. */ 1672 vlan_setflags(ifp, 1); 1673 1674 /* 1675 * Configure multicast addresses that may already be 1676 * joined on the vlan device. 1677 */ 1678 (void)vlan_setmulti(ifp); 1679 1680 done: 1681 if (error == 0) 1682 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); 1683 VLAN_XUNLOCK(); 1684 1685 return (error); 1686 } 1687 1688 static void 1689 vlan_unconfig(struct ifnet *ifp) 1690 { 1691 1692 VLAN_XLOCK(); 1693 vlan_unconfig_locked(ifp, 0); 1694 VLAN_XUNLOCK(); 1695 } 1696 1697 static void 1698 vlan_unconfig_locked(struct ifnet *ifp, int departing) 1699 { 1700 struct ifvlantrunk *trunk; 1701 struct vlan_mc_entry *mc; 1702 struct ifvlan *ifv; 1703 struct ifnet *parent; 1704 int error; 1705 1706 VLAN_XLOCK_ASSERT(); 1707 1708 ifv = ifp->if_softc; 1709 trunk = ifv->ifv_trunk; 1710 parent = NULL; 1711 1712 if (trunk != NULL) { 1713 parent = trunk->parent; 1714 1715 /* 1716 * Since the interface is being unconfigured, we need to 1717 * empty the list of multicast groups that we may have joined 1718 * while we were alive from the parent's list. 1719 */ 1720 while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1721 /* 1722 * If the parent interface is being detached, 1723 * all its multicast addresses have already 1724 * been removed. Warn about errors if 1725 * if_delmulti() does fail, but don't abort as 1726 * all callers expect vlan destruction to 1727 * succeed. 1728 */ 1729 if (!departing) { 1730 error = if_delmulti(parent, 1731 (struct sockaddr *)&mc->mc_addr); 1732 if (error) 1733 if_printf(ifp, 1734 "Failed to delete multicast address from parent: %d\n", 1735 error); 1736 } 1737 CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1738 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 1739 } 1740 1741 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1742 1743 vlan_remhash(trunk, ifv); 1744 ifv->ifv_trunk = NULL; 1745 1746 /* 1747 * Check if we were the last. 1748 */ 1749 if (trunk->refcnt == 0) { 1750 parent->if_vlantrunk = NULL; 1751 NET_EPOCH_WAIT(); 1752 trunk_destroy(trunk); 1753 } 1754 } 1755 1756 /* Disconnect from parent. */ 1757 if (ifv->ifv_pflags) 1758 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1759 ifp->if_mtu = ETHERMTU; 1760 ifp->if_link_state = LINK_STATE_UNKNOWN; 1761 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1762 1763 /* 1764 * Only dispatch an event if vlan was 1765 * attached, otherwise there is nothing 1766 * to cleanup anyway. 1767 */ 1768 if (parent != NULL) 1769 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); 1770 } 1771 1772 /* Handle a reference counted flag that should be set on the parent as well */ 1773 static int 1774 vlan_setflag(struct ifnet *ifp, int flag, int status, 1775 int (*func)(struct ifnet *, int)) 1776 { 1777 struct ifvlan *ifv; 1778 int error; 1779 1780 VLAN_SXLOCK_ASSERT(); 1781 1782 ifv = ifp->if_softc; 1783 status = status ? (ifp->if_flags & flag) : 0; 1784 /* Now "status" contains the flag value or 0 */ 1785 1786 /* 1787 * See if recorded parent's status is different from what 1788 * we want it to be. If it is, flip it. We record parent's 1789 * status in ifv_pflags so that we won't clear parent's flag 1790 * we haven't set. In fact, we don't clear or set parent's 1791 * flags directly, but get or release references to them. 1792 * That's why we can be sure that recorded flags still are 1793 * in accord with actual parent's flags. 1794 */ 1795 if (status != (ifv->ifv_pflags & flag)) { 1796 error = (*func)(PARENT(ifv), status); 1797 if (error) 1798 return (error); 1799 ifv->ifv_pflags &= ~flag; 1800 ifv->ifv_pflags |= status; 1801 } 1802 return (0); 1803 } 1804 1805 /* 1806 * Handle IFF_* flags that require certain changes on the parent: 1807 * if "status" is true, update parent's flags respective to our if_flags; 1808 * if "status" is false, forcedly clear the flags set on parent. 1809 */ 1810 static int 1811 vlan_setflags(struct ifnet *ifp, int status) 1812 { 1813 int error, i; 1814 1815 for (i = 0; vlan_pflags[i].flag; i++) { 1816 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1817 status, vlan_pflags[i].func); 1818 if (error) 1819 return (error); 1820 } 1821 return (0); 1822 } 1823 1824 /* Inform all vlans that their parent has changed link state */ 1825 static void 1826 vlan_link_state(struct ifnet *ifp) 1827 { 1828 struct epoch_tracker et; 1829 struct ifvlantrunk *trunk; 1830 struct ifvlan *ifv; 1831 1832 NET_EPOCH_ENTER(et); 1833 trunk = ifp->if_vlantrunk; 1834 if (trunk == NULL) { 1835 NET_EPOCH_EXIT(et); 1836 return; 1837 } 1838 1839 TRUNK_WLOCK(trunk); 1840 VLAN_FOREACH(ifv, trunk) { 1841 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 1842 if_link_state_change(ifv->ifv_ifp, 1843 trunk->parent->if_link_state); 1844 } 1845 TRUNK_WUNLOCK(trunk); 1846 NET_EPOCH_EXIT(et); 1847 } 1848 1849 static void 1850 vlan_capabilities(struct ifvlan *ifv) 1851 { 1852 struct ifnet *p; 1853 struct ifnet *ifp; 1854 struct ifnet_hw_tsomax hw_tsomax; 1855 int cap = 0, ena = 0, mena; 1856 u_long hwa = 0; 1857 1858 NET_EPOCH_ASSERT(); 1859 VLAN_SXLOCK_ASSERT(); 1860 1861 p = PARENT(ifv); 1862 ifp = ifv->ifv_ifp; 1863 1864 /* Mask parent interface enabled capabilities disabled by user. */ 1865 mena = p->if_capenable & ifv->ifv_capenable; 1866 1867 /* 1868 * If the parent interface can do checksum offloading 1869 * on VLANs, then propagate its hardware-assisted 1870 * checksumming flags. Also assert that checksum 1871 * offloading requires hardware VLAN tagging. 1872 */ 1873 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1874 cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1875 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 1876 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1877 ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1878 if (ena & IFCAP_TXCSUM) 1879 hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | 1880 CSUM_UDP | CSUM_SCTP); 1881 if (ena & IFCAP_TXCSUM_IPV6) 1882 hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | 1883 CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); 1884 } 1885 1886 /* 1887 * If the parent interface can do TSO on VLANs then 1888 * propagate the hardware-assisted flag. TSO on VLANs 1889 * does not necessarily require hardware VLAN tagging. 1890 */ 1891 memset(&hw_tsomax, 0, sizeof(hw_tsomax)); 1892 if_hw_tsomax_common(p, &hw_tsomax); 1893 if_hw_tsomax_update(ifp, &hw_tsomax); 1894 if (p->if_capabilities & IFCAP_VLAN_HWTSO) 1895 cap |= p->if_capabilities & IFCAP_TSO; 1896 if (p->if_capenable & IFCAP_VLAN_HWTSO) { 1897 ena |= mena & IFCAP_TSO; 1898 if (ena & IFCAP_TSO) 1899 hwa |= p->if_hwassist & CSUM_TSO; 1900 } 1901 1902 /* 1903 * If the parent interface can do LRO and checksum offloading on 1904 * VLANs, then guess it may do LRO on VLANs. False positive here 1905 * cost nothing, while false negative may lead to some confusions. 1906 */ 1907 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1908 cap |= p->if_capabilities & IFCAP_LRO; 1909 if (p->if_capenable & IFCAP_VLAN_HWCSUM) 1910 ena |= p->if_capenable & IFCAP_LRO; 1911 1912 /* 1913 * If the parent interface can offload TCP connections over VLANs then 1914 * propagate its TOE capability to the VLAN interface. 1915 * 1916 * All TOE drivers in the tree today can deal with VLANs. If this 1917 * changes then IFCAP_VLAN_TOE should be promoted to a full capability 1918 * with its own bit. 1919 */ 1920 #define IFCAP_VLAN_TOE IFCAP_TOE 1921 if (p->if_capabilities & IFCAP_VLAN_TOE) 1922 cap |= p->if_capabilities & IFCAP_TOE; 1923 if (p->if_capenable & IFCAP_VLAN_TOE) { 1924 TOEDEV(ifp) = TOEDEV(p); 1925 ena |= mena & IFCAP_TOE; 1926 } 1927 1928 /* 1929 * If the parent interface supports dynamic link state, so does the 1930 * VLAN interface. 1931 */ 1932 cap |= (p->if_capabilities & IFCAP_LINKSTATE); 1933 ena |= (mena & IFCAP_LINKSTATE); 1934 1935 #ifdef RATELIMIT 1936 /* 1937 * If the parent interface supports ratelimiting, so does the 1938 * VLAN interface. 1939 */ 1940 cap |= (p->if_capabilities & IFCAP_TXRTLMT); 1941 ena |= (mena & IFCAP_TXRTLMT); 1942 #endif 1943 1944 /* 1945 * If the parent interface supports unmapped mbufs, so does 1946 * the VLAN interface. Note that this should be fine even for 1947 * interfaces that don't support hardware tagging as headers 1948 * are prepended in normal mbufs to unmapped mbufs holding 1949 * payload data. 1950 */ 1951 cap |= (p->if_capabilities & IFCAP_MEXTPG); 1952 ena |= (mena & IFCAP_MEXTPG); 1953 1954 /* 1955 * If the parent interface can offload encryption and segmentation 1956 * of TLS records over TCP, propagate it's capability to the VLAN 1957 * interface. 1958 * 1959 * All TLS drivers in the tree today can deal with VLANs. If 1960 * this ever changes, then a new IFCAP_VLAN_TXTLS can be 1961 * defined. 1962 */ 1963 if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1964 cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1965 if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1966 ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1967 1968 ifp->if_capabilities = cap; 1969 ifp->if_capenable = ena; 1970 ifp->if_hwassist = hwa; 1971 } 1972 1973 static void 1974 vlan_trunk_capabilities(struct ifnet *ifp) 1975 { 1976 struct epoch_tracker et; 1977 struct ifvlantrunk *trunk; 1978 struct ifvlan *ifv; 1979 1980 VLAN_SLOCK(); 1981 trunk = ifp->if_vlantrunk; 1982 if (trunk == NULL) { 1983 VLAN_SUNLOCK(); 1984 return; 1985 } 1986 NET_EPOCH_ENTER(et); 1987 VLAN_FOREACH(ifv, trunk) 1988 vlan_capabilities(ifv); 1989 NET_EPOCH_EXIT(et); 1990 VLAN_SUNLOCK(); 1991 } 1992 1993 static int 1994 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1995 { 1996 struct ifnet *p; 1997 struct ifreq *ifr; 1998 #ifdef INET 1999 struct ifaddr *ifa; 2000 #endif 2001 struct ifvlan *ifv; 2002 struct ifvlantrunk *trunk; 2003 struct vlanreq vlr; 2004 int error = 0, oldmtu; 2005 2006 ifr = (struct ifreq *)data; 2007 #ifdef INET 2008 ifa = (struct ifaddr *) data; 2009 #endif 2010 ifv = ifp->if_softc; 2011 2012 switch (cmd) { 2013 case SIOCSIFADDR: 2014 ifp->if_flags |= IFF_UP; 2015 #ifdef INET 2016 if (ifa->ifa_addr->sa_family == AF_INET) 2017 arp_ifinit(ifp, ifa); 2018 #endif 2019 break; 2020 case SIOCGIFADDR: 2021 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 2022 ifp->if_addrlen); 2023 break; 2024 case SIOCGIFMEDIA: 2025 VLAN_SLOCK(); 2026 if (TRUNK(ifv) != NULL) { 2027 p = PARENT(ifv); 2028 if_ref(p); 2029 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); 2030 if_rele(p); 2031 /* Limit the result to the parent's current config. */ 2032 if (error == 0) { 2033 struct ifmediareq *ifmr; 2034 2035 ifmr = (struct ifmediareq *)data; 2036 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 2037 ifmr->ifm_count = 1; 2038 error = copyout(&ifmr->ifm_current, 2039 ifmr->ifm_ulist, 2040 sizeof(int)); 2041 } 2042 } 2043 } else { 2044 error = EINVAL; 2045 } 2046 VLAN_SUNLOCK(); 2047 break; 2048 2049 case SIOCSIFMEDIA: 2050 error = EINVAL; 2051 break; 2052 2053 case SIOCSIFMTU: 2054 /* 2055 * Set the interface MTU. 2056 */ 2057 VLAN_SLOCK(); 2058 trunk = TRUNK(ifv); 2059 if (trunk != NULL) { 2060 TRUNK_WLOCK(trunk); 2061 if (ifr->ifr_mtu > 2062 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 2063 ifr->ifr_mtu < 2064 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 2065 error = EINVAL; 2066 else 2067 ifp->if_mtu = ifr->ifr_mtu; 2068 TRUNK_WUNLOCK(trunk); 2069 } else 2070 error = EINVAL; 2071 VLAN_SUNLOCK(); 2072 break; 2073 2074 case SIOCSETVLAN: 2075 #ifdef VIMAGE 2076 /* 2077 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN 2078 * interface to be delegated to a jail without allowing the 2079 * jail to change what underlying interface/VID it is 2080 * associated with. We are not entirely convinced that this 2081 * is the right way to accomplish that policy goal. 2082 */ 2083 if (ifp->if_vnet != ifp->if_home_vnet) { 2084 error = EPERM; 2085 break; 2086 } 2087 #endif 2088 error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); 2089 if (error) 2090 break; 2091 if (vlr.vlr_parent[0] == '\0') { 2092 vlan_unconfig(ifp); 2093 break; 2094 } 2095 p = ifunit_ref(vlr.vlr_parent); 2096 if (p == NULL) { 2097 error = ENOENT; 2098 break; 2099 } 2100 #ifdef COMPAT_FREEBSD12 2101 if (vlr.vlr_proto == 0) 2102 vlr.vlr_proto = ETHERTYPE_VLAN; 2103 #endif 2104 oldmtu = ifp->if_mtu; 2105 error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto); 2106 if_rele(p); 2107 2108 /* 2109 * VLAN MTU may change during addition of the vlandev. 2110 * If it did, do network layer specific procedure. 2111 */ 2112 if (ifp->if_mtu != oldmtu) { 2113 #ifdef INET6 2114 nd6_setmtu(ifp); 2115 #endif 2116 rt_updatemtu(ifp); 2117 } 2118 break; 2119 2120 case SIOCGETVLAN: 2121 #ifdef VIMAGE 2122 if (ifp->if_vnet != ifp->if_home_vnet) { 2123 error = EPERM; 2124 break; 2125 } 2126 #endif 2127 bzero(&vlr, sizeof(vlr)); 2128 VLAN_SLOCK(); 2129 if (TRUNK(ifv) != NULL) { 2130 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 2131 sizeof(vlr.vlr_parent)); 2132 vlr.vlr_tag = ifv->ifv_vid; 2133 vlr.vlr_proto = ifv->ifv_proto; 2134 } 2135 VLAN_SUNLOCK(); 2136 error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); 2137 break; 2138 2139 case SIOCSIFFLAGS: 2140 /* 2141 * We should propagate selected flags to the parent, 2142 * e.g., promiscuous mode. 2143 */ 2144 VLAN_XLOCK(); 2145 if (TRUNK(ifv) != NULL) 2146 error = vlan_setflags(ifp, 1); 2147 VLAN_XUNLOCK(); 2148 break; 2149 2150 case SIOCADDMULTI: 2151 case SIOCDELMULTI: 2152 /* 2153 * If we don't have a parent, just remember the membership for 2154 * when we do. 2155 * 2156 * XXX We need the rmlock here to avoid sleeping while 2157 * holding in6_multi_mtx. 2158 */ 2159 VLAN_XLOCK(); 2160 trunk = TRUNK(ifv); 2161 if (trunk != NULL) 2162 error = vlan_setmulti(ifp); 2163 VLAN_XUNLOCK(); 2164 2165 break; 2166 case SIOCGVLANPCP: 2167 #ifdef VIMAGE 2168 if (ifp->if_vnet != ifp->if_home_vnet) { 2169 error = EPERM; 2170 break; 2171 } 2172 #endif 2173 ifr->ifr_vlan_pcp = ifv->ifv_pcp; 2174 break; 2175 2176 case SIOCSVLANPCP: 2177 #ifdef VIMAGE 2178 if (ifp->if_vnet != ifp->if_home_vnet) { 2179 error = EPERM; 2180 break; 2181 } 2182 #endif 2183 error = priv_check(curthread, PRIV_NET_SETVLANPCP); 2184 if (error) 2185 break; 2186 if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) { 2187 error = EINVAL; 2188 break; 2189 } 2190 ifv->ifv_pcp = ifr->ifr_vlan_pcp; 2191 ifp->if_pcp = ifv->ifv_pcp; 2192 /* broadcast event about PCP change */ 2193 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 2194 break; 2195 2196 case SIOCSIFCAP: 2197 VLAN_SLOCK(); 2198 ifv->ifv_capenable = ifr->ifr_reqcap; 2199 trunk = TRUNK(ifv); 2200 if (trunk != NULL) { 2201 struct epoch_tracker et; 2202 2203 NET_EPOCH_ENTER(et); 2204 vlan_capabilities(ifv); 2205 NET_EPOCH_EXIT(et); 2206 } 2207 VLAN_SUNLOCK(); 2208 break; 2209 2210 default: 2211 error = EINVAL; 2212 break; 2213 } 2214 2215 return (error); 2216 } 2217 2218 #if defined(KERN_TLS) || defined(RATELIMIT) 2219 static int 2220 vlan_snd_tag_alloc(struct ifnet *ifp, 2221 union if_snd_tag_alloc_params *params, 2222 struct m_snd_tag **ppmt) 2223 { 2224 struct epoch_tracker et; 2225 const struct if_snd_tag_sw *sw; 2226 struct vlan_snd_tag *vst; 2227 struct ifvlan *ifv; 2228 struct ifnet *parent; 2229 struct m_snd_tag *mst; 2230 int error; 2231 2232 NET_EPOCH_ENTER(et); 2233 ifv = ifp->if_softc; 2234 2235 switch (params->hdr.type) { 2236 #ifdef RATELIMIT 2237 case IF_SND_TAG_TYPE_UNLIMITED: 2238 sw = &vlan_snd_tag_ul_sw; 2239 break; 2240 case IF_SND_TAG_TYPE_RATE_LIMIT: 2241 sw = &vlan_snd_tag_rl_sw; 2242 break; 2243 #endif 2244 #ifdef KERN_TLS 2245 case IF_SND_TAG_TYPE_TLS: 2246 sw = &vlan_snd_tag_tls_sw; 2247 break; 2248 case IF_SND_TAG_TYPE_TLS_RX: 2249 sw = NULL; 2250 if (params->tls_rx.vlan_id != 0) 2251 goto failure; 2252 params->tls_rx.vlan_id = ifv->ifv_vid; 2253 break; 2254 #ifdef RATELIMIT 2255 case IF_SND_TAG_TYPE_TLS_RATE_LIMIT: 2256 sw = &vlan_snd_tag_tls_rl_sw; 2257 break; 2258 #endif 2259 #endif 2260 default: 2261 goto failure; 2262 } 2263 2264 if (ifv->ifv_trunk != NULL) 2265 parent = PARENT(ifv); 2266 else 2267 parent = NULL; 2268 if (parent == NULL) 2269 goto failure; 2270 if_ref(parent); 2271 NET_EPOCH_EXIT(et); 2272 2273 if (sw != NULL) { 2274 vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT); 2275 if (vst == NULL) { 2276 if_rele(parent); 2277 return (ENOMEM); 2278 } 2279 } else 2280 vst = NULL; 2281 2282 error = m_snd_tag_alloc(parent, params, &mst); 2283 if_rele(parent); 2284 if (error) { 2285 free(vst, M_VLAN); 2286 return (error); 2287 } 2288 2289 if (sw != NULL) { 2290 m_snd_tag_init(&vst->com, ifp, sw); 2291 vst->tag = mst; 2292 2293 *ppmt = &vst->com; 2294 } else 2295 *ppmt = mst; 2296 2297 return (0); 2298 failure: 2299 NET_EPOCH_EXIT(et); 2300 return (EOPNOTSUPP); 2301 } 2302 2303 static struct m_snd_tag * 2304 vlan_next_snd_tag(struct m_snd_tag *mst) 2305 { 2306 struct vlan_snd_tag *vst; 2307 2308 vst = mst_to_vst(mst); 2309 return (vst->tag); 2310 } 2311 2312 static int 2313 vlan_snd_tag_modify(struct m_snd_tag *mst, 2314 union if_snd_tag_modify_params *params) 2315 { 2316 struct vlan_snd_tag *vst; 2317 2318 vst = mst_to_vst(mst); 2319 return (vst->tag->sw->snd_tag_modify(vst->tag, params)); 2320 } 2321 2322 static int 2323 vlan_snd_tag_query(struct m_snd_tag *mst, 2324 union if_snd_tag_query_params *params) 2325 { 2326 struct vlan_snd_tag *vst; 2327 2328 vst = mst_to_vst(mst); 2329 return (vst->tag->sw->snd_tag_query(vst->tag, params)); 2330 } 2331 2332 static void 2333 vlan_snd_tag_free(struct m_snd_tag *mst) 2334 { 2335 struct vlan_snd_tag *vst; 2336 2337 vst = mst_to_vst(mst); 2338 m_snd_tag_rele(vst->tag); 2339 free(vst, M_VLAN); 2340 } 2341 2342 static void 2343 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q) 2344 { 2345 /* 2346 * For vlan, we have an indirect 2347 * interface. The caller needs to 2348 * get a ratelimit tag on the actual 2349 * interface the flow will go on. 2350 */ 2351 q->rate_table = NULL; 2352 q->flags = RT_IS_INDIRECT; 2353 q->max_flows = 0; 2354 q->number_of_rates = 0; 2355 } 2356 2357 #endif 2358