xref: /freebsd/sys/net/if_vlan.c (revision a58ece87303f882367105c92a27268ed6befa655)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ipsec.h"
48 #include "opt_kern_tls.h"
49 #include "opt_vlan.h"
50 #include "opt_ratelimit.h"
51 
52 #include <sys/param.h>
53 #include <sys/eventhandler.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/module.h>
59 #include <sys/rmlock.h>
60 #include <sys/priv.h>
61 #include <sys/queue.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/sx.h>
67 #include <sys/taskqueue.h>
68 
69 #include <net/bpf.h>
70 #include <net/ethernet.h>
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_private.h>
74 #include <net/if_clone.h>
75 #include <net/if_dl.h>
76 #include <net/if_types.h>
77 #include <net/if_vlan_var.h>
78 #include <net/route.h>
79 #include <net/vnet.h>
80 
81 #ifdef INET
82 #include <netinet/in.h>
83 #include <netinet/if_ether.h>
84 #endif
85 
86 #include <netlink/netlink.h>
87 #include <netlink/netlink_ctl.h>
88 #include <netlink/netlink_route.h>
89 #include <netlink/route/route_var.h>
90 
91 #define	VLAN_DEF_HWIDTH	4
92 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
93 
94 #define	UP_AND_RUNNING(ifp) \
95     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
96 
97 CK_SLIST_HEAD(ifvlanhead, ifvlan);
98 
99 struct ifvlantrunk {
100 	struct	ifnet   *parent;	/* parent interface of this trunk */
101 	struct	mtx	lock;
102 #ifdef VLAN_ARRAY
103 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
104 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
105 #else
106 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
107 	uint16_t	hmask;
108 	uint16_t	hwidth;
109 #endif
110 	int		refcnt;
111 };
112 
113 #if defined(KERN_TLS) || defined(RATELIMIT)
114 struct vlan_snd_tag {
115 	struct m_snd_tag com;
116 	struct m_snd_tag *tag;
117 };
118 
119 static inline struct vlan_snd_tag *
120 mst_to_vst(struct m_snd_tag *mst)
121 {
122 
123 	return (__containerof(mst, struct vlan_snd_tag, com));
124 }
125 #endif
126 
127 /*
128  * This macro provides a facility to iterate over every vlan on a trunk with
129  * the assumption that none will be added/removed during iteration.
130  */
131 #ifdef VLAN_ARRAY
132 #define VLAN_FOREACH(_ifv, _trunk) \
133 	size_t _i; \
134 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
135 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
136 #else /* VLAN_ARRAY */
137 #define VLAN_FOREACH(_ifv, _trunk) \
138 	struct ifvlan *_next; \
139 	size_t _i; \
140 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
141 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
142 #endif /* VLAN_ARRAY */
143 
144 /*
145  * This macro provides a facility to iterate over every vlan on a trunk while
146  * also modifying the number of vlans on the trunk. The iteration continues
147  * until some condition is met or there are no more vlans on the trunk.
148  */
149 #ifdef VLAN_ARRAY
150 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
151 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
152 	size_t _i; \
153 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
154 		if (((_ifv) = (_trunk)->vlans[_i]))
155 #else /* VLAN_ARRAY */
156 /*
157  * The hash table case is more complicated. We allow for the hash table to be
158  * modified (i.e. vlans removed) while we are iterating over it. To allow for
159  * this we must restart the iteration every time we "touch" something during
160  * the iteration, since removal will resize the hash table and invalidate our
161  * current position. If acting on the touched element causes the trunk to be
162  * emptied, then iteration also stops.
163  */
164 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
165 	size_t _i; \
166 	bool _touch = false; \
167 	for (_i = 0; \
168 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
169 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
170 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
171 		    (_touch = true))
172 #endif /* VLAN_ARRAY */
173 
174 struct vlan_mc_entry {
175 	struct sockaddr_dl		mc_addr;
176 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
177 	struct epoch_context		mc_epoch_ctx;
178 };
179 
180 struct ifvlan {
181 	struct	ifvlantrunk *ifv_trunk;
182 	struct	ifnet *ifv_ifp;
183 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
184 #define	PARENT(ifv)	(TRUNK(ifv)->parent)
185 	void	*ifv_cookie;
186 	int	ifv_pflags;	/* special flags we have set on parent */
187 	int	ifv_capenable;
188   	int	ifv_capenable2;
189 	int	ifv_encaplen;	/* encapsulation length */
190 	int	ifv_mtufudge;	/* MTU fudged by this much */
191 	int	ifv_mintu;	/* min transmission unit */
192 	struct  ether_8021q_tag ifv_qtag;
193 #define ifv_proto	ifv_qtag.proto
194 #define ifv_vid		ifv_qtag.vid
195 #define ifv_pcp		ifv_qtag.pcp
196 	struct task lladdr_task;
197 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
198 #ifndef VLAN_ARRAY
199 	CK_SLIST_ENTRY(ifvlan) ifv_list;
200 #endif
201 };
202 
203 /* Special flags we should propagate to parent. */
204 static struct {
205 	int flag;
206 	int (*func)(struct ifnet *, int);
207 } vlan_pflags[] = {
208 	{IFF_PROMISC, ifpromisc},
209 	{IFF_ALLMULTI, if_allmulti},
210 	{0, NULL}
211 };
212 
213 VNET_DECLARE(int, vlan_mtag_pcp);
214 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
215 
216 static const char vlanname[] = "vlan";
217 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
218 
219 static eventhandler_tag ifdetach_tag;
220 static eventhandler_tag iflladdr_tag;
221 static eventhandler_tag ifevent_tag;
222 
223 /*
224  * if_vlan uses two module-level synchronizations primitives to allow concurrent
225  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
226  * while they are being used for tx/rx. To accomplish this in a way that has
227  * acceptable performance and cooperation with other parts of the network stack
228  * there is a non-sleepable epoch(9) and an sx(9).
229  *
230  * The performance-sensitive paths that warrant using the epoch(9) are
231  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
232  * existence using if_vlantrunk, and being in the network tx/rx paths the use
233  * of an epoch(9) gives a measureable improvement in performance.
234  *
235  * The reason for having an sx(9) is mostly because there are still areas that
236  * must be sleepable and also have safe concurrent access to a vlan interface.
237  * Since the sx(9) exists, it is used by default in most paths unless sleeping
238  * is not permitted, or if it is not clear whether sleeping is permitted.
239  *
240  */
241 #define _VLAN_SX_ID ifv_sx
242 
243 static struct sx _VLAN_SX_ID;
244 
245 #define VLAN_LOCKING_INIT() \
246 	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
247 
248 #define VLAN_LOCKING_DESTROY() \
249 	sx_destroy(&_VLAN_SX_ID)
250 
251 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
252 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
253 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
254 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
255 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
256 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
257 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
258 
259 /*
260  * We also have a per-trunk mutex that should be acquired when changing
261  * its state.
262  */
263 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
264 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
265 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
266 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
267 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
268 
269 /*
270  * The VLAN_ARRAY substitutes the dynamic hash with a static array
271  * with 4096 entries. In theory this can give a boost in processing,
272  * however in practice it does not. Probably this is because the array
273  * is too big to fit into CPU cache.
274  */
275 #ifndef VLAN_ARRAY
276 static	void vlan_inithash(struct ifvlantrunk *trunk);
277 static	void vlan_freehash(struct ifvlantrunk *trunk);
278 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
279 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
280 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
281 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
282 	uint16_t vid);
283 #endif
284 static	void trunk_destroy(struct ifvlantrunk *trunk);
285 
286 static	void vlan_init(void *foo);
287 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
288 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
289 #if defined(KERN_TLS) || defined(RATELIMIT)
290 static	int vlan_snd_tag_alloc(struct ifnet *,
291     union if_snd_tag_alloc_params *, struct m_snd_tag **);
292 static	int vlan_snd_tag_modify(struct m_snd_tag *,
293     union if_snd_tag_modify_params *);
294 static	int vlan_snd_tag_query(struct m_snd_tag *,
295     union if_snd_tag_query_params *);
296 static	void vlan_snd_tag_free(struct m_snd_tag *);
297 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
298 static void vlan_ratelimit_query(struct ifnet *,
299     struct if_ratelimit_query_results *);
300 #endif
301 static	void vlan_qflush(struct ifnet *ifp);
302 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
303     int (*func)(struct ifnet *, int));
304 static	int vlan_setflags(struct ifnet *ifp, int status);
305 static	int vlan_setmulti(struct ifnet *ifp);
306 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
307 #ifdef ALTQ
308 static void vlan_altq_start(struct ifnet *ifp);
309 static	int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m);
310 #endif
311 static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
312     const struct sockaddr *dst, struct route *ro);
313 static	void vlan_unconfig(struct ifnet *ifp);
314 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
315 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
316 	uint16_t proto);
317 static	void vlan_link_state(struct ifnet *ifp);
318 static	void vlan_capabilities(struct ifvlan *ifv);
319 static	void vlan_trunk_capabilities(struct ifnet *ifp);
320 
321 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
322 static	int vlan_clone_match(struct if_clone *, const char *);
323 static	int vlan_clone_create(struct if_clone *, char *, size_t,
324     struct ifc_data *, struct ifnet **);
325 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *, uint32_t);
326 
327 static int vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
328     struct ifc_data_nl *ifd);
329 static int vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd);
330 static void vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw);
331 
332 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
333 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
334 static  void vlan_ifevent(void *arg, struct ifnet *ifp, int event);
335 
336 static  void vlan_lladdr_fn(void *arg, int pending);
337 
338 static struct if_clone *vlan_cloner;
339 
340 #ifdef VIMAGE
341 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
342 #define	V_vlan_cloner	VNET(vlan_cloner)
343 #endif
344 
345 #ifdef RATELIMIT
346 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = {
347 	.snd_tag_modify = vlan_snd_tag_modify,
348 	.snd_tag_query = vlan_snd_tag_query,
349 	.snd_tag_free = vlan_snd_tag_free,
350 	.next_snd_tag = vlan_next_snd_tag,
351 	.type = IF_SND_TAG_TYPE_UNLIMITED
352 };
353 
354 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = {
355 	.snd_tag_modify = vlan_snd_tag_modify,
356 	.snd_tag_query = vlan_snd_tag_query,
357 	.snd_tag_free = vlan_snd_tag_free,
358 	.next_snd_tag = vlan_next_snd_tag,
359 	.type = IF_SND_TAG_TYPE_RATE_LIMIT
360 };
361 #endif
362 
363 #ifdef KERN_TLS
364 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = {
365 	.snd_tag_modify = vlan_snd_tag_modify,
366 	.snd_tag_query = vlan_snd_tag_query,
367 	.snd_tag_free = vlan_snd_tag_free,
368 	.next_snd_tag = vlan_next_snd_tag,
369 	.type = IF_SND_TAG_TYPE_TLS
370 };
371 
372 #ifdef RATELIMIT
373 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = {
374 	.snd_tag_modify = vlan_snd_tag_modify,
375 	.snd_tag_query = vlan_snd_tag_query,
376 	.snd_tag_free = vlan_snd_tag_free,
377 	.next_snd_tag = vlan_next_snd_tag,
378 	.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT
379 };
380 #endif
381 #endif
382 
383 static void
384 vlan_mc_free(struct epoch_context *ctx)
385 {
386 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
387 	free(mc, M_VLAN);
388 }
389 
390 #ifndef VLAN_ARRAY
391 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
392 
393 static void
394 vlan_inithash(struct ifvlantrunk *trunk)
395 {
396 	int i, n;
397 
398 	/*
399 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
400 	 * It is OK in case this function is called before the trunk struct
401 	 * gets hooked up and becomes visible from other threads.
402 	 */
403 
404 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
405 	    ("%s: hash already initialized", __func__));
406 
407 	trunk->hwidth = VLAN_DEF_HWIDTH;
408 	n = 1 << trunk->hwidth;
409 	trunk->hmask = n - 1;
410 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
411 	for (i = 0; i < n; i++)
412 		CK_SLIST_INIT(&trunk->hash[i]);
413 }
414 
415 static void
416 vlan_freehash(struct ifvlantrunk *trunk)
417 {
418 #ifdef INVARIANTS
419 	int i;
420 
421 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
422 	for (i = 0; i < (1 << trunk->hwidth); i++)
423 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
424 		    ("%s: hash table not empty", __func__));
425 #endif
426 	free(trunk->hash, M_VLAN);
427 	trunk->hash = NULL;
428 	trunk->hwidth = trunk->hmask = 0;
429 }
430 
431 static int
432 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
433 {
434 	int i, b;
435 	struct ifvlan *ifv2;
436 
437 	VLAN_XLOCK_ASSERT();
438 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
439 
440 	b = 1 << trunk->hwidth;
441 	i = HASH(ifv->ifv_vid, trunk->hmask);
442 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
443 		if (ifv->ifv_vid == ifv2->ifv_vid)
444 			return (EEXIST);
445 
446 	/*
447 	 * Grow the hash when the number of vlans exceeds half of the number of
448 	 * hash buckets squared. This will make the average linked-list length
449 	 * buckets/2.
450 	 */
451 	if (trunk->refcnt > (b * b) / 2) {
452 		vlan_growhash(trunk, 1);
453 		i = HASH(ifv->ifv_vid, trunk->hmask);
454 	}
455 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
456 	trunk->refcnt++;
457 
458 	return (0);
459 }
460 
461 static int
462 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
463 {
464 	int i, b;
465 	struct ifvlan *ifv2;
466 
467 	VLAN_XLOCK_ASSERT();
468 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
469 
470 	b = 1 << (trunk->hwidth - 1);
471 	i = HASH(ifv->ifv_vid, trunk->hmask);
472 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
473 		if (ifv2 == ifv) {
474 			trunk->refcnt--;
475 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
476 			if (trunk->refcnt < (b * b) / 2)
477 				vlan_growhash(trunk, -1);
478 			return (0);
479 		}
480 
481 	panic("%s: vlan not found\n", __func__);
482 	return (ENOENT); /*NOTREACHED*/
483 }
484 
485 /*
486  * Grow the hash larger or smaller if memory permits.
487  */
488 static void
489 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
490 {
491 	struct ifvlan *ifv;
492 	struct ifvlanhead *hash2;
493 	int hwidth2, i, j, n, n2;
494 
495 	VLAN_XLOCK_ASSERT();
496 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
497 
498 	if (howmuch == 0) {
499 		/* Harmless yet obvious coding error */
500 		printf("%s: howmuch is 0\n", __func__);
501 		return;
502 	}
503 
504 	hwidth2 = trunk->hwidth + howmuch;
505 	n = 1 << trunk->hwidth;
506 	n2 = 1 << hwidth2;
507 	/* Do not shrink the table below the default */
508 	if (hwidth2 < VLAN_DEF_HWIDTH)
509 		return;
510 
511 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
512 	if (hash2 == NULL) {
513 		printf("%s: out of memory -- hash size not changed\n",
514 		    __func__);
515 		return;		/* We can live with the old hash table */
516 	}
517 	for (j = 0; j < n2; j++)
518 		CK_SLIST_INIT(&hash2[j]);
519 	for (i = 0; i < n; i++)
520 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
521 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
522 			j = HASH(ifv->ifv_vid, n2 - 1);
523 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
524 		}
525 	NET_EPOCH_WAIT();
526 	free(trunk->hash, M_VLAN);
527 	trunk->hash = hash2;
528 	trunk->hwidth = hwidth2;
529 	trunk->hmask = n2 - 1;
530 
531 	if (bootverbose)
532 		if_printf(trunk->parent,
533 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
534 }
535 
536 static __inline struct ifvlan *
537 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
538 {
539 	struct ifvlan *ifv;
540 
541 	NET_EPOCH_ASSERT();
542 
543 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
544 		if (ifv->ifv_vid == vid)
545 			return (ifv);
546 	return (NULL);
547 }
548 
549 #if 0
550 /* Debugging code to view the hashtables. */
551 static void
552 vlan_dumphash(struct ifvlantrunk *trunk)
553 {
554 	int i;
555 	struct ifvlan *ifv;
556 
557 	for (i = 0; i < (1 << trunk->hwidth); i++) {
558 		printf("%d: ", i);
559 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
560 			printf("%s ", ifv->ifv_ifp->if_xname);
561 		printf("\n");
562 	}
563 }
564 #endif /* 0 */
565 #else
566 
567 static __inline struct ifvlan *
568 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
569 {
570 
571 	return trunk->vlans[vid];
572 }
573 
574 static __inline int
575 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
576 {
577 
578 	if (trunk->vlans[ifv->ifv_vid] != NULL)
579 		return EEXIST;
580 	trunk->vlans[ifv->ifv_vid] = ifv;
581 	trunk->refcnt++;
582 
583 	return (0);
584 }
585 
586 static __inline int
587 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
588 {
589 
590 	trunk->vlans[ifv->ifv_vid] = NULL;
591 	trunk->refcnt--;
592 
593 	return (0);
594 }
595 
596 static __inline void
597 vlan_freehash(struct ifvlantrunk *trunk)
598 {
599 }
600 
601 static __inline void
602 vlan_inithash(struct ifvlantrunk *trunk)
603 {
604 }
605 
606 #endif /* !VLAN_ARRAY */
607 
608 static void
609 trunk_destroy(struct ifvlantrunk *trunk)
610 {
611 	VLAN_XLOCK_ASSERT();
612 
613 	vlan_freehash(trunk);
614 	trunk->parent->if_vlantrunk = NULL;
615 	TRUNK_LOCK_DESTROY(trunk);
616 	if_rele(trunk->parent);
617 	free(trunk, M_VLAN);
618 }
619 
620 /*
621  * Program our multicast filter. What we're actually doing is
622  * programming the multicast filter of the parent. This has the
623  * side effect of causing the parent interface to receive multicast
624  * traffic that it doesn't really want, which ends up being discarded
625  * later by the upper protocol layers. Unfortunately, there's no way
626  * to avoid this: there really is only one physical interface.
627  */
628 static int
629 vlan_setmulti(struct ifnet *ifp)
630 {
631 	struct ifnet		*ifp_p;
632 	struct ifmultiaddr	*ifma;
633 	struct ifvlan		*sc;
634 	struct vlan_mc_entry	*mc;
635 	int			error;
636 
637 	VLAN_XLOCK_ASSERT();
638 
639 	/* Find the parent. */
640 	sc = ifp->if_softc;
641 	ifp_p = PARENT(sc);
642 
643 	CURVNET_SET_QUIET(ifp_p->if_vnet);
644 
645 	/* First, remove any existing filter entries. */
646 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
647 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
648 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
649 		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
650 	}
651 
652 	/* Now program new ones. */
653 	IF_ADDR_WLOCK(ifp);
654 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
655 		if (ifma->ifma_addr->sa_family != AF_LINK)
656 			continue;
657 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
658 		if (mc == NULL) {
659 			IF_ADDR_WUNLOCK(ifp);
660 			CURVNET_RESTORE();
661 			return (ENOMEM);
662 		}
663 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
664 		mc->mc_addr.sdl_index = ifp_p->if_index;
665 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
666 	}
667 	IF_ADDR_WUNLOCK(ifp);
668 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
669 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
670 		    NULL);
671 		if (error) {
672 			CURVNET_RESTORE();
673 			return (error);
674 		}
675 	}
676 
677 	CURVNET_RESTORE();
678 	return (0);
679 }
680 
681 /*
682  * A handler for interface ifnet events.
683  */
684 static void
685 vlan_ifevent(void *arg __unused, struct ifnet *ifp, int event)
686 {
687 	struct epoch_tracker et;
688 	struct ifvlan *ifv;
689 	struct ifvlantrunk *trunk;
690 
691 	if (event != IFNET_EVENT_UPDATE_BAUDRATE)
692 		return;
693 
694 	NET_EPOCH_ENTER(et);
695 	trunk = ifp->if_vlantrunk;
696 	if (trunk == NULL) {
697 		NET_EPOCH_EXIT(et);
698 		return;
699 	}
700 
701 	TRUNK_WLOCK(trunk);
702 	VLAN_FOREACH(ifv, trunk) {
703 		ifv->ifv_ifp->if_baudrate = ifp->if_baudrate;
704 	}
705 	TRUNK_WUNLOCK(trunk);
706 	NET_EPOCH_EXIT(et);
707 }
708 
709 /*
710  * A handler for parent interface link layer address changes.
711  * If the parent interface link layer address is changed we
712  * should also change it on all children vlans.
713  */
714 static void
715 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
716 {
717 	struct epoch_tracker et;
718 	struct ifvlan *ifv;
719 	struct ifnet *ifv_ifp;
720 	struct ifvlantrunk *trunk;
721 	struct sockaddr_dl *sdl;
722 
723 	/* Need the epoch since this is run on taskqueue_swi. */
724 	NET_EPOCH_ENTER(et);
725 	trunk = ifp->if_vlantrunk;
726 	if (trunk == NULL) {
727 		NET_EPOCH_EXIT(et);
728 		return;
729 	}
730 
731 	/*
732 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
733 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
734 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
735 	 */
736 	TRUNK_WLOCK(trunk);
737 	VLAN_FOREACH(ifv, trunk) {
738 		/*
739 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
740 		 * to actually call if_setlladdr. if_setlladdr needs to
741 		 * be deferred to a taskqueue because it will call into
742 		 * the if_vlan ioctl path and try to acquire the global
743 		 * lock.
744 		 */
745 		ifv_ifp = ifv->ifv_ifp;
746 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
747 		    ifp->if_addrlen);
748 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
749 		sdl->sdl_alen = ifp->if_addrlen;
750 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
751 	}
752 	TRUNK_WUNLOCK(trunk);
753 	NET_EPOCH_EXIT(et);
754 }
755 
756 /*
757  * A handler for network interface departure events.
758  * Track departure of trunks here so that we don't access invalid
759  * pointers or whatever if a trunk is ripped from under us, e.g.,
760  * by ejecting its hot-plug card.  However, if an ifnet is simply
761  * being renamed, then there's no need to tear down the state.
762  */
763 static void
764 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
765 {
766 	struct ifvlan *ifv;
767 	struct ifvlantrunk *trunk;
768 
769 	/* If the ifnet is just being renamed, don't do anything. */
770 	if (ifp->if_flags & IFF_RENAMING)
771 		return;
772 	VLAN_XLOCK();
773 	trunk = ifp->if_vlantrunk;
774 	if (trunk == NULL) {
775 		VLAN_XUNLOCK();
776 		return;
777 	}
778 
779 	/*
780 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
781 	 * Check trunk pointer after each vlan_unconfig() as it will
782 	 * free it and set to NULL after the last vlan was detached.
783 	 */
784 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
785 	    ifp->if_vlantrunk == NULL)
786 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
787 
788 	/* Trunk should have been destroyed in vlan_unconfig(). */
789 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
790 	VLAN_XUNLOCK();
791 }
792 
793 /*
794  * Return the trunk device for a virtual interface.
795  */
796 static struct ifnet  *
797 vlan_trunkdev(struct ifnet *ifp)
798 {
799 	struct ifvlan *ifv;
800 
801 	NET_EPOCH_ASSERT();
802 
803 	if (ifp->if_type != IFT_L2VLAN)
804 		return (NULL);
805 
806 	ifv = ifp->if_softc;
807 	ifp = NULL;
808 	if (ifv->ifv_trunk)
809 		ifp = PARENT(ifv);
810 	return (ifp);
811 }
812 
813 /*
814  * Return the 12-bit VLAN VID for this interface, for use by external
815  * components such as Infiniband.
816  *
817  * XXXRW: Note that the function name here is historical; it should be named
818  * vlan_vid().
819  */
820 static int
821 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
822 {
823 	struct ifvlan *ifv;
824 
825 	if (ifp->if_type != IFT_L2VLAN)
826 		return (EINVAL);
827 	ifv = ifp->if_softc;
828 	*vidp = ifv->ifv_vid;
829 	return (0);
830 }
831 
832 static int
833 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
834 {
835 	struct ifvlan *ifv;
836 
837 	if (ifp->if_type != IFT_L2VLAN)
838 		return (EINVAL);
839 	ifv = ifp->if_softc;
840 	*pcpp = ifv->ifv_pcp;
841 	return (0);
842 }
843 
844 /*
845  * Return a driver specific cookie for this interface.  Synchronization
846  * with setcookie must be provided by the driver.
847  */
848 static void *
849 vlan_cookie(struct ifnet *ifp)
850 {
851 	struct ifvlan *ifv;
852 
853 	if (ifp->if_type != IFT_L2VLAN)
854 		return (NULL);
855 	ifv = ifp->if_softc;
856 	return (ifv->ifv_cookie);
857 }
858 
859 /*
860  * Store a cookie in our softc that drivers can use to store driver
861  * private per-instance data in.
862  */
863 static int
864 vlan_setcookie(struct ifnet *ifp, void *cookie)
865 {
866 	struct ifvlan *ifv;
867 
868 	if (ifp->if_type != IFT_L2VLAN)
869 		return (EINVAL);
870 	ifv = ifp->if_softc;
871 	ifv->ifv_cookie = cookie;
872 	return (0);
873 }
874 
875 /*
876  * Return the vlan device present at the specific VID.
877  */
878 static struct ifnet *
879 vlan_devat(struct ifnet *ifp, uint16_t vid)
880 {
881 	struct ifvlantrunk *trunk;
882 	struct ifvlan *ifv;
883 
884 	NET_EPOCH_ASSERT();
885 
886 	trunk = ifp->if_vlantrunk;
887 	if (trunk == NULL)
888 		return (NULL);
889 	ifp = NULL;
890 	ifv = vlan_gethash(trunk, vid);
891 	if (ifv)
892 		ifp = ifv->ifv_ifp;
893 	return (ifp);
894 }
895 
896 /*
897  * VLAN support can be loaded as a module.  The only place in the
898  * system that's intimately aware of this is ether_input.  We hook
899  * into this code through vlan_input_p which is defined there and
900  * set here.  No one else in the system should be aware of this so
901  * we use an explicit reference here.
902  */
903 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
904 
905 /* For if_link_state_change() eyes only... */
906 extern	void (*vlan_link_state_p)(struct ifnet *);
907 
908 static struct if_clone_addreq_v2 vlan_addreq = {
909 	.version = 2,
910 	.match_f = vlan_clone_match,
911 	.create_f = vlan_clone_create,
912 	.destroy_f = vlan_clone_destroy,
913 	.create_nl_f = vlan_clone_create_nl,
914 	.modify_nl_f = vlan_clone_modify_nl,
915 	.dump_nl_f = vlan_clone_dump_nl,
916 };
917 
918 static int
919 vlan_modevent(module_t mod, int type, void *data)
920 {
921 
922 	switch (type) {
923 	case MOD_LOAD:
924 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
925 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
926 		if (ifdetach_tag == NULL)
927 			return (ENOMEM);
928 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
929 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
930 		if (iflladdr_tag == NULL)
931 			return (ENOMEM);
932 		ifevent_tag = EVENTHANDLER_REGISTER(ifnet_event,
933 		    vlan_ifevent, NULL, EVENTHANDLER_PRI_ANY);
934 		if (ifevent_tag == NULL)
935 			return (ENOMEM);
936 		VLAN_LOCKING_INIT();
937 		vlan_input_p = vlan_input;
938 		vlan_link_state_p = vlan_link_state;
939 		vlan_trunk_cap_p = vlan_trunk_capabilities;
940 		vlan_trunkdev_p = vlan_trunkdev;
941 		vlan_cookie_p = vlan_cookie;
942 		vlan_setcookie_p = vlan_setcookie;
943 		vlan_tag_p = vlan_tag;
944 		vlan_pcp_p = vlan_pcp;
945 		vlan_devat_p = vlan_devat;
946 #ifndef VIMAGE
947 		vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
948 #endif
949 		if (bootverbose)
950 			printf("vlan: initialized, using "
951 #ifdef VLAN_ARRAY
952 			       "full-size arrays"
953 #else
954 			       "hash tables with chaining"
955 #endif
956 
957 			       "\n");
958 		break;
959 	case MOD_UNLOAD:
960 #ifndef VIMAGE
961 		ifc_detach_cloner(vlan_cloner);
962 #endif
963 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
964 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
965 		EVENTHANDLER_DEREGISTER(ifnet_event, ifevent_tag);
966 		vlan_input_p = NULL;
967 		vlan_link_state_p = NULL;
968 		vlan_trunk_cap_p = NULL;
969 		vlan_trunkdev_p = NULL;
970 		vlan_tag_p = NULL;
971 		vlan_cookie_p = NULL;
972 		vlan_setcookie_p = NULL;
973 		vlan_devat_p = NULL;
974 		VLAN_LOCKING_DESTROY();
975 		if (bootverbose)
976 			printf("vlan: unloaded\n");
977 		break;
978 	default:
979 		return (EOPNOTSUPP);
980 	}
981 	return (0);
982 }
983 
984 static moduledata_t vlan_mod = {
985 	"if_vlan",
986 	vlan_modevent,
987 	0
988 };
989 
990 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
991 MODULE_VERSION(if_vlan, 3);
992 
993 #ifdef VIMAGE
994 static void
995 vnet_vlan_init(const void *unused __unused)
996 {
997 	vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
998 	V_vlan_cloner = vlan_cloner;
999 }
1000 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
1001     vnet_vlan_init, NULL);
1002 
1003 static void
1004 vnet_vlan_uninit(const void *unused __unused)
1005 {
1006 
1007 	ifc_detach_cloner(V_vlan_cloner);
1008 }
1009 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
1010     vnet_vlan_uninit, NULL);
1011 #endif
1012 
1013 /*
1014  * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
1015  */
1016 static struct ifnet *
1017 vlan_clone_match_ethervid(const char *name, int *vidp)
1018 {
1019 	char ifname[IFNAMSIZ];
1020 	char *cp;
1021 	struct ifnet *ifp;
1022 	int vid;
1023 
1024 	strlcpy(ifname, name, IFNAMSIZ);
1025 	if ((cp = strrchr(ifname, '.')) == NULL)
1026 		return (NULL);
1027 	*cp = '\0';
1028 	if ((ifp = ifunit_ref(ifname)) == NULL)
1029 		return (NULL);
1030 	/* Parse VID. */
1031 	if (*++cp == '\0') {
1032 		if_rele(ifp);
1033 		return (NULL);
1034 	}
1035 	vid = 0;
1036 	for(; *cp >= '0' && *cp <= '9'; cp++)
1037 		vid = (vid * 10) + (*cp - '0');
1038 	if (*cp != '\0') {
1039 		if_rele(ifp);
1040 		return (NULL);
1041 	}
1042 	if (vidp != NULL)
1043 		*vidp = vid;
1044 
1045 	return (ifp);
1046 }
1047 
1048 static int
1049 vlan_clone_match(struct if_clone *ifc, const char *name)
1050 {
1051 	struct ifnet *ifp;
1052 	const char *cp;
1053 
1054 	ifp = vlan_clone_match_ethervid(name, NULL);
1055 	if (ifp != NULL) {
1056 		if_rele(ifp);
1057 		return (1);
1058 	}
1059 
1060 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
1061 		return (0);
1062 	for (cp = name + 4; *cp != '\0'; cp++) {
1063 		if (*cp < '0' || *cp > '9')
1064 			return (0);
1065 	}
1066 
1067 	return (1);
1068 }
1069 
1070 static int
1071 vlan_clone_create(struct if_clone *ifc, char *name, size_t len,
1072     struct ifc_data *ifd, struct ifnet **ifpp)
1073 {
1074 	char *dp;
1075 	bool wildcard = false;
1076 	bool subinterface = false;
1077 	int unit;
1078 	int error;
1079 	int vid = 0;
1080 	uint16_t proto = ETHERTYPE_VLAN;
1081 	struct ifvlan *ifv;
1082 	struct ifnet *ifp;
1083 	struct ifnet *p = NULL;
1084 	struct ifaddr *ifa;
1085 	struct sockaddr_dl *sdl;
1086 	struct vlanreq vlr;
1087 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
1088 
1089 
1090 	/*
1091 	 * There are three ways to specify the cloned device:
1092 	 * o pass a parameter block with the clone request.
1093 	 * o specify parameters in the text of the clone device name
1094 	 * o specify no parameters and get an unattached device that
1095 	 *   must be configured separately.
1096 	 * The first technique is preferred; the latter two are supported
1097 	 * for backwards compatibility.
1098 	 *
1099 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1100 	 * called for.
1101 	 */
1102 
1103 	if (ifd->params != NULL) {
1104 		error = ifc_copyin(ifd, &vlr, sizeof(vlr));
1105 		if (error)
1106 			return error;
1107 		vid = vlr.vlr_tag;
1108 		proto = vlr.vlr_proto;
1109 		if (proto == 0)
1110 			proto = ETHERTYPE_VLAN;
1111 		p = ifunit_ref(vlr.vlr_parent);
1112 		if (p == NULL)
1113 			return (ENXIO);
1114 	}
1115 
1116 	if ((error = ifc_name2unit(name, &unit)) == 0) {
1117 
1118 		/*
1119 		 * vlanX interface. Set wildcard to true if the unit number
1120 		 * is not fixed (-1)
1121 		 */
1122 		wildcard = (unit < 0);
1123 	} else {
1124 		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1125 		if (p_tmp != NULL) {
1126 			error = 0;
1127 			subinterface = true;
1128 			unit = IF_DUNIT_NONE;
1129 			wildcard = false;
1130 			if (p != NULL) {
1131 				if_rele(p_tmp);
1132 				if (p != p_tmp)
1133 					error = EINVAL;
1134 			} else
1135 				p = p_tmp;
1136 		} else
1137 			error = ENXIO;
1138 	}
1139 
1140 	if (error != 0) {
1141 		if (p != NULL)
1142 			if_rele(p);
1143 		return (error);
1144 	}
1145 
1146 	if (!subinterface) {
1147 		/* vlanX interface, mark X as busy or allocate new unit # */
1148 		error = ifc_alloc_unit(ifc, &unit);
1149 		if (error != 0) {
1150 			if (p != NULL)
1151 				if_rele(p);
1152 			return (error);
1153 		}
1154 	}
1155 
1156 	/* In the wildcard case, we need to update the name. */
1157 	if (wildcard) {
1158 		for (dp = name; *dp != '\0'; dp++);
1159 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1160 		    len - (dp-name) - 1) {
1161 			panic("%s: interface name too long", __func__);
1162 		}
1163 	}
1164 
1165 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1166 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1167 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1168 	ifp->if_softc = ifv;
1169 	/*
1170 	 * Set the name manually rather than using if_initname because
1171 	 * we don't conform to the default naming convention for interfaces.
1172 	 */
1173 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1174 	ifp->if_dname = vlanname;
1175 	ifp->if_dunit = unit;
1176 
1177 	ifp->if_init = vlan_init;
1178 #ifdef ALTQ
1179 	ifp->if_start = vlan_altq_start;
1180 	ifp->if_transmit = vlan_altq_transmit;
1181 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
1182 	ifp->if_snd.ifq_drv_maxlen = 0;
1183 	IFQ_SET_READY(&ifp->if_snd);
1184 #else
1185 	ifp->if_transmit = vlan_transmit;
1186 #endif
1187 	ifp->if_qflush = vlan_qflush;
1188 	ifp->if_ioctl = vlan_ioctl;
1189 #if defined(KERN_TLS) || defined(RATELIMIT)
1190 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1191 	ifp->if_ratelimit_query = vlan_ratelimit_query;
1192 #endif
1193 	ifp->if_flags = VLAN_IFFLAGS;
1194 	ether_ifattach(ifp, eaddr);
1195 	/* Now undo some of the damage... */
1196 	ifp->if_baudrate = 0;
1197 	ifp->if_type = IFT_L2VLAN;
1198 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1199 	ifa = ifp->if_addr;
1200 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1201 	sdl->sdl_type = IFT_L2VLAN;
1202 
1203 	if (p != NULL) {
1204 		error = vlan_config(ifv, p, vid, proto);
1205 		if_rele(p);
1206 		if (error != 0) {
1207 			/*
1208 			 * Since we've partially failed, we need to back
1209 			 * out all the way, otherwise userland could get
1210 			 * confused.  Thus, we destroy the interface.
1211 			 */
1212 			ether_ifdetach(ifp);
1213 			vlan_unconfig(ifp);
1214 			if_free(ifp);
1215 			if (!subinterface)
1216 				ifc_free_unit(ifc, unit);
1217 			free(ifv, M_VLAN);
1218 
1219 			return (error);
1220 		}
1221 	}
1222 	*ifpp = ifp;
1223 
1224 	return (0);
1225 }
1226 
1227 /*
1228  *
1229  * Parsers of IFLA_INFO_DATA inside IFLA_LINKINFO of RTM_NEWLINK
1230  *    {{nla_len=8, nla_type=IFLA_LINK}, 2},
1231  *    {{nla_len=12, nla_type=IFLA_IFNAME}, "xvlan22"},
1232  *    {{nla_len=24, nla_type=IFLA_LINKINFO},
1233  *     [
1234  *      {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1235  *      {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1236  */
1237 
1238 struct nl_parsed_vlan {
1239 	uint16_t vlan_id;
1240 	uint16_t vlan_proto;
1241 	struct ifla_vlan_flags vlan_flags;
1242 };
1243 
1244 #define	_OUT(_field)	offsetof(struct nl_parsed_vlan, _field)
1245 static const struct nlattr_parser nla_p_vlan[] = {
1246 	{ .type = IFLA_VLAN_ID, .off = _OUT(vlan_id), .cb = nlattr_get_uint16 },
1247 	{ .type = IFLA_VLAN_FLAGS, .off = _OUT(vlan_flags), .cb = nlattr_get_nla },
1248 	{ .type = IFLA_VLAN_PROTOCOL, .off = _OUT(vlan_proto), .cb = nlattr_get_uint16 },
1249 };
1250 #undef _OUT
1251 NL_DECLARE_ATTR_PARSER(vlan_parser, nla_p_vlan);
1252 
1253 static int
1254 vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
1255     struct ifc_data_nl *ifd)
1256 {
1257 	struct epoch_tracker et;
1258         struct ifnet *ifp_parent;
1259 	struct nl_pstate *npt = ifd->npt;
1260 	struct nl_parsed_link *lattrs = ifd->lattrs;
1261 	int error;
1262 
1263 	/*
1264 	 * lattrs.ifla_ifname is the new interface name
1265 	 * lattrs.ifi_index contains parent interface index
1266 	 * lattrs.ifla_idata contains un-parsed vlan data
1267 	 */
1268 	struct nl_parsed_vlan attrs = {
1269 		.vlan_id = 0xFEFE,
1270 		.vlan_proto = ETHERTYPE_VLAN
1271 	};
1272 
1273 	if (lattrs->ifla_idata == NULL) {
1274 		nlmsg_report_err_msg(npt, "vlan id is required, guessing not supported");
1275 		return (ENOTSUP);
1276 	}
1277 
1278 	error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, npt, &attrs);
1279 	if (error != 0)
1280 		return (error);
1281 	if (attrs.vlan_id > 4095) {
1282 		nlmsg_report_err_msg(npt, "Invalid VID: %d", attrs.vlan_id);
1283 		return (EINVAL);
1284 	}
1285 	if (attrs.vlan_proto != ETHERTYPE_VLAN && attrs.vlan_proto != ETHERTYPE_QINQ) {
1286 		nlmsg_report_err_msg(npt, "Unsupported ethertype: 0x%04X", attrs.vlan_proto);
1287 		return (ENOTSUP);
1288 	}
1289 
1290 	struct vlanreq params = {
1291 		.vlr_tag = attrs.vlan_id,
1292 		.vlr_proto = attrs.vlan_proto,
1293 	};
1294 	struct ifc_data ifd_new = { .flags = IFC_F_SYSSPACE, .unit = ifd->unit, .params = &params };
1295 
1296 	NET_EPOCH_ENTER(et);
1297 	ifp_parent = ifnet_byindex(lattrs->ifi_index);
1298 	if (ifp_parent != NULL)
1299 		strlcpy(params.vlr_parent, if_name(ifp_parent), sizeof(params.vlr_parent));
1300 	NET_EPOCH_EXIT(et);
1301 
1302 	if (ifp_parent == NULL) {
1303 		nlmsg_report_err_msg(npt, "unable to find parent interface %u", lattrs->ifi_index);
1304 		return (ENOENT);
1305 	}
1306 
1307 	error = vlan_clone_create(ifc, name, len, &ifd_new, &ifd->ifp);
1308 
1309 	return (error);
1310 }
1311 
1312 static int
1313 vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd)
1314 {
1315 	struct nl_parsed_link *lattrs = ifd->lattrs;
1316 
1317 	if ((lattrs->ifla_idata != NULL) && ((ifd->flags & IFC_F_CREATE) == 0)) {
1318 		struct epoch_tracker et;
1319 		struct nl_parsed_vlan attrs = {
1320 			.vlan_proto = ETHERTYPE_VLAN,
1321 		};
1322 		int error;
1323 
1324 		error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, ifd->npt, &attrs);
1325 		if (error != 0)
1326 			return (error);
1327 
1328 		NET_EPOCH_ENTER(et);
1329 		struct ifnet *ifp_parent = ifnet_byindex_ref(lattrs->ifla_link);
1330 		NET_EPOCH_EXIT(et);
1331 
1332 		if (ifp_parent == NULL) {
1333 			nlmsg_report_err_msg(ifd->npt, "unable to find parent interface %u",
1334 			    lattrs->ifla_link);
1335 			return (ENOENT);
1336 		}
1337 
1338 		struct ifvlan *ifv = ifp->if_softc;
1339 		error = vlan_config(ifv, ifp_parent, attrs.vlan_id, attrs.vlan_proto);
1340 
1341 		if_rele(ifp_parent);
1342 		if (error != 0)
1343 			return (error);
1344 	}
1345 
1346 	return (nl_modify_ifp_generic(ifp, ifd->lattrs, ifd->bm, ifd->npt));
1347 }
1348 
1349 /*
1350  *    {{nla_len=24, nla_type=IFLA_LINKINFO},
1351  *     [
1352  *      {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1353  *      {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1354  */
1355 static void
1356 vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw)
1357 {
1358 	uint32_t parent_index = 0;
1359 	uint16_t vlan_id = 0;
1360 	uint16_t vlan_proto = 0;
1361 
1362 	VLAN_SLOCK();
1363 	struct ifvlan *ifv = ifp->if_softc;
1364 	if (TRUNK(ifv) != NULL)
1365 		parent_index = PARENT(ifv)->if_index;
1366 	vlan_id = ifv->ifv_vid;
1367 	vlan_proto = ifv->ifv_proto;
1368 	VLAN_SUNLOCK();
1369 
1370 	if (parent_index != 0)
1371 		nlattr_add_u32(nw, IFLA_LINK, parent_index);
1372 
1373 	int off = nlattr_add_nested(nw, IFLA_LINKINFO);
1374 	if (off != 0) {
1375 		nlattr_add_string(nw, IFLA_INFO_KIND, "vlan");
1376 		int off2 = nlattr_add_nested(nw, IFLA_INFO_DATA);
1377 		if (off2 != 0) {
1378 			nlattr_add_u16(nw, IFLA_VLAN_ID, vlan_id);
1379 			nlattr_add_u16(nw, IFLA_VLAN_PROTOCOL, vlan_proto);
1380 			nlattr_set_len(nw, off2);
1381 		}
1382 		nlattr_set_len(nw, off);
1383 	}
1384 }
1385 
1386 static int
1387 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
1388 {
1389 	struct ifvlan *ifv = ifp->if_softc;
1390 	int unit = ifp->if_dunit;
1391 
1392 	if (ifp->if_vlantrunk)
1393 		return (EBUSY);
1394 
1395 #ifdef ALTQ
1396 	IFQ_PURGE(&ifp->if_snd);
1397 #endif
1398 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1399 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1400 	/*
1401 	 * We should have the only reference to the ifv now, so we can now
1402 	 * drain any remaining lladdr task before freeing the ifnet and the
1403 	 * ifvlan.
1404 	 */
1405 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1406 	NET_EPOCH_WAIT();
1407 	if_free(ifp);
1408 	free(ifv, M_VLAN);
1409 	if (unit != IF_DUNIT_NONE)
1410 		ifc_free_unit(ifc, unit);
1411 
1412 	return (0);
1413 }
1414 
1415 /*
1416  * The ifp->if_init entry point for vlan(4) is a no-op.
1417  */
1418 static void
1419 vlan_init(void *foo __unused)
1420 {
1421 }
1422 
1423 /*
1424  * The if_transmit method for vlan(4) interface.
1425  */
1426 static int
1427 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1428 {
1429 	struct ifvlan *ifv;
1430 	struct ifnet *p;
1431 	int error, len, mcast;
1432 
1433 	NET_EPOCH_ASSERT();
1434 
1435 	ifv = ifp->if_softc;
1436 	if (TRUNK(ifv) == NULL) {
1437 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1438 		m_freem(m);
1439 		return (ENETDOWN);
1440 	}
1441 	p = PARENT(ifv);
1442 	len = m->m_pkthdr.len;
1443 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1444 
1445 	BPF_MTAP(ifp, m);
1446 
1447 #if defined(KERN_TLS) || defined(RATELIMIT)
1448 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1449 		struct vlan_snd_tag *vst;
1450 		struct m_snd_tag *mst;
1451 
1452 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1453 		mst = m->m_pkthdr.snd_tag;
1454 		vst = mst_to_vst(mst);
1455 		if (vst->tag->ifp != p) {
1456 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1457 			m_freem(m);
1458 			return (EAGAIN);
1459 		}
1460 
1461 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1462 		m_snd_tag_rele(mst);
1463 	}
1464 #endif
1465 
1466 	/*
1467 	 * Do not run parent's if_transmit() if the parent is not up,
1468 	 * or parent's driver will cause a system crash.
1469 	 */
1470 	if (!UP_AND_RUNNING(p)) {
1471 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1472 		m_freem(m);
1473 		return (ENETDOWN);
1474 	}
1475 
1476 	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1477 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1478 		return (0);
1479 	}
1480 
1481 	/*
1482 	 * Send it, precisely as ether_output() would have.
1483 	 */
1484 	error = (p->if_transmit)(p, m);
1485 	if (error == 0) {
1486 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1487 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1488 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1489 	} else
1490 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1491 	return (error);
1492 }
1493 
1494 static int
1495 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1496     struct route *ro)
1497 {
1498 	struct ifvlan *ifv;
1499 	struct ifnet *p;
1500 
1501 	NET_EPOCH_ASSERT();
1502 
1503 	/*
1504 	 * Find the first non-VLAN parent interface.
1505 	 */
1506 	ifv = ifp->if_softc;
1507 	do {
1508 		if (TRUNK(ifv) == NULL) {
1509 			m_freem(m);
1510 			return (ENETDOWN);
1511 		}
1512 		p = PARENT(ifv);
1513 		ifv = p->if_softc;
1514 	} while (p->if_type == IFT_L2VLAN);
1515 
1516 	return p->if_output(ifp, m, dst, ro);
1517 }
1518 
1519 #ifdef ALTQ
1520 static void
1521 vlan_altq_start(if_t ifp)
1522 {
1523 	struct ifaltq *ifq = &ifp->if_snd;
1524 	struct mbuf *m;
1525 
1526 	IFQ_LOCK(ifq);
1527 	IFQ_DEQUEUE_NOLOCK(ifq, m);
1528 	while (m != NULL) {
1529 		vlan_transmit(ifp, m);
1530 		IFQ_DEQUEUE_NOLOCK(ifq, m);
1531 	}
1532 	IFQ_UNLOCK(ifq);
1533 }
1534 
1535 static int
1536 vlan_altq_transmit(if_t ifp, struct mbuf *m)
1537 {
1538 	int err;
1539 
1540 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
1541 		IFQ_ENQUEUE(&ifp->if_snd, m, err);
1542 		if (err == 0)
1543 			vlan_altq_start(ifp);
1544 	} else
1545 		err = vlan_transmit(ifp, m);
1546 
1547 	return (err);
1548 }
1549 #endif	/* ALTQ */
1550 
1551 /*
1552  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1553  */
1554 static void
1555 vlan_qflush(struct ifnet *ifp __unused)
1556 {
1557 }
1558 
1559 static void
1560 vlan_input(struct ifnet *ifp, struct mbuf *m)
1561 {
1562 	struct ifvlantrunk *trunk;
1563 	struct ifvlan *ifv;
1564 	struct m_tag *mtag;
1565 	uint16_t vid, tag;
1566 
1567 	NET_EPOCH_ASSERT();
1568 
1569 	trunk = ifp->if_vlantrunk;
1570 	if (trunk == NULL) {
1571 		m_freem(m);
1572 		return;
1573 	}
1574 
1575 	if (m->m_flags & M_VLANTAG) {
1576 		/*
1577 		 * Packet is tagged, but m contains a normal
1578 		 * Ethernet frame; the tag is stored out-of-band.
1579 		 */
1580 		tag = m->m_pkthdr.ether_vtag;
1581 		m->m_flags &= ~M_VLANTAG;
1582 	} else {
1583 		struct ether_vlan_header *evl;
1584 
1585 		/*
1586 		 * Packet is tagged in-band as specified by 802.1q.
1587 		 */
1588 		switch (ifp->if_type) {
1589 		case IFT_ETHER:
1590 			if (m->m_len < sizeof(*evl) &&
1591 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1592 				if_printf(ifp, "cannot pullup VLAN header\n");
1593 				return;
1594 			}
1595 			evl = mtod(m, struct ether_vlan_header *);
1596 			tag = ntohs(evl->evl_tag);
1597 
1598 			/*
1599 			 * Remove the 802.1q header by copying the Ethernet
1600 			 * addresses over it and adjusting the beginning of
1601 			 * the data in the mbuf.  The encapsulated Ethernet
1602 			 * type field is already in place.
1603 			 */
1604 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1605 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1606 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1607 			break;
1608 
1609 		default:
1610 #ifdef INVARIANTS
1611 			panic("%s: %s has unsupported if_type %u",
1612 			      __func__, ifp->if_xname, ifp->if_type);
1613 #endif
1614 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1615 			m_freem(m);
1616 			return;
1617 		}
1618 	}
1619 
1620 	vid = EVL_VLANOFTAG(tag);
1621 
1622 	ifv = vlan_gethash(trunk, vid);
1623 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1624 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1625 		m_freem(m);
1626 		return;
1627 	}
1628 
1629 	if (V_vlan_mtag_pcp) {
1630 		/*
1631 		 * While uncommon, it is possible that we will find a 802.1q
1632 		 * packet encapsulated inside another packet that also had an
1633 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1634 		 * arriving over ethernet.  In that case, we replace the
1635 		 * existing 802.1q PCP m_tag value.
1636 		 */
1637 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1638 		if (mtag == NULL) {
1639 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1640 			    sizeof(uint8_t), M_NOWAIT);
1641 			if (mtag == NULL) {
1642 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1643 				m_freem(m);
1644 				return;
1645 			}
1646 			m_tag_prepend(m, mtag);
1647 		}
1648 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1649 	}
1650 
1651 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1652 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1653 
1654 	/* Pass it back through the parent's input routine. */
1655 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1656 }
1657 
1658 static void
1659 vlan_lladdr_fn(void *arg, int pending __unused)
1660 {
1661 	struct ifvlan *ifv;
1662 	struct ifnet *ifp;
1663 
1664 	ifv = (struct ifvlan *)arg;
1665 	ifp = ifv->ifv_ifp;
1666 
1667 	CURVNET_SET(ifp->if_vnet);
1668 
1669 	/* The ifv_ifp already has the lladdr copied in. */
1670 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1671 
1672 	CURVNET_RESTORE();
1673 }
1674 
1675 static int
1676 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1677 	uint16_t proto)
1678 {
1679 	struct epoch_tracker et;
1680 	struct ifvlantrunk *trunk;
1681 	struct ifnet *ifp;
1682 	int error = 0;
1683 
1684 	/*
1685 	 * We can handle non-ethernet hardware types as long as
1686 	 * they handle the tagging and headers themselves.
1687 	 */
1688 	if (p->if_type != IFT_ETHER &&
1689 	    p->if_type != IFT_L2VLAN &&
1690 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1691 		return (EPROTONOSUPPORT);
1692 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1693 		return (EPROTONOSUPPORT);
1694 	/*
1695 	 * Don't let the caller set up a VLAN VID with
1696 	 * anything except VLID bits.
1697 	 * VID numbers 0x0 and 0xFFF are reserved.
1698 	 */
1699 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1700 		return (EINVAL);
1701 	if (ifv->ifv_trunk) {
1702 		trunk = ifv->ifv_trunk;
1703 		if (trunk->parent != p)
1704 			return (EBUSY);
1705 
1706 		VLAN_XLOCK();
1707 
1708 		ifv->ifv_proto = proto;
1709 
1710 		if (ifv->ifv_vid != vid) {
1711 			int oldvid = ifv->ifv_vid;
1712 
1713 			/* Re-hash */
1714 			vlan_remhash(trunk, ifv);
1715 			ifv->ifv_vid = vid;
1716 			error = vlan_inshash(trunk, ifv);
1717 			if (error) {
1718 				int ret __diagused;
1719 
1720 				ifv->ifv_vid = oldvid;
1721 				/* Re-insert back where we found it. */
1722 				ret = vlan_inshash(trunk, ifv);
1723 				MPASS(ret == 0);
1724 			}
1725 		}
1726 		/* Will unlock */
1727 		goto done;
1728 	}
1729 
1730 	VLAN_XLOCK();
1731 	if (p->if_vlantrunk == NULL) {
1732 		trunk = malloc(sizeof(struct ifvlantrunk),
1733 		    M_VLAN, M_WAITOK | M_ZERO);
1734 		vlan_inithash(trunk);
1735 		TRUNK_LOCK_INIT(trunk);
1736 		TRUNK_WLOCK(trunk);
1737 		p->if_vlantrunk = trunk;
1738 		trunk->parent = p;
1739 		if_ref(trunk->parent);
1740 		TRUNK_WUNLOCK(trunk);
1741 	} else {
1742 		trunk = p->if_vlantrunk;
1743 	}
1744 
1745 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1746 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1747 	error = vlan_inshash(trunk, ifv);
1748 	if (error)
1749 		goto done;
1750 	ifv->ifv_proto = proto;
1751 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1752 	ifv->ifv_mintu = ETHERMIN;
1753 	ifv->ifv_pflags = 0;
1754 	ifv->ifv_capenable = -1;
1755 	ifv->ifv_capenable2 = -1;
1756 
1757 	/*
1758 	 * If the parent supports the VLAN_MTU capability,
1759 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1760 	 * use it.
1761 	 */
1762 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1763 		/*
1764 		 * No need to fudge the MTU since the parent can
1765 		 * handle extended frames.
1766 		 */
1767 		ifv->ifv_mtufudge = 0;
1768 	} else {
1769 		/*
1770 		 * Fudge the MTU by the encapsulation size.  This
1771 		 * makes us incompatible with strictly compliant
1772 		 * 802.1Q implementations, but allows us to use
1773 		 * the feature with other NetBSD implementations,
1774 		 * which might still be useful.
1775 		 */
1776 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1777 	}
1778 
1779 	ifv->ifv_trunk = trunk;
1780 	ifp = ifv->ifv_ifp;
1781 	/*
1782 	 * Initialize fields from our parent.  This duplicates some
1783 	 * work with ether_ifattach() but allows for non-ethernet
1784 	 * interfaces to also work.
1785 	 */
1786 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1787 	ifp->if_baudrate = p->if_baudrate;
1788 	ifp->if_input = p->if_input;
1789 	ifp->if_resolvemulti = p->if_resolvemulti;
1790 	ifp->if_addrlen = p->if_addrlen;
1791 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1792 	ifp->if_pcp = ifv->ifv_pcp;
1793 
1794 	/*
1795 	 * We wrap the parent's if_output using vlan_output to ensure that it
1796 	 * can't become stale.
1797 	 */
1798 	ifp->if_output = vlan_output;
1799 
1800 	/*
1801 	 * Copy only a selected subset of flags from the parent.
1802 	 * Other flags are none of our business.
1803 	 */
1804 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1805 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1806 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1807 #undef VLAN_COPY_FLAGS
1808 
1809 	ifp->if_link_state = p->if_link_state;
1810 
1811 	NET_EPOCH_ENTER(et);
1812 	vlan_capabilities(ifv);
1813 	NET_EPOCH_EXIT(et);
1814 
1815 	/*
1816 	 * Set up our interface address to reflect the underlying
1817 	 * physical interface's.
1818 	 */
1819 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1820 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1821 	    p->if_addrlen;
1822 
1823 	/*
1824 	 * Do not schedule link address update if it was the same
1825 	 * as previous parent's. This helps avoid updating for each
1826 	 * associated llentry.
1827 	 */
1828 	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1829 		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1830 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1831 	}
1832 
1833 	/* We are ready for operation now. */
1834 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1835 
1836 	/* Update flags on the parent, if necessary. */
1837 	vlan_setflags(ifp, 1);
1838 
1839 	/*
1840 	 * Configure multicast addresses that may already be
1841 	 * joined on the vlan device.
1842 	 */
1843 	(void)vlan_setmulti(ifp);
1844 
1845 done:
1846 	if (error == 0)
1847 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1848 	VLAN_XUNLOCK();
1849 
1850 	return (error);
1851 }
1852 
1853 static void
1854 vlan_unconfig(struct ifnet *ifp)
1855 {
1856 
1857 	VLAN_XLOCK();
1858 	vlan_unconfig_locked(ifp, 0);
1859 	VLAN_XUNLOCK();
1860 }
1861 
1862 static void
1863 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1864 {
1865 	struct ifvlantrunk *trunk;
1866 	struct vlan_mc_entry *mc;
1867 	struct ifvlan *ifv;
1868 	struct ifnet  *parent;
1869 	int error;
1870 
1871 	VLAN_XLOCK_ASSERT();
1872 
1873 	ifv = ifp->if_softc;
1874 	trunk = ifv->ifv_trunk;
1875 	parent = NULL;
1876 
1877 	if (trunk != NULL) {
1878 		parent = trunk->parent;
1879 
1880 		/*
1881 		 * Since the interface is being unconfigured, we need to
1882 		 * empty the list of multicast groups that we may have joined
1883 		 * while we were alive from the parent's list.
1884 		 */
1885 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1886 			/*
1887 			 * If the parent interface is being detached,
1888 			 * all its multicast addresses have already
1889 			 * been removed.  Warn about errors if
1890 			 * if_delmulti() does fail, but don't abort as
1891 			 * all callers expect vlan destruction to
1892 			 * succeed.
1893 			 */
1894 			if (!departing) {
1895 				error = if_delmulti(parent,
1896 				    (struct sockaddr *)&mc->mc_addr);
1897 				if (error)
1898 					if_printf(ifp,
1899 		    "Failed to delete multicast address from parent: %d\n",
1900 					    error);
1901 			}
1902 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1903 			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1904 		}
1905 
1906 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1907 
1908 		vlan_remhash(trunk, ifv);
1909 		ifv->ifv_trunk = NULL;
1910 
1911 		/*
1912 		 * Check if we were the last.
1913 		 */
1914 		if (trunk->refcnt == 0) {
1915 			parent->if_vlantrunk = NULL;
1916 			NET_EPOCH_WAIT();
1917 			trunk_destroy(trunk);
1918 		}
1919 	}
1920 
1921 	/* Disconnect from parent. */
1922 	if (ifv->ifv_pflags)
1923 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1924 	ifp->if_mtu = ETHERMTU;
1925 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1926 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1927 
1928 	/*
1929 	 * Only dispatch an event if vlan was
1930 	 * attached, otherwise there is nothing
1931 	 * to cleanup anyway.
1932 	 */
1933 	if (parent != NULL)
1934 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1935 }
1936 
1937 /* Handle a reference counted flag that should be set on the parent as well */
1938 static int
1939 vlan_setflag(struct ifnet *ifp, int flag, int status,
1940 	     int (*func)(struct ifnet *, int))
1941 {
1942 	struct ifvlan *ifv;
1943 	int error;
1944 
1945 	VLAN_SXLOCK_ASSERT();
1946 
1947 	ifv = ifp->if_softc;
1948 	status = status ? (ifp->if_flags & flag) : 0;
1949 	/* Now "status" contains the flag value or 0 */
1950 
1951 	/*
1952 	 * See if recorded parent's status is different from what
1953 	 * we want it to be.  If it is, flip it.  We record parent's
1954 	 * status in ifv_pflags so that we won't clear parent's flag
1955 	 * we haven't set.  In fact, we don't clear or set parent's
1956 	 * flags directly, but get or release references to them.
1957 	 * That's why we can be sure that recorded flags still are
1958 	 * in accord with actual parent's flags.
1959 	 */
1960 	if (status != (ifv->ifv_pflags & flag)) {
1961 		error = (*func)(PARENT(ifv), status);
1962 		if (error)
1963 			return (error);
1964 		ifv->ifv_pflags &= ~flag;
1965 		ifv->ifv_pflags |= status;
1966 	}
1967 	return (0);
1968 }
1969 
1970 /*
1971  * Handle IFF_* flags that require certain changes on the parent:
1972  * if "status" is true, update parent's flags respective to our if_flags;
1973  * if "status" is false, forcedly clear the flags set on parent.
1974  */
1975 static int
1976 vlan_setflags(struct ifnet *ifp, int status)
1977 {
1978 	int error, i;
1979 
1980 	for (i = 0; vlan_pflags[i].flag; i++) {
1981 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1982 				     status, vlan_pflags[i].func);
1983 		if (error)
1984 			return (error);
1985 	}
1986 	return (0);
1987 }
1988 
1989 /* Inform all vlans that their parent has changed link state */
1990 static void
1991 vlan_link_state(struct ifnet *ifp)
1992 {
1993 	struct epoch_tracker et;
1994 	struct ifvlantrunk *trunk;
1995 	struct ifvlan *ifv;
1996 
1997 	NET_EPOCH_ENTER(et);
1998 	trunk = ifp->if_vlantrunk;
1999 	if (trunk == NULL) {
2000 		NET_EPOCH_EXIT(et);
2001 		return;
2002 	}
2003 
2004 	TRUNK_WLOCK(trunk);
2005 	VLAN_FOREACH(ifv, trunk) {
2006 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
2007 		if_link_state_change(ifv->ifv_ifp,
2008 		    trunk->parent->if_link_state);
2009 	}
2010 	TRUNK_WUNLOCK(trunk);
2011 	NET_EPOCH_EXIT(et);
2012 }
2013 
2014 #ifdef IPSEC_OFFLOAD
2015 #define	VLAN_IPSEC_METHOD(exp)				\
2016 	if_t p;						\
2017 	struct ifvlan *ifv;				\
2018 	int error;					\
2019 							\
2020 	ifv = ifp->if_softc;				\
2021 	VLAN_SLOCK();					\
2022 	if (TRUNK(ifv) != NULL) {			\
2023 		p = PARENT(ifv);			\
2024 		if_ref(p);				\
2025 		error = p->if_ipsec_accel_m->exp;	\
2026 		if_rele(p);				\
2027 	} else {					\
2028 		error = ENXIO;				\
2029 	}						\
2030 	VLAN_SUNLOCK();					\
2031 	return (error);
2032 
2033 
2034 static int
2035 vlan_if_spdadd(if_t ifp, void *sp, void *inp, void **priv)
2036 {
2037 	VLAN_IPSEC_METHOD(if_spdadd(ifp, sp, inp, priv));
2038 }
2039 
2040 static int
2041 vlan_if_spddel(if_t ifp, void *sp, void *priv)
2042 {
2043 	VLAN_IPSEC_METHOD(if_spddel(ifp, sp, priv));
2044 }
2045 
2046 static int
2047 vlan_if_sa_newkey(if_t ifp, void *sav, u_int drv_spi, void **privp)
2048 {
2049 	VLAN_IPSEC_METHOD(if_sa_newkey(ifp, sav, drv_spi, privp));
2050 }
2051 
2052 static int
2053 vlan_if_sa_deinstall(if_t ifp, u_int drv_spi, void *priv)
2054 {
2055 	VLAN_IPSEC_METHOD(if_sa_deinstall(ifp, drv_spi, priv));
2056 }
2057 
2058 static int
2059 vlan_if_sa_cnt(if_t ifp, void *sa, uint32_t drv_spi, void *priv,
2060     struct seclifetime *lt)
2061 {
2062 	VLAN_IPSEC_METHOD(if_sa_cnt(ifp, sa, drv_spi, priv, lt));
2063 }
2064 
2065 static int
2066 vlan_if_ipsec_hwassist(if_t ifp, void *sav, u_int drv_spi,void *priv)
2067 {
2068 	if_t trunk;
2069 
2070 	NET_EPOCH_ASSERT();
2071 	trunk = vlan_trunkdev(ifp);
2072 	if (trunk == NULL)
2073 		return (0);
2074 	return (trunk->if_ipsec_accel_m->if_hwassist(trunk, sav,
2075 	    drv_spi, priv));
2076 }
2077 
2078 static const struct if_ipsec_accel_methods vlan_if_ipsec_accel_methods = {
2079 	.if_spdadd = vlan_if_spdadd,
2080 	.if_spddel = vlan_if_spddel,
2081 	.if_sa_newkey = vlan_if_sa_newkey,
2082 	.if_sa_deinstall = vlan_if_sa_deinstall,
2083 	.if_sa_cnt = vlan_if_sa_cnt,
2084 	.if_hwassist = vlan_if_ipsec_hwassist,
2085 };
2086 
2087 #undef VLAN_IPSEC_METHOD
2088 #endif	/* IPSEC_OFFLOAD */
2089 
2090 static void
2091 vlan_capabilities(struct ifvlan *ifv)
2092 {
2093 	struct ifnet *p;
2094 	struct ifnet *ifp;
2095 	struct ifnet_hw_tsomax hw_tsomax;
2096 	int cap = 0, ena = 0, mena, cap2 = 0, ena2 = 0;
2097 	int mena2 __unused;
2098 	u_long hwa = 0;
2099 
2100 	NET_EPOCH_ASSERT();
2101 	VLAN_SXLOCK_ASSERT();
2102 
2103 	p = PARENT(ifv);
2104 	ifp = ifv->ifv_ifp;
2105 
2106 	/* Mask parent interface enabled capabilities disabled by user. */
2107 	mena = p->if_capenable & ifv->ifv_capenable;
2108 	mena2 = p->if_capenable2 & ifv->ifv_capenable2;
2109 
2110 	/*
2111 	 * If the parent interface can do checksum offloading
2112 	 * on VLANs, then propagate its hardware-assisted
2113 	 * checksumming flags. Also assert that checksum
2114 	 * offloading requires hardware VLAN tagging.
2115 	 */
2116 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2117 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2118 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
2119 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
2120 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2121 		if (ena & IFCAP_TXCSUM)
2122 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
2123 			    CSUM_UDP | CSUM_SCTP);
2124 		if (ena & IFCAP_TXCSUM_IPV6)
2125 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
2126 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
2127 	}
2128 
2129 	/*
2130 	 * If the parent interface can do TSO on VLANs then
2131 	 * propagate the hardware-assisted flag. TSO on VLANs
2132 	 * does not necessarily require hardware VLAN tagging.
2133 	 */
2134 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
2135 	if_hw_tsomax_common(p, &hw_tsomax);
2136 	if_hw_tsomax_update(ifp, &hw_tsomax);
2137 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
2138 		cap |= p->if_capabilities & IFCAP_TSO;
2139 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
2140 		ena |= mena & IFCAP_TSO;
2141 		if (ena & IFCAP_TSO)
2142 			hwa |= p->if_hwassist & CSUM_TSO;
2143 	}
2144 
2145 	/*
2146 	 * If the parent interface can do LRO and checksum offloading on
2147 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
2148 	 * cost nothing, while false negative may lead to some confusions.
2149 	 */
2150 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2151 		cap |= p->if_capabilities & IFCAP_LRO;
2152 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
2153 		ena |= mena & IFCAP_LRO;
2154 
2155 	/*
2156 	 * If the parent interface can offload TCP connections over VLANs then
2157 	 * propagate its TOE capability to the VLAN interface.
2158 	 *
2159 	 * All TOE drivers in the tree today can deal with VLANs.  If this
2160 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
2161 	 * with its own bit.
2162 	 */
2163 #define	IFCAP_VLAN_TOE IFCAP_TOE
2164 	if (p->if_capabilities & IFCAP_VLAN_TOE)
2165 		cap |= p->if_capabilities & IFCAP_TOE;
2166 	if (p->if_capenable & IFCAP_VLAN_TOE) {
2167 		SETTOEDEV(ifp, TOEDEV(p));
2168 		ena |= mena & IFCAP_TOE;
2169 	}
2170 
2171 	/*
2172 	 * If the parent interface supports dynamic link state, so does the
2173 	 * VLAN interface.
2174 	 */
2175 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
2176 	ena |= (mena & IFCAP_LINKSTATE);
2177 
2178 #ifdef RATELIMIT
2179 	/*
2180 	 * If the parent interface supports ratelimiting, so does the
2181 	 * VLAN interface.
2182 	 */
2183 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
2184 	ena |= (mena & IFCAP_TXRTLMT);
2185 #endif
2186 
2187 	/*
2188 	 * If the parent interface supports unmapped mbufs, so does
2189 	 * the VLAN interface.  Note that this should be fine even for
2190 	 * interfaces that don't support hardware tagging as headers
2191 	 * are prepended in normal mbufs to unmapped mbufs holding
2192 	 * payload data.
2193 	 */
2194 	cap |= (p->if_capabilities & IFCAP_MEXTPG);
2195 	ena |= (mena & IFCAP_MEXTPG);
2196 
2197 	/*
2198 	 * If the parent interface can offload encryption and segmentation
2199 	 * of TLS records over TCP, propagate it's capability to the VLAN
2200 	 * interface.
2201 	 *
2202 	 * All TLS drivers in the tree today can deal with VLANs.  If
2203 	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
2204 	 * defined.
2205 	 */
2206 	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2207 		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2208 	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2209 		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2210 
2211 	ifp->if_capabilities = cap;
2212 	ifp->if_capenable = ena;
2213 	ifp->if_hwassist = hwa;
2214 
2215 #ifdef IPSEC_OFFLOAD
2216 	cap2 |= p->if_capabilities2 & IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD);
2217 	ena2 |= mena2 & IFCAP2_BIT(IFCAP2_IPSEC_OFFLOAD);
2218 	ifp->if_ipsec_accel_m = &vlan_if_ipsec_accel_methods;
2219 #endif
2220 
2221 	ifp->if_capabilities2 = cap2;
2222 	ifp->if_capenable2 = ena2;
2223 }
2224 
2225 static void
2226 vlan_trunk_capabilities(struct ifnet *ifp)
2227 {
2228 	struct epoch_tracker et;
2229 	struct ifvlantrunk *trunk;
2230 	struct ifvlan *ifv;
2231 
2232 	VLAN_SLOCK();
2233 	trunk = ifp->if_vlantrunk;
2234 	if (trunk == NULL) {
2235 		VLAN_SUNLOCK();
2236 		return;
2237 	}
2238 	NET_EPOCH_ENTER(et);
2239 	VLAN_FOREACH(ifv, trunk)
2240 		vlan_capabilities(ifv);
2241 	NET_EPOCH_EXIT(et);
2242 	VLAN_SUNLOCK();
2243 }
2244 
2245 static int
2246 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2247 {
2248 	struct ifnet *p;
2249 	struct ifreq *ifr;
2250 #ifdef INET
2251 	struct ifaddr *ifa;
2252 #endif
2253 	struct ifvlan *ifv;
2254 	struct ifvlantrunk *trunk;
2255 	struct vlanreq vlr;
2256 	int error = 0, oldmtu;
2257 
2258 	ifr = (struct ifreq *)data;
2259 #ifdef INET
2260 	ifa = (struct ifaddr *) data;
2261 #endif
2262 	ifv = ifp->if_softc;
2263 
2264 	switch (cmd) {
2265 	case SIOCSIFADDR:
2266 		ifp->if_flags |= IFF_UP;
2267 #ifdef INET
2268 		if (ifa->ifa_addr->sa_family == AF_INET)
2269 			arp_ifinit(ifp, ifa);
2270 #endif
2271 		break;
2272 	case SIOCGIFADDR:
2273 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
2274 		    ifp->if_addrlen);
2275 		break;
2276 	case SIOCGIFMEDIA:
2277 		VLAN_SLOCK();
2278 		if (TRUNK(ifv) != NULL) {
2279 			p = PARENT(ifv);
2280 			if_ref(p);
2281 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
2282 			if_rele(p);
2283 			/* Limit the result to the parent's current config. */
2284 			if (error == 0) {
2285 				struct ifmediareq *ifmr;
2286 
2287 				ifmr = (struct ifmediareq *)data;
2288 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
2289 					ifmr->ifm_count = 1;
2290 					error = copyout(&ifmr->ifm_current,
2291 						ifmr->ifm_ulist,
2292 						sizeof(int));
2293 				}
2294 			}
2295 		} else {
2296 			error = EINVAL;
2297 		}
2298 		VLAN_SUNLOCK();
2299 		break;
2300 
2301 	case SIOCSIFMEDIA:
2302 		error = EINVAL;
2303 		break;
2304 
2305 	case SIOCSIFMTU:
2306 		/*
2307 		 * Set the interface MTU.
2308 		 */
2309 		VLAN_SLOCK();
2310 		trunk = TRUNK(ifv);
2311 		if (trunk != NULL) {
2312 			TRUNK_WLOCK(trunk);
2313 			if (ifr->ifr_mtu >
2314 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
2315 			    ifr->ifr_mtu <
2316 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
2317 				error = EINVAL;
2318 			else
2319 				ifp->if_mtu = ifr->ifr_mtu;
2320 			TRUNK_WUNLOCK(trunk);
2321 		} else
2322 			error = EINVAL;
2323 		VLAN_SUNLOCK();
2324 		break;
2325 
2326 	case SIOCSETVLAN:
2327 #ifdef VIMAGE
2328 		/*
2329 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
2330 		 * interface to be delegated to a jail without allowing the
2331 		 * jail to change what underlying interface/VID it is
2332 		 * associated with.  We are not entirely convinced that this
2333 		 * is the right way to accomplish that policy goal.
2334 		 */
2335 		if (ifp->if_vnet != ifp->if_home_vnet) {
2336 			error = EPERM;
2337 			break;
2338 		}
2339 #endif
2340 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
2341 		if (error)
2342 			break;
2343 		if (vlr.vlr_parent[0] == '\0') {
2344 			vlan_unconfig(ifp);
2345 			break;
2346 		}
2347 		p = ifunit_ref(vlr.vlr_parent);
2348 		if (p == NULL) {
2349 			error = ENOENT;
2350 			break;
2351 		}
2352 		if (vlr.vlr_proto == 0)
2353 			vlr.vlr_proto = ETHERTYPE_VLAN;
2354 		oldmtu = ifp->if_mtu;
2355 		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
2356 		if_rele(p);
2357 
2358 		/*
2359 		 * VLAN MTU may change during addition of the vlandev.
2360 		 * If it did, do network layer specific procedure.
2361 		 */
2362 		if (ifp->if_mtu != oldmtu)
2363 			if_notifymtu(ifp);
2364 		break;
2365 
2366 	case SIOCGETVLAN:
2367 #ifdef VIMAGE
2368 		if (ifp->if_vnet != ifp->if_home_vnet) {
2369 			error = EPERM;
2370 			break;
2371 		}
2372 #endif
2373 		bzero(&vlr, sizeof(vlr));
2374 		VLAN_SLOCK();
2375 		if (TRUNK(ifv) != NULL) {
2376 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
2377 			    sizeof(vlr.vlr_parent));
2378 			vlr.vlr_tag = ifv->ifv_vid;
2379 			vlr.vlr_proto = ifv->ifv_proto;
2380 		}
2381 		VLAN_SUNLOCK();
2382 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
2383 		break;
2384 
2385 	case SIOCSIFFLAGS:
2386 		/*
2387 		 * We should propagate selected flags to the parent,
2388 		 * e.g., promiscuous mode.
2389 		 */
2390 		VLAN_SLOCK();
2391 		if (TRUNK(ifv) != NULL)
2392 			error = vlan_setflags(ifp, 1);
2393 		VLAN_SUNLOCK();
2394 		break;
2395 
2396 	case SIOCADDMULTI:
2397 	case SIOCDELMULTI:
2398 		/*
2399 		 * If we don't have a parent, just remember the membership for
2400 		 * when we do.
2401 		 *
2402 		 * XXX We need the rmlock here to avoid sleeping while
2403 		 * holding in6_multi_mtx.
2404 		 */
2405 		VLAN_XLOCK();
2406 		trunk = TRUNK(ifv);
2407 		if (trunk != NULL)
2408 			error = vlan_setmulti(ifp);
2409 		VLAN_XUNLOCK();
2410 
2411 		break;
2412 	case SIOCGVLANPCP:
2413 #ifdef VIMAGE
2414 		if (ifp->if_vnet != ifp->if_home_vnet) {
2415 			error = EPERM;
2416 			break;
2417 		}
2418 #endif
2419 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2420 		break;
2421 
2422 	case SIOCSVLANPCP:
2423 #ifdef VIMAGE
2424 		if (ifp->if_vnet != ifp->if_home_vnet) {
2425 			error = EPERM;
2426 			break;
2427 		}
2428 #endif
2429 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2430 		if (error)
2431 			break;
2432 		if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) {
2433 			error = EINVAL;
2434 			break;
2435 		}
2436 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2437 		ifp->if_pcp = ifv->ifv_pcp;
2438 		/* broadcast event about PCP change */
2439 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2440 		break;
2441 
2442 	case SIOCSIFCAP:
2443 		VLAN_SLOCK();
2444 		ifv->ifv_capenable = ifr->ifr_reqcap;
2445 		trunk = TRUNK(ifv);
2446 		if (trunk != NULL) {
2447 			struct epoch_tracker et;
2448 
2449 			NET_EPOCH_ENTER(et);
2450 			vlan_capabilities(ifv);
2451 			NET_EPOCH_EXIT(et);
2452 		}
2453 		VLAN_SUNLOCK();
2454 		break;
2455 
2456 	default:
2457 		error = EINVAL;
2458 		break;
2459 	}
2460 
2461 	return (error);
2462 }
2463 
2464 #if defined(KERN_TLS) || defined(RATELIMIT)
2465 static int
2466 vlan_snd_tag_alloc(struct ifnet *ifp,
2467     union if_snd_tag_alloc_params *params,
2468     struct m_snd_tag **ppmt)
2469 {
2470 	struct epoch_tracker et;
2471 	const struct if_snd_tag_sw *sw;
2472 	struct vlan_snd_tag *vst;
2473 	struct ifvlan *ifv;
2474 	struct ifnet *parent;
2475 	struct m_snd_tag *mst;
2476 	int error;
2477 
2478 	NET_EPOCH_ENTER(et);
2479 	ifv = ifp->if_softc;
2480 
2481 	switch (params->hdr.type) {
2482 #ifdef RATELIMIT
2483 	case IF_SND_TAG_TYPE_UNLIMITED:
2484 		sw = &vlan_snd_tag_ul_sw;
2485 		break;
2486 	case IF_SND_TAG_TYPE_RATE_LIMIT:
2487 		sw = &vlan_snd_tag_rl_sw;
2488 		break;
2489 #endif
2490 #ifdef KERN_TLS
2491 	case IF_SND_TAG_TYPE_TLS:
2492 		sw = &vlan_snd_tag_tls_sw;
2493 		break;
2494 	case IF_SND_TAG_TYPE_TLS_RX:
2495 		sw = NULL;
2496 		if (params->tls_rx.vlan_id != 0)
2497 			goto failure;
2498 		params->tls_rx.vlan_id = ifv->ifv_vid;
2499 		break;
2500 #ifdef RATELIMIT
2501 	case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
2502 		sw = &vlan_snd_tag_tls_rl_sw;
2503 		break;
2504 #endif
2505 #endif
2506 	default:
2507 		goto failure;
2508 	}
2509 
2510 	if (ifv->ifv_trunk != NULL)
2511 		parent = PARENT(ifv);
2512 	else
2513 		parent = NULL;
2514 	if (parent == NULL)
2515 		goto failure;
2516 	if_ref(parent);
2517 	NET_EPOCH_EXIT(et);
2518 
2519 	if (sw != NULL) {
2520 		vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2521 		if (vst == NULL) {
2522 			if_rele(parent);
2523 			return (ENOMEM);
2524 		}
2525 	} else
2526 		vst = NULL;
2527 
2528 	error = m_snd_tag_alloc(parent, params, &mst);
2529 	if_rele(parent);
2530 	if (error) {
2531 		free(vst, M_VLAN);
2532 		return (error);
2533 	}
2534 
2535 	if (sw != NULL) {
2536 		m_snd_tag_init(&vst->com, ifp, sw);
2537 		vst->tag = mst;
2538 
2539 		*ppmt = &vst->com;
2540 	} else
2541 		*ppmt = mst;
2542 
2543 	return (0);
2544 failure:
2545 	NET_EPOCH_EXIT(et);
2546 	return (EOPNOTSUPP);
2547 }
2548 
2549 static struct m_snd_tag *
2550 vlan_next_snd_tag(struct m_snd_tag *mst)
2551 {
2552 	struct vlan_snd_tag *vst;
2553 
2554 	vst = mst_to_vst(mst);
2555 	return (vst->tag);
2556 }
2557 
2558 static int
2559 vlan_snd_tag_modify(struct m_snd_tag *mst,
2560     union if_snd_tag_modify_params *params)
2561 {
2562 	struct vlan_snd_tag *vst;
2563 
2564 	vst = mst_to_vst(mst);
2565 	return (vst->tag->sw->snd_tag_modify(vst->tag, params));
2566 }
2567 
2568 static int
2569 vlan_snd_tag_query(struct m_snd_tag *mst,
2570     union if_snd_tag_query_params *params)
2571 {
2572 	struct vlan_snd_tag *vst;
2573 
2574 	vst = mst_to_vst(mst);
2575 	return (vst->tag->sw->snd_tag_query(vst->tag, params));
2576 }
2577 
2578 static void
2579 vlan_snd_tag_free(struct m_snd_tag *mst)
2580 {
2581 	struct vlan_snd_tag *vst;
2582 
2583 	vst = mst_to_vst(mst);
2584 	m_snd_tag_rele(vst->tag);
2585 	free(vst, M_VLAN);
2586 }
2587 
2588 static void
2589 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
2590 {
2591 	/*
2592 	 * For vlan, we have an indirect
2593 	 * interface. The caller needs to
2594 	 * get a ratelimit tag on the actual
2595 	 * interface the flow will go on.
2596 	 */
2597 	q->rate_table = NULL;
2598 	q->flags = RT_IS_INDIRECT;
2599 	q->max_flows = 0;
2600 	q->number_of_rates = 0;
2601 }
2602 
2603 #endif
2604