1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * Copyright 2012 ADARA Networks, Inc. 4 * Copyright 2017 Dell EMC Isilon 5 * 6 * Portions of this software were developed by Robert N. M. Watson under 7 * contract to ADARA Networks, Inc. 8 * 9 * Permission to use, copy, modify, and distribute this software and 10 * its documentation for any purpose and without fee is hereby 11 * granted, provided that both the above copyright notice and this 12 * permission notice appear in all copies, that both the above 13 * copyright notice and this permission notice appear in all 14 * supporting documentation, and that the name of M.I.T. not be used 15 * in advertising or publicity pertaining to distribution of the 16 * software without specific, written prior permission. M.I.T. makes 17 * no representations about the suitability of this software for any 18 * purpose. It is provided "as is" without express or implied 19 * warranty. 20 * 21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 37 * This is sort of sneaky in the implementation, since 38 * we need to pretend to be enough of an Ethernet implementation 39 * to make arp work. The way we do this is by telling everyone 40 * that we are an Ethernet, and then catch the packets that 41 * ether_output() sends to us via if_transmit(), rewrite them for 42 * use by the real outgoing interface, and ask it to send them. 43 */ 44 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ipsec.h" 48 #include "opt_kern_tls.h" 49 #include "opt_vlan.h" 50 #include "opt_ratelimit.h" 51 52 #include <sys/param.h> 53 #include <sys/eventhandler.h> 54 #include <sys/kernel.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/module.h> 59 #include <sys/rmlock.h> 60 #include <sys/priv.h> 61 #include <sys/queue.h> 62 #include <sys/socket.h> 63 #include <sys/sockio.h> 64 #include <sys/sysctl.h> 65 #include <sys/systm.h> 66 #include <sys/sx.h> 67 #include <sys/taskqueue.h> 68 69 #include <net/bpf.h> 70 #include <net/ethernet.h> 71 #include <net/if.h> 72 #include <net/if_var.h> 73 #include <net/if_private.h> 74 #include <net/if_clone.h> 75 #include <net/if_dl.h> 76 #include <net/if_types.h> 77 #include <net/if_vlan_var.h> 78 #include <net/route.h> 79 #include <net/vnet.h> 80 81 #ifdef INET 82 #include <netinet/in.h> 83 #include <netinet/if_ether.h> 84 #endif 85 86 #include <netlink/netlink.h> 87 #include <netlink/netlink_ctl.h> 88 #include <netlink/netlink_route.h> 89 #include <netlink/route/route_var.h> 90 91 #define VLAN_DEF_HWIDTH 4 92 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 93 94 #define UP_AND_RUNNING(ifp) \ 95 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 96 97 CK_SLIST_HEAD(ifvlanhead, ifvlan); 98 99 struct ifvlantrunk { 100 struct ifnet *parent; /* parent interface of this trunk */ 101 struct mtx lock; 102 #ifdef VLAN_ARRAY 103 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 104 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 105 #else 106 struct ifvlanhead *hash; /* dynamic hash-list table */ 107 uint16_t hmask; 108 uint16_t hwidth; 109 #endif 110 int refcnt; 111 }; 112 113 #if defined(KERN_TLS) || defined(RATELIMIT) 114 struct vlan_snd_tag { 115 struct m_snd_tag com; 116 struct m_snd_tag *tag; 117 }; 118 119 static inline struct vlan_snd_tag * 120 mst_to_vst(struct m_snd_tag *mst) 121 { 122 123 return (__containerof(mst, struct vlan_snd_tag, com)); 124 } 125 #endif 126 127 /* 128 * This macro provides a facility to iterate over every vlan on a trunk with 129 * the assumption that none will be added/removed during iteration. 130 */ 131 #ifdef VLAN_ARRAY 132 #define VLAN_FOREACH(_ifv, _trunk) \ 133 size_t _i; \ 134 for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ 135 if (((_ifv) = (_trunk)->vlans[_i]) != NULL) 136 #else /* VLAN_ARRAY */ 137 #define VLAN_FOREACH(_ifv, _trunk) \ 138 struct ifvlan *_next; \ 139 size_t _i; \ 140 for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ 141 CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) 142 #endif /* VLAN_ARRAY */ 143 144 /* 145 * This macro provides a facility to iterate over every vlan on a trunk while 146 * also modifying the number of vlans on the trunk. The iteration continues 147 * until some condition is met or there are no more vlans on the trunk. 148 */ 149 #ifdef VLAN_ARRAY 150 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ 151 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 152 size_t _i; \ 153 for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ 154 if (((_ifv) = (_trunk)->vlans[_i])) 155 #else /* VLAN_ARRAY */ 156 /* 157 * The hash table case is more complicated. We allow for the hash table to be 158 * modified (i.e. vlans removed) while we are iterating over it. To allow for 159 * this we must restart the iteration every time we "touch" something during 160 * the iteration, since removal will resize the hash table and invalidate our 161 * current position. If acting on the touched element causes the trunk to be 162 * emptied, then iteration also stops. 163 */ 164 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 165 size_t _i; \ 166 bool _touch = false; \ 167 for (_i = 0; \ 168 !(_cond) && _i < (1 << (_trunk)->hwidth); \ 169 _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ 170 if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ 171 (_touch = true)) 172 #endif /* VLAN_ARRAY */ 173 174 struct vlan_mc_entry { 175 struct sockaddr_dl mc_addr; 176 CK_SLIST_ENTRY(vlan_mc_entry) mc_entries; 177 struct epoch_context mc_epoch_ctx; 178 }; 179 180 struct ifvlan { 181 struct ifvlantrunk *ifv_trunk; 182 struct ifnet *ifv_ifp; 183 #define TRUNK(ifv) ((ifv)->ifv_trunk) 184 #define PARENT(ifv) (TRUNK(ifv)->parent) 185 void *ifv_cookie; 186 int ifv_pflags; /* special flags we have set on parent */ 187 int ifv_capenable; 188 int ifv_capenable2; 189 int ifv_encaplen; /* encapsulation length */ 190 int ifv_mtufudge; /* MTU fudged by this much */ 191 int ifv_mintu; /* min transmission unit */ 192 struct ether_8021q_tag ifv_qtag; 193 #define ifv_proto ifv_qtag.proto 194 #define ifv_vid ifv_qtag.vid 195 #define ifv_pcp ifv_qtag.pcp 196 struct task lladdr_task; 197 CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 198 #ifndef VLAN_ARRAY 199 CK_SLIST_ENTRY(ifvlan) ifv_list; 200 #endif 201 }; 202 203 /* Special flags we should propagate to parent. */ 204 static struct { 205 int flag; 206 int (*func)(struct ifnet *, int); 207 } vlan_pflags[] = { 208 {IFF_PROMISC, ifpromisc}, 209 {IFF_ALLMULTI, if_allmulti}, 210 {0, NULL} 211 }; 212 213 VNET_DECLARE(int, vlan_mtag_pcp); 214 #define V_vlan_mtag_pcp VNET(vlan_mtag_pcp) 215 216 static const char vlanname[] = "vlan"; 217 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); 218 219 static eventhandler_tag ifdetach_tag; 220 static eventhandler_tag iflladdr_tag; 221 static eventhandler_tag ifevent_tag; 222 223 /* 224 * if_vlan uses two module-level synchronizations primitives to allow concurrent 225 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed 226 * while they are being used for tx/rx. To accomplish this in a way that has 227 * acceptable performance and cooperation with other parts of the network stack 228 * there is a non-sleepable epoch(9) and an sx(9). 229 * 230 * The performance-sensitive paths that warrant using the epoch(9) are 231 * vlan_transmit and vlan_input. Both have to check for the vlan interface's 232 * existence using if_vlantrunk, and being in the network tx/rx paths the use 233 * of an epoch(9) gives a measureable improvement in performance. 234 * 235 * The reason for having an sx(9) is mostly because there are still areas that 236 * must be sleepable and also have safe concurrent access to a vlan interface. 237 * Since the sx(9) exists, it is used by default in most paths unless sleeping 238 * is not permitted, or if it is not clear whether sleeping is permitted. 239 * 240 */ 241 #define _VLAN_SX_ID ifv_sx 242 243 static struct sx _VLAN_SX_ID; 244 245 #define VLAN_LOCKING_INIT() \ 246 sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE) 247 248 #define VLAN_LOCKING_DESTROY() \ 249 sx_destroy(&_VLAN_SX_ID) 250 251 #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) 252 #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) 253 #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) 254 #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) 255 #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) 256 #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) 257 #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) 258 259 /* 260 * We also have a per-trunk mutex that should be acquired when changing 261 * its state. 262 */ 263 #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF) 264 #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock) 265 #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock) 266 #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock) 267 #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED); 268 269 /* 270 * The VLAN_ARRAY substitutes the dynamic hash with a static array 271 * with 4096 entries. In theory this can give a boost in processing, 272 * however in practice it does not. Probably this is because the array 273 * is too big to fit into CPU cache. 274 */ 275 #ifndef VLAN_ARRAY 276 static void vlan_inithash(struct ifvlantrunk *trunk); 277 static void vlan_freehash(struct ifvlantrunk *trunk); 278 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 279 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 280 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 281 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 282 uint16_t vid); 283 #endif 284 static void trunk_destroy(struct ifvlantrunk *trunk); 285 286 static void vlan_init(void *foo); 287 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 288 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 289 #if defined(KERN_TLS) || defined(RATELIMIT) 290 static int vlan_snd_tag_alloc(struct ifnet *, 291 union if_snd_tag_alloc_params *, struct m_snd_tag **); 292 static int vlan_snd_tag_modify(struct m_snd_tag *, 293 union if_snd_tag_modify_params *); 294 static int vlan_snd_tag_query(struct m_snd_tag *, 295 union if_snd_tag_query_params *); 296 static void vlan_snd_tag_free(struct m_snd_tag *); 297 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *); 298 static void vlan_ratelimit_query(struct ifnet *, 299 struct if_ratelimit_query_results *); 300 #endif 301 static void vlan_qflush(struct ifnet *ifp); 302 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 303 int (*func)(struct ifnet *, int)); 304 static int vlan_setflags(struct ifnet *ifp, int status); 305 static int vlan_setmulti(struct ifnet *ifp); 306 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); 307 #ifdef ALTQ 308 static void vlan_altq_start(struct ifnet *ifp); 309 static int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m); 310 #endif 311 static int vlan_output(struct ifnet *ifp, struct mbuf *m, 312 const struct sockaddr *dst, struct route *ro); 313 static void vlan_unconfig(struct ifnet *ifp); 314 static void vlan_unconfig_locked(struct ifnet *ifp, int departing); 315 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag, 316 uint16_t proto); 317 static void vlan_link_state(struct ifnet *ifp); 318 static void vlan_capabilities(struct ifvlan *ifv); 319 static void vlan_trunk_capabilities(struct ifnet *ifp); 320 321 static struct ifnet *vlan_clone_match_ethervid(const char *, int *); 322 static int vlan_clone_match(struct if_clone *, const char *); 323 static int vlan_clone_create(struct if_clone *, char *, size_t, 324 struct ifc_data *, struct ifnet **); 325 static int vlan_clone_destroy(struct if_clone *, struct ifnet *, uint32_t); 326 327 static int vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len, 328 struct ifc_data_nl *ifd); 329 static int vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd); 330 static void vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw); 331 332 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 333 static void vlan_iflladdr(void *arg, struct ifnet *ifp); 334 static void vlan_ifevent(void *arg, struct ifnet *ifp, int event); 335 336 static void vlan_lladdr_fn(void *arg, int pending); 337 338 static struct if_clone *vlan_cloner; 339 340 #ifdef VIMAGE 341 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); 342 #define V_vlan_cloner VNET(vlan_cloner) 343 #endif 344 345 #ifdef RATELIMIT 346 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = { 347 .snd_tag_modify = vlan_snd_tag_modify, 348 .snd_tag_query = vlan_snd_tag_query, 349 .snd_tag_free = vlan_snd_tag_free, 350 .next_snd_tag = vlan_next_snd_tag, 351 .type = IF_SND_TAG_TYPE_UNLIMITED 352 }; 353 354 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = { 355 .snd_tag_modify = vlan_snd_tag_modify, 356 .snd_tag_query = vlan_snd_tag_query, 357 .snd_tag_free = vlan_snd_tag_free, 358 .next_snd_tag = vlan_next_snd_tag, 359 .type = IF_SND_TAG_TYPE_RATE_LIMIT 360 }; 361 #endif 362 363 #ifdef KERN_TLS 364 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = { 365 .snd_tag_modify = vlan_snd_tag_modify, 366 .snd_tag_query = vlan_snd_tag_query, 367 .snd_tag_free = vlan_snd_tag_free, 368 .next_snd_tag = vlan_next_snd_tag, 369 .type = IF_SND_TAG_TYPE_TLS 370 }; 371 372 #ifdef RATELIMIT 373 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = { 374 .snd_tag_modify = vlan_snd_tag_modify, 375 .snd_tag_query = vlan_snd_tag_query, 376 .snd_tag_free = vlan_snd_tag_free, 377 .next_snd_tag = vlan_next_snd_tag, 378 .type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT 379 }; 380 #endif 381 #endif 382 383 static void 384 vlan_mc_free(struct epoch_context *ctx) 385 { 386 struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx); 387 free(mc, M_VLAN); 388 } 389 390 #ifndef VLAN_ARRAY 391 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 392 393 static void 394 vlan_inithash(struct ifvlantrunk *trunk) 395 { 396 int i, n; 397 398 /* 399 * The trunk must not be locked here since we call malloc(M_WAITOK). 400 * It is OK in case this function is called before the trunk struct 401 * gets hooked up and becomes visible from other threads. 402 */ 403 404 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 405 ("%s: hash already initialized", __func__)); 406 407 trunk->hwidth = VLAN_DEF_HWIDTH; 408 n = 1 << trunk->hwidth; 409 trunk->hmask = n - 1; 410 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 411 for (i = 0; i < n; i++) 412 CK_SLIST_INIT(&trunk->hash[i]); 413 } 414 415 static void 416 vlan_freehash(struct ifvlantrunk *trunk) 417 { 418 #ifdef INVARIANTS 419 int i; 420 421 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 422 for (i = 0; i < (1 << trunk->hwidth); i++) 423 KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]), 424 ("%s: hash table not empty", __func__)); 425 #endif 426 free(trunk->hash, M_VLAN); 427 trunk->hash = NULL; 428 trunk->hwidth = trunk->hmask = 0; 429 } 430 431 static int 432 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 433 { 434 int i, b; 435 struct ifvlan *ifv2; 436 437 VLAN_XLOCK_ASSERT(); 438 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 439 440 b = 1 << trunk->hwidth; 441 i = HASH(ifv->ifv_vid, trunk->hmask); 442 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 443 if (ifv->ifv_vid == ifv2->ifv_vid) 444 return (EEXIST); 445 446 /* 447 * Grow the hash when the number of vlans exceeds half of the number of 448 * hash buckets squared. This will make the average linked-list length 449 * buckets/2. 450 */ 451 if (trunk->refcnt > (b * b) / 2) { 452 vlan_growhash(trunk, 1); 453 i = HASH(ifv->ifv_vid, trunk->hmask); 454 } 455 CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 456 trunk->refcnt++; 457 458 return (0); 459 } 460 461 static int 462 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 463 { 464 int i, b; 465 struct ifvlan *ifv2; 466 467 VLAN_XLOCK_ASSERT(); 468 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 469 470 b = 1 << (trunk->hwidth - 1); 471 i = HASH(ifv->ifv_vid, trunk->hmask); 472 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 473 if (ifv2 == ifv) { 474 trunk->refcnt--; 475 CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list); 476 if (trunk->refcnt < (b * b) / 2) 477 vlan_growhash(trunk, -1); 478 return (0); 479 } 480 481 panic("%s: vlan not found\n", __func__); 482 return (ENOENT); /*NOTREACHED*/ 483 } 484 485 /* 486 * Grow the hash larger or smaller if memory permits. 487 */ 488 static void 489 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 490 { 491 struct ifvlan *ifv; 492 struct ifvlanhead *hash2; 493 int hwidth2, i, j, n, n2; 494 495 VLAN_XLOCK_ASSERT(); 496 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 497 498 if (howmuch == 0) { 499 /* Harmless yet obvious coding error */ 500 printf("%s: howmuch is 0\n", __func__); 501 return; 502 } 503 504 hwidth2 = trunk->hwidth + howmuch; 505 n = 1 << trunk->hwidth; 506 n2 = 1 << hwidth2; 507 /* Do not shrink the table below the default */ 508 if (hwidth2 < VLAN_DEF_HWIDTH) 509 return; 510 511 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK); 512 if (hash2 == NULL) { 513 printf("%s: out of memory -- hash size not changed\n", 514 __func__); 515 return; /* We can live with the old hash table */ 516 } 517 for (j = 0; j < n2; j++) 518 CK_SLIST_INIT(&hash2[j]); 519 for (i = 0; i < n; i++) 520 while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) { 521 CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list); 522 j = HASH(ifv->ifv_vid, n2 - 1); 523 CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 524 } 525 NET_EPOCH_WAIT(); 526 free(trunk->hash, M_VLAN); 527 trunk->hash = hash2; 528 trunk->hwidth = hwidth2; 529 trunk->hmask = n2 - 1; 530 531 if (bootverbose) 532 if_printf(trunk->parent, 533 "VLAN hash table resized from %d to %d buckets\n", n, n2); 534 } 535 536 static __inline struct ifvlan * 537 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 538 { 539 struct ifvlan *ifv; 540 541 NET_EPOCH_ASSERT(); 542 543 CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) 544 if (ifv->ifv_vid == vid) 545 return (ifv); 546 return (NULL); 547 } 548 549 #if 0 550 /* Debugging code to view the hashtables. */ 551 static void 552 vlan_dumphash(struct ifvlantrunk *trunk) 553 { 554 int i; 555 struct ifvlan *ifv; 556 557 for (i = 0; i < (1 << trunk->hwidth); i++) { 558 printf("%d: ", i); 559 CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 560 printf("%s ", ifv->ifv_ifp->if_xname); 561 printf("\n"); 562 } 563 } 564 #endif /* 0 */ 565 #else 566 567 static __inline struct ifvlan * 568 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 569 { 570 571 return trunk->vlans[vid]; 572 } 573 574 static __inline int 575 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 576 { 577 578 if (trunk->vlans[ifv->ifv_vid] != NULL) 579 return EEXIST; 580 trunk->vlans[ifv->ifv_vid] = ifv; 581 trunk->refcnt++; 582 583 return (0); 584 } 585 586 static __inline int 587 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 588 { 589 590 trunk->vlans[ifv->ifv_vid] = NULL; 591 trunk->refcnt--; 592 593 return (0); 594 } 595 596 static __inline void 597 vlan_freehash(struct ifvlantrunk *trunk) 598 { 599 } 600 601 static __inline void 602 vlan_inithash(struct ifvlantrunk *trunk) 603 { 604 } 605 606 #endif /* !VLAN_ARRAY */ 607 608 static void 609 trunk_destroy(struct ifvlantrunk *trunk) 610 { 611 VLAN_XLOCK_ASSERT(); 612 613 vlan_freehash(trunk); 614 trunk->parent->if_vlantrunk = NULL; 615 TRUNK_LOCK_DESTROY(trunk); 616 if_rele(trunk->parent); 617 free(trunk, M_VLAN); 618 } 619 620 /* 621 * Program our multicast filter. What we're actually doing is 622 * programming the multicast filter of the parent. This has the 623 * side effect of causing the parent interface to receive multicast 624 * traffic that it doesn't really want, which ends up being discarded 625 * later by the upper protocol layers. Unfortunately, there's no way 626 * to avoid this: there really is only one physical interface. 627 */ 628 static int 629 vlan_setmulti(struct ifnet *ifp) 630 { 631 struct ifnet *ifp_p; 632 struct ifmultiaddr *ifma; 633 struct ifvlan *sc; 634 struct vlan_mc_entry *mc; 635 int error; 636 637 VLAN_XLOCK_ASSERT(); 638 639 /* Find the parent. */ 640 sc = ifp->if_softc; 641 ifp_p = PARENT(sc); 642 643 CURVNET_SET_QUIET(ifp_p->if_vnet); 644 645 /* First, remove any existing filter entries. */ 646 while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 647 CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 648 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); 649 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 650 } 651 652 /* Now program new ones. */ 653 IF_ADDR_WLOCK(ifp); 654 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 655 if (ifma->ifma_addr->sa_family != AF_LINK) 656 continue; 657 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 658 if (mc == NULL) { 659 IF_ADDR_WUNLOCK(ifp); 660 CURVNET_RESTORE(); 661 return (ENOMEM); 662 } 663 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); 664 mc->mc_addr.sdl_index = ifp_p->if_index; 665 CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 666 } 667 IF_ADDR_WUNLOCK(ifp); 668 CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { 669 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, 670 NULL); 671 if (error) { 672 CURVNET_RESTORE(); 673 return (error); 674 } 675 } 676 677 CURVNET_RESTORE(); 678 return (0); 679 } 680 681 /* 682 * A handler for interface ifnet events. 683 */ 684 static void 685 vlan_ifevent(void *arg __unused, struct ifnet *ifp, int event) 686 { 687 struct epoch_tracker et; 688 struct ifvlan *ifv; 689 struct ifvlantrunk *trunk; 690 691 if (event != IFNET_EVENT_UPDATE_BAUDRATE) 692 return; 693 694 NET_EPOCH_ENTER(et); 695 trunk = ifp->if_vlantrunk; 696 if (trunk == NULL) { 697 NET_EPOCH_EXIT(et); 698 return; 699 } 700 701 TRUNK_WLOCK(trunk); 702 VLAN_FOREACH(ifv, trunk) { 703 ifv->ifv_ifp->if_baudrate = ifp->if_baudrate; 704 } 705 TRUNK_WUNLOCK(trunk); 706 NET_EPOCH_EXIT(et); 707 } 708 709 /* 710 * A handler for parent interface link layer address changes. 711 * If the parent interface link layer address is changed we 712 * should also change it on all children vlans. 713 */ 714 static void 715 vlan_iflladdr(void *arg __unused, struct ifnet *ifp) 716 { 717 struct epoch_tracker et; 718 struct ifvlan *ifv; 719 struct ifnet *ifv_ifp; 720 struct ifvlantrunk *trunk; 721 struct sockaddr_dl *sdl; 722 723 /* Need the epoch since this is run on taskqueue_swi. */ 724 NET_EPOCH_ENTER(et); 725 trunk = ifp->if_vlantrunk; 726 if (trunk == NULL) { 727 NET_EPOCH_EXIT(et); 728 return; 729 } 730 731 /* 732 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. 733 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR 734 * ioctl calls on the parent garbling the lladdr of the child vlan. 735 */ 736 TRUNK_WLOCK(trunk); 737 VLAN_FOREACH(ifv, trunk) { 738 /* 739 * Copy new new lladdr into the ifv_ifp, enqueue a task 740 * to actually call if_setlladdr. if_setlladdr needs to 741 * be deferred to a taskqueue because it will call into 742 * the if_vlan ioctl path and try to acquire the global 743 * lock. 744 */ 745 ifv_ifp = ifv->ifv_ifp; 746 bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), 747 ifp->if_addrlen); 748 sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; 749 sdl->sdl_alen = ifp->if_addrlen; 750 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 751 } 752 TRUNK_WUNLOCK(trunk); 753 NET_EPOCH_EXIT(et); 754 } 755 756 /* 757 * A handler for network interface departure events. 758 * Track departure of trunks here so that we don't access invalid 759 * pointers or whatever if a trunk is ripped from under us, e.g., 760 * by ejecting its hot-plug card. However, if an ifnet is simply 761 * being renamed, then there's no need to tear down the state. 762 */ 763 static void 764 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 765 { 766 struct ifvlan *ifv; 767 struct ifvlantrunk *trunk; 768 769 /* If the ifnet is just being renamed, don't do anything. */ 770 if (ifp->if_flags & IFF_RENAMING) 771 return; 772 VLAN_XLOCK(); 773 trunk = ifp->if_vlantrunk; 774 if (trunk == NULL) { 775 VLAN_XUNLOCK(); 776 return; 777 } 778 779 /* 780 * OK, it's a trunk. Loop over and detach all vlan's on it. 781 * Check trunk pointer after each vlan_unconfig() as it will 782 * free it and set to NULL after the last vlan was detached. 783 */ 784 VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, 785 ifp->if_vlantrunk == NULL) 786 vlan_unconfig_locked(ifv->ifv_ifp, 1); 787 788 /* Trunk should have been destroyed in vlan_unconfig(). */ 789 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 790 VLAN_XUNLOCK(); 791 } 792 793 /* 794 * Return the trunk device for a virtual interface. 795 */ 796 static struct ifnet * 797 vlan_trunkdev(struct ifnet *ifp) 798 { 799 struct ifvlan *ifv; 800 801 NET_EPOCH_ASSERT(); 802 803 if (ifp->if_type != IFT_L2VLAN) 804 return (NULL); 805 806 ifv = ifp->if_softc; 807 ifp = NULL; 808 if (ifv->ifv_trunk) 809 ifp = PARENT(ifv); 810 return (ifp); 811 } 812 813 /* 814 * Return the 12-bit VLAN VID for this interface, for use by external 815 * components such as Infiniband. 816 * 817 * XXXRW: Note that the function name here is historical; it should be named 818 * vlan_vid(). 819 */ 820 static int 821 vlan_tag(struct ifnet *ifp, uint16_t *vidp) 822 { 823 struct ifvlan *ifv; 824 825 if (ifp->if_type != IFT_L2VLAN) 826 return (EINVAL); 827 ifv = ifp->if_softc; 828 *vidp = ifv->ifv_vid; 829 return (0); 830 } 831 832 static int 833 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp) 834 { 835 struct ifvlan *ifv; 836 837 if (ifp->if_type != IFT_L2VLAN) 838 return (EINVAL); 839 ifv = ifp->if_softc; 840 *pcpp = ifv->ifv_pcp; 841 return (0); 842 } 843 844 /* 845 * Return a driver specific cookie for this interface. Synchronization 846 * with setcookie must be provided by the driver. 847 */ 848 static void * 849 vlan_cookie(struct ifnet *ifp) 850 { 851 struct ifvlan *ifv; 852 853 if (ifp->if_type != IFT_L2VLAN) 854 return (NULL); 855 ifv = ifp->if_softc; 856 return (ifv->ifv_cookie); 857 } 858 859 /* 860 * Store a cookie in our softc that drivers can use to store driver 861 * private per-instance data in. 862 */ 863 static int 864 vlan_setcookie(struct ifnet *ifp, void *cookie) 865 { 866 struct ifvlan *ifv; 867 868 if (ifp->if_type != IFT_L2VLAN) 869 return (EINVAL); 870 ifv = ifp->if_softc; 871 ifv->ifv_cookie = cookie; 872 return (0); 873 } 874 875 /* 876 * Return the vlan device present at the specific VID. 877 */ 878 static struct ifnet * 879 vlan_devat(struct ifnet *ifp, uint16_t vid) 880 { 881 struct ifvlantrunk *trunk; 882 struct ifvlan *ifv; 883 884 NET_EPOCH_ASSERT(); 885 886 trunk = ifp->if_vlantrunk; 887 if (trunk == NULL) 888 return (NULL); 889 ifp = NULL; 890 ifv = vlan_gethash(trunk, vid); 891 if (ifv) 892 ifp = ifv->ifv_ifp; 893 return (ifp); 894 } 895 896 /* 897 * VLAN support can be loaded as a module. The only place in the 898 * system that's intimately aware of this is ether_input. We hook 899 * into this code through vlan_input_p which is defined there and 900 * set here. No one else in the system should be aware of this so 901 * we use an explicit reference here. 902 */ 903 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 904 905 /* For if_link_state_change() eyes only... */ 906 extern void (*vlan_link_state_p)(struct ifnet *); 907 908 static struct if_clone_addreq_v2 vlan_addreq = { 909 .version = 2, 910 .match_f = vlan_clone_match, 911 .create_f = vlan_clone_create, 912 .destroy_f = vlan_clone_destroy, 913 .create_nl_f = vlan_clone_create_nl, 914 .modify_nl_f = vlan_clone_modify_nl, 915 .dump_nl_f = vlan_clone_dump_nl, 916 }; 917 918 static int 919 vlan_modevent(module_t mod, int type, void *data) 920 { 921 922 switch (type) { 923 case MOD_LOAD: 924 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 925 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 926 if (ifdetach_tag == NULL) 927 return (ENOMEM); 928 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, 929 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 930 if (iflladdr_tag == NULL) 931 return (ENOMEM); 932 ifevent_tag = EVENTHANDLER_REGISTER(ifnet_event, 933 vlan_ifevent, NULL, EVENTHANDLER_PRI_ANY); 934 if (ifevent_tag == NULL) 935 return (ENOMEM); 936 VLAN_LOCKING_INIT(); 937 vlan_input_p = vlan_input; 938 vlan_link_state_p = vlan_link_state; 939 vlan_trunk_cap_p = vlan_trunk_capabilities; 940 vlan_trunkdev_p = vlan_trunkdev; 941 vlan_cookie_p = vlan_cookie; 942 vlan_setcookie_p = vlan_setcookie; 943 vlan_tag_p = vlan_tag; 944 vlan_pcp_p = vlan_pcp; 945 vlan_devat_p = vlan_devat; 946 #ifndef VIMAGE 947 vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq); 948 #endif 949 if (bootverbose) 950 printf("vlan: initialized, using " 951 #ifdef VLAN_ARRAY 952 "full-size arrays" 953 #else 954 "hash tables with chaining" 955 #endif 956 957 "\n"); 958 break; 959 case MOD_UNLOAD: 960 #ifndef VIMAGE 961 ifc_detach_cloner(vlan_cloner); 962 #endif 963 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 964 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); 965 EVENTHANDLER_DEREGISTER(ifnet_event, ifevent_tag); 966 vlan_input_p = NULL; 967 vlan_link_state_p = NULL; 968 vlan_trunk_cap_p = NULL; 969 vlan_trunkdev_p = NULL; 970 vlan_tag_p = NULL; 971 vlan_cookie_p = NULL; 972 vlan_setcookie_p = NULL; 973 vlan_devat_p = NULL; 974 VLAN_LOCKING_DESTROY(); 975 if (bootverbose) 976 printf("vlan: unloaded\n"); 977 break; 978 default: 979 return (EOPNOTSUPP); 980 } 981 return (0); 982 } 983 984 static moduledata_t vlan_mod = { 985 "if_vlan", 986 vlan_modevent, 987 0 988 }; 989 990 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 991 MODULE_VERSION(if_vlan, 3); 992 993 #ifdef VIMAGE 994 static void 995 vnet_vlan_init(const void *unused __unused) 996 { 997 vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq); 998 V_vlan_cloner = vlan_cloner; 999 } 1000 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 1001 vnet_vlan_init, NULL); 1002 1003 static void 1004 vnet_vlan_uninit(const void *unused __unused) 1005 { 1006 1007 ifc_detach_cloner(V_vlan_cloner); 1008 } 1009 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, 1010 vnet_vlan_uninit, NULL); 1011 #endif 1012 1013 /* 1014 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names. 1015 */ 1016 static struct ifnet * 1017 vlan_clone_match_ethervid(const char *name, int *vidp) 1018 { 1019 char ifname[IFNAMSIZ]; 1020 char *cp; 1021 struct ifnet *ifp; 1022 int vid; 1023 1024 strlcpy(ifname, name, IFNAMSIZ); 1025 if ((cp = strrchr(ifname, '.')) == NULL) 1026 return (NULL); 1027 *cp = '\0'; 1028 if ((ifp = ifunit_ref(ifname)) == NULL) 1029 return (NULL); 1030 /* Parse VID. */ 1031 if (*++cp == '\0') { 1032 if_rele(ifp); 1033 return (NULL); 1034 } 1035 vid = 0; 1036 for(; *cp >= '0' && *cp <= '9'; cp++) 1037 vid = (vid * 10) + (*cp - '0'); 1038 if (*cp != '\0') { 1039 if_rele(ifp); 1040 return (NULL); 1041 } 1042 if (vidp != NULL) 1043 *vidp = vid; 1044 1045 return (ifp); 1046 } 1047 1048 static int 1049 vlan_clone_match(struct if_clone *ifc, const char *name) 1050 { 1051 struct ifnet *ifp; 1052 const char *cp; 1053 1054 ifp = vlan_clone_match_ethervid(name, NULL); 1055 if (ifp != NULL) { 1056 if_rele(ifp); 1057 return (1); 1058 } 1059 1060 if (strncmp(vlanname, name, strlen(vlanname)) != 0) 1061 return (0); 1062 for (cp = name + 4; *cp != '\0'; cp++) { 1063 if (*cp < '0' || *cp > '9') 1064 return (0); 1065 } 1066 1067 return (1); 1068 } 1069 1070 static int 1071 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, 1072 struct ifc_data *ifd, struct ifnet **ifpp) 1073 { 1074 char *dp; 1075 bool wildcard = false; 1076 bool subinterface = false; 1077 int unit; 1078 int error; 1079 int vid = 0; 1080 uint16_t proto = ETHERTYPE_VLAN; 1081 struct ifvlan *ifv; 1082 struct ifnet *ifp; 1083 struct ifnet *p = NULL; 1084 struct ifaddr *ifa; 1085 struct sockaddr_dl *sdl; 1086 struct vlanreq vlr; 1087 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 1088 1089 1090 /* 1091 * There are three ways to specify the cloned device: 1092 * o pass a parameter block with the clone request. 1093 * o specify parameters in the text of the clone device name 1094 * o specify no parameters and get an unattached device that 1095 * must be configured separately. 1096 * The first technique is preferred; the latter two are supported 1097 * for backwards compatibility. 1098 * 1099 * XXXRW: Note historic use of the word "tag" here. New ioctls may be 1100 * called for. 1101 */ 1102 1103 if (ifd->params != NULL) { 1104 error = ifc_copyin(ifd, &vlr, sizeof(vlr)); 1105 if (error) 1106 return error; 1107 vid = vlr.vlr_tag; 1108 proto = vlr.vlr_proto; 1109 if (proto == 0) 1110 proto = ETHERTYPE_VLAN; 1111 p = ifunit_ref(vlr.vlr_parent); 1112 if (p == NULL) 1113 return (ENXIO); 1114 } 1115 1116 if ((error = ifc_name2unit(name, &unit)) == 0) { 1117 1118 /* 1119 * vlanX interface. Set wildcard to true if the unit number 1120 * is not fixed (-1) 1121 */ 1122 wildcard = (unit < 0); 1123 } else { 1124 struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid); 1125 if (p_tmp != NULL) { 1126 error = 0; 1127 subinterface = true; 1128 unit = IF_DUNIT_NONE; 1129 wildcard = false; 1130 if (p != NULL) { 1131 if_rele(p_tmp); 1132 if (p != p_tmp) 1133 error = EINVAL; 1134 } else 1135 p = p_tmp; 1136 } else 1137 error = ENXIO; 1138 } 1139 1140 if (error != 0) { 1141 if (p != NULL) 1142 if_rele(p); 1143 return (error); 1144 } 1145 1146 if (!subinterface) { 1147 /* vlanX interface, mark X as busy or allocate new unit # */ 1148 error = ifc_alloc_unit(ifc, &unit); 1149 if (error != 0) { 1150 if (p != NULL) 1151 if_rele(p); 1152 return (error); 1153 } 1154 } 1155 1156 /* In the wildcard case, we need to update the name. */ 1157 if (wildcard) { 1158 for (dp = name; *dp != '\0'; dp++); 1159 if (snprintf(dp, len - (dp-name), "%d", unit) > 1160 len - (dp-name) - 1) { 1161 panic("%s: interface name too long", __func__); 1162 } 1163 } 1164 1165 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 1166 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 1167 CK_SLIST_INIT(&ifv->vlan_mc_listhead); 1168 ifp->if_softc = ifv; 1169 /* 1170 * Set the name manually rather than using if_initname because 1171 * we don't conform to the default naming convention for interfaces. 1172 */ 1173 strlcpy(ifp->if_xname, name, IFNAMSIZ); 1174 ifp->if_dname = vlanname; 1175 ifp->if_dunit = unit; 1176 1177 ifp->if_init = vlan_init; 1178 #ifdef ALTQ 1179 ifp->if_start = vlan_altq_start; 1180 ifp->if_transmit = vlan_altq_transmit; 1181 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 1182 ifp->if_snd.ifq_drv_maxlen = 0; 1183 IFQ_SET_READY(&ifp->if_snd); 1184 #else 1185 ifp->if_transmit = vlan_transmit; 1186 #endif 1187 ifp->if_qflush = vlan_qflush; 1188 ifp->if_ioctl = vlan_ioctl; 1189 #if defined(KERN_TLS) || defined(RATELIMIT) 1190 ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; 1191 ifp->if_ratelimit_query = vlan_ratelimit_query; 1192 #endif 1193 ifp->if_flags = VLAN_IFFLAGS; 1194 ether_ifattach(ifp, eaddr); 1195 /* Now undo some of the damage... */ 1196 ifp->if_baudrate = 0; 1197 ifp->if_type = IFT_L2VLAN; 1198 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 1199 ifa = ifp->if_addr; 1200 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1201 sdl->sdl_type = IFT_L2VLAN; 1202 1203 if (p != NULL) { 1204 error = vlan_config(ifv, p, vid, proto); 1205 if_rele(p); 1206 if (error != 0) { 1207 /* 1208 * Since we've partially failed, we need to back 1209 * out all the way, otherwise userland could get 1210 * confused. Thus, we destroy the interface. 1211 */ 1212 ether_ifdetach(ifp); 1213 vlan_unconfig(ifp); 1214 if_free(ifp); 1215 if (!subinterface) 1216 ifc_free_unit(ifc, unit); 1217 free(ifv, M_VLAN); 1218 1219 return (error); 1220 } 1221 } 1222 *ifpp = ifp; 1223 1224 return (0); 1225 } 1226 1227 /* 1228 * 1229 * Parsers of IFLA_INFO_DATA inside IFLA_LINKINFO of RTM_NEWLINK 1230 * {{nla_len=8, nla_type=IFLA_LINK}, 2}, 1231 * {{nla_len=12, nla_type=IFLA_IFNAME}, "xvlan22"}, 1232 * {{nla_len=24, nla_type=IFLA_LINKINFO}, 1233 * [ 1234 * {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...}, 1235 * {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]} 1236 */ 1237 1238 struct nl_parsed_vlan { 1239 uint16_t vlan_id; 1240 uint16_t vlan_proto; 1241 struct ifla_vlan_flags vlan_flags; 1242 }; 1243 1244 #define _OUT(_field) offsetof(struct nl_parsed_vlan, _field) 1245 static const struct nlattr_parser nla_p_vlan[] = { 1246 { .type = IFLA_VLAN_ID, .off = _OUT(vlan_id), .cb = nlattr_get_uint16 }, 1247 { .type = IFLA_VLAN_FLAGS, .off = _OUT(vlan_flags), .cb = nlattr_get_nla }, 1248 { .type = IFLA_VLAN_PROTOCOL, .off = _OUT(vlan_proto), .cb = nlattr_get_uint16 }, 1249 }; 1250 #undef _OUT 1251 NL_DECLARE_ATTR_PARSER(vlan_parser, nla_p_vlan); 1252 1253 static int 1254 vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len, 1255 struct ifc_data_nl *ifd) 1256 { 1257 struct epoch_tracker et; 1258 struct ifnet *ifp_parent; 1259 struct nl_pstate *npt = ifd->npt; 1260 struct nl_parsed_link *lattrs = ifd->lattrs; 1261 int error; 1262 1263 /* 1264 * lattrs.ifla_ifname is the new interface name 1265 * lattrs.ifi_index contains parent interface index 1266 * lattrs.ifla_idata contains un-parsed vlan data 1267 */ 1268 struct nl_parsed_vlan attrs = { 1269 .vlan_id = 0xFEFE, 1270 .vlan_proto = ETHERTYPE_VLAN 1271 }; 1272 1273 if (lattrs->ifla_idata == NULL) { 1274 nlmsg_report_err_msg(npt, "vlan id is required, guessing not supported"); 1275 return (ENOTSUP); 1276 } 1277 1278 error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, npt, &attrs); 1279 if (error != 0) 1280 return (error); 1281 if (attrs.vlan_id > 4095) { 1282 nlmsg_report_err_msg(npt, "Invalid VID: %d", attrs.vlan_id); 1283 return (EINVAL); 1284 } 1285 if (attrs.vlan_proto != ETHERTYPE_VLAN && attrs.vlan_proto != ETHERTYPE_QINQ) { 1286 nlmsg_report_err_msg(npt, "Unsupported ethertype: 0x%04X", attrs.vlan_proto); 1287 return (ENOTSUP); 1288 } 1289 1290 struct vlanreq params = { 1291 .vlr_tag = attrs.vlan_id, 1292 .vlr_proto = attrs.vlan_proto, 1293 }; 1294 struct ifc_data ifd_new = { .flags = IFC_F_SYSSPACE, .unit = ifd->unit, .params = ¶ms }; 1295 1296 NET_EPOCH_ENTER(et); 1297 ifp_parent = ifnet_byindex(lattrs->ifi_index); 1298 if (ifp_parent != NULL) 1299 strlcpy(params.vlr_parent, if_name(ifp_parent), sizeof(params.vlr_parent)); 1300 NET_EPOCH_EXIT(et); 1301 1302 if (ifp_parent == NULL) { 1303 nlmsg_report_err_msg(npt, "unable to find parent interface %u", lattrs->ifi_index); 1304 return (ENOENT); 1305 } 1306 1307 error = vlan_clone_create(ifc, name, len, &ifd_new, &ifd->ifp); 1308 1309 return (error); 1310 } 1311 1312 static int 1313 vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd) 1314 { 1315 struct nl_parsed_link *lattrs = ifd->lattrs; 1316 1317 if ((lattrs->ifla_idata != NULL) && ((ifd->flags & IFC_F_CREATE) == 0)) { 1318 struct epoch_tracker et; 1319 struct nl_parsed_vlan attrs = { 1320 .vlan_proto = ETHERTYPE_VLAN, 1321 }; 1322 int error; 1323 1324 error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, ifd->npt, &attrs); 1325 if (error != 0) 1326 return (error); 1327 1328 NET_EPOCH_ENTER(et); 1329 struct ifnet *ifp_parent = ifnet_byindex_ref(lattrs->ifla_link); 1330 NET_EPOCH_EXIT(et); 1331 1332 if (ifp_parent == NULL) { 1333 nlmsg_report_err_msg(ifd->npt, "unable to find parent interface %u", 1334 lattrs->ifla_link); 1335 return (ENOENT); 1336 } 1337 1338 struct ifvlan *ifv = ifp->if_softc; 1339 error = vlan_config(ifv, ifp_parent, attrs.vlan_id, attrs.vlan_proto); 1340 1341 if_rele(ifp_parent); 1342 if (error != 0) 1343 return (error); 1344 } 1345 1346 return (nl_modify_ifp_generic(ifp, ifd->lattrs, ifd->bm, ifd->npt)); 1347 } 1348 1349 /* 1350 * {{nla_len=24, nla_type=IFLA_LINKINFO}, 1351 * [ 1352 * {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...}, 1353 * {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]} 1354 */ 1355 static void 1356 vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw) 1357 { 1358 uint32_t parent_index = 0; 1359 uint16_t vlan_id = 0; 1360 uint16_t vlan_proto = 0; 1361 1362 VLAN_SLOCK(); 1363 struct ifvlan *ifv = ifp->if_softc; 1364 if (TRUNK(ifv) != NULL) 1365 parent_index = PARENT(ifv)->if_index; 1366 vlan_id = ifv->ifv_vid; 1367 vlan_proto = ifv->ifv_proto; 1368 VLAN_SUNLOCK(); 1369 1370 if (parent_index != 0) 1371 nlattr_add_u32(nw, IFLA_LINK, parent_index); 1372 1373 int off = nlattr_add_nested(nw, IFLA_LINKINFO); 1374 if (off != 0) { 1375 nlattr_add_string(nw, IFLA_INFO_KIND, "vlan"); 1376 int off2 = nlattr_add_nested(nw, IFLA_INFO_DATA); 1377 if (off2 != 0) { 1378 nlattr_add_u16(nw, IFLA_VLAN_ID, vlan_id); 1379 nlattr_add_u16(nw, IFLA_VLAN_PROTOCOL, vlan_proto); 1380 nlattr_set_len(nw, off2); 1381 } 1382 nlattr_set_len(nw, off); 1383 } 1384 } 1385 1386 static int 1387 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags) 1388 { 1389 struct ifvlan *ifv = ifp->if_softc; 1390 int unit = ifp->if_dunit; 1391 1392 if (ifp->if_vlantrunk) 1393 return (EBUSY); 1394 1395 #ifdef ALTQ 1396 IFQ_PURGE(&ifp->if_snd); 1397 #endif 1398 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 1399 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 1400 /* 1401 * We should have the only reference to the ifv now, so we can now 1402 * drain any remaining lladdr task before freeing the ifnet and the 1403 * ifvlan. 1404 */ 1405 taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); 1406 NET_EPOCH_WAIT(); 1407 if_free(ifp); 1408 free(ifv, M_VLAN); 1409 if (unit != IF_DUNIT_NONE) 1410 ifc_free_unit(ifc, unit); 1411 1412 return (0); 1413 } 1414 1415 /* 1416 * The ifp->if_init entry point for vlan(4) is a no-op. 1417 */ 1418 static void 1419 vlan_init(void *foo __unused) 1420 { 1421 } 1422 1423 /* 1424 * The if_transmit method for vlan(4) interface. 1425 */ 1426 static int 1427 vlan_transmit(struct ifnet *ifp, struct mbuf *m) 1428 { 1429 struct ifvlan *ifv; 1430 struct ifnet *p; 1431 int error, len, mcast; 1432 1433 NET_EPOCH_ASSERT(); 1434 1435 ifv = ifp->if_softc; 1436 if (TRUNK(ifv) == NULL) { 1437 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1438 m_freem(m); 1439 return (ENETDOWN); 1440 } 1441 p = PARENT(ifv); 1442 len = m->m_pkthdr.len; 1443 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; 1444 1445 BPF_MTAP(ifp, m); 1446 1447 #if defined(KERN_TLS) || defined(RATELIMIT) 1448 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1449 struct vlan_snd_tag *vst; 1450 struct m_snd_tag *mst; 1451 1452 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 1453 mst = m->m_pkthdr.snd_tag; 1454 vst = mst_to_vst(mst); 1455 if (vst->tag->ifp != p) { 1456 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1457 m_freem(m); 1458 return (EAGAIN); 1459 } 1460 1461 m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag); 1462 m_snd_tag_rele(mst); 1463 } 1464 #endif 1465 1466 /* 1467 * Do not run parent's if_transmit() if the parent is not up, 1468 * or parent's driver will cause a system crash. 1469 */ 1470 if (!UP_AND_RUNNING(p)) { 1471 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1472 m_freem(m); 1473 return (ENETDOWN); 1474 } 1475 1476 if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) { 1477 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1478 return (0); 1479 } 1480 1481 /* 1482 * Send it, precisely as ether_output() would have. 1483 */ 1484 error = (p->if_transmit)(p, m); 1485 if (error == 0) { 1486 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1487 if_inc_counter(ifp, IFCOUNTER_OBYTES, len); 1488 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); 1489 } else 1490 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1491 return (error); 1492 } 1493 1494 static int 1495 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, 1496 struct route *ro) 1497 { 1498 struct ifvlan *ifv; 1499 struct ifnet *p; 1500 1501 NET_EPOCH_ASSERT(); 1502 1503 /* 1504 * Find the first non-VLAN parent interface. 1505 */ 1506 ifv = ifp->if_softc; 1507 do { 1508 if (TRUNK(ifv) == NULL) { 1509 m_freem(m); 1510 return (ENETDOWN); 1511 } 1512 p = PARENT(ifv); 1513 ifv = p->if_softc; 1514 } while (p->if_type == IFT_L2VLAN); 1515 1516 return p->if_output(ifp, m, dst, ro); 1517 } 1518 1519 #ifdef ALTQ 1520 static void 1521 vlan_altq_start(if_t ifp) 1522 { 1523 struct ifaltq *ifq = &ifp->if_snd; 1524 struct mbuf *m; 1525 1526 IFQ_LOCK(ifq); 1527 IFQ_DEQUEUE_NOLOCK(ifq, m); 1528 while (m != NULL) { 1529 vlan_transmit(ifp, m); 1530 IFQ_DEQUEUE_NOLOCK(ifq, m); 1531 } 1532 IFQ_UNLOCK(ifq); 1533 } 1534 1535 static int 1536 vlan_altq_transmit(if_t ifp, struct mbuf *m) 1537 { 1538 int err; 1539 1540 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 1541 IFQ_ENQUEUE(&ifp->if_snd, m, err); 1542 if (err == 0) 1543 vlan_altq_start(ifp); 1544 } else 1545 err = vlan_transmit(ifp, m); 1546 1547 return (err); 1548 } 1549 #endif /* ALTQ */ 1550 1551 /* 1552 * The ifp->if_qflush entry point for vlan(4) is a no-op. 1553 */ 1554 static void 1555 vlan_qflush(struct ifnet *ifp __unused) 1556 { 1557 } 1558 1559 static void 1560 vlan_input(struct ifnet *ifp, struct mbuf *m) 1561 { 1562 struct ifvlantrunk *trunk; 1563 struct ifvlan *ifv; 1564 struct m_tag *mtag; 1565 uint16_t vid, tag; 1566 1567 NET_EPOCH_ASSERT(); 1568 1569 trunk = ifp->if_vlantrunk; 1570 if (trunk == NULL) { 1571 m_freem(m); 1572 return; 1573 } 1574 1575 if (m->m_flags & M_VLANTAG) { 1576 /* 1577 * Packet is tagged, but m contains a normal 1578 * Ethernet frame; the tag is stored out-of-band. 1579 */ 1580 tag = m->m_pkthdr.ether_vtag; 1581 m->m_flags &= ~M_VLANTAG; 1582 } else { 1583 struct ether_vlan_header *evl; 1584 1585 /* 1586 * Packet is tagged in-band as specified by 802.1q. 1587 */ 1588 switch (ifp->if_type) { 1589 case IFT_ETHER: 1590 if (m->m_len < sizeof(*evl) && 1591 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1592 if_printf(ifp, "cannot pullup VLAN header\n"); 1593 return; 1594 } 1595 evl = mtod(m, struct ether_vlan_header *); 1596 tag = ntohs(evl->evl_tag); 1597 1598 /* 1599 * Remove the 802.1q header by copying the Ethernet 1600 * addresses over it and adjusting the beginning of 1601 * the data in the mbuf. The encapsulated Ethernet 1602 * type field is already in place. 1603 */ 1604 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 1605 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1606 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1607 break; 1608 1609 default: 1610 #ifdef INVARIANTS 1611 panic("%s: %s has unsupported if_type %u", 1612 __func__, ifp->if_xname, ifp->if_type); 1613 #endif 1614 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1615 m_freem(m); 1616 return; 1617 } 1618 } 1619 1620 vid = EVL_VLANOFTAG(tag); 1621 1622 ifv = vlan_gethash(trunk, vid); 1623 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 1624 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1625 m_freem(m); 1626 return; 1627 } 1628 1629 if (V_vlan_mtag_pcp) { 1630 /* 1631 * While uncommon, it is possible that we will find a 802.1q 1632 * packet encapsulated inside another packet that also had an 1633 * 802.1q header. For example, ethernet tunneled over IPSEC 1634 * arriving over ethernet. In that case, we replace the 1635 * existing 802.1q PCP m_tag value. 1636 */ 1637 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 1638 if (mtag == NULL) { 1639 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, 1640 sizeof(uint8_t), M_NOWAIT); 1641 if (mtag == NULL) { 1642 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1643 m_freem(m); 1644 return; 1645 } 1646 m_tag_prepend(m, mtag); 1647 } 1648 *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); 1649 } 1650 1651 m->m_pkthdr.rcvif = ifv->ifv_ifp; 1652 if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); 1653 1654 /* Pass it back through the parent's input routine. */ 1655 (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); 1656 } 1657 1658 static void 1659 vlan_lladdr_fn(void *arg, int pending __unused) 1660 { 1661 struct ifvlan *ifv; 1662 struct ifnet *ifp; 1663 1664 ifv = (struct ifvlan *)arg; 1665 ifp = ifv->ifv_ifp; 1666 1667 CURVNET_SET(ifp->if_vnet); 1668 1669 /* The ifv_ifp already has the lladdr copied in. */ 1670 if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); 1671 1672 CURVNET_RESTORE(); 1673 } 1674 1675 static int 1676 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid, 1677 uint16_t proto) 1678 { 1679 struct epoch_tracker et; 1680 struct ifvlantrunk *trunk; 1681 struct ifnet *ifp; 1682 int error = 0; 1683 1684 /* 1685 * We can handle non-ethernet hardware types as long as 1686 * they handle the tagging and headers themselves. 1687 */ 1688 if (p->if_type != IFT_ETHER && 1689 p->if_type != IFT_L2VLAN && 1690 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1691 return (EPROTONOSUPPORT); 1692 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 1693 return (EPROTONOSUPPORT); 1694 /* 1695 * Don't let the caller set up a VLAN VID with 1696 * anything except VLID bits. 1697 * VID numbers 0x0 and 0xFFF are reserved. 1698 */ 1699 if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) 1700 return (EINVAL); 1701 if (ifv->ifv_trunk) { 1702 trunk = ifv->ifv_trunk; 1703 if (trunk->parent != p) 1704 return (EBUSY); 1705 1706 VLAN_XLOCK(); 1707 1708 ifv->ifv_proto = proto; 1709 1710 if (ifv->ifv_vid != vid) { 1711 int oldvid = ifv->ifv_vid; 1712 1713 /* Re-hash */ 1714 vlan_remhash(trunk, ifv); 1715 ifv->ifv_vid = vid; 1716 error = vlan_inshash(trunk, ifv); 1717 if (error) { 1718 int ret __diagused; 1719 1720 ifv->ifv_vid = oldvid; 1721 /* Re-insert back where we found it. */ 1722 ret = vlan_inshash(trunk, ifv); 1723 MPASS(ret == 0); 1724 } 1725 } 1726 /* Will unlock */ 1727 goto done; 1728 } 1729 1730 VLAN_XLOCK(); 1731 if (p->if_vlantrunk == NULL) { 1732 trunk = malloc(sizeof(struct ifvlantrunk), 1733 M_VLAN, M_WAITOK | M_ZERO); 1734 vlan_inithash(trunk); 1735 TRUNK_LOCK_INIT(trunk); 1736 TRUNK_WLOCK(trunk); 1737 p->if_vlantrunk = trunk; 1738 trunk->parent = p; 1739 if_ref(trunk->parent); 1740 TRUNK_WUNLOCK(trunk); 1741 } else { 1742 trunk = p->if_vlantrunk; 1743 } 1744 1745 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ 1746 ifv->ifv_pcp = 0; /* Default: best effort delivery. */ 1747 error = vlan_inshash(trunk, ifv); 1748 if (error) 1749 goto done; 1750 ifv->ifv_proto = proto; 1751 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1752 ifv->ifv_mintu = ETHERMIN; 1753 ifv->ifv_pflags = 0; 1754 ifv->ifv_capenable = -1; 1755 ifv->ifv_capenable2 = -1; 1756 1757 /* 1758 * If the parent supports the VLAN_MTU capability, 1759 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1760 * use it. 1761 */ 1762 if (p->if_capenable & IFCAP_VLAN_MTU) { 1763 /* 1764 * No need to fudge the MTU since the parent can 1765 * handle extended frames. 1766 */ 1767 ifv->ifv_mtufudge = 0; 1768 } else { 1769 /* 1770 * Fudge the MTU by the encapsulation size. This 1771 * makes us incompatible with strictly compliant 1772 * 802.1Q implementations, but allows us to use 1773 * the feature with other NetBSD implementations, 1774 * which might still be useful. 1775 */ 1776 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1777 } 1778 1779 ifv->ifv_trunk = trunk; 1780 ifp = ifv->ifv_ifp; 1781 /* 1782 * Initialize fields from our parent. This duplicates some 1783 * work with ether_ifattach() but allows for non-ethernet 1784 * interfaces to also work. 1785 */ 1786 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1787 ifp->if_baudrate = p->if_baudrate; 1788 ifp->if_input = p->if_input; 1789 ifp->if_resolvemulti = p->if_resolvemulti; 1790 ifp->if_addrlen = p->if_addrlen; 1791 ifp->if_broadcastaddr = p->if_broadcastaddr; 1792 ifp->if_pcp = ifv->ifv_pcp; 1793 1794 /* 1795 * We wrap the parent's if_output using vlan_output to ensure that it 1796 * can't become stale. 1797 */ 1798 ifp->if_output = vlan_output; 1799 1800 /* 1801 * Copy only a selected subset of flags from the parent. 1802 * Other flags are none of our business. 1803 */ 1804 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1805 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1806 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1807 #undef VLAN_COPY_FLAGS 1808 1809 ifp->if_link_state = p->if_link_state; 1810 1811 NET_EPOCH_ENTER(et); 1812 vlan_capabilities(ifv); 1813 NET_EPOCH_EXIT(et); 1814 1815 /* 1816 * Set up our interface address to reflect the underlying 1817 * physical interface's. 1818 */ 1819 TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); 1820 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = 1821 p->if_addrlen; 1822 1823 /* 1824 * Do not schedule link address update if it was the same 1825 * as previous parent's. This helps avoid updating for each 1826 * associated llentry. 1827 */ 1828 if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) { 1829 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); 1830 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 1831 } 1832 1833 /* We are ready for operation now. */ 1834 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1835 1836 /* Update flags on the parent, if necessary. */ 1837 vlan_setflags(ifp, 1); 1838 1839 /* 1840 * Configure multicast addresses that may already be 1841 * joined on the vlan device. 1842 */ 1843 (void)vlan_setmulti(ifp); 1844 1845 done: 1846 if (error == 0) 1847 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); 1848 VLAN_XUNLOCK(); 1849 1850 return (error); 1851 } 1852 1853 static void 1854 vlan_unconfig(struct ifnet *ifp) 1855 { 1856 1857 VLAN_XLOCK(); 1858 vlan_unconfig_locked(ifp, 0); 1859 VLAN_XUNLOCK(); 1860 } 1861 1862 static void 1863 vlan_unconfig_locked(struct ifnet *ifp, int departing) 1864 { 1865 struct ifvlantrunk *trunk; 1866 struct vlan_mc_entry *mc; 1867 struct ifvlan *ifv; 1868 struct ifnet *parent; 1869 int error; 1870 1871 VLAN_XLOCK_ASSERT(); 1872 1873 ifv = ifp->if_softc; 1874 trunk = ifv->ifv_trunk; 1875 parent = NULL; 1876 1877 if (trunk != NULL) { 1878 parent = trunk->parent; 1879 1880 /* 1881 * Since the interface is being unconfigured, we need to 1882 * empty the list of multicast groups that we may have joined 1883 * while we were alive from the parent's list. 1884 */ 1885 while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1886 /* 1887 * If the parent interface is being detached, 1888 * all its multicast addresses have already 1889 * been removed. Warn about errors if 1890 * if_delmulti() does fail, but don't abort as 1891 * all callers expect vlan destruction to 1892 * succeed. 1893 */ 1894 if (!departing) { 1895 error = if_delmulti(parent, 1896 (struct sockaddr *)&mc->mc_addr); 1897 if (error) 1898 if_printf(ifp, 1899 "Failed to delete multicast address from parent: %d\n", 1900 error); 1901 } 1902 CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1903 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 1904 } 1905 1906 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1907 1908 vlan_remhash(trunk, ifv); 1909 ifv->ifv_trunk = NULL; 1910 1911 /* 1912 * Check if we were the last. 1913 */ 1914 if (trunk->refcnt == 0) { 1915 parent->if_vlantrunk = NULL; 1916 NET_EPOCH_WAIT(); 1917 trunk_destroy(trunk); 1918 } 1919 } 1920 1921 /* Disconnect from parent. */ 1922 if (ifv->ifv_pflags) 1923 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1924 ifp->if_mtu = ETHERMTU; 1925 ifp->if_link_state = LINK_STATE_UNKNOWN; 1926 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1927 1928 /* 1929 * Only dispatch an event if vlan was 1930 * attached, otherwise there is nothing 1931 * to cleanup anyway. 1932 */ 1933 if (parent != NULL) 1934 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); 1935 } 1936 1937 /* Handle a reference counted flag that should be set on the parent as well */ 1938 static int 1939 vlan_setflag(struct ifnet *ifp, int flag, int status, 1940 int (*func)(struct ifnet *, int)) 1941 { 1942 struct ifvlan *ifv; 1943 int error; 1944 1945 VLAN_SXLOCK_ASSERT(); 1946 1947 ifv = ifp->if_softc; 1948 status = status ? (ifp->if_flags & flag) : 0; 1949 /* Now "status" contains the flag value or 0 */ 1950 1951 /* 1952 * See if recorded parent's status is different from what 1953 * we want it to be. If it is, flip it. We record parent's 1954 * status in ifv_pflags so that we won't clear parent's flag 1955 * we haven't set. In fact, we don't clear or set parent's 1956 * flags directly, but get or release references to them. 1957 * That's why we can be sure that recorded flags still are 1958 * in accord with actual parent's flags. 1959 */ 1960 if (status != (ifv->ifv_pflags & flag)) { 1961 error = (*func)(PARENT(ifv), status); 1962 if (error) 1963 return (error); 1964 ifv->ifv_pflags &= ~flag; 1965 ifv->ifv_pflags |= status; 1966 } 1967 return (0); 1968 } 1969 1970 /* 1971 * Handle IFF_* flags that require certain changes on the parent: 1972 * if "status" is true, update parent's flags respective to our if_flags; 1973 * if "status" is false, forcedly clear the flags set on parent. 1974 */ 1975 static int 1976 vlan_setflags(struct ifnet *ifp, int status) 1977 { 1978 int error, i; 1979 1980 for (i = 0; vlan_pflags[i].flag; i++) { 1981 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1982 status, vlan_pflags[i].func); 1983 if (error) 1984 return (error); 1985 } 1986 return (0); 1987 } 1988 1989 /* Inform all vlans that their parent has changed link state */ 1990 static void 1991 vlan_link_state(struct ifnet *ifp) 1992 { 1993 struct epoch_tracker et; 1994 struct ifvlantrunk *trunk; 1995 struct ifvlan *ifv; 1996 1997 NET_EPOCH_ENTER(et); 1998 trunk = ifp->if_vlantrunk; 1999 if (trunk == NULL) { 2000 NET_EPOCH_EXIT(et); 2001 return; 2002 } 2003 2004 TRUNK_WLOCK(trunk); 2005 VLAN_FOREACH(ifv, trunk) { 2006 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 2007 if_link_state_change(ifv->ifv_ifp, 2008 trunk->parent->if_link_state); 2009 } 2010 TRUNK_WUNLOCK(trunk); 2011 NET_EPOCH_EXIT(et); 2012 } 2013 2014 #ifdef IPSEC_OFFLOAD 2015 #define VLAN_IPSEC_METHOD(exp) \ 2016 if_t p; \ 2017 struct ifvlan *ifv; \ 2018 int error; \ 2019 \ 2020 ifv = ifp->if_softc; \ 2021 VLAN_SLOCK(); \ 2022 if (TRUNK(ifv) != NULL) { \ 2023 p = PARENT(ifv); \ 2024 if_ref(p); \ 2025 error = p->if_ipsec_accel_m->exp; \ 2026 if_rele(p); \ 2027 } else { \ 2028 error = ENXIO; \ 2029 } \ 2030 VLAN_SUNLOCK(); \ 2031 return (error); 2032 2033 2034 static int 2035 vlan_if_spdadd(if_t ifp, void *sp, void *inp, void **priv) 2036 { 2037 VLAN_IPSEC_METHOD(if_spdadd(ifp, sp, inp, priv)); 2038 } 2039 2040 static int 2041 vlan_if_spddel(if_t ifp, void *sp, void *priv) 2042 { 2043 VLAN_IPSEC_METHOD(if_spddel(ifp, sp, priv)); 2044 } 2045 2046 static int 2047 vlan_if_sa_newkey(if_t ifp, void *sav, u_int drv_spi, void **privp) 2048 { 2049 VLAN_IPSEC_METHOD(if_sa_newkey(ifp, sav, drv_spi, privp)); 2050 } 2051 2052 static int 2053 vlan_if_sa_deinstall(if_t ifp, u_int drv_spi, void *priv) 2054 { 2055 VLAN_IPSEC_METHOD(if_sa_deinstall(ifp, drv_spi, priv)); 2056 } 2057 2058 static int 2059 vlan_if_sa_cnt(if_t ifp, void *sa, uint32_t drv_spi, void *priv, 2060 struct seclifetime *lt) 2061 { 2062 VLAN_IPSEC_METHOD(if_sa_cnt(ifp, sa, drv_spi, priv, lt)); 2063 } 2064 2065 static int 2066 vlan_if_ipsec_hwassist(if_t ifp, void *sav, u_int drv_spi,void *priv) 2067 { 2068 if_t trunk; 2069 2070 NET_EPOCH_ASSERT(); 2071 trunk = vlan_trunkdev(ifp); 2072 if (trunk == NULL) 2073 return (0); 2074 return (trunk->if_ipsec_accel_m->if_hwassist(trunk, sav, 2075 drv_spi, priv)); 2076 } 2077 2078 static const struct if_ipsec_accel_methods vlan_if_ipsec_accel_methods = { 2079 .if_spdadd = vlan_if_spdadd, 2080 .if_spddel = vlan_if_spddel, 2081 .if_sa_newkey = vlan_if_sa_newkey, 2082 .if_sa_deinstall = vlan_if_sa_deinstall, 2083 .if_sa_cnt = vlan_if_sa_cnt, 2084 .if_hwassist = vlan_if_ipsec_hwassist, 2085 }; 2086 2087 #undef VLAN_IPSEC_METHOD 2088 #endif /* IPSEC_OFFLOAD */ 2089 2090 static void 2091 vlan_capabilities(struct ifvlan *ifv) 2092 { 2093 struct ifnet *p; 2094 struct ifnet *ifp; 2095 struct ifnet_hw_tsomax hw_tsomax; 2096 int cap = 0, ena = 0, mena, cap2 = 0, ena2 = 0; 2097 int mena2 __unused; 2098 u_long hwa = 0; 2099 2100 NET_EPOCH_ASSERT(); 2101 VLAN_SXLOCK_ASSERT(); 2102 2103 p = PARENT(ifv); 2104 ifp = ifv->ifv_ifp; 2105 2106 /* Mask parent interface enabled capabilities disabled by user. */ 2107 mena = p->if_capenable & ifv->ifv_capenable; 2108 mena2 = p->if_capenable2 & ifv->ifv_capenable2; 2109 2110 /* 2111 * If the parent interface can do checksum offloading 2112 * on VLANs, then propagate its hardware-assisted 2113 * checksumming flags. Also assert that checksum 2114 * offloading requires hardware VLAN tagging. 2115 */ 2116 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 2117 cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 2118 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 2119 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 2120 ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 2121 if (ena & IFCAP_TXCSUM) 2122 hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | 2123 CSUM_UDP | CSUM_SCTP); 2124 if (ena & IFCAP_TXCSUM_IPV6) 2125 hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | 2126 CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); 2127 } 2128 2129 /* 2130 * If the parent interface can do TSO on VLANs then 2131 * propagate the hardware-assisted flag. TSO on VLANs 2132 * does not necessarily require hardware VLAN tagging. 2133 */ 2134 memset(&hw_tsomax, 0, sizeof(hw_tsomax)); 2135 if_hw_tsomax_common(p, &hw_tsomax); 2136 if_hw_tsomax_update(ifp, &hw_tsomax); 2137 if (p->if_capabilities & IFCAP_VLAN_HWTSO) 2138 cap |= p->if_capabilities & IFCAP_TSO; 2139 if (p->if_capenable & IFCAP_VLAN_HWTSO) { 2140 ena |= mena & IFCAP_TSO; 2141 if (ena & IFCAP_TSO) 2142 hwa |= p->if_hwassist & CSUM_TSO; 2143 } 2144 2145 /* 2146 * If the parent interface can do LRO and checksum offloading on 2147 * VLANs, then guess it may do LRO on VLANs. False positive here 2148 * cost nothing, while false negative may lead to some confusions. 2149 */ 2150 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 2151 cap |= p->if_capabilities & IFCAP_LRO; 2152 if (p->if_capenable & IFCAP_VLAN_HWCSUM) 2153 ena |= mena & IFCAP_LRO; 2154 2155 /* 2156 * If the parent interface can offload TCP connections over VLANs then 2157 * propagate its TOE capability to the VLAN interface. 2158 * 2159 * All TOE drivers in the tree today can deal with VLANs. If this 2160 * changes then IFCAP_VLAN_TOE should be promoted to a full capability 2161 * with its own bit. 2162 */ 2163 #define IFCAP_VLAN_TOE IFCAP_TOE 2164 if (p->if_capabilities & IFCAP_VLAN_TOE) 2165 cap |= p->if_capabilities & IFCAP_TOE; 2166 if (p->if_capenable & IFCAP_VLAN_TOE) { 2167 SETTOEDEV(ifp, TOEDEV(p)); 2168 ena |= mena & IFCAP_TOE; 2169 } 2170 2171 /* 2172 * If the parent interface supports dynamic link state, so does the 2173 * VLAN interface. 2174 */ 2175 cap |= (p->if_capabilities & IFCAP_LINKSTATE); 2176 ena |= (mena & IFCAP_LINKSTATE); 2177 2178 #ifdef RATELIMIT 2179 /* 2180 * If the parent interface supports ratelimiting, so does the 2181 * VLAN interface. 2182 */ 2183 cap |= (p->if_capabilities & IFCAP_TXRTLMT); 2184 ena |= (mena & IFCAP_TXRTLMT); 2185 #endif 2186 2187 /* 2188 * If the parent interface supports unmapped mbufs, so does 2189 * the VLAN interface. Note that this should be fine even for 2190 * interfaces that don't support hardware tagging as headers 2191 * are prepended in normal mbufs to unmapped mbufs holding 2192 * payload data. 2193 */ 2194 cap |= (p->if_capabilities & IFCAP_MEXTPG); 2195 ena |= (mena & IFCAP_MEXTPG); 2196 2197 /* 2198 * If the parent interface can offload encryption and segmentation 2199 * of TLS records over TCP, propagate it's capability to the VLAN 2200 * interface. 2201 * 2202 * All TLS drivers in the tree today can deal with VLANs. If 2203 * this ever changes, then a new IFCAP_VLAN_TXTLS can be 2204 * defined. 2205 */ 2206 if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 2207 cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 2208 if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 2209 ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 2210 2211 ifp->if_capabilities = cap; 2212 ifp->if_capenable = ena; 2213 ifp->if_hwassist = hwa; 2214 2215 #ifdef IPSEC_OFFLOAD 2216 cap2 |= p->if_capabilities2 & IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD); 2217 ena2 |= mena2 & IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD); 2218 ifp->if_ipsec_accel_m = &vlan_if_ipsec_accel_methods; 2219 #endif 2220 2221 ifp->if_capabilities2 = cap2; 2222 ifp->if_capenable2 = ena2; 2223 } 2224 2225 static void 2226 vlan_trunk_capabilities(struct ifnet *ifp) 2227 { 2228 struct epoch_tracker et; 2229 struct ifvlantrunk *trunk; 2230 struct ifvlan *ifv; 2231 2232 VLAN_SLOCK(); 2233 trunk = ifp->if_vlantrunk; 2234 if (trunk == NULL) { 2235 VLAN_SUNLOCK(); 2236 return; 2237 } 2238 NET_EPOCH_ENTER(et); 2239 VLAN_FOREACH(ifv, trunk) 2240 vlan_capabilities(ifv); 2241 NET_EPOCH_EXIT(et); 2242 VLAN_SUNLOCK(); 2243 } 2244 2245 static int 2246 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2247 { 2248 struct ifnet *p; 2249 struct ifreq *ifr; 2250 #ifdef INET 2251 struct ifaddr *ifa; 2252 #endif 2253 struct ifvlan *ifv; 2254 struct ifvlantrunk *trunk; 2255 struct vlanreq vlr; 2256 int error = 0, oldmtu; 2257 2258 ifr = (struct ifreq *)data; 2259 #ifdef INET 2260 ifa = (struct ifaddr *) data; 2261 #endif 2262 ifv = ifp->if_softc; 2263 2264 switch (cmd) { 2265 case SIOCSIFADDR: 2266 ifp->if_flags |= IFF_UP; 2267 #ifdef INET 2268 if (ifa->ifa_addr->sa_family == AF_INET) 2269 arp_ifinit(ifp, ifa); 2270 #endif 2271 break; 2272 case SIOCGIFADDR: 2273 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 2274 ifp->if_addrlen); 2275 break; 2276 case SIOCGIFMEDIA: 2277 VLAN_SLOCK(); 2278 if (TRUNK(ifv) != NULL) { 2279 p = PARENT(ifv); 2280 if_ref(p); 2281 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); 2282 if_rele(p); 2283 /* Limit the result to the parent's current config. */ 2284 if (error == 0) { 2285 struct ifmediareq *ifmr; 2286 2287 ifmr = (struct ifmediareq *)data; 2288 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 2289 ifmr->ifm_count = 1; 2290 error = copyout(&ifmr->ifm_current, 2291 ifmr->ifm_ulist, 2292 sizeof(int)); 2293 } 2294 } 2295 } else { 2296 error = EINVAL; 2297 } 2298 VLAN_SUNLOCK(); 2299 break; 2300 2301 case SIOCSIFMEDIA: 2302 error = EINVAL; 2303 break; 2304 2305 case SIOCSIFMTU: 2306 /* 2307 * Set the interface MTU. 2308 */ 2309 VLAN_SLOCK(); 2310 trunk = TRUNK(ifv); 2311 if (trunk != NULL) { 2312 TRUNK_WLOCK(trunk); 2313 if (ifr->ifr_mtu > 2314 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 2315 ifr->ifr_mtu < 2316 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 2317 error = EINVAL; 2318 else 2319 ifp->if_mtu = ifr->ifr_mtu; 2320 TRUNK_WUNLOCK(trunk); 2321 } else 2322 error = EINVAL; 2323 VLAN_SUNLOCK(); 2324 break; 2325 2326 case SIOCSETVLAN: 2327 #ifdef VIMAGE 2328 /* 2329 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN 2330 * interface to be delegated to a jail without allowing the 2331 * jail to change what underlying interface/VID it is 2332 * associated with. We are not entirely convinced that this 2333 * is the right way to accomplish that policy goal. 2334 */ 2335 if (ifp->if_vnet != ifp->if_home_vnet) { 2336 error = EPERM; 2337 break; 2338 } 2339 #endif 2340 error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); 2341 if (error) 2342 break; 2343 if (vlr.vlr_parent[0] == '\0') { 2344 vlan_unconfig(ifp); 2345 break; 2346 } 2347 p = ifunit_ref(vlr.vlr_parent); 2348 if (p == NULL) { 2349 error = ENOENT; 2350 break; 2351 } 2352 if (vlr.vlr_proto == 0) 2353 vlr.vlr_proto = ETHERTYPE_VLAN; 2354 oldmtu = ifp->if_mtu; 2355 error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto); 2356 if_rele(p); 2357 2358 /* 2359 * VLAN MTU may change during addition of the vlandev. 2360 * If it did, do network layer specific procedure. 2361 */ 2362 if (ifp->if_mtu != oldmtu) 2363 if_notifymtu(ifp); 2364 break; 2365 2366 case SIOCGETVLAN: 2367 #ifdef VIMAGE 2368 if (ifp->if_vnet != ifp->if_home_vnet) { 2369 error = EPERM; 2370 break; 2371 } 2372 #endif 2373 bzero(&vlr, sizeof(vlr)); 2374 VLAN_SLOCK(); 2375 if (TRUNK(ifv) != NULL) { 2376 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 2377 sizeof(vlr.vlr_parent)); 2378 vlr.vlr_tag = ifv->ifv_vid; 2379 vlr.vlr_proto = ifv->ifv_proto; 2380 } 2381 VLAN_SUNLOCK(); 2382 error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); 2383 break; 2384 2385 case SIOCSIFFLAGS: 2386 /* 2387 * We should propagate selected flags to the parent, 2388 * e.g., promiscuous mode. 2389 */ 2390 VLAN_SLOCK(); 2391 if (TRUNK(ifv) != NULL) 2392 error = vlan_setflags(ifp, 1); 2393 VLAN_SUNLOCK(); 2394 break; 2395 2396 case SIOCADDMULTI: 2397 case SIOCDELMULTI: 2398 /* 2399 * If we don't have a parent, just remember the membership for 2400 * when we do. 2401 * 2402 * XXX We need the rmlock here to avoid sleeping while 2403 * holding in6_multi_mtx. 2404 */ 2405 VLAN_XLOCK(); 2406 trunk = TRUNK(ifv); 2407 if (trunk != NULL) 2408 error = vlan_setmulti(ifp); 2409 VLAN_XUNLOCK(); 2410 2411 break; 2412 case SIOCGVLANPCP: 2413 #ifdef VIMAGE 2414 if (ifp->if_vnet != ifp->if_home_vnet) { 2415 error = EPERM; 2416 break; 2417 } 2418 #endif 2419 ifr->ifr_vlan_pcp = ifv->ifv_pcp; 2420 break; 2421 2422 case SIOCSVLANPCP: 2423 #ifdef VIMAGE 2424 if (ifp->if_vnet != ifp->if_home_vnet) { 2425 error = EPERM; 2426 break; 2427 } 2428 #endif 2429 error = priv_check(curthread, PRIV_NET_SETVLANPCP); 2430 if (error) 2431 break; 2432 if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) { 2433 error = EINVAL; 2434 break; 2435 } 2436 ifv->ifv_pcp = ifr->ifr_vlan_pcp; 2437 ifp->if_pcp = ifv->ifv_pcp; 2438 /* broadcast event about PCP change */ 2439 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 2440 break; 2441 2442 case SIOCSIFCAP: 2443 VLAN_SLOCK(); 2444 ifv->ifv_capenable = ifr->ifr_reqcap; 2445 trunk = TRUNK(ifv); 2446 if (trunk != NULL) { 2447 struct epoch_tracker et; 2448 2449 NET_EPOCH_ENTER(et); 2450 vlan_capabilities(ifv); 2451 NET_EPOCH_EXIT(et); 2452 } 2453 VLAN_SUNLOCK(); 2454 break; 2455 2456 default: 2457 error = EINVAL; 2458 break; 2459 } 2460 2461 return (error); 2462 } 2463 2464 #if defined(KERN_TLS) || defined(RATELIMIT) 2465 static int 2466 vlan_snd_tag_alloc(struct ifnet *ifp, 2467 union if_snd_tag_alloc_params *params, 2468 struct m_snd_tag **ppmt) 2469 { 2470 struct epoch_tracker et; 2471 const struct if_snd_tag_sw *sw; 2472 struct vlan_snd_tag *vst; 2473 struct ifvlan *ifv; 2474 struct ifnet *parent; 2475 struct m_snd_tag *mst; 2476 int error; 2477 2478 NET_EPOCH_ENTER(et); 2479 ifv = ifp->if_softc; 2480 2481 switch (params->hdr.type) { 2482 #ifdef RATELIMIT 2483 case IF_SND_TAG_TYPE_UNLIMITED: 2484 sw = &vlan_snd_tag_ul_sw; 2485 break; 2486 case IF_SND_TAG_TYPE_RATE_LIMIT: 2487 sw = &vlan_snd_tag_rl_sw; 2488 break; 2489 #endif 2490 #ifdef KERN_TLS 2491 case IF_SND_TAG_TYPE_TLS: 2492 sw = &vlan_snd_tag_tls_sw; 2493 break; 2494 case IF_SND_TAG_TYPE_TLS_RX: 2495 sw = NULL; 2496 if (params->tls_rx.vlan_id != 0) 2497 goto failure; 2498 params->tls_rx.vlan_id = ifv->ifv_vid; 2499 break; 2500 #ifdef RATELIMIT 2501 case IF_SND_TAG_TYPE_TLS_RATE_LIMIT: 2502 sw = &vlan_snd_tag_tls_rl_sw; 2503 break; 2504 #endif 2505 #endif 2506 default: 2507 goto failure; 2508 } 2509 2510 if (ifv->ifv_trunk != NULL) 2511 parent = PARENT(ifv); 2512 else 2513 parent = NULL; 2514 if (parent == NULL) 2515 goto failure; 2516 if_ref(parent); 2517 NET_EPOCH_EXIT(et); 2518 2519 if (sw != NULL) { 2520 vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT); 2521 if (vst == NULL) { 2522 if_rele(parent); 2523 return (ENOMEM); 2524 } 2525 } else 2526 vst = NULL; 2527 2528 error = m_snd_tag_alloc(parent, params, &mst); 2529 if_rele(parent); 2530 if (error) { 2531 free(vst, M_VLAN); 2532 return (error); 2533 } 2534 2535 if (sw != NULL) { 2536 m_snd_tag_init(&vst->com, ifp, sw); 2537 vst->tag = mst; 2538 2539 *ppmt = &vst->com; 2540 } else 2541 *ppmt = mst; 2542 2543 return (0); 2544 failure: 2545 NET_EPOCH_EXIT(et); 2546 return (EOPNOTSUPP); 2547 } 2548 2549 static struct m_snd_tag * 2550 vlan_next_snd_tag(struct m_snd_tag *mst) 2551 { 2552 struct vlan_snd_tag *vst; 2553 2554 vst = mst_to_vst(mst); 2555 return (vst->tag); 2556 } 2557 2558 static int 2559 vlan_snd_tag_modify(struct m_snd_tag *mst, 2560 union if_snd_tag_modify_params *params) 2561 { 2562 struct vlan_snd_tag *vst; 2563 2564 vst = mst_to_vst(mst); 2565 return (vst->tag->sw->snd_tag_modify(vst->tag, params)); 2566 } 2567 2568 static int 2569 vlan_snd_tag_query(struct m_snd_tag *mst, 2570 union if_snd_tag_query_params *params) 2571 { 2572 struct vlan_snd_tag *vst; 2573 2574 vst = mst_to_vst(mst); 2575 return (vst->tag->sw->snd_tag_query(vst->tag, params)); 2576 } 2577 2578 static void 2579 vlan_snd_tag_free(struct m_snd_tag *mst) 2580 { 2581 struct vlan_snd_tag *vst; 2582 2583 vst = mst_to_vst(mst); 2584 m_snd_tag_rele(vst->tag); 2585 free(vst, M_VLAN); 2586 } 2587 2588 static void 2589 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q) 2590 { 2591 /* 2592 * For vlan, we have an indirect 2593 * interface. The caller needs to 2594 * get a ratelimit tag on the actual 2595 * interface the flow will go on. 2596 */ 2597 q->rate_table = NULL; 2598 q->flags = RT_IS_INDIRECT; 2599 q->max_flows = 0; 2600 q->number_of_rates = 0; 2601 } 2602 2603 #endif 2604