xref: /freebsd/sys/net/if_vlan.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34  * Might be extended some day to also handle IEEE 802.1p priority
35  * tagging.  This is sort of sneaky in the implementation, since
36  * we need to pretend to be enough of an Ethernet implementation
37  * to make arp work.  The way we do this is by telling everyone
38  * that we are an Ethernet, and then catch the packets that
39  * ether_output() left on our output queue when it calls
40  * if_start(), rewrite them for use by the real outgoing interface,
41  * and ask it to send them.
42  */
43 
44 #include "opt_route.h"
45 #include "opt_vlan.h"
46 
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/module.h>
53 #include <sys/rwlock.h>
54 #include <sys/queue.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/vimage.h>
60 
61 #include <net/bpf.h>
62 #include <net/ethernet.h>
63 #include <net/if.h>
64 #include <net/if_clone.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_vlan_var.h>
68 #include <net/route.h>
69 #include <net/vnet.h>
70 
71 #define VLANNAME	"vlan"
72 #define	VLAN_DEF_HWIDTH	4
73 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
74 
75 #define	UP_AND_RUNNING(ifp) \
76     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
77 
78 LIST_HEAD(ifvlanhead, ifvlan);
79 
80 struct ifvlantrunk {
81 	struct	ifnet   *parent;	/* parent interface of this trunk */
82 	struct	rwlock	rw;
83 #ifdef VLAN_ARRAY
84 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
85 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
86 #else
87 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
88 	uint16_t	hmask;
89 	uint16_t	hwidth;
90 #endif
91 	int		refcnt;
92 };
93 
94 struct vlan_mc_entry {
95 	struct ether_addr		mc_addr;
96 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
97 };
98 
99 struct	ifvlan {
100 	struct	ifvlantrunk *ifv_trunk;
101 	struct	ifnet *ifv_ifp;
102 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
103 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
104 	int	ifv_pflags;	/* special flags we have set on parent */
105 	struct	ifv_linkmib {
106 		int	ifvm_encaplen;	/* encapsulation length */
107 		int	ifvm_mtufudge;	/* MTU fudged by this much */
108 		int	ifvm_mintu;	/* min transmission unit */
109 		uint16_t ifvm_proto;	/* encapsulation ethertype */
110 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
111 	}	ifv_mib;
112 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
113 #ifndef VLAN_ARRAY
114 	LIST_ENTRY(ifvlan) ifv_list;
115 #endif
116 };
117 #define	ifv_proto	ifv_mib.ifvm_proto
118 #define	ifv_tag		ifv_mib.ifvm_tag
119 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
120 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
121 #define	ifv_mintu	ifv_mib.ifvm_mintu
122 
123 /* Special flags we should propagate to parent. */
124 static struct {
125 	int flag;
126 	int (*func)(struct ifnet *, int);
127 } vlan_pflags[] = {
128 	{IFF_PROMISC, ifpromisc},
129 	{IFF_ALLMULTI, if_allmulti},
130 	{0, NULL}
131 };
132 
133 SYSCTL_DECL(_net_link);
134 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
135 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
136 
137 static int soft_pad = 0;
138 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
139 	   "pad short frames before tagging");
140 
141 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
142 
143 static eventhandler_tag ifdetach_tag;
144 
145 /*
146  * We have a global mutex, that is used to serialize configuration
147  * changes and isn't used in normal packet delivery.
148  *
149  * We also have a per-trunk rwlock, that is locked shared on packet
150  * processing and exclusive when configuration is changed.
151  *
152  * The VLAN_ARRAY substitutes the dynamic hash with a static array
153  * with 4096 entries. In theory this can give a boost in processing,
154  * however on practice it does not. Probably this is because array
155  * is too big to fit into CPU cache.
156  */
157 static struct mtx ifv_mtx;
158 #define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
159 #define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
160 #define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
161 #define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
162 #define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
163 #define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
164 #define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
165 #define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
166 #define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
167 #define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
168 #define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
169 #define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
170 #define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
171 
172 #ifndef VLAN_ARRAY
173 static	void vlan_inithash(struct ifvlantrunk *trunk);
174 static	void vlan_freehash(struct ifvlantrunk *trunk);
175 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
176 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
177 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
178 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
179 	uint16_t tag);
180 #endif
181 static	void trunk_destroy(struct ifvlantrunk *trunk);
182 
183 static	void vlan_start(struct ifnet *ifp);
184 static	void vlan_init(void *foo);
185 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
186 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
187 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
188     int (*func)(struct ifnet *, int));
189 static	int vlan_setflags(struct ifnet *ifp, int status);
190 static	int vlan_setmulti(struct ifnet *ifp);
191 static	int vlan_unconfig(struct ifnet *ifp);
192 static	int vlan_unconfig_locked(struct ifnet *ifp);
193 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
194 static	void vlan_link_state(struct ifnet *ifp, int link);
195 static	void vlan_capabilities(struct ifvlan *ifv);
196 static	void vlan_trunk_capabilities(struct ifnet *ifp);
197 
198 static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
199     const char *, int *);
200 static	int vlan_clone_match(struct if_clone *, const char *);
201 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
202 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
203 
204 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
205 
206 static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
207     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
208 
209 #ifndef VLAN_ARRAY
210 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
211 
212 static void
213 vlan_inithash(struct ifvlantrunk *trunk)
214 {
215 	int i, n;
216 
217 	/*
218 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
219 	 * It is OK in case this function is called before the trunk struct
220 	 * gets hooked up and becomes visible from other threads.
221 	 */
222 
223 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
224 	    ("%s: hash already initialized", __func__));
225 
226 	trunk->hwidth = VLAN_DEF_HWIDTH;
227 	n = 1 << trunk->hwidth;
228 	trunk->hmask = n - 1;
229 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
230 	for (i = 0; i < n; i++)
231 		LIST_INIT(&trunk->hash[i]);
232 }
233 
234 static void
235 vlan_freehash(struct ifvlantrunk *trunk)
236 {
237 #ifdef INVARIANTS
238 	int i;
239 
240 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
241 	for (i = 0; i < (1 << trunk->hwidth); i++)
242 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
243 		    ("%s: hash table not empty", __func__));
244 #endif
245 	free(trunk->hash, M_VLAN);
246 	trunk->hash = NULL;
247 	trunk->hwidth = trunk->hmask = 0;
248 }
249 
250 static int
251 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
252 {
253 	int i, b;
254 	struct ifvlan *ifv2;
255 
256 	TRUNK_LOCK_ASSERT(trunk);
257 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
258 
259 	b = 1 << trunk->hwidth;
260 	i = HASH(ifv->ifv_tag, trunk->hmask);
261 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
262 		if (ifv->ifv_tag == ifv2->ifv_tag)
263 			return (EEXIST);
264 
265 	/*
266 	 * Grow the hash when the number of vlans exceeds half of the number of
267 	 * hash buckets squared. This will make the average linked-list length
268 	 * buckets/2.
269 	 */
270 	if (trunk->refcnt > (b * b) / 2) {
271 		vlan_growhash(trunk, 1);
272 		i = HASH(ifv->ifv_tag, trunk->hmask);
273 	}
274 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
275 	trunk->refcnt++;
276 
277 	return (0);
278 }
279 
280 static int
281 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
282 {
283 	int i, b;
284 	struct ifvlan *ifv2;
285 
286 	TRUNK_LOCK_ASSERT(trunk);
287 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
288 
289 	b = 1 << trunk->hwidth;
290 	i = HASH(ifv->ifv_tag, trunk->hmask);
291 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
292 		if (ifv2 == ifv) {
293 			trunk->refcnt--;
294 			LIST_REMOVE(ifv2, ifv_list);
295 			if (trunk->refcnt < (b * b) / 2)
296 				vlan_growhash(trunk, -1);
297 			return (0);
298 		}
299 
300 	panic("%s: vlan not found\n", __func__);
301 	return (ENOENT); /*NOTREACHED*/
302 }
303 
304 /*
305  * Grow the hash larger or smaller if memory permits.
306  */
307 static void
308 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
309 {
310 	struct ifvlan *ifv;
311 	struct ifvlanhead *hash2;
312 	int hwidth2, i, j, n, n2;
313 
314 	TRUNK_LOCK_ASSERT(trunk);
315 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
316 
317 	if (howmuch == 0) {
318 		/* Harmless yet obvious coding error */
319 		printf("%s: howmuch is 0\n", __func__);
320 		return;
321 	}
322 
323 	hwidth2 = trunk->hwidth + howmuch;
324 	n = 1 << trunk->hwidth;
325 	n2 = 1 << hwidth2;
326 	/* Do not shrink the table below the default */
327 	if (hwidth2 < VLAN_DEF_HWIDTH)
328 		return;
329 
330 	/* M_NOWAIT because we're called with trunk mutex held */
331 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
332 	if (hash2 == NULL) {
333 		printf("%s: out of memory -- hash size not changed\n",
334 		    __func__);
335 		return;		/* We can live with the old hash table */
336 	}
337 	for (j = 0; j < n2; j++)
338 		LIST_INIT(&hash2[j]);
339 	for (i = 0; i < n; i++)
340 		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
341 			LIST_REMOVE(ifv, ifv_list);
342 			j = HASH(ifv->ifv_tag, n2 - 1);
343 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
344 		}
345 	free(trunk->hash, M_VLAN);
346 	trunk->hash = hash2;
347 	trunk->hwidth = hwidth2;
348 	trunk->hmask = n2 - 1;
349 
350 	if (bootverbose)
351 		if_printf(trunk->parent,
352 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
353 }
354 
355 static __inline struct ifvlan *
356 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
357 {
358 	struct ifvlan *ifv;
359 
360 	TRUNK_LOCK_RASSERT(trunk);
361 
362 	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
363 		if (ifv->ifv_tag == tag)
364 			return (ifv);
365 	return (NULL);
366 }
367 
368 #if 0
369 /* Debugging code to view the hashtables. */
370 static void
371 vlan_dumphash(struct ifvlantrunk *trunk)
372 {
373 	int i;
374 	struct ifvlan *ifv;
375 
376 	for (i = 0; i < (1 << trunk->hwidth); i++) {
377 		printf("%d: ", i);
378 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
379 			printf("%s ", ifv->ifv_ifp->if_xname);
380 		printf("\n");
381 	}
382 }
383 #endif /* 0 */
384 #endif /* !VLAN_ARRAY */
385 
386 static void
387 trunk_destroy(struct ifvlantrunk *trunk)
388 {
389 	VLAN_LOCK_ASSERT();
390 
391 	TRUNK_LOCK(trunk);
392 #ifndef VLAN_ARRAY
393 	vlan_freehash(trunk);
394 #endif
395 	trunk->parent->if_vlantrunk = NULL;
396 	TRUNK_UNLOCK(trunk);
397 	TRUNK_LOCK_DESTROY(trunk);
398 	free(trunk, M_VLAN);
399 }
400 
401 /*
402  * Program our multicast filter. What we're actually doing is
403  * programming the multicast filter of the parent. This has the
404  * side effect of causing the parent interface to receive multicast
405  * traffic that it doesn't really want, which ends up being discarded
406  * later by the upper protocol layers. Unfortunately, there's no way
407  * to avoid this: there really is only one physical interface.
408  *
409  * XXX: There is a possible race here if more than one thread is
410  *      modifying the multicast state of the vlan interface at the same time.
411  */
412 static int
413 vlan_setmulti(struct ifnet *ifp)
414 {
415 	struct ifnet		*ifp_p;
416 	struct ifmultiaddr	*ifma, *rifma = NULL;
417 	struct ifvlan		*sc;
418 	struct vlan_mc_entry	*mc;
419 	struct sockaddr_dl	sdl;
420 	int			error;
421 
422 	/*VLAN_LOCK_ASSERT();*/
423 
424 	/* Find the parent. */
425 	sc = ifp->if_softc;
426 	ifp_p = PARENT(sc);
427 
428 	CURVNET_SET_QUIET(ifp_p->if_vnet);
429 
430 	bzero((char *)&sdl, sizeof(sdl));
431 	sdl.sdl_len = sizeof(sdl);
432 	sdl.sdl_family = AF_LINK;
433 	sdl.sdl_index = ifp_p->if_index;
434 	sdl.sdl_type = IFT_ETHER;
435 	sdl.sdl_alen = ETHER_ADDR_LEN;
436 
437 	/* First, remove any existing filter entries. */
438 	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
439 		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
440 		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
441 		if (error)
442 			return (error);
443 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
444 		free(mc, M_VLAN);
445 	}
446 
447 	/* Now program new ones. */
448 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
449 		if (ifma->ifma_addr->sa_family != AF_LINK)
450 			continue;
451 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
452 		if (mc == NULL)
453 			return (ENOMEM);
454 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
455 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
456 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
457 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
458 		    LLADDR(&sdl), ETHER_ADDR_LEN);
459 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
460 		if (error)
461 			return (error);
462 	}
463 
464 	CURVNET_RESTORE();
465 	return (0);
466 }
467 
468 /*
469  * A handler for network interface departure events.
470  * Track departure of trunks here so that we don't access invalid
471  * pointers or whatever if a trunk is ripped from under us, e.g.,
472  * by ejecting its hot-plug card.
473  */
474 static void
475 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
476 {
477 	struct ifvlan *ifv;
478 	int i;
479 
480 	/*
481 	 * Check if it's a trunk interface first of all
482 	 * to avoid needless locking.
483 	 */
484 	if (ifp->if_vlantrunk == NULL)
485 		return;
486 
487 	VLAN_LOCK();
488 	/*
489 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
490 	 * Check trunk pointer after each vlan_unconfig() as it will
491 	 * free it and set to NULL after the last vlan was detached.
492 	 */
493 #ifdef VLAN_ARRAY
494 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
495 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
496 			vlan_unconfig_locked(ifv->ifv_ifp);
497 			if (ifp->if_vlantrunk == NULL)
498 				break;
499 		}
500 #else /* VLAN_ARRAY */
501 restart:
502 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
503 		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
504 			vlan_unconfig_locked(ifv->ifv_ifp);
505 			if (ifp->if_vlantrunk)
506 				goto restart;	/* trunk->hwidth can change */
507 			else
508 				break;
509 		}
510 #endif /* VLAN_ARRAY */
511 	/* Trunk should have been destroyed in vlan_unconfig(). */
512 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
513 	VLAN_UNLOCK();
514 }
515 
516 /*
517  * VLAN support can be loaded as a module.  The only place in the
518  * system that's intimately aware of this is ether_input.  We hook
519  * into this code through vlan_input_p which is defined there and
520  * set here.  Noone else in the system should be aware of this so
521  * we use an explicit reference here.
522  */
523 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
524 
525 /* For if_link_state_change() eyes only... */
526 extern	void (*vlan_link_state_p)(struct ifnet *, int);
527 
528 static int
529 vlan_modevent(module_t mod, int type, void *data)
530 {
531 
532 	switch (type) {
533 	case MOD_LOAD:
534 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
535 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
536 		if (ifdetach_tag == NULL)
537 			return (ENOMEM);
538 		VLAN_LOCK_INIT();
539 		vlan_input_p = vlan_input;
540 		vlan_link_state_p = vlan_link_state;
541 		vlan_trunk_cap_p = vlan_trunk_capabilities;
542 		if_clone_attach(&vlan_cloner);
543 		if (bootverbose)
544 			printf("vlan: initialized, using "
545 #ifdef VLAN_ARRAY
546 			       "full-size arrays"
547 #else
548 			       "hash tables with chaining"
549 #endif
550 
551 			       "\n");
552 		break;
553 	case MOD_UNLOAD:
554 		if_clone_detach(&vlan_cloner);
555 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
556 		vlan_input_p = NULL;
557 		vlan_link_state_p = NULL;
558 		vlan_trunk_cap_p = NULL;
559 		VLAN_LOCK_DESTROY();
560 		if (bootverbose)
561 			printf("vlan: unloaded\n");
562 		break;
563 	default:
564 		return (EOPNOTSUPP);
565 	}
566 	return (0);
567 }
568 
569 static moduledata_t vlan_mod = {
570 	"if_vlan",
571 	vlan_modevent,
572 	0
573 };
574 
575 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
576 MODULE_VERSION(if_vlan, 3);
577 
578 static struct ifnet *
579 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
580 {
581 	INIT_VNET_NET(curvnet);
582 	const char *cp;
583 	struct ifnet *ifp;
584 	int t = 0;
585 
586 	/* Check for <etherif>.<vlan> style interface names. */
587 	IFNET_RLOCK();
588 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
589 		if (ifp->if_type != IFT_ETHER)
590 			continue;
591 		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
592 			continue;
593 		cp = name + strlen(ifp->if_xname);
594 		if (*cp != '.')
595 			continue;
596 		for(; *cp != '\0'; cp++) {
597 			if (*cp < '0' || *cp > '9')
598 				continue;
599 			t = (t * 10) + (*cp - '0');
600 		}
601 		if (tag != NULL)
602 			*tag = t;
603 		break;
604 	}
605 	IFNET_RUNLOCK();
606 
607 	return (ifp);
608 }
609 
610 static int
611 vlan_clone_match(struct if_clone *ifc, const char *name)
612 {
613 	const char *cp;
614 
615 	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
616 		return (1);
617 
618 	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
619 		return (0);
620 	for (cp = name + 4; *cp != '\0'; cp++) {
621 		if (*cp < '0' || *cp > '9')
622 			return (0);
623 	}
624 
625 	return (1);
626 }
627 
628 static int
629 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
630 {
631 	char *dp;
632 	int wildcard;
633 	int unit;
634 	int error;
635 	int tag;
636 	int ethertag;
637 	struct ifvlan *ifv;
638 	struct ifnet *ifp;
639 	struct ifnet *p;
640 	struct vlanreq vlr;
641 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
642 
643 	/*
644 	 * There are 3 (ugh) ways to specify the cloned device:
645 	 * o pass a parameter block with the clone request.
646 	 * o specify parameters in the text of the clone device name
647 	 * o specify no parameters and get an unattached device that
648 	 *   must be configured separately.
649 	 * The first technique is preferred; the latter two are
650 	 * supported for backwards compatibilty.
651 	 */
652 	if (params) {
653 		error = copyin(params, &vlr, sizeof(vlr));
654 		if (error)
655 			return error;
656 		p = ifunit(vlr.vlr_parent);
657 		if (p == NULL)
658 			return ENXIO;
659 		/*
660 		 * Don't let the caller set up a VLAN tag with
661 		 * anything except VLID bits.
662 		 */
663 		if (vlr.vlr_tag & ~EVL_VLID_MASK)
664 			return (EINVAL);
665 		error = ifc_name2unit(name, &unit);
666 		if (error != 0)
667 			return (error);
668 
669 		ethertag = 1;
670 		tag = vlr.vlr_tag;
671 		wildcard = (unit < 0);
672 	} else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
673 		ethertag = 1;
674 		unit = -1;
675 		wildcard = 0;
676 
677 		/*
678 		 * Don't let the caller set up a VLAN tag with
679 		 * anything except VLID bits.
680 		 */
681 		if (tag & ~EVL_VLID_MASK)
682 			return (EINVAL);
683 	} else {
684 		ethertag = 0;
685 
686 		error = ifc_name2unit(name, &unit);
687 		if (error != 0)
688 			return (error);
689 
690 		wildcard = (unit < 0);
691 	}
692 
693 	error = ifc_alloc_unit(ifc, &unit);
694 	if (error != 0)
695 		return (error);
696 
697 	/* In the wildcard case, we need to update the name. */
698 	if (wildcard) {
699 		for (dp = name; *dp != '\0'; dp++);
700 		if (snprintf(dp, len - (dp-name), "%d", unit) >
701 		    len - (dp-name) - 1) {
702 			panic("%s: interface name too long", __func__);
703 		}
704 	}
705 
706 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
707 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
708 	if (ifp == NULL) {
709 		ifc_free_unit(ifc, unit);
710 		free(ifv, M_VLAN);
711 		return (ENOSPC);
712 	}
713 	SLIST_INIT(&ifv->vlan_mc_listhead);
714 
715 	ifp->if_softc = ifv;
716 	/*
717 	 * Set the name manually rather than using if_initname because
718 	 * we don't conform to the default naming convention for interfaces.
719 	 */
720 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
721 	ifp->if_dname = ifc->ifc_name;
722 	ifp->if_dunit = unit;
723 	/* NB: flags are not set here */
724 	ifp->if_linkmib = &ifv->ifv_mib;
725 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
726 	/* NB: mtu is not set here */
727 
728 	ifp->if_init = vlan_init;
729 	ifp->if_start = vlan_start;
730 	ifp->if_ioctl = vlan_ioctl;
731 	ifp->if_snd.ifq_maxlen = ifqmaxlen;
732 	ifp->if_flags = VLAN_IFFLAGS;
733 	ether_ifattach(ifp, eaddr);
734 	/* Now undo some of the damage... */
735 	ifp->if_baudrate = 0;
736 	ifp->if_type = IFT_L2VLAN;
737 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
738 
739 	if (ethertag) {
740 		error = vlan_config(ifv, p, tag);
741 		if (error != 0) {
742 			/*
743 			 * Since we've partialy failed, we need to back
744 			 * out all the way, otherwise userland could get
745 			 * confused.  Thus, we destroy the interface.
746 			 */
747 			ether_ifdetach(ifp);
748 			vlan_unconfig(ifp);
749 			if_free_type(ifp, IFT_ETHER);
750 			ifc_free_unit(ifc, unit);
751 			free(ifv, M_VLAN);
752 
753 			return (error);
754 		}
755 
756 		/* Update flags on the parent, if necessary. */
757 		vlan_setflags(ifp, 1);
758 	}
759 
760 	return (0);
761 }
762 
763 static int
764 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
765 {
766 	struct ifvlan *ifv = ifp->if_softc;
767 	int unit = ifp->if_dunit;
768 
769 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
770 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
771 	if_free_type(ifp, IFT_ETHER);
772 	free(ifv, M_VLAN);
773 	ifc_free_unit(ifc, unit);
774 
775 	return (0);
776 }
777 
778 /*
779  * The ifp->if_init entry point for vlan(4) is a no-op.
780  */
781 static void
782 vlan_init(void *foo __unused)
783 {
784 }
785 
786 /*
787  * The if_start method for vlan(4) interface. It doesn't
788  * raises the IFF_DRV_OACTIVE flag, since it is called
789  * only from IFQ_HANDOFF() macro in ether_output_frame().
790  * If the interface queue is full, and vlan_start() is
791  * not called, the queue would never get emptied and
792  * interface would stall forever.
793  */
794 static void
795 vlan_start(struct ifnet *ifp)
796 {
797 	struct ifvlan *ifv;
798 	struct ifnet *p;
799 	struct mbuf *m;
800 	int error;
801 
802 	ifv = ifp->if_softc;
803 	p = PARENT(ifv);
804 
805 	for (;;) {
806 		IF_DEQUEUE(&ifp->if_snd, m);
807 		if (m == NULL)
808 			break;
809 		BPF_MTAP(ifp, m);
810 
811 		/*
812 		 * Do not run parent's if_start() if the parent is not up,
813 		 * or parent's driver will cause a system crash.
814 		 */
815 		if (!UP_AND_RUNNING(p)) {
816 			m_freem(m);
817 			ifp->if_collisions++;
818 			continue;
819 		}
820 
821 		/*
822 		 * Pad the frame to the minimum size allowed if told to.
823 		 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
824 		 * paragraph C.4.4.3.b.  It can help to work around buggy
825 		 * bridges that violate paragraph C.4.4.3.a from the same
826 		 * document, i.e., fail to pad short frames after untagging.
827 		 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
828 		 * untagging it will produce a 62-byte frame, which is a runt
829 		 * and requires padding.  There are VLAN-enabled network
830 		 * devices that just discard such runts instead or mishandle
831 		 * them somehow.
832 		 */
833 		if (soft_pad) {
834 			static char pad[8];	/* just zeros */
835 			int n;
836 
837 			for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
838 			     n > 0; n -= sizeof(pad))
839 				if (!m_append(m, min(n, sizeof(pad)), pad))
840 					break;
841 
842 			if (n > 0) {
843 				if_printf(ifp, "cannot pad short frame\n");
844 				ifp->if_oerrors++;
845 				m_freem(m);
846 				continue;
847 			}
848 		}
849 
850 		/*
851 		 * If underlying interface can do VLAN tag insertion itself,
852 		 * just pass the packet along. However, we need some way to
853 		 * tell the interface where the packet came from so that it
854 		 * knows how to find the VLAN tag to use, so we attach a
855 		 * packet tag that holds it.
856 		 */
857 		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
858 			m->m_pkthdr.ether_vtag = ifv->ifv_tag;
859 			m->m_flags |= M_VLANTAG;
860 		} else {
861 			m = ether_vlanencap(m, ifv->ifv_tag);
862 			if (m == NULL) {
863 				if_printf(ifp,
864 				    "unable to prepend VLAN header\n");
865 				ifp->if_oerrors++;
866 				continue;
867 			}
868 		}
869 
870 		/*
871 		 * Send it, precisely as ether_output() would have.
872 		 * We are already running at splimp.
873 		 */
874 		error = (p->if_transmit)(p, m);
875 		if (!error)
876 			ifp->if_opackets++;
877 		else
878 			ifp->if_oerrors++;
879 	}
880 }
881 
882 static void
883 vlan_input(struct ifnet *ifp, struct mbuf *m)
884 {
885 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
886 	struct ifvlan *ifv;
887 	uint16_t tag;
888 
889 	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
890 
891 	if (m->m_flags & M_VLANTAG) {
892 		/*
893 		 * Packet is tagged, but m contains a normal
894 		 * Ethernet frame; the tag is stored out-of-band.
895 		 */
896 		tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
897 		m->m_flags &= ~M_VLANTAG;
898 	} else {
899 		struct ether_vlan_header *evl;
900 
901 		/*
902 		 * Packet is tagged in-band as specified by 802.1q.
903 		 */
904 		switch (ifp->if_type) {
905 		case IFT_ETHER:
906 			if (m->m_len < sizeof(*evl) &&
907 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
908 				if_printf(ifp, "cannot pullup VLAN header\n");
909 				return;
910 			}
911 			evl = mtod(m, struct ether_vlan_header *);
912 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
913 
914 			/*
915 			 * Remove the 802.1q header by copying the Ethernet
916 			 * addresses over it and adjusting the beginning of
917 			 * the data in the mbuf.  The encapsulated Ethernet
918 			 * type field is already in place.
919 			 */
920 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
921 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
922 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
923 			break;
924 
925 		default:
926 #ifdef INVARIANTS
927 			panic("%s: %s has unsupported if_type %u",
928 			      __func__, ifp->if_xname, ifp->if_type);
929 #endif
930 			m_freem(m);
931 			ifp->if_noproto++;
932 			return;
933 		}
934 	}
935 
936 	TRUNK_RLOCK(trunk);
937 #ifdef VLAN_ARRAY
938 	ifv = trunk->vlans[tag];
939 #else
940 	ifv = vlan_gethash(trunk, tag);
941 #endif
942 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
943 		TRUNK_RUNLOCK(trunk);
944 		m_freem(m);
945 		ifp->if_noproto++;
946 		return;
947 	}
948 	TRUNK_RUNLOCK(trunk);
949 
950 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
951 	ifv->ifv_ifp->if_ipackets++;
952 
953 	/* Pass it back through the parent's input routine. */
954 	(*ifp->if_input)(ifv->ifv_ifp, m);
955 }
956 
957 static int
958 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
959 {
960 	struct ifvlantrunk *trunk;
961 	struct ifnet *ifp;
962 	int error = 0;
963 
964 	/* VID numbers 0x0 and 0xFFF are reserved */
965 	if (tag == 0 || tag == 0xFFF)
966 		return (EINVAL);
967 	if (p->if_type != IFT_ETHER)
968 		return (EPROTONOSUPPORT);
969 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
970 		return (EPROTONOSUPPORT);
971 	if (ifv->ifv_trunk)
972 		return (EBUSY);
973 
974 	if (p->if_vlantrunk == NULL) {
975 		trunk = malloc(sizeof(struct ifvlantrunk),
976 		    M_VLAN, M_WAITOK | M_ZERO);
977 #ifndef VLAN_ARRAY
978 		vlan_inithash(trunk);
979 #endif
980 		VLAN_LOCK();
981 		if (p->if_vlantrunk != NULL) {
982 			/* A race that that is very unlikely to be hit. */
983 #ifndef VLAN_ARRAY
984 			vlan_freehash(trunk);
985 #endif
986 			free(trunk, M_VLAN);
987 			goto exists;
988 		}
989 		TRUNK_LOCK_INIT(trunk);
990 		TRUNK_LOCK(trunk);
991 		p->if_vlantrunk = trunk;
992 		trunk->parent = p;
993 	} else {
994 		VLAN_LOCK();
995 exists:
996 		trunk = p->if_vlantrunk;
997 		TRUNK_LOCK(trunk);
998 	}
999 
1000 	ifv->ifv_tag = tag;	/* must set this before vlan_inshash() */
1001 #ifdef VLAN_ARRAY
1002 	if (trunk->vlans[tag] != NULL) {
1003 		error = EEXIST;
1004 		goto done;
1005 	}
1006 	trunk->vlans[tag] = ifv;
1007 	trunk->refcnt++;
1008 #else
1009 	error = vlan_inshash(trunk, ifv);
1010 	if (error)
1011 		goto done;
1012 #endif
1013 	ifv->ifv_proto = ETHERTYPE_VLAN;
1014 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1015 	ifv->ifv_mintu = ETHERMIN;
1016 	ifv->ifv_pflags = 0;
1017 
1018 	/*
1019 	 * If the parent supports the VLAN_MTU capability,
1020 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1021 	 * use it.
1022 	 */
1023 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1024 		/*
1025 		 * No need to fudge the MTU since the parent can
1026 		 * handle extended frames.
1027 		 */
1028 		ifv->ifv_mtufudge = 0;
1029 	} else {
1030 		/*
1031 		 * Fudge the MTU by the encapsulation size.  This
1032 		 * makes us incompatible with strictly compliant
1033 		 * 802.1Q implementations, but allows us to use
1034 		 * the feature with other NetBSD implementations,
1035 		 * which might still be useful.
1036 		 */
1037 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1038 	}
1039 
1040 	ifv->ifv_trunk = trunk;
1041 	ifp = ifv->ifv_ifp;
1042 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1043 	ifp->if_baudrate = p->if_baudrate;
1044 	/*
1045 	 * Copy only a selected subset of flags from the parent.
1046 	 * Other flags are none of our business.
1047 	 */
1048 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1049 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1050 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1051 #undef VLAN_COPY_FLAGS
1052 
1053 	ifp->if_link_state = p->if_link_state;
1054 
1055 	vlan_capabilities(ifv);
1056 
1057 	/*
1058 	 * Set up our ``Ethernet address'' to reflect the underlying
1059 	 * physical interface's.
1060 	 */
1061 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
1062 
1063 	/*
1064 	 * Configure multicast addresses that may already be
1065 	 * joined on the vlan device.
1066 	 */
1067 	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1068 
1069 	/* We are ready for operation now. */
1070 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1071 done:
1072 	TRUNK_UNLOCK(trunk);
1073 	if (error == 0)
1074 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag);
1075 	VLAN_UNLOCK();
1076 
1077 	return (error);
1078 }
1079 
1080 static int
1081 vlan_unconfig(struct ifnet *ifp)
1082 {
1083 	int ret;
1084 
1085 	VLAN_LOCK();
1086 	ret = vlan_unconfig_locked(ifp);
1087 	VLAN_UNLOCK();
1088 	return (ret);
1089 }
1090 
1091 static int
1092 vlan_unconfig_locked(struct ifnet *ifp)
1093 {
1094 	struct ifvlantrunk *trunk;
1095 	struct vlan_mc_entry *mc;
1096 	struct ifvlan *ifv;
1097 	struct ifnet  *parent;
1098 	int error;
1099 
1100 	VLAN_LOCK_ASSERT();
1101 
1102 	ifv = ifp->if_softc;
1103 	trunk = ifv->ifv_trunk;
1104 	parent = NULL;
1105 
1106 	if (trunk != NULL) {
1107 		struct sockaddr_dl sdl;
1108 
1109 		TRUNK_LOCK(trunk);
1110 		parent = trunk->parent;
1111 
1112 		/*
1113 		 * Since the interface is being unconfigured, we need to
1114 		 * empty the list of multicast groups that we may have joined
1115 		 * while we were alive from the parent's list.
1116 		 */
1117 		bzero((char *)&sdl, sizeof(sdl));
1118 		sdl.sdl_len = sizeof(sdl);
1119 		sdl.sdl_family = AF_LINK;
1120 		sdl.sdl_index = parent->if_index;
1121 		sdl.sdl_type = IFT_ETHER;
1122 		sdl.sdl_alen = ETHER_ADDR_LEN;
1123 
1124 		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1125 			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1126 			    ETHER_ADDR_LEN);
1127 			error = if_delmulti(parent, (struct sockaddr *)&sdl);
1128 			if (error)
1129 				return (error);
1130 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1131 			free(mc, M_VLAN);
1132 		}
1133 
1134 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1135 #ifdef VLAN_ARRAY
1136 		trunk->vlans[ifv->ifv_tag] = NULL;
1137 		trunk->refcnt--;
1138 #else
1139 		vlan_remhash(trunk, ifv);
1140 #endif
1141 		ifv->ifv_trunk = NULL;
1142 
1143 		/*
1144 		 * Check if we were the last.
1145 		 */
1146 		if (trunk->refcnt == 0) {
1147 			trunk->parent->if_vlantrunk = NULL;
1148 			/*
1149 			 * XXXGL: If some ithread has already entered
1150 			 * vlan_input() and is now blocked on the trunk
1151 			 * lock, then it should preempt us right after
1152 			 * unlock and finish its work. Then we will acquire
1153 			 * lock again in trunk_destroy().
1154 			 */
1155 			TRUNK_UNLOCK(trunk);
1156 			trunk_destroy(trunk);
1157 		} else
1158 			TRUNK_UNLOCK(trunk);
1159 	}
1160 
1161 	/* Disconnect from parent. */
1162 	if (ifv->ifv_pflags)
1163 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1164 	ifp->if_mtu = ETHERMTU;
1165 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1166 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1167 
1168 	/*
1169 	 * Only dispatch an event if vlan was
1170 	 * attached, otherwise there is nothing
1171 	 * to cleanup anyway.
1172 	 */
1173 	if (parent != NULL)
1174 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag);
1175 
1176 	return (0);
1177 }
1178 
1179 /* Handle a reference counted flag that should be set on the parent as well */
1180 static int
1181 vlan_setflag(struct ifnet *ifp, int flag, int status,
1182 	     int (*func)(struct ifnet *, int))
1183 {
1184 	struct ifvlan *ifv;
1185 	int error;
1186 
1187 	/* XXX VLAN_LOCK_ASSERT(); */
1188 
1189 	ifv = ifp->if_softc;
1190 	status = status ? (ifp->if_flags & flag) : 0;
1191 	/* Now "status" contains the flag value or 0 */
1192 
1193 	/*
1194 	 * See if recorded parent's status is different from what
1195 	 * we want it to be.  If it is, flip it.  We record parent's
1196 	 * status in ifv_pflags so that we won't clear parent's flag
1197 	 * we haven't set.  In fact, we don't clear or set parent's
1198 	 * flags directly, but get or release references to them.
1199 	 * That's why we can be sure that recorded flags still are
1200 	 * in accord with actual parent's flags.
1201 	 */
1202 	if (status != (ifv->ifv_pflags & flag)) {
1203 		error = (*func)(PARENT(ifv), status);
1204 		if (error)
1205 			return (error);
1206 		ifv->ifv_pflags &= ~flag;
1207 		ifv->ifv_pflags |= status;
1208 	}
1209 	return (0);
1210 }
1211 
1212 /*
1213  * Handle IFF_* flags that require certain changes on the parent:
1214  * if "status" is true, update parent's flags respective to our if_flags;
1215  * if "status" is false, forcedly clear the flags set on parent.
1216  */
1217 static int
1218 vlan_setflags(struct ifnet *ifp, int status)
1219 {
1220 	int error, i;
1221 
1222 	for (i = 0; vlan_pflags[i].flag; i++) {
1223 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1224 				     status, vlan_pflags[i].func);
1225 		if (error)
1226 			return (error);
1227 	}
1228 	return (0);
1229 }
1230 
1231 /* Inform all vlans that their parent has changed link state */
1232 static void
1233 vlan_link_state(struct ifnet *ifp, int link)
1234 {
1235 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1236 	struct ifvlan *ifv;
1237 	int i;
1238 
1239 	TRUNK_LOCK(trunk);
1240 #ifdef VLAN_ARRAY
1241 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1242 		if (trunk->vlans[i] != NULL) {
1243 			ifv = trunk->vlans[i];
1244 #else
1245 	for (i = 0; i < (1 << trunk->hwidth); i++)
1246 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1247 #endif
1248 			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1249 			if_link_state_change(ifv->ifv_ifp,
1250 			    trunk->parent->if_link_state);
1251 		}
1252 	TRUNK_UNLOCK(trunk);
1253 }
1254 
1255 static void
1256 vlan_capabilities(struct ifvlan *ifv)
1257 {
1258 	struct ifnet *p = PARENT(ifv);
1259 	struct ifnet *ifp = ifv->ifv_ifp;
1260 
1261 	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1262 
1263 	/*
1264 	 * If the parent interface can do checksum offloading
1265 	 * on VLANs, then propagate its hardware-assisted
1266 	 * checksumming flags. Also assert that checksum
1267 	 * offloading requires hardware VLAN tagging.
1268 	 */
1269 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1270 		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1271 
1272 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1273 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1274 		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1275 		ifp->if_hwassist = p->if_hwassist;
1276 	} else {
1277 		ifp->if_capenable = 0;
1278 		ifp->if_hwassist = 0;
1279 	}
1280 }
1281 
1282 static void
1283 vlan_trunk_capabilities(struct ifnet *ifp)
1284 {
1285 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1286 	struct ifvlan *ifv;
1287 	int i;
1288 
1289 	TRUNK_LOCK(trunk);
1290 #ifdef VLAN_ARRAY
1291 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1292 		if (trunk->vlans[i] != NULL) {
1293 			ifv = trunk->vlans[i];
1294 #else
1295 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1296 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1297 #endif
1298 			vlan_capabilities(ifv);
1299 	}
1300 	TRUNK_UNLOCK(trunk);
1301 }
1302 
1303 static int
1304 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1305 {
1306 	struct ifnet *p;
1307 	struct ifreq *ifr;
1308 	struct ifvlan *ifv;
1309 	struct vlanreq vlr;
1310 	int error = 0;
1311 
1312 	ifr = (struct ifreq *)data;
1313 	ifv = ifp->if_softc;
1314 
1315 	switch (cmd) {
1316 	case SIOCGIFMEDIA:
1317 		VLAN_LOCK();
1318 		if (TRUNK(ifv) != NULL) {
1319 			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1320 					SIOCGIFMEDIA, data);
1321 			VLAN_UNLOCK();
1322 			/* Limit the result to the parent's current config. */
1323 			if (error == 0) {
1324 				struct ifmediareq *ifmr;
1325 
1326 				ifmr = (struct ifmediareq *)data;
1327 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1328 					ifmr->ifm_count = 1;
1329 					error = copyout(&ifmr->ifm_current,
1330 						ifmr->ifm_ulist,
1331 						sizeof(int));
1332 				}
1333 			}
1334 		} else {
1335 			VLAN_UNLOCK();
1336 			error = EINVAL;
1337 		}
1338 		break;
1339 
1340 	case SIOCSIFMEDIA:
1341 		error = EINVAL;
1342 		break;
1343 
1344 	case SIOCSIFMTU:
1345 		/*
1346 		 * Set the interface MTU.
1347 		 */
1348 		VLAN_LOCK();
1349 		if (TRUNK(ifv) != NULL) {
1350 			if (ifr->ifr_mtu >
1351 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1352 			    ifr->ifr_mtu <
1353 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1354 				error = EINVAL;
1355 			else
1356 				ifp->if_mtu = ifr->ifr_mtu;
1357 		} else
1358 			error = EINVAL;
1359 		VLAN_UNLOCK();
1360 		break;
1361 
1362 	case SIOCSETVLAN:
1363 		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1364 		if (error)
1365 			break;
1366 		if (vlr.vlr_parent[0] == '\0') {
1367 			vlan_unconfig(ifp);
1368 			break;
1369 		}
1370 		p = ifunit(vlr.vlr_parent);
1371 		if (p == 0) {
1372 			error = ENOENT;
1373 			break;
1374 		}
1375 		/*
1376 		 * Don't let the caller set up a VLAN tag with
1377 		 * anything except VLID bits.
1378 		 */
1379 		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1380 			error = EINVAL;
1381 			break;
1382 		}
1383 		error = vlan_config(ifv, p, vlr.vlr_tag);
1384 		if (error)
1385 			break;
1386 
1387 		/* Update flags on the parent, if necessary. */
1388 		vlan_setflags(ifp, 1);
1389 		break;
1390 
1391 	case SIOCGETVLAN:
1392 		bzero(&vlr, sizeof(vlr));
1393 		VLAN_LOCK();
1394 		if (TRUNK(ifv) != NULL) {
1395 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1396 			    sizeof(vlr.vlr_parent));
1397 			vlr.vlr_tag = ifv->ifv_tag;
1398 		}
1399 		VLAN_UNLOCK();
1400 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1401 		break;
1402 
1403 	case SIOCSIFFLAGS:
1404 		/*
1405 		 * We should propagate selected flags to the parent,
1406 		 * e.g., promiscuous mode.
1407 		 */
1408 		if (TRUNK(ifv) != NULL)
1409 			error = vlan_setflags(ifp, 1);
1410 		break;
1411 
1412 	case SIOCADDMULTI:
1413 	case SIOCDELMULTI:
1414 		/*
1415 		 * If we don't have a parent, just remember the membership for
1416 		 * when we do.
1417 		 */
1418 		if (TRUNK(ifv) != NULL)
1419 			error = vlan_setmulti(ifp);
1420 		break;
1421 
1422 	default:
1423 		error = ether_ioctl(ifp, cmd, data);
1424 	}
1425 
1426 	return (error);
1427 }
1428