xref: /freebsd/sys/net/if_vlan.c (revision bcce9a2b33a8e9187a63f435726a7a801e89f326)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_inet.h"
49 #include "opt_vlan.h"
50 #include "opt_ratelimit.h"
51 
52 #include <sys/param.h>
53 #include <sys/eventhandler.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/module.h>
59 #include <sys/rmlock.h>
60 #include <sys/priv.h>
61 #include <sys/queue.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/sx.h>
67 #include <sys/taskqueue.h>
68 
69 #include <net/bpf.h>
70 #include <net/ethernet.h>
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_clone.h>
74 #include <net/if_dl.h>
75 #include <net/if_types.h>
76 #include <net/if_vlan_var.h>
77 #include <net/vnet.h>
78 
79 #ifdef INET
80 #include <netinet/in.h>
81 #include <netinet/if_ether.h>
82 #endif
83 
84 #define	VLAN_DEF_HWIDTH	4
85 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
86 
87 #define	UP_AND_RUNNING(ifp) \
88     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
89 
90 LIST_HEAD(ifvlanhead, ifvlan);
91 
92 struct ifvlantrunk {
93 	struct	ifnet   *parent;	/* parent interface of this trunk */
94 	struct	rmlock	lock;
95 #ifdef VLAN_ARRAY
96 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
97 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
98 #else
99 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
100 	uint16_t	hmask;
101 	uint16_t	hwidth;
102 #endif
103 	int		refcnt;
104 };
105 
106 /*
107  * This macro provides a facility to iterate over every vlan on a trunk with
108  * the assumption that none will be added/removed during iteration.
109  */
110 #ifdef VLAN_ARRAY
111 #define VLAN_FOREACH(_ifv, _trunk) \
112 	size_t _i; \
113 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
114 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
115 #else /* VLAN_ARRAY */
116 #define VLAN_FOREACH(_ifv, _trunk) \
117 	struct ifvlan *_next; \
118 	size_t _i; \
119 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
120 		LIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
121 #endif /* VLAN_ARRAY */
122 
123 /*
124  * This macro provides a facility to iterate over every vlan on a trunk while
125  * also modifying the number of vlans on the trunk. The iteration continues
126  * until some condition is met or there are no more vlans on the trunk.
127  */
128 #ifdef VLAN_ARRAY
129 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
130 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
131 	size_t _i; \
132 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
133 		if (((_ifv) = (_trunk)->vlans[_i]))
134 #else /* VLAN_ARRAY */
135 /*
136  * The hash table case is more complicated. We allow for the hash table to be
137  * modified (i.e. vlans removed) while we are iterating over it. To allow for
138  * this we must restart the iteration every time we "touch" something during
139  * the iteration, since removal will resize the hash table and invalidate our
140  * current position. If acting on the touched element causes the trunk to be
141  * emptied, then iteration also stops.
142  */
143 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
144 	size_t _i; \
145 	bool _touch = false; \
146 	for (_i = 0; \
147 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
148 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
149 		if (((_ifv) = LIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
150 		    (_touch = true))
151 #endif /* VLAN_ARRAY */
152 
153 struct vlan_mc_entry {
154 	struct sockaddr_dl		mc_addr;
155 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
156 };
157 
158 struct	ifvlan {
159 	struct	ifvlantrunk *ifv_trunk;
160 	struct	ifnet *ifv_ifp;
161 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
162 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
163 	void	*ifv_cookie;
164 	int	ifv_pflags;	/* special flags we have set on parent */
165 	int	ifv_capenable;
166 	struct	ifv_linkmib {
167 		int	ifvm_encaplen;	/* encapsulation length */
168 		int	ifvm_mtufudge;	/* MTU fudged by this much */
169 		int	ifvm_mintu;	/* min transmission unit */
170 		uint16_t ifvm_proto;	/* encapsulation ethertype */
171 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
172               	uint16_t ifvm_vid;	/* VLAN ID */
173 		uint8_t	ifvm_pcp;	/* Priority Code Point (PCP). */
174 	}	ifv_mib;
175 	struct task lladdr_task;
176 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
177 #ifndef VLAN_ARRAY
178 	LIST_ENTRY(ifvlan) ifv_list;
179 #endif
180 };
181 #define	ifv_proto	ifv_mib.ifvm_proto
182 #define	ifv_tag		ifv_mib.ifvm_tag
183 #define	ifv_vid 	ifv_mib.ifvm_vid
184 #define	ifv_pcp		ifv_mib.ifvm_pcp
185 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
186 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
187 #define	ifv_mintu	ifv_mib.ifvm_mintu
188 
189 /* Special flags we should propagate to parent. */
190 static struct {
191 	int flag;
192 	int (*func)(struct ifnet *, int);
193 } vlan_pflags[] = {
194 	{IFF_PROMISC, ifpromisc},
195 	{IFF_ALLMULTI, if_allmulti},
196 	{0, NULL}
197 };
198 
199 extern int vlan_mtag_pcp;
200 
201 static const char vlanname[] = "vlan";
202 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
203 
204 static eventhandler_tag ifdetach_tag;
205 static eventhandler_tag iflladdr_tag;
206 
207 /*
208  * if_vlan uses two module-level locks to allow concurrent modification of vlan
209  * interfaces and (mostly) allow for vlans to be destroyed while they are being
210  * used for tx/rx. To accomplish this in a way that has acceptable performance
211  * and cooperation with other parts of the network stack there is a
212  * non-sleepable rmlock(9) and an sx(9). Both locks are exclusively acquired
213  * when destroying a vlan interface, i.e. when the if_vlantrunk field of struct
214  * ifnet is de-allocated and NULL'd. Thus a reader holding either lock has a
215  * guarantee that the struct ifvlantrunk references a valid vlan trunk.
216  *
217  * The performance-sensitive paths that warrant using the rmlock(9) are
218  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
219  * existence using if_vlantrunk, and being in the network tx/rx paths the use
220  * of an rmlock(9) gives a measureable improvement in performance.
221  *
222  * The reason for having an sx(9) is mostly because there are still areas that
223  * must be sleepable and also have safe concurrent access to a vlan interface.
224  * Since the sx(9) exists, it is used by default in most paths unless sleeping
225  * is not permitted, or if it is not clear whether sleeping is permitted.
226  *
227  * Note that despite these protections, there is still an inherent race in the
228  * destruction of vlans since there's no guarantee that the ifnet hasn't been
229  * freed/reused when the tx/rx functions are called by the stack. This can only
230  * be fixed by addressing ifnet's lifetime issues.
231  */
232 #define _VLAN_RM_ID ifv_rm_lock
233 #define _VLAN_SX_ID ifv_sx
234 
235 static struct rmlock _VLAN_RM_ID;
236 static struct sx _VLAN_SX_ID;
237 
238 #define VLAN_LOCKING_INIT() \
239 	rm_init(&_VLAN_RM_ID, "vlan_rm"); \
240 	sx_init(&_VLAN_SX_ID, "vlan_sx")
241 
242 #define VLAN_LOCKING_DESTROY() \
243 	rm_destroy(&_VLAN_RM_ID); \
244 	sx_destroy(&_VLAN_SX_ID)
245 
246 #define	_VLAN_RM_TRACKER		_vlan_rm_tracker
247 #define	VLAN_RLOCK()			rm_rlock(&_VLAN_RM_ID, \
248 					    &_VLAN_RM_TRACKER)
249 #define	VLAN_RUNLOCK()			rm_runlock(&_VLAN_RM_ID, \
250 					    &_VLAN_RM_TRACKER)
251 #define	VLAN_WLOCK()			rm_wlock(&_VLAN_RM_ID)
252 #define	VLAN_WUNLOCK()			rm_wunlock(&_VLAN_RM_ID)
253 #define	VLAN_RLOCK_ASSERT()		rm_assert(&_VLAN_RM_ID, RA_RLOCKED)
254 #define	VLAN_WLOCK_ASSERT()		rm_assert(&_VLAN_RM_ID, RA_WLOCKED)
255 #define	VLAN_RWLOCK_ASSERT()		rm_assert(&_VLAN_RM_ID, RA_LOCKED)
256 #define	VLAN_LOCK_READER		struct rm_priotracker _VLAN_RM_TRACKER
257 
258 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
259 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
260 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
261 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
262 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
263 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
264 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
265 
266 
267 /*
268  * We also have a per-trunk rmlock(9), that is locked shared on packet
269  * processing and exclusive when configuration is changed. Note: This should
270  * only be acquired while there is a shared lock on either of the global locks
271  * via VLAN_SLOCK or VLAN_RLOCK. Thus, an exclusive lock on the global locks
272  * makes a call to TRUNK_RLOCK/TRUNK_WLOCK technically superfluous.
273  */
274 #define	_TRUNK_RM_TRACKER		_trunk_rm_tracker
275 #define	TRUNK_LOCK_INIT(trunk)		rm_init(&(trunk)->lock, vlanname)
276 #define	TRUNK_LOCK_DESTROY(trunk)	rm_destroy(&(trunk)->lock)
277 #define	TRUNK_RLOCK(trunk)		rm_rlock(&(trunk)->lock, \
278     &_TRUNK_RM_TRACKER)
279 #define	TRUNK_WLOCK(trunk)		rm_wlock(&(trunk)->lock)
280 #define	TRUNK_RUNLOCK(trunk)		rm_runlock(&(trunk)->lock, \
281     &_TRUNK_RM_TRACKER)
282 #define	TRUNK_WUNLOCK(trunk)		rm_wunlock(&(trunk)->lock)
283 #define	TRUNK_RLOCK_ASSERT(trunk)	rm_assert(&(trunk)->lock, RA_RLOCKED)
284 #define	TRUNK_LOCK_ASSERT(trunk)	rm_assert(&(trunk)->lock, RA_LOCKED)
285 #define	TRUNK_WLOCK_ASSERT(trunk)	rm_assert(&(trunk)->lock, RA_WLOCKED)
286 #define	TRUNK_LOCK_READER		struct rm_priotracker _TRUNK_RM_TRACKER
287 
288 /*
289  * The VLAN_ARRAY substitutes the dynamic hash with a static array
290  * with 4096 entries. In theory this can give a boost in processing,
291  * however in practice it does not. Probably this is because the array
292  * is too big to fit into CPU cache.
293  */
294 #ifndef VLAN_ARRAY
295 static	void vlan_inithash(struct ifvlantrunk *trunk);
296 static	void vlan_freehash(struct ifvlantrunk *trunk);
297 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
298 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
299 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
300 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
301 	uint16_t vid);
302 #endif
303 static	void trunk_destroy(struct ifvlantrunk *trunk);
304 
305 static	void vlan_init(void *foo);
306 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
307 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
308 #ifdef RATELIMIT
309 static	int vlan_snd_tag_alloc(struct ifnet *,
310     union if_snd_tag_alloc_params *, struct m_snd_tag **);
311 #endif
312 static	void vlan_qflush(struct ifnet *ifp);
313 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
314     int (*func)(struct ifnet *, int));
315 static	int vlan_setflags(struct ifnet *ifp, int status);
316 static	int vlan_setmulti(struct ifnet *ifp);
317 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
318 static	void vlan_unconfig(struct ifnet *ifp);
319 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
320 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
321 static	void vlan_link_state(struct ifnet *ifp);
322 static	void vlan_capabilities(struct ifvlan *ifv);
323 static	void vlan_trunk_capabilities(struct ifnet *ifp);
324 
325 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
326 static	int vlan_clone_match(struct if_clone *, const char *);
327 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
328 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
329 
330 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
331 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
332 
333 static  void vlan_lladdr_fn(void *arg, int pending);
334 
335 static struct if_clone *vlan_cloner;
336 
337 #ifdef VIMAGE
338 static VNET_DEFINE(struct if_clone *, vlan_cloner);
339 #define	V_vlan_cloner	VNET(vlan_cloner)
340 #endif
341 
342 #ifndef VLAN_ARRAY
343 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
344 
345 static void
346 vlan_inithash(struct ifvlantrunk *trunk)
347 {
348 	int i, n;
349 
350 	/*
351 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
352 	 * It is OK in case this function is called before the trunk struct
353 	 * gets hooked up and becomes visible from other threads.
354 	 */
355 
356 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
357 	    ("%s: hash already initialized", __func__));
358 
359 	trunk->hwidth = VLAN_DEF_HWIDTH;
360 	n = 1 << trunk->hwidth;
361 	trunk->hmask = n - 1;
362 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
363 	for (i = 0; i < n; i++)
364 		LIST_INIT(&trunk->hash[i]);
365 }
366 
367 static void
368 vlan_freehash(struct ifvlantrunk *trunk)
369 {
370 #ifdef INVARIANTS
371 	int i;
372 
373 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
374 	for (i = 0; i < (1 << trunk->hwidth); i++)
375 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
376 		    ("%s: hash table not empty", __func__));
377 #endif
378 	free(trunk->hash, M_VLAN);
379 	trunk->hash = NULL;
380 	trunk->hwidth = trunk->hmask = 0;
381 }
382 
383 static int
384 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
385 {
386 	int i, b;
387 	struct ifvlan *ifv2;
388 
389 	TRUNK_WLOCK_ASSERT(trunk);
390 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
391 
392 	b = 1 << trunk->hwidth;
393 	i = HASH(ifv->ifv_vid, trunk->hmask);
394 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
395 		if (ifv->ifv_vid == ifv2->ifv_vid)
396 			return (EEXIST);
397 
398 	/*
399 	 * Grow the hash when the number of vlans exceeds half of the number of
400 	 * hash buckets squared. This will make the average linked-list length
401 	 * buckets/2.
402 	 */
403 	if (trunk->refcnt > (b * b) / 2) {
404 		vlan_growhash(trunk, 1);
405 		i = HASH(ifv->ifv_vid, trunk->hmask);
406 	}
407 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
408 	trunk->refcnt++;
409 
410 	return (0);
411 }
412 
413 static int
414 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
415 {
416 	int i, b;
417 	struct ifvlan *ifv2;
418 
419 	TRUNK_WLOCK_ASSERT(trunk);
420 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
421 
422 	b = 1 << trunk->hwidth;
423 	i = HASH(ifv->ifv_vid, trunk->hmask);
424 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
425 		if (ifv2 == ifv) {
426 			trunk->refcnt--;
427 			LIST_REMOVE(ifv2, ifv_list);
428 			if (trunk->refcnt < (b * b) / 2)
429 				vlan_growhash(trunk, -1);
430 			return (0);
431 		}
432 
433 	panic("%s: vlan not found\n", __func__);
434 	return (ENOENT); /*NOTREACHED*/
435 }
436 
437 /*
438  * Grow the hash larger or smaller if memory permits.
439  */
440 static void
441 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
442 {
443 	struct ifvlan *ifv;
444 	struct ifvlanhead *hash2;
445 	int hwidth2, i, j, n, n2;
446 
447 	TRUNK_WLOCK_ASSERT(trunk);
448 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
449 
450 	if (howmuch == 0) {
451 		/* Harmless yet obvious coding error */
452 		printf("%s: howmuch is 0\n", __func__);
453 		return;
454 	}
455 
456 	hwidth2 = trunk->hwidth + howmuch;
457 	n = 1 << trunk->hwidth;
458 	n2 = 1 << hwidth2;
459 	/* Do not shrink the table below the default */
460 	if (hwidth2 < VLAN_DEF_HWIDTH)
461 		return;
462 
463 	/* M_NOWAIT because we're called with trunk mutex held */
464 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
465 	if (hash2 == NULL) {
466 		printf("%s: out of memory -- hash size not changed\n",
467 		    __func__);
468 		return;		/* We can live with the old hash table */
469 	}
470 	for (j = 0; j < n2; j++)
471 		LIST_INIT(&hash2[j]);
472 	for (i = 0; i < n; i++)
473 		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
474 			LIST_REMOVE(ifv, ifv_list);
475 			j = HASH(ifv->ifv_vid, n2 - 1);
476 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
477 		}
478 	free(trunk->hash, M_VLAN);
479 	trunk->hash = hash2;
480 	trunk->hwidth = hwidth2;
481 	trunk->hmask = n2 - 1;
482 
483 	if (bootverbose)
484 		if_printf(trunk->parent,
485 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
486 }
487 
488 static __inline struct ifvlan *
489 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
490 {
491 	struct ifvlan *ifv;
492 
493 	TRUNK_RLOCK_ASSERT(trunk);
494 
495 	LIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
496 		if (ifv->ifv_vid == vid)
497 			return (ifv);
498 	return (NULL);
499 }
500 
501 #if 0
502 /* Debugging code to view the hashtables. */
503 static void
504 vlan_dumphash(struct ifvlantrunk *trunk)
505 {
506 	int i;
507 	struct ifvlan *ifv;
508 
509 	for (i = 0; i < (1 << trunk->hwidth); i++) {
510 		printf("%d: ", i);
511 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
512 			printf("%s ", ifv->ifv_ifp->if_xname);
513 		printf("\n");
514 	}
515 }
516 #endif /* 0 */
517 #else
518 
519 static __inline struct ifvlan *
520 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
521 {
522 
523 	return trunk->vlans[vid];
524 }
525 
526 static __inline int
527 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
528 {
529 
530 	if (trunk->vlans[ifv->ifv_vid] != NULL)
531 		return EEXIST;
532 	trunk->vlans[ifv->ifv_vid] = ifv;
533 	trunk->refcnt++;
534 
535 	return (0);
536 }
537 
538 static __inline int
539 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
540 {
541 
542 	trunk->vlans[ifv->ifv_vid] = NULL;
543 	trunk->refcnt--;
544 
545 	return (0);
546 }
547 
548 static __inline void
549 vlan_freehash(struct ifvlantrunk *trunk)
550 {
551 }
552 
553 static __inline void
554 vlan_inithash(struct ifvlantrunk *trunk)
555 {
556 }
557 
558 #endif /* !VLAN_ARRAY */
559 
560 static void
561 trunk_destroy(struct ifvlantrunk *trunk)
562 {
563 	VLAN_XLOCK_ASSERT();
564 	VLAN_WLOCK_ASSERT();
565 
566 	vlan_freehash(trunk);
567 	trunk->parent->if_vlantrunk = NULL;
568 	TRUNK_LOCK_DESTROY(trunk);
569 	if_rele(trunk->parent);
570 	free(trunk, M_VLAN);
571 }
572 
573 /*
574  * Program our multicast filter. What we're actually doing is
575  * programming the multicast filter of the parent. This has the
576  * side effect of causing the parent interface to receive multicast
577  * traffic that it doesn't really want, which ends up being discarded
578  * later by the upper protocol layers. Unfortunately, there's no way
579  * to avoid this: there really is only one physical interface.
580  */
581 static int
582 vlan_setmulti(struct ifnet *ifp)
583 {
584 	struct ifnet		*ifp_p;
585 	struct ifmultiaddr	*ifma;
586 	struct ifvlan		*sc;
587 	struct vlan_mc_entry	*mc;
588 	int			error;
589 
590 	/*
591 	 * XXX This stupidly needs the rmlock to avoid sleeping while holding
592 	 * the in6_multi_mtx (see in6_mc_join_locked).
593 	 */
594 	VLAN_RWLOCK_ASSERT();
595 
596 	/* Find the parent. */
597 	sc = ifp->if_softc;
598 	TRUNK_WLOCK_ASSERT(TRUNK(sc));
599 	ifp_p = PARENT(sc);
600 
601 	CURVNET_SET_QUIET(ifp_p->if_vnet);
602 
603 	/* First, remove any existing filter entries. */
604 	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
605 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
606 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
607 		free(mc, M_VLAN);
608 	}
609 
610 	/* Now program new ones. */
611 	IF_ADDR_WLOCK(ifp);
612 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
613 		if (ifma->ifma_addr->sa_family != AF_LINK)
614 			continue;
615 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
616 		if (mc == NULL) {
617 			IF_ADDR_WUNLOCK(ifp);
618 			return (ENOMEM);
619 		}
620 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
621 		mc->mc_addr.sdl_index = ifp_p->if_index;
622 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
623 	}
624 	IF_ADDR_WUNLOCK(ifp);
625 	SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
626 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
627 		    NULL);
628 		if (error)
629 			return (error);
630 	}
631 
632 	CURVNET_RESTORE();
633 	return (0);
634 }
635 
636 /*
637  * A handler for parent interface link layer address changes.
638  * If the parent interface link layer address is changed we
639  * should also change it on all children vlans.
640  */
641 static void
642 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
643 {
644 	struct ifvlan *ifv;
645 	struct ifnet *ifv_ifp;
646 	struct ifvlantrunk *trunk;
647 	struct sockaddr_dl *sdl;
648 	VLAN_LOCK_READER;
649 
650 	/* Need the rmlock since this is run on taskqueue_swi. */
651 	VLAN_RLOCK();
652 	trunk = ifp->if_vlantrunk;
653 	if (trunk == NULL) {
654 		VLAN_RUNLOCK();
655 		return;
656 	}
657 
658 	/*
659 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
660 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
661 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
662 	 */
663 	TRUNK_WLOCK(trunk);
664 	VLAN_FOREACH(ifv, trunk) {
665 		/*
666 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
667 		 * to actually call if_setlladdr. if_setlladdr needs to
668 		 * be deferred to a taskqueue because it will call into
669 		 * the if_vlan ioctl path and try to acquire the global
670 		 * lock.
671 		 */
672 		ifv_ifp = ifv->ifv_ifp;
673 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
674 		    ifp->if_addrlen);
675 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
676 		sdl->sdl_alen = ifp->if_addrlen;
677 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
678 	}
679 	TRUNK_WUNLOCK(trunk);
680 	VLAN_RUNLOCK();
681 }
682 
683 /*
684  * A handler for network interface departure events.
685  * Track departure of trunks here so that we don't access invalid
686  * pointers or whatever if a trunk is ripped from under us, e.g.,
687  * by ejecting its hot-plug card.  However, if an ifnet is simply
688  * being renamed, then there's no need to tear down the state.
689  */
690 static void
691 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
692 {
693 	struct ifvlan *ifv;
694 	struct ifvlantrunk *trunk;
695 
696 	/* If the ifnet is just being renamed, don't do anything. */
697 	if (ifp->if_flags & IFF_RENAMING)
698 		return;
699 	VLAN_XLOCK();
700 	trunk = ifp->if_vlantrunk;
701 	if (trunk == NULL) {
702 		VLAN_XUNLOCK();
703 		return;
704 	}
705 
706 	/*
707 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
708 	 * Check trunk pointer after each vlan_unconfig() as it will
709 	 * free it and set to NULL after the last vlan was detached.
710 	 */
711 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
712 	    ifp->if_vlantrunk == NULL)
713 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
714 
715 	/* Trunk should have been destroyed in vlan_unconfig(). */
716 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
717 	VLAN_XUNLOCK();
718 }
719 
720 /*
721  * Return the trunk device for a virtual interface.
722  */
723 static struct ifnet  *
724 vlan_trunkdev(struct ifnet *ifp)
725 {
726 	struct ifvlan *ifv;
727 	VLAN_LOCK_READER;
728 
729 	if (ifp->if_type != IFT_L2VLAN)
730 		return (NULL);
731 
732 	/* Not clear if callers are sleepable, so acquire the rmlock. */
733 	VLAN_RLOCK();
734 	ifv = ifp->if_softc;
735 	ifp = NULL;
736 	if (ifv->ifv_trunk)
737 		ifp = PARENT(ifv);
738 	VLAN_RUNLOCK();
739 	return (ifp);
740 }
741 
742 /*
743  * Return the 12-bit VLAN VID for this interface, for use by external
744  * components such as Infiniband.
745  *
746  * XXXRW: Note that the function name here is historical; it should be named
747  * vlan_vid().
748  */
749 static int
750 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
751 {
752 	struct ifvlan *ifv;
753 
754 	if (ifp->if_type != IFT_L2VLAN)
755 		return (EINVAL);
756 	ifv = ifp->if_softc;
757 	*vidp = ifv->ifv_vid;
758 	return (0);
759 }
760 
761 /*
762  * Return a driver specific cookie for this interface.  Synchronization
763  * with setcookie must be provided by the driver.
764  */
765 static void *
766 vlan_cookie(struct ifnet *ifp)
767 {
768 	struct ifvlan *ifv;
769 
770 	if (ifp->if_type != IFT_L2VLAN)
771 		return (NULL);
772 	ifv = ifp->if_softc;
773 	return (ifv->ifv_cookie);
774 }
775 
776 /*
777  * Store a cookie in our softc that drivers can use to store driver
778  * private per-instance data in.
779  */
780 static int
781 vlan_setcookie(struct ifnet *ifp, void *cookie)
782 {
783 	struct ifvlan *ifv;
784 
785 	if (ifp->if_type != IFT_L2VLAN)
786 		return (EINVAL);
787 	ifv = ifp->if_softc;
788 	ifv->ifv_cookie = cookie;
789 	return (0);
790 }
791 
792 /*
793  * Return the vlan device present at the specific VID.
794  */
795 static struct ifnet *
796 vlan_devat(struct ifnet *ifp, uint16_t vid)
797 {
798 	struct ifvlantrunk *trunk;
799 	struct ifvlan *ifv;
800 	VLAN_LOCK_READER;
801 	TRUNK_LOCK_READER;
802 
803 	/* Not clear if callers are sleepable, so acquire the rmlock. */
804 	VLAN_RLOCK();
805 	trunk = ifp->if_vlantrunk;
806 	if (trunk == NULL) {
807 		VLAN_RUNLOCK();
808 		return (NULL);
809 	}
810 	ifp = NULL;
811 	TRUNK_RLOCK(trunk);
812 	ifv = vlan_gethash(trunk, vid);
813 	if (ifv)
814 		ifp = ifv->ifv_ifp;
815 	TRUNK_RUNLOCK(trunk);
816 	VLAN_RUNLOCK();
817 	return (ifp);
818 }
819 
820 /*
821  * Recalculate the cached VLAN tag exposed via the MIB.
822  */
823 static void
824 vlan_tag_recalculate(struct ifvlan *ifv)
825 {
826 
827        ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0);
828 }
829 
830 /*
831  * VLAN support can be loaded as a module.  The only place in the
832  * system that's intimately aware of this is ether_input.  We hook
833  * into this code through vlan_input_p which is defined there and
834  * set here.  No one else in the system should be aware of this so
835  * we use an explicit reference here.
836  */
837 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
838 
839 /* For if_link_state_change() eyes only... */
840 extern	void (*vlan_link_state_p)(struct ifnet *);
841 
842 static int
843 vlan_modevent(module_t mod, int type, void *data)
844 {
845 
846 	switch (type) {
847 	case MOD_LOAD:
848 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
849 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
850 		if (ifdetach_tag == NULL)
851 			return (ENOMEM);
852 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
853 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
854 		if (iflladdr_tag == NULL)
855 			return (ENOMEM);
856 		VLAN_LOCKING_INIT();
857 		vlan_input_p = vlan_input;
858 		vlan_link_state_p = vlan_link_state;
859 		vlan_trunk_cap_p = vlan_trunk_capabilities;
860 		vlan_trunkdev_p = vlan_trunkdev;
861 		vlan_cookie_p = vlan_cookie;
862 		vlan_setcookie_p = vlan_setcookie;
863 		vlan_tag_p = vlan_tag;
864 		vlan_devat_p = vlan_devat;
865 #ifndef VIMAGE
866 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
867 		    vlan_clone_create, vlan_clone_destroy);
868 #endif
869 		if (bootverbose)
870 			printf("vlan: initialized, using "
871 #ifdef VLAN_ARRAY
872 			       "full-size arrays"
873 #else
874 			       "hash tables with chaining"
875 #endif
876 
877 			       "\n");
878 		break;
879 	case MOD_UNLOAD:
880 #ifndef VIMAGE
881 		if_clone_detach(vlan_cloner);
882 #endif
883 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
884 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
885 		vlan_input_p = NULL;
886 		vlan_link_state_p = NULL;
887 		vlan_trunk_cap_p = NULL;
888 		vlan_trunkdev_p = NULL;
889 		vlan_tag_p = NULL;
890 		vlan_cookie_p = NULL;
891 		vlan_setcookie_p = NULL;
892 		vlan_devat_p = NULL;
893 		VLAN_LOCKING_DESTROY();
894 		if (bootverbose)
895 			printf("vlan: unloaded\n");
896 		break;
897 	default:
898 		return (EOPNOTSUPP);
899 	}
900 	return (0);
901 }
902 
903 static moduledata_t vlan_mod = {
904 	"if_vlan",
905 	vlan_modevent,
906 	0
907 };
908 
909 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
910 MODULE_VERSION(if_vlan, 3);
911 
912 #ifdef VIMAGE
913 static void
914 vnet_vlan_init(const void *unused __unused)
915 {
916 
917 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
918 		    vlan_clone_create, vlan_clone_destroy);
919 	V_vlan_cloner = vlan_cloner;
920 }
921 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
922     vnet_vlan_init, NULL);
923 
924 static void
925 vnet_vlan_uninit(const void *unused __unused)
926 {
927 
928 	if_clone_detach(V_vlan_cloner);
929 }
930 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
931     vnet_vlan_uninit, NULL);
932 #endif
933 
934 /*
935  * Check for <etherif>.<vlan> style interface names.
936  */
937 static struct ifnet *
938 vlan_clone_match_ethervid(const char *name, int *vidp)
939 {
940 	char ifname[IFNAMSIZ];
941 	char *cp;
942 	struct ifnet *ifp;
943 	int vid;
944 
945 	strlcpy(ifname, name, IFNAMSIZ);
946 	if ((cp = strchr(ifname, '.')) == NULL)
947 		return (NULL);
948 	*cp = '\0';
949 	if ((ifp = ifunit_ref(ifname)) == NULL)
950 		return (NULL);
951 	/* Parse VID. */
952 	if (*++cp == '\0') {
953 		if_rele(ifp);
954 		return (NULL);
955 	}
956 	vid = 0;
957 	for(; *cp >= '0' && *cp <= '9'; cp++)
958 		vid = (vid * 10) + (*cp - '0');
959 	if (*cp != '\0') {
960 		if_rele(ifp);
961 		return (NULL);
962 	}
963 	if (vidp != NULL)
964 		*vidp = vid;
965 
966 	return (ifp);
967 }
968 
969 static int
970 vlan_clone_match(struct if_clone *ifc, const char *name)
971 {
972 	const char *cp;
973 
974 	if (vlan_clone_match_ethervid(name, NULL) != NULL)
975 		return (1);
976 
977 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
978 		return (0);
979 	for (cp = name + 4; *cp != '\0'; cp++) {
980 		if (*cp < '0' || *cp > '9')
981 			return (0);
982 	}
983 
984 	return (1);
985 }
986 
987 static int
988 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
989 {
990 	char *dp;
991 	int wildcard;
992 	int unit;
993 	int error;
994 	int vid;
995 	struct ifvlan *ifv;
996 	struct ifnet *ifp;
997 	struct ifnet *p;
998 	struct ifaddr *ifa;
999 	struct sockaddr_dl *sdl;
1000 	struct vlanreq vlr;
1001 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
1002 
1003 	/*
1004 	 * There are 3 (ugh) ways to specify the cloned device:
1005 	 * o pass a parameter block with the clone request.
1006 	 * o specify parameters in the text of the clone device name
1007 	 * o specify no parameters and get an unattached device that
1008 	 *   must be configured separately.
1009 	 * The first technique is preferred; the latter two are
1010 	 * supported for backwards compatibility.
1011 	 *
1012 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1013 	 * called for.
1014 	 */
1015 	if (params) {
1016 		error = copyin(params, &vlr, sizeof(vlr));
1017 		if (error)
1018 			return error;
1019 		p = ifunit_ref(vlr.vlr_parent);
1020 		if (p == NULL)
1021 			return (ENXIO);
1022 		error = ifc_name2unit(name, &unit);
1023 		if (error != 0) {
1024 			if_rele(p);
1025 			return (error);
1026 		}
1027 		vid = vlr.vlr_tag;
1028 		wildcard = (unit < 0);
1029 	} else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) {
1030 		unit = -1;
1031 		wildcard = 0;
1032 	} else {
1033 		p = NULL;
1034 		error = ifc_name2unit(name, &unit);
1035 		if (error != 0)
1036 			return (error);
1037 
1038 		wildcard = (unit < 0);
1039 	}
1040 
1041 	error = ifc_alloc_unit(ifc, &unit);
1042 	if (error != 0) {
1043 		if (p != NULL)
1044 			if_rele(p);
1045 		return (error);
1046 	}
1047 
1048 	/* In the wildcard case, we need to update the name. */
1049 	if (wildcard) {
1050 		for (dp = name; *dp != '\0'; dp++);
1051 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1052 		    len - (dp-name) - 1) {
1053 			panic("%s: interface name too long", __func__);
1054 		}
1055 	}
1056 
1057 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1058 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1059 	if (ifp == NULL) {
1060 		ifc_free_unit(ifc, unit);
1061 		free(ifv, M_VLAN);
1062 		if (p != NULL)
1063 			if_rele(p);
1064 		return (ENOSPC);
1065 	}
1066 	SLIST_INIT(&ifv->vlan_mc_listhead);
1067 	ifp->if_softc = ifv;
1068 	/*
1069 	 * Set the name manually rather than using if_initname because
1070 	 * we don't conform to the default naming convention for interfaces.
1071 	 */
1072 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1073 	ifp->if_dname = vlanname;
1074 	ifp->if_dunit = unit;
1075 	/* NB: flags are not set here */
1076 	ifp->if_linkmib = &ifv->ifv_mib;
1077 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
1078 	/* NB: mtu is not set here */
1079 
1080 	ifp->if_init = vlan_init;
1081 	ifp->if_transmit = vlan_transmit;
1082 	ifp->if_qflush = vlan_qflush;
1083 	ifp->if_ioctl = vlan_ioctl;
1084 #ifdef RATELIMIT
1085 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1086 #endif
1087 	ifp->if_flags = VLAN_IFFLAGS;
1088 	ether_ifattach(ifp, eaddr);
1089 	/* Now undo some of the damage... */
1090 	ifp->if_baudrate = 0;
1091 	ifp->if_type = IFT_L2VLAN;
1092 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1093 	ifa = ifp->if_addr;
1094 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1095 	sdl->sdl_type = IFT_L2VLAN;
1096 
1097 	if (p != NULL) {
1098 		error = vlan_config(ifv, p, vid);
1099 		if_rele(p);
1100 		if (error != 0) {
1101 			/*
1102 			 * Since we've partially failed, we need to back
1103 			 * out all the way, otherwise userland could get
1104 			 * confused.  Thus, we destroy the interface.
1105 			 */
1106 			ether_ifdetach(ifp);
1107 			vlan_unconfig(ifp);
1108 			if_free(ifp);
1109 			ifc_free_unit(ifc, unit);
1110 			free(ifv, M_VLAN);
1111 
1112 			return (error);
1113 		}
1114 	}
1115 
1116 	return (0);
1117 }
1118 
1119 static int
1120 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1121 {
1122 	struct ifvlan *ifv = ifp->if_softc;
1123 	int unit = ifp->if_dunit;
1124 
1125 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1126 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1127 	/*
1128 	 * We should have the only reference to the ifv now, so we can now
1129 	 * drain any remaining lladdr task before freeing the ifnet and the
1130 	 * ifvlan.
1131 	 */
1132 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1133 	if_free(ifp);
1134 	free(ifv, M_VLAN);
1135 	ifc_free_unit(ifc, unit);
1136 
1137 	return (0);
1138 }
1139 
1140 /*
1141  * The ifp->if_init entry point for vlan(4) is a no-op.
1142  */
1143 static void
1144 vlan_init(void *foo __unused)
1145 {
1146 }
1147 
1148 /*
1149  * The if_transmit method for vlan(4) interface.
1150  */
1151 static int
1152 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1153 {
1154 	struct ifvlan *ifv;
1155 	struct ifnet *p;
1156 	int error, len, mcast;
1157 	VLAN_LOCK_READER;
1158 
1159 	VLAN_RLOCK();
1160 	ifv = ifp->if_softc;
1161 	if (TRUNK(ifv) == NULL) {
1162 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1163 		VLAN_RUNLOCK();
1164 		m_freem(m);
1165 		return (ENETDOWN);
1166 	}
1167 	p = PARENT(ifv);
1168 	len = m->m_pkthdr.len;
1169 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1170 
1171 	BPF_MTAP(ifp, m);
1172 
1173 	/*
1174 	 * Do not run parent's if_transmit() if the parent is not up,
1175 	 * or parent's driver will cause a system crash.
1176 	 */
1177 	if (!UP_AND_RUNNING(p)) {
1178 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1179 		VLAN_RUNLOCK();
1180 		m_freem(m);
1181 		return (ENETDOWN);
1182 	}
1183 
1184 	if (!ether_8021q_frame(&m, ifp, p, ifv->ifv_vid, ifv->ifv_pcp)) {
1185 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1186 		VLAN_RUNLOCK();
1187 		return (0);
1188 	}
1189 
1190 	/*
1191 	 * Send it, precisely as ether_output() would have.
1192 	 */
1193 	error = (p->if_transmit)(p, m);
1194 	if (error == 0) {
1195 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1196 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1197 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1198 	} else
1199 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1200 	VLAN_RUNLOCK();
1201 	return (error);
1202 }
1203 
1204 /*
1205  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1206  */
1207 static void
1208 vlan_qflush(struct ifnet *ifp __unused)
1209 {
1210 }
1211 
1212 static void
1213 vlan_input(struct ifnet *ifp, struct mbuf *m)
1214 {
1215 	struct ifvlantrunk *trunk;
1216 	struct ifvlan *ifv;
1217 	VLAN_LOCK_READER;
1218 	TRUNK_LOCK_READER;
1219 	struct m_tag *mtag;
1220 	uint16_t vid, tag;
1221 
1222 	VLAN_RLOCK();
1223 	trunk = ifp->if_vlantrunk;
1224 	if (trunk == NULL) {
1225 		VLAN_RUNLOCK();
1226 		m_freem(m);
1227 		return;
1228 	}
1229 
1230 	if (m->m_flags & M_VLANTAG) {
1231 		/*
1232 		 * Packet is tagged, but m contains a normal
1233 		 * Ethernet frame; the tag is stored out-of-band.
1234 		 */
1235 		tag = m->m_pkthdr.ether_vtag;
1236 		m->m_flags &= ~M_VLANTAG;
1237 	} else {
1238 		struct ether_vlan_header *evl;
1239 
1240 		/*
1241 		 * Packet is tagged in-band as specified by 802.1q.
1242 		 */
1243 		switch (ifp->if_type) {
1244 		case IFT_ETHER:
1245 			if (m->m_len < sizeof(*evl) &&
1246 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1247 				if_printf(ifp, "cannot pullup VLAN header\n");
1248 				VLAN_RUNLOCK();
1249 				return;
1250 			}
1251 			evl = mtod(m, struct ether_vlan_header *);
1252 			tag = ntohs(evl->evl_tag);
1253 
1254 			/*
1255 			 * Remove the 802.1q header by copying the Ethernet
1256 			 * addresses over it and adjusting the beginning of
1257 			 * the data in the mbuf.  The encapsulated Ethernet
1258 			 * type field is already in place.
1259 			 */
1260 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1261 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1262 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1263 			break;
1264 
1265 		default:
1266 #ifdef INVARIANTS
1267 			panic("%s: %s has unsupported if_type %u",
1268 			      __func__, ifp->if_xname, ifp->if_type);
1269 #endif
1270 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1271 			VLAN_RUNLOCK();
1272 			m_freem(m);
1273 			return;
1274 		}
1275 	}
1276 
1277 	vid = EVL_VLANOFTAG(tag);
1278 
1279 	TRUNK_RLOCK(trunk);
1280 	ifv = vlan_gethash(trunk, vid);
1281 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1282 		TRUNK_RUNLOCK(trunk);
1283 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1284 		VLAN_RUNLOCK();
1285 		m_freem(m);
1286 		return;
1287 	}
1288 	TRUNK_RUNLOCK(trunk);
1289 
1290 	if (vlan_mtag_pcp) {
1291 		/*
1292 		 * While uncommon, it is possible that we will find a 802.1q
1293 		 * packet encapsulated inside another packet that also had an
1294 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1295 		 * arriving over ethernet.  In that case, we replace the
1296 		 * existing 802.1q PCP m_tag value.
1297 		 */
1298 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1299 		if (mtag == NULL) {
1300 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1301 			    sizeof(uint8_t), M_NOWAIT);
1302 			if (mtag == NULL) {
1303 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1304 				VLAN_RUNLOCK();
1305 				m_freem(m);
1306 				return;
1307 			}
1308 			m_tag_prepend(m, mtag);
1309 		}
1310 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1311 	}
1312 
1313 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1314 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1315 	VLAN_RUNLOCK();
1316 
1317 	/* Pass it back through the parent's input routine. */
1318 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1319 }
1320 
1321 static void
1322 vlan_lladdr_fn(void *arg, int pending __unused)
1323 {
1324 	struct ifvlan *ifv;
1325 	struct ifnet *ifp;
1326 
1327 	ifv = (struct ifvlan *)arg;
1328 	ifp = ifv->ifv_ifp;
1329 	/* The ifv_ifp already has the lladdr copied in. */
1330 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1331 }
1332 
1333 static int
1334 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid)
1335 {
1336 	struct ifvlantrunk *trunk;
1337 	struct ifnet *ifp;
1338 	int error = 0;
1339 
1340 	/*
1341 	 * We can handle non-ethernet hardware types as long as
1342 	 * they handle the tagging and headers themselves.
1343 	 */
1344 	if (p->if_type != IFT_ETHER &&
1345 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1346 		return (EPROTONOSUPPORT);
1347 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1348 		return (EPROTONOSUPPORT);
1349 	/*
1350 	 * Don't let the caller set up a VLAN VID with
1351 	 * anything except VLID bits.
1352 	 * VID numbers 0x0 and 0xFFF are reserved.
1353 	 */
1354 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1355 		return (EINVAL);
1356 	if (ifv->ifv_trunk)
1357 		return (EBUSY);
1358 
1359 	/* Acquire rmlock after the branch so we can M_WAITOK. */
1360 	VLAN_XLOCK();
1361 	if (p->if_vlantrunk == NULL) {
1362 		trunk = malloc(sizeof(struct ifvlantrunk),
1363 		    M_VLAN, M_WAITOK | M_ZERO);
1364 		vlan_inithash(trunk);
1365 		TRUNK_LOCK_INIT(trunk);
1366 		VLAN_WLOCK();
1367 		TRUNK_WLOCK(trunk);
1368 		p->if_vlantrunk = trunk;
1369 		trunk->parent = p;
1370 		if_ref(trunk->parent);
1371 	} else {
1372 		VLAN_WLOCK();
1373 		trunk = p->if_vlantrunk;
1374 		TRUNK_WLOCK(trunk);
1375 	}
1376 
1377 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1378 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1379 	vlan_tag_recalculate(ifv);
1380 	error = vlan_inshash(trunk, ifv);
1381 	if (error)
1382 		goto done;
1383 	ifv->ifv_proto = ETHERTYPE_VLAN;
1384 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1385 	ifv->ifv_mintu = ETHERMIN;
1386 	ifv->ifv_pflags = 0;
1387 	ifv->ifv_capenable = -1;
1388 
1389 	/*
1390 	 * If the parent supports the VLAN_MTU capability,
1391 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1392 	 * use it.
1393 	 */
1394 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1395 		/*
1396 		 * No need to fudge the MTU since the parent can
1397 		 * handle extended frames.
1398 		 */
1399 		ifv->ifv_mtufudge = 0;
1400 	} else {
1401 		/*
1402 		 * Fudge the MTU by the encapsulation size.  This
1403 		 * makes us incompatible with strictly compliant
1404 		 * 802.1Q implementations, but allows us to use
1405 		 * the feature with other NetBSD implementations,
1406 		 * which might still be useful.
1407 		 */
1408 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1409 	}
1410 
1411 	ifv->ifv_trunk = trunk;
1412 	ifp = ifv->ifv_ifp;
1413 	/*
1414 	 * Initialize fields from our parent.  This duplicates some
1415 	 * work with ether_ifattach() but allows for non-ethernet
1416 	 * interfaces to also work.
1417 	 */
1418 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1419 	ifp->if_baudrate = p->if_baudrate;
1420 	ifp->if_output = p->if_output;
1421 	ifp->if_input = p->if_input;
1422 	ifp->if_resolvemulti = p->if_resolvemulti;
1423 	ifp->if_addrlen = p->if_addrlen;
1424 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1425 
1426 	/*
1427 	 * Copy only a selected subset of flags from the parent.
1428 	 * Other flags are none of our business.
1429 	 */
1430 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1431 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1432 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1433 #undef VLAN_COPY_FLAGS
1434 
1435 	ifp->if_link_state = p->if_link_state;
1436 
1437 	vlan_capabilities(ifv);
1438 
1439 	/*
1440 	 * Set up our interface address to reflect the underlying
1441 	 * physical interface's.
1442 	 */
1443 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1444 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1445 	    p->if_addrlen;
1446 
1447 	/*
1448 	 * Configure multicast addresses that may already be
1449 	 * joined on the vlan device.
1450 	 */
1451 	(void)vlan_setmulti(ifp);
1452 
1453 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1454 
1455 	/* We are ready for operation now. */
1456 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1457 
1458 	/* Update flags on the parent, if necessary. */
1459 	vlan_setflags(ifp, 1);
1460 done:
1461 	/*
1462 	 * We need to drop the non-sleepable rmlock so that the underlying
1463 	 * devices can sleep in their vlan_config hooks.
1464 	 */
1465 	TRUNK_WUNLOCK(trunk);
1466 	VLAN_WUNLOCK();
1467 	if (error == 0)
1468 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1469 	VLAN_XUNLOCK();
1470 
1471 	return (error);
1472 }
1473 
1474 static void
1475 vlan_unconfig(struct ifnet *ifp)
1476 {
1477 
1478 	VLAN_XLOCK();
1479 	vlan_unconfig_locked(ifp, 0);
1480 	VLAN_XUNLOCK();
1481 }
1482 
1483 static void
1484 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1485 {
1486 	struct ifvlantrunk *trunk;
1487 	struct vlan_mc_entry *mc;
1488 	struct ifvlan *ifv;
1489 	struct ifnet  *parent;
1490 	int error;
1491 
1492 	VLAN_XLOCK_ASSERT();
1493 
1494 	ifv = ifp->if_softc;
1495 	trunk = ifv->ifv_trunk;
1496 	parent = NULL;
1497 
1498 	if (trunk != NULL) {
1499 		/*
1500 		 * Both vlan_transmit and vlan_input rely on the trunk fields
1501 		 * being NULL to determine whether to bail, so we need to get
1502 		 * an exclusive lock here to prevent them from using bad
1503 		 * ifvlans.
1504 		 */
1505 		VLAN_WLOCK();
1506 		parent = trunk->parent;
1507 
1508 		/*
1509 		 * Since the interface is being unconfigured, we need to
1510 		 * empty the list of multicast groups that we may have joined
1511 		 * while we were alive from the parent's list.
1512 		 */
1513 		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1514 			/*
1515 			 * If the parent interface is being detached,
1516 			 * all its multicast addresses have already
1517 			 * been removed.  Warn about errors if
1518 			 * if_delmulti() does fail, but don't abort as
1519 			 * all callers expect vlan destruction to
1520 			 * succeed.
1521 			 */
1522 			if (!departing) {
1523 				error = if_delmulti(parent,
1524 				    (struct sockaddr *)&mc->mc_addr);
1525 				if (error)
1526 					if_printf(ifp,
1527 		    "Failed to delete multicast address from parent: %d\n",
1528 					    error);
1529 			}
1530 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1531 			free(mc, M_VLAN);
1532 		}
1533 
1534 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1535 
1536 		/*
1537 		 * The trunk lock isn't actually required here, but
1538 		 * vlan_remhash expects it.
1539 		 */
1540 		TRUNK_WLOCK(trunk);
1541 		vlan_remhash(trunk, ifv);
1542 		TRUNK_WUNLOCK(trunk);
1543 		ifv->ifv_trunk = NULL;
1544 
1545 		/*
1546 		 * Check if we were the last.
1547 		 */
1548 		if (trunk->refcnt == 0) {
1549 			parent->if_vlantrunk = NULL;
1550 			trunk_destroy(trunk);
1551 		}
1552 		VLAN_WUNLOCK();
1553 	}
1554 
1555 	/* Disconnect from parent. */
1556 	if (ifv->ifv_pflags)
1557 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1558 	ifp->if_mtu = ETHERMTU;
1559 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1560 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1561 
1562 	/*
1563 	 * Only dispatch an event if vlan was
1564 	 * attached, otherwise there is nothing
1565 	 * to cleanup anyway.
1566 	 */
1567 	if (parent != NULL)
1568 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1569 }
1570 
1571 /* Handle a reference counted flag that should be set on the parent as well */
1572 static int
1573 vlan_setflag(struct ifnet *ifp, int flag, int status,
1574 	     int (*func)(struct ifnet *, int))
1575 {
1576 	struct ifvlan *ifv;
1577 	int error;
1578 
1579 	VLAN_SXLOCK_ASSERT();
1580 
1581 	ifv = ifp->if_softc;
1582 	status = status ? (ifp->if_flags & flag) : 0;
1583 	/* Now "status" contains the flag value or 0 */
1584 
1585 	/*
1586 	 * See if recorded parent's status is different from what
1587 	 * we want it to be.  If it is, flip it.  We record parent's
1588 	 * status in ifv_pflags so that we won't clear parent's flag
1589 	 * we haven't set.  In fact, we don't clear or set parent's
1590 	 * flags directly, but get or release references to them.
1591 	 * That's why we can be sure that recorded flags still are
1592 	 * in accord with actual parent's flags.
1593 	 */
1594 	if (status != (ifv->ifv_pflags & flag)) {
1595 		error = (*func)(PARENT(ifv), status);
1596 		if (error)
1597 			return (error);
1598 		ifv->ifv_pflags &= ~flag;
1599 		ifv->ifv_pflags |= status;
1600 	}
1601 	return (0);
1602 }
1603 
1604 /*
1605  * Handle IFF_* flags that require certain changes on the parent:
1606  * if "status" is true, update parent's flags respective to our if_flags;
1607  * if "status" is false, forcedly clear the flags set on parent.
1608  */
1609 static int
1610 vlan_setflags(struct ifnet *ifp, int status)
1611 {
1612 	int error, i;
1613 
1614 	for (i = 0; vlan_pflags[i].flag; i++) {
1615 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1616 				     status, vlan_pflags[i].func);
1617 		if (error)
1618 			return (error);
1619 	}
1620 	return (0);
1621 }
1622 
1623 /* Inform all vlans that their parent has changed link state */
1624 static void
1625 vlan_link_state(struct ifnet *ifp)
1626 {
1627 	struct ifvlantrunk *trunk;
1628 	struct ifvlan *ifv;
1629 	VLAN_LOCK_READER;
1630 
1631 	/* Called from a taskqueue_swi task, so we cannot sleep. */
1632 	VLAN_RLOCK();
1633 	trunk = ifp->if_vlantrunk;
1634 	if (trunk == NULL) {
1635 		VLAN_RUNLOCK();
1636 		return;
1637 	}
1638 
1639 	TRUNK_WLOCK(trunk);
1640 	VLAN_FOREACH(ifv, trunk) {
1641 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1642 		if_link_state_change(ifv->ifv_ifp,
1643 		    trunk->parent->if_link_state);
1644 	}
1645 	TRUNK_WUNLOCK(trunk);
1646 	VLAN_RUNLOCK();
1647 }
1648 
1649 static void
1650 vlan_capabilities(struct ifvlan *ifv)
1651 {
1652 	struct ifnet *p;
1653 	struct ifnet *ifp;
1654 	struct ifnet_hw_tsomax hw_tsomax;
1655 	int cap = 0, ena = 0, mena;
1656 	u_long hwa = 0;
1657 
1658 	VLAN_SXLOCK_ASSERT();
1659 	TRUNK_WLOCK_ASSERT(TRUNK(ifv));
1660 	p = PARENT(ifv);
1661 	ifp = ifv->ifv_ifp;
1662 
1663 	/* Mask parent interface enabled capabilities disabled by user. */
1664 	mena = p->if_capenable & ifv->ifv_capenable;
1665 
1666 	/*
1667 	 * If the parent interface can do checksum offloading
1668 	 * on VLANs, then propagate its hardware-assisted
1669 	 * checksumming flags. Also assert that checksum
1670 	 * offloading requires hardware VLAN tagging.
1671 	 */
1672 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1673 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1674 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1675 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1676 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1677 		if (ena & IFCAP_TXCSUM)
1678 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1679 			    CSUM_UDP | CSUM_SCTP);
1680 		if (ena & IFCAP_TXCSUM_IPV6)
1681 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1682 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1683 	}
1684 
1685 	/*
1686 	 * If the parent interface can do TSO on VLANs then
1687 	 * propagate the hardware-assisted flag. TSO on VLANs
1688 	 * does not necessarily require hardware VLAN tagging.
1689 	 */
1690 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1691 	if_hw_tsomax_common(p, &hw_tsomax);
1692 	if_hw_tsomax_update(ifp, &hw_tsomax);
1693 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1694 		cap |= p->if_capabilities & IFCAP_TSO;
1695 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1696 		ena |= mena & IFCAP_TSO;
1697 		if (ena & IFCAP_TSO)
1698 			hwa |= p->if_hwassist & CSUM_TSO;
1699 	}
1700 
1701 	/*
1702 	 * If the parent interface can do LRO and checksum offloading on
1703 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1704 	 * cost nothing, while false negative may lead to some confusions.
1705 	 */
1706 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1707 		cap |= p->if_capabilities & IFCAP_LRO;
1708 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1709 		ena |= p->if_capenable & IFCAP_LRO;
1710 
1711 	/*
1712 	 * If the parent interface can offload TCP connections over VLANs then
1713 	 * propagate its TOE capability to the VLAN interface.
1714 	 *
1715 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1716 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1717 	 * with its own bit.
1718 	 */
1719 #define	IFCAP_VLAN_TOE IFCAP_TOE
1720 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1721 		cap |= p->if_capabilities & IFCAP_TOE;
1722 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1723 		TOEDEV(ifp) = TOEDEV(p);
1724 		ena |= mena & IFCAP_TOE;
1725 	}
1726 
1727 	/*
1728 	 * If the parent interface supports dynamic link state, so does the
1729 	 * VLAN interface.
1730 	 */
1731 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1732 	ena |= (mena & IFCAP_LINKSTATE);
1733 
1734 #ifdef RATELIMIT
1735 	/*
1736 	 * If the parent interface supports ratelimiting, so does the
1737 	 * VLAN interface.
1738 	 */
1739 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1740 	ena |= (mena & IFCAP_TXRTLMT);
1741 #endif
1742 
1743 	ifp->if_capabilities = cap;
1744 	ifp->if_capenable = ena;
1745 	ifp->if_hwassist = hwa;
1746 }
1747 
1748 static void
1749 vlan_trunk_capabilities(struct ifnet *ifp)
1750 {
1751 	struct ifvlantrunk *trunk;
1752 	struct ifvlan *ifv;
1753 
1754 	VLAN_SLOCK();
1755 	trunk = ifp->if_vlantrunk;
1756 	if (trunk == NULL) {
1757 		VLAN_SUNLOCK();
1758 		return;
1759 	}
1760 	TRUNK_WLOCK(trunk);
1761 	VLAN_FOREACH(ifv, trunk) {
1762 		vlan_capabilities(ifv);
1763 	}
1764 	TRUNK_WUNLOCK(trunk);
1765 	VLAN_SUNLOCK();
1766 }
1767 
1768 static int
1769 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1770 {
1771 	struct ifnet *p;
1772 	struct ifreq *ifr;
1773 	struct ifaddr *ifa;
1774 	struct ifvlan *ifv;
1775 	struct ifvlantrunk *trunk;
1776 	struct vlanreq vlr;
1777 	int error = 0;
1778 	VLAN_LOCK_READER;
1779 
1780 	ifr = (struct ifreq *)data;
1781 	ifa = (struct ifaddr *) data;
1782 	ifv = ifp->if_softc;
1783 
1784 	switch (cmd) {
1785 	case SIOCSIFADDR:
1786 		ifp->if_flags |= IFF_UP;
1787 #ifdef INET
1788 		if (ifa->ifa_addr->sa_family == AF_INET)
1789 			arp_ifinit(ifp, ifa);
1790 #endif
1791 		break;
1792 	case SIOCGIFADDR:
1793 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1794 		    ifp->if_addrlen);
1795 		break;
1796 	case SIOCGIFMEDIA:
1797 		VLAN_SLOCK();
1798 		if (TRUNK(ifv) != NULL) {
1799 			p = PARENT(ifv);
1800 			if_ref(p);
1801 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1802 			if_rele(p);
1803 			/* Limit the result to the parent's current config. */
1804 			if (error == 0) {
1805 				struct ifmediareq *ifmr;
1806 
1807 				ifmr = (struct ifmediareq *)data;
1808 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1809 					ifmr->ifm_count = 1;
1810 					error = copyout(&ifmr->ifm_current,
1811 						ifmr->ifm_ulist,
1812 						sizeof(int));
1813 				}
1814 			}
1815 		} else {
1816 			error = EINVAL;
1817 		}
1818 		VLAN_SUNLOCK();
1819 		break;
1820 
1821 	case SIOCSIFMEDIA:
1822 		error = EINVAL;
1823 		break;
1824 
1825 	case SIOCSIFMTU:
1826 		/*
1827 		 * Set the interface MTU.
1828 		 */
1829 		VLAN_SLOCK();
1830 		trunk = TRUNK(ifv);
1831 		if (trunk != NULL) {
1832 			TRUNK_WLOCK(trunk);
1833 			if (ifr->ifr_mtu >
1834 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1835 			    ifr->ifr_mtu <
1836 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1837 				error = EINVAL;
1838 			else
1839 				ifp->if_mtu = ifr->ifr_mtu;
1840 			TRUNK_WUNLOCK(trunk);
1841 		} else
1842 			error = EINVAL;
1843 		VLAN_SUNLOCK();
1844 		break;
1845 
1846 	case SIOCSETVLAN:
1847 #ifdef VIMAGE
1848 		/*
1849 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1850 		 * interface to be delegated to a jail without allowing the
1851 		 * jail to change what underlying interface/VID it is
1852 		 * associated with.  We are not entirely convinced that this
1853 		 * is the right way to accomplish that policy goal.
1854 		 */
1855 		if (ifp->if_vnet != ifp->if_home_vnet) {
1856 			error = EPERM;
1857 			break;
1858 		}
1859 #endif
1860 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
1861 		if (error)
1862 			break;
1863 		if (vlr.vlr_parent[0] == '\0') {
1864 			vlan_unconfig(ifp);
1865 			break;
1866 		}
1867 		p = ifunit_ref(vlr.vlr_parent);
1868 		if (p == NULL) {
1869 			error = ENOENT;
1870 			break;
1871 		}
1872 		error = vlan_config(ifv, p, vlr.vlr_tag);
1873 		if_rele(p);
1874 		break;
1875 
1876 	case SIOCGETVLAN:
1877 #ifdef VIMAGE
1878 		if (ifp->if_vnet != ifp->if_home_vnet) {
1879 			error = EPERM;
1880 			break;
1881 		}
1882 #endif
1883 		bzero(&vlr, sizeof(vlr));
1884 		VLAN_SLOCK();
1885 		if (TRUNK(ifv) != NULL) {
1886 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1887 			    sizeof(vlr.vlr_parent));
1888 			vlr.vlr_tag = ifv->ifv_vid;
1889 		}
1890 		VLAN_SUNLOCK();
1891 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
1892 		break;
1893 
1894 	case SIOCSIFFLAGS:
1895 		/*
1896 		 * We should propagate selected flags to the parent,
1897 		 * e.g., promiscuous mode.
1898 		 */
1899 		VLAN_XLOCK();
1900 		if (TRUNK(ifv) != NULL)
1901 			error = vlan_setflags(ifp, 1);
1902 		VLAN_XUNLOCK();
1903 		break;
1904 
1905 	case SIOCADDMULTI:
1906 	case SIOCDELMULTI:
1907 		/*
1908 		 * If we don't have a parent, just remember the membership for
1909 		 * when we do.
1910 		 *
1911 		 * XXX We need the rmlock here to avoid sleeping while
1912 		 * holding in6_multi_mtx.
1913 		 */
1914 		VLAN_RLOCK();
1915 		trunk = TRUNK(ifv);
1916 		if (trunk != NULL) {
1917 			TRUNK_WLOCK(trunk);
1918 			error = vlan_setmulti(ifp);
1919 			TRUNK_WUNLOCK(trunk);
1920 		}
1921 		VLAN_RUNLOCK();
1922 		break;
1923 
1924 	case SIOCGVLANPCP:
1925 #ifdef VIMAGE
1926 		if (ifp->if_vnet != ifp->if_home_vnet) {
1927 			error = EPERM;
1928 			break;
1929 		}
1930 #endif
1931 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
1932 		break;
1933 
1934 	case SIOCSVLANPCP:
1935 #ifdef VIMAGE
1936 		if (ifp->if_vnet != ifp->if_home_vnet) {
1937 			error = EPERM;
1938 			break;
1939 		}
1940 #endif
1941 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
1942 		if (error)
1943 			break;
1944 		if (ifr->ifr_vlan_pcp > 7) {
1945 			error = EINVAL;
1946 			break;
1947 		}
1948 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
1949 		vlan_tag_recalculate(ifv);
1950 		break;
1951 
1952 	case SIOCSIFCAP:
1953 		VLAN_SLOCK();
1954 		ifv->ifv_capenable = ifr->ifr_reqcap;
1955 		trunk = TRUNK(ifv);
1956 		if (trunk != NULL) {
1957 			TRUNK_WLOCK(trunk);
1958 			vlan_capabilities(ifv);
1959 			TRUNK_WUNLOCK(trunk);
1960 		}
1961 		VLAN_SUNLOCK();
1962 		break;
1963 
1964 	default:
1965 		error = EINVAL;
1966 		break;
1967 	}
1968 
1969 	return (error);
1970 }
1971 
1972 #ifdef RATELIMIT
1973 static int
1974 vlan_snd_tag_alloc(struct ifnet *ifp,
1975     union if_snd_tag_alloc_params *params,
1976     struct m_snd_tag **ppmt)
1977 {
1978 
1979 	/* get trunk device */
1980 	ifp = vlan_trunkdev(ifp);
1981 	if (ifp == NULL || (ifp->if_capenable & IFCAP_TXRTLMT) == 0)
1982 		return (EOPNOTSUPP);
1983 	/* forward allocation request */
1984 	return (ifp->if_snd_tag_alloc(ifp, params, ppmt));
1985 }
1986 #endif
1987