1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * Copyright 2012 ADARA Networks, Inc. 4 * Copyright 2017 Dell EMC Isilon 5 * 6 * Portions of this software were developed by Robert N. M. Watson under 7 * contract to ADARA Networks, Inc. 8 * 9 * Permission to use, copy, modify, and distribute this software and 10 * its documentation for any purpose and without fee is hereby 11 * granted, provided that both the above copyright notice and this 12 * permission notice appear in all copies, that both the above 13 * copyright notice and this permission notice appear in all 14 * supporting documentation, and that the name of M.I.T. not be used 15 * in advertising or publicity pertaining to distribution of the 16 * software without specific, written prior permission. M.I.T. makes 17 * no representations about the suitability of this software for any 18 * purpose. It is provided "as is" without express or implied 19 * warranty. 20 * 21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 37 * This is sort of sneaky in the implementation, since 38 * we need to pretend to be enough of an Ethernet implementation 39 * to make arp work. The way we do this is by telling everyone 40 * that we are an Ethernet, and then catch the packets that 41 * ether_output() sends to us via if_transmit(), rewrite them for 42 * use by the real outgoing interface, and ask it to send them. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_inet.h" 49 #include "opt_inet6.h" 50 #include "opt_kern_tls.h" 51 #include "opt_vlan.h" 52 #include "opt_ratelimit.h" 53 54 #include <sys/param.h> 55 #include <sys/eventhandler.h> 56 #include <sys/kernel.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mbuf.h> 60 #include <sys/module.h> 61 #include <sys/rmlock.h> 62 #include <sys/priv.h> 63 #include <sys/queue.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/sysctl.h> 67 #include <sys/systm.h> 68 #include <sys/sx.h> 69 #include <sys/taskqueue.h> 70 71 #include <net/bpf.h> 72 #include <net/ethernet.h> 73 #include <net/if.h> 74 #include <net/if_var.h> 75 #include <net/if_clone.h> 76 #include <net/if_dl.h> 77 #include <net/if_types.h> 78 #include <net/if_vlan_var.h> 79 #include <net/route.h> 80 #include <net/vnet.h> 81 82 #ifdef INET 83 #include <netinet/in.h> 84 #include <netinet/if_ether.h> 85 #endif 86 87 #ifdef INET6 88 /* 89 * XXX: declare here to avoid to include many inet6 related files.. 90 * should be more generalized? 91 */ 92 extern void nd6_setmtu(struct ifnet *); 93 #endif 94 95 #define VLAN_DEF_HWIDTH 4 96 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 97 98 #define UP_AND_RUNNING(ifp) \ 99 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 100 101 CK_SLIST_HEAD(ifvlanhead, ifvlan); 102 103 struct ifvlantrunk { 104 struct ifnet *parent; /* parent interface of this trunk */ 105 struct mtx lock; 106 #ifdef VLAN_ARRAY 107 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 108 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 109 #else 110 struct ifvlanhead *hash; /* dynamic hash-list table */ 111 uint16_t hmask; 112 uint16_t hwidth; 113 #endif 114 int refcnt; 115 }; 116 117 #if defined(KERN_TLS) || defined(RATELIMIT) 118 struct vlan_snd_tag { 119 struct m_snd_tag com; 120 struct m_snd_tag *tag; 121 }; 122 123 static inline struct vlan_snd_tag * 124 mst_to_vst(struct m_snd_tag *mst) 125 { 126 127 return (__containerof(mst, struct vlan_snd_tag, com)); 128 } 129 #endif 130 131 /* 132 * This macro provides a facility to iterate over every vlan on a trunk with 133 * the assumption that none will be added/removed during iteration. 134 */ 135 #ifdef VLAN_ARRAY 136 #define VLAN_FOREACH(_ifv, _trunk) \ 137 size_t _i; \ 138 for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ 139 if (((_ifv) = (_trunk)->vlans[_i]) != NULL) 140 #else /* VLAN_ARRAY */ 141 #define VLAN_FOREACH(_ifv, _trunk) \ 142 struct ifvlan *_next; \ 143 size_t _i; \ 144 for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ 145 CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) 146 #endif /* VLAN_ARRAY */ 147 148 /* 149 * This macro provides a facility to iterate over every vlan on a trunk while 150 * also modifying the number of vlans on the trunk. The iteration continues 151 * until some condition is met or there are no more vlans on the trunk. 152 */ 153 #ifdef VLAN_ARRAY 154 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ 155 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 156 size_t _i; \ 157 for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ 158 if (((_ifv) = (_trunk)->vlans[_i])) 159 #else /* VLAN_ARRAY */ 160 /* 161 * The hash table case is more complicated. We allow for the hash table to be 162 * modified (i.e. vlans removed) while we are iterating over it. To allow for 163 * this we must restart the iteration every time we "touch" something during 164 * the iteration, since removal will resize the hash table and invalidate our 165 * current position. If acting on the touched element causes the trunk to be 166 * emptied, then iteration also stops. 167 */ 168 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 169 size_t _i; \ 170 bool _touch = false; \ 171 for (_i = 0; \ 172 !(_cond) && _i < (1 << (_trunk)->hwidth); \ 173 _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ 174 if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ 175 (_touch = true)) 176 #endif /* VLAN_ARRAY */ 177 178 struct vlan_mc_entry { 179 struct sockaddr_dl mc_addr; 180 CK_SLIST_ENTRY(vlan_mc_entry) mc_entries; 181 struct epoch_context mc_epoch_ctx; 182 }; 183 184 struct ifvlan { 185 struct ifvlantrunk *ifv_trunk; 186 struct ifnet *ifv_ifp; 187 #define TRUNK(ifv) ((ifv)->ifv_trunk) 188 #define PARENT(ifv) (TRUNK(ifv)->parent) 189 void *ifv_cookie; 190 int ifv_pflags; /* special flags we have set on parent */ 191 int ifv_capenable; 192 int ifv_encaplen; /* encapsulation length */ 193 int ifv_mtufudge; /* MTU fudged by this much */ 194 int ifv_mintu; /* min transmission unit */ 195 struct ether_8021q_tag ifv_qtag; 196 #define ifv_proto ifv_qtag.proto 197 #define ifv_vid ifv_qtag.vid 198 #define ifv_pcp ifv_qtag.pcp 199 struct task lladdr_task; 200 CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 201 #ifndef VLAN_ARRAY 202 CK_SLIST_ENTRY(ifvlan) ifv_list; 203 #endif 204 }; 205 206 /* Special flags we should propagate to parent. */ 207 static struct { 208 int flag; 209 int (*func)(struct ifnet *, int); 210 } vlan_pflags[] = { 211 {IFF_PROMISC, ifpromisc}, 212 {IFF_ALLMULTI, if_allmulti}, 213 {0, NULL} 214 }; 215 216 extern int vlan_mtag_pcp; 217 218 static const char vlanname[] = "vlan"; 219 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); 220 221 static eventhandler_tag ifdetach_tag; 222 static eventhandler_tag iflladdr_tag; 223 224 /* 225 * if_vlan uses two module-level synchronizations primitives to allow concurrent 226 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed 227 * while they are being used for tx/rx. To accomplish this in a way that has 228 * acceptable performance and cooperation with other parts of the network stack 229 * there is a non-sleepable epoch(9) and an sx(9). 230 * 231 * The performance-sensitive paths that warrant using the epoch(9) are 232 * vlan_transmit and vlan_input. Both have to check for the vlan interface's 233 * existence using if_vlantrunk, and being in the network tx/rx paths the use 234 * of an epoch(9) gives a measureable improvement in performance. 235 * 236 * The reason for having an sx(9) is mostly because there are still areas that 237 * must be sleepable and also have safe concurrent access to a vlan interface. 238 * Since the sx(9) exists, it is used by default in most paths unless sleeping 239 * is not permitted, or if it is not clear whether sleeping is permitted. 240 * 241 */ 242 #define _VLAN_SX_ID ifv_sx 243 244 static struct sx _VLAN_SX_ID; 245 246 #define VLAN_LOCKING_INIT() \ 247 sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE) 248 249 #define VLAN_LOCKING_DESTROY() \ 250 sx_destroy(&_VLAN_SX_ID) 251 252 #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) 253 #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) 254 #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) 255 #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) 256 #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) 257 #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) 258 #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) 259 260 /* 261 * We also have a per-trunk mutex that should be acquired when changing 262 * its state. 263 */ 264 #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF) 265 #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock) 266 #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock) 267 #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock) 268 #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED); 269 270 /* 271 * The VLAN_ARRAY substitutes the dynamic hash with a static array 272 * with 4096 entries. In theory this can give a boost in processing, 273 * however in practice it does not. Probably this is because the array 274 * is too big to fit into CPU cache. 275 */ 276 #ifndef VLAN_ARRAY 277 static void vlan_inithash(struct ifvlantrunk *trunk); 278 static void vlan_freehash(struct ifvlantrunk *trunk); 279 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 280 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 281 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 282 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 283 uint16_t vid); 284 #endif 285 static void trunk_destroy(struct ifvlantrunk *trunk); 286 287 static void vlan_init(void *foo); 288 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 289 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 290 #if defined(KERN_TLS) || defined(RATELIMIT) 291 static int vlan_snd_tag_alloc(struct ifnet *, 292 union if_snd_tag_alloc_params *, struct m_snd_tag **); 293 static int vlan_snd_tag_modify(struct m_snd_tag *, 294 union if_snd_tag_modify_params *); 295 static int vlan_snd_tag_query(struct m_snd_tag *, 296 union if_snd_tag_query_params *); 297 static void vlan_snd_tag_free(struct m_snd_tag *); 298 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *); 299 static void vlan_ratelimit_query(struct ifnet *, 300 struct if_ratelimit_query_results *); 301 #endif 302 static void vlan_qflush(struct ifnet *ifp); 303 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 304 int (*func)(struct ifnet *, int)); 305 static int vlan_setflags(struct ifnet *ifp, int status); 306 static int vlan_setmulti(struct ifnet *ifp); 307 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); 308 static int vlan_output(struct ifnet *ifp, struct mbuf *m, 309 const struct sockaddr *dst, struct route *ro); 310 static void vlan_unconfig(struct ifnet *ifp); 311 static void vlan_unconfig_locked(struct ifnet *ifp, int departing); 312 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag, 313 uint16_t proto); 314 static void vlan_link_state(struct ifnet *ifp); 315 static void vlan_capabilities(struct ifvlan *ifv); 316 static void vlan_trunk_capabilities(struct ifnet *ifp); 317 318 static struct ifnet *vlan_clone_match_ethervid(const char *, int *); 319 static int vlan_clone_match(struct if_clone *, const char *); 320 static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); 321 static int vlan_clone_destroy(struct if_clone *, struct ifnet *); 322 323 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 324 static void vlan_iflladdr(void *arg, struct ifnet *ifp); 325 326 static void vlan_lladdr_fn(void *arg, int pending); 327 328 static struct if_clone *vlan_cloner; 329 330 #ifdef VIMAGE 331 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); 332 #define V_vlan_cloner VNET(vlan_cloner) 333 #endif 334 335 static void 336 vlan_mc_free(struct epoch_context *ctx) 337 { 338 struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx); 339 free(mc, M_VLAN); 340 } 341 342 #ifndef VLAN_ARRAY 343 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 344 345 static void 346 vlan_inithash(struct ifvlantrunk *trunk) 347 { 348 int i, n; 349 350 /* 351 * The trunk must not be locked here since we call malloc(M_WAITOK). 352 * It is OK in case this function is called before the trunk struct 353 * gets hooked up and becomes visible from other threads. 354 */ 355 356 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 357 ("%s: hash already initialized", __func__)); 358 359 trunk->hwidth = VLAN_DEF_HWIDTH; 360 n = 1 << trunk->hwidth; 361 trunk->hmask = n - 1; 362 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 363 for (i = 0; i < n; i++) 364 CK_SLIST_INIT(&trunk->hash[i]); 365 } 366 367 static void 368 vlan_freehash(struct ifvlantrunk *trunk) 369 { 370 #ifdef INVARIANTS 371 int i; 372 373 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 374 for (i = 0; i < (1 << trunk->hwidth); i++) 375 KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]), 376 ("%s: hash table not empty", __func__)); 377 #endif 378 free(trunk->hash, M_VLAN); 379 trunk->hash = NULL; 380 trunk->hwidth = trunk->hmask = 0; 381 } 382 383 static int 384 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 385 { 386 int i, b; 387 struct ifvlan *ifv2; 388 389 VLAN_XLOCK_ASSERT(); 390 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 391 392 b = 1 << trunk->hwidth; 393 i = HASH(ifv->ifv_vid, trunk->hmask); 394 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 395 if (ifv->ifv_vid == ifv2->ifv_vid) 396 return (EEXIST); 397 398 /* 399 * Grow the hash when the number of vlans exceeds half of the number of 400 * hash buckets squared. This will make the average linked-list length 401 * buckets/2. 402 */ 403 if (trunk->refcnt > (b * b) / 2) { 404 vlan_growhash(trunk, 1); 405 i = HASH(ifv->ifv_vid, trunk->hmask); 406 } 407 CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 408 trunk->refcnt++; 409 410 return (0); 411 } 412 413 static int 414 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 415 { 416 int i, b; 417 struct ifvlan *ifv2; 418 419 VLAN_XLOCK_ASSERT(); 420 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 421 422 b = 1 << trunk->hwidth; 423 i = HASH(ifv->ifv_vid, trunk->hmask); 424 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 425 if (ifv2 == ifv) { 426 trunk->refcnt--; 427 CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list); 428 if (trunk->refcnt < (b * b) / 2) 429 vlan_growhash(trunk, -1); 430 return (0); 431 } 432 433 panic("%s: vlan not found\n", __func__); 434 return (ENOENT); /*NOTREACHED*/ 435 } 436 437 /* 438 * Grow the hash larger or smaller if memory permits. 439 */ 440 static void 441 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 442 { 443 struct ifvlan *ifv; 444 struct ifvlanhead *hash2; 445 int hwidth2, i, j, n, n2; 446 447 VLAN_XLOCK_ASSERT(); 448 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 449 450 if (howmuch == 0) { 451 /* Harmless yet obvious coding error */ 452 printf("%s: howmuch is 0\n", __func__); 453 return; 454 } 455 456 hwidth2 = trunk->hwidth + howmuch; 457 n = 1 << trunk->hwidth; 458 n2 = 1 << hwidth2; 459 /* Do not shrink the table below the default */ 460 if (hwidth2 < VLAN_DEF_HWIDTH) 461 return; 462 463 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK); 464 if (hash2 == NULL) { 465 printf("%s: out of memory -- hash size not changed\n", 466 __func__); 467 return; /* We can live with the old hash table */ 468 } 469 for (j = 0; j < n2; j++) 470 CK_SLIST_INIT(&hash2[j]); 471 for (i = 0; i < n; i++) 472 while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) { 473 CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list); 474 j = HASH(ifv->ifv_vid, n2 - 1); 475 CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 476 } 477 NET_EPOCH_WAIT(); 478 free(trunk->hash, M_VLAN); 479 trunk->hash = hash2; 480 trunk->hwidth = hwidth2; 481 trunk->hmask = n2 - 1; 482 483 if (bootverbose) 484 if_printf(trunk->parent, 485 "VLAN hash table resized from %d to %d buckets\n", n, n2); 486 } 487 488 static __inline struct ifvlan * 489 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 490 { 491 struct ifvlan *ifv; 492 493 NET_EPOCH_ASSERT(); 494 495 CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) 496 if (ifv->ifv_vid == vid) 497 return (ifv); 498 return (NULL); 499 } 500 501 #if 0 502 /* Debugging code to view the hashtables. */ 503 static void 504 vlan_dumphash(struct ifvlantrunk *trunk) 505 { 506 int i; 507 struct ifvlan *ifv; 508 509 for (i = 0; i < (1 << trunk->hwidth); i++) { 510 printf("%d: ", i); 511 CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 512 printf("%s ", ifv->ifv_ifp->if_xname); 513 printf("\n"); 514 } 515 } 516 #endif /* 0 */ 517 #else 518 519 static __inline struct ifvlan * 520 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 521 { 522 523 return trunk->vlans[vid]; 524 } 525 526 static __inline int 527 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 528 { 529 530 if (trunk->vlans[ifv->ifv_vid] != NULL) 531 return EEXIST; 532 trunk->vlans[ifv->ifv_vid] = ifv; 533 trunk->refcnt++; 534 535 return (0); 536 } 537 538 static __inline int 539 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 540 { 541 542 trunk->vlans[ifv->ifv_vid] = NULL; 543 trunk->refcnt--; 544 545 return (0); 546 } 547 548 static __inline void 549 vlan_freehash(struct ifvlantrunk *trunk) 550 { 551 } 552 553 static __inline void 554 vlan_inithash(struct ifvlantrunk *trunk) 555 { 556 } 557 558 #endif /* !VLAN_ARRAY */ 559 560 static void 561 trunk_destroy(struct ifvlantrunk *trunk) 562 { 563 VLAN_XLOCK_ASSERT(); 564 565 vlan_freehash(trunk); 566 trunk->parent->if_vlantrunk = NULL; 567 TRUNK_LOCK_DESTROY(trunk); 568 if_rele(trunk->parent); 569 free(trunk, M_VLAN); 570 } 571 572 /* 573 * Program our multicast filter. What we're actually doing is 574 * programming the multicast filter of the parent. This has the 575 * side effect of causing the parent interface to receive multicast 576 * traffic that it doesn't really want, which ends up being discarded 577 * later by the upper protocol layers. Unfortunately, there's no way 578 * to avoid this: there really is only one physical interface. 579 */ 580 static int 581 vlan_setmulti(struct ifnet *ifp) 582 { 583 struct ifnet *ifp_p; 584 struct ifmultiaddr *ifma; 585 struct ifvlan *sc; 586 struct vlan_mc_entry *mc; 587 int error; 588 589 VLAN_XLOCK_ASSERT(); 590 591 /* Find the parent. */ 592 sc = ifp->if_softc; 593 ifp_p = PARENT(sc); 594 595 CURVNET_SET_QUIET(ifp_p->if_vnet); 596 597 /* First, remove any existing filter entries. */ 598 while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 599 CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 600 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); 601 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 602 } 603 604 /* Now program new ones. */ 605 IF_ADDR_WLOCK(ifp); 606 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 607 if (ifma->ifma_addr->sa_family != AF_LINK) 608 continue; 609 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 610 if (mc == NULL) { 611 IF_ADDR_WUNLOCK(ifp); 612 return (ENOMEM); 613 } 614 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); 615 mc->mc_addr.sdl_index = ifp_p->if_index; 616 CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 617 } 618 IF_ADDR_WUNLOCK(ifp); 619 CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { 620 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, 621 NULL); 622 if (error) 623 return (error); 624 } 625 626 CURVNET_RESTORE(); 627 return (0); 628 } 629 630 /* 631 * A handler for parent interface link layer address changes. 632 * If the parent interface link layer address is changed we 633 * should also change it on all children vlans. 634 */ 635 static void 636 vlan_iflladdr(void *arg __unused, struct ifnet *ifp) 637 { 638 struct epoch_tracker et; 639 struct ifvlan *ifv; 640 struct ifnet *ifv_ifp; 641 struct ifvlantrunk *trunk; 642 struct sockaddr_dl *sdl; 643 644 /* Need the epoch since this is run on taskqueue_swi. */ 645 NET_EPOCH_ENTER(et); 646 trunk = ifp->if_vlantrunk; 647 if (trunk == NULL) { 648 NET_EPOCH_EXIT(et); 649 return; 650 } 651 652 /* 653 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. 654 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR 655 * ioctl calls on the parent garbling the lladdr of the child vlan. 656 */ 657 TRUNK_WLOCK(trunk); 658 VLAN_FOREACH(ifv, trunk) { 659 /* 660 * Copy new new lladdr into the ifv_ifp, enqueue a task 661 * to actually call if_setlladdr. if_setlladdr needs to 662 * be deferred to a taskqueue because it will call into 663 * the if_vlan ioctl path and try to acquire the global 664 * lock. 665 */ 666 ifv_ifp = ifv->ifv_ifp; 667 bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), 668 ifp->if_addrlen); 669 sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; 670 sdl->sdl_alen = ifp->if_addrlen; 671 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 672 } 673 TRUNK_WUNLOCK(trunk); 674 NET_EPOCH_EXIT(et); 675 } 676 677 /* 678 * A handler for network interface departure events. 679 * Track departure of trunks here so that we don't access invalid 680 * pointers or whatever if a trunk is ripped from under us, e.g., 681 * by ejecting its hot-plug card. However, if an ifnet is simply 682 * being renamed, then there's no need to tear down the state. 683 */ 684 static void 685 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 686 { 687 struct ifvlan *ifv; 688 struct ifvlantrunk *trunk; 689 690 /* If the ifnet is just being renamed, don't do anything. */ 691 if (ifp->if_flags & IFF_RENAMING) 692 return; 693 VLAN_XLOCK(); 694 trunk = ifp->if_vlantrunk; 695 if (trunk == NULL) { 696 VLAN_XUNLOCK(); 697 return; 698 } 699 700 /* 701 * OK, it's a trunk. Loop over and detach all vlan's on it. 702 * Check trunk pointer after each vlan_unconfig() as it will 703 * free it and set to NULL after the last vlan was detached. 704 */ 705 VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, 706 ifp->if_vlantrunk == NULL) 707 vlan_unconfig_locked(ifv->ifv_ifp, 1); 708 709 /* Trunk should have been destroyed in vlan_unconfig(). */ 710 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 711 VLAN_XUNLOCK(); 712 } 713 714 /* 715 * Return the trunk device for a virtual interface. 716 */ 717 static struct ifnet * 718 vlan_trunkdev(struct ifnet *ifp) 719 { 720 struct ifvlan *ifv; 721 722 NET_EPOCH_ASSERT(); 723 724 if (ifp->if_type != IFT_L2VLAN) 725 return (NULL); 726 727 ifv = ifp->if_softc; 728 ifp = NULL; 729 if (ifv->ifv_trunk) 730 ifp = PARENT(ifv); 731 return (ifp); 732 } 733 734 /* 735 * Return the 12-bit VLAN VID for this interface, for use by external 736 * components such as Infiniband. 737 * 738 * XXXRW: Note that the function name here is historical; it should be named 739 * vlan_vid(). 740 */ 741 static int 742 vlan_tag(struct ifnet *ifp, uint16_t *vidp) 743 { 744 struct ifvlan *ifv; 745 746 if (ifp->if_type != IFT_L2VLAN) 747 return (EINVAL); 748 ifv = ifp->if_softc; 749 *vidp = ifv->ifv_vid; 750 return (0); 751 } 752 753 static int 754 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp) 755 { 756 struct ifvlan *ifv; 757 758 if (ifp->if_type != IFT_L2VLAN) 759 return (EINVAL); 760 ifv = ifp->if_softc; 761 *pcpp = ifv->ifv_pcp; 762 return (0); 763 } 764 765 /* 766 * Return a driver specific cookie for this interface. Synchronization 767 * with setcookie must be provided by the driver. 768 */ 769 static void * 770 vlan_cookie(struct ifnet *ifp) 771 { 772 struct ifvlan *ifv; 773 774 if (ifp->if_type != IFT_L2VLAN) 775 return (NULL); 776 ifv = ifp->if_softc; 777 return (ifv->ifv_cookie); 778 } 779 780 /* 781 * Store a cookie in our softc that drivers can use to store driver 782 * private per-instance data in. 783 */ 784 static int 785 vlan_setcookie(struct ifnet *ifp, void *cookie) 786 { 787 struct ifvlan *ifv; 788 789 if (ifp->if_type != IFT_L2VLAN) 790 return (EINVAL); 791 ifv = ifp->if_softc; 792 ifv->ifv_cookie = cookie; 793 return (0); 794 } 795 796 /* 797 * Return the vlan device present at the specific VID. 798 */ 799 static struct ifnet * 800 vlan_devat(struct ifnet *ifp, uint16_t vid) 801 { 802 struct ifvlantrunk *trunk; 803 struct ifvlan *ifv; 804 805 NET_EPOCH_ASSERT(); 806 807 trunk = ifp->if_vlantrunk; 808 if (trunk == NULL) 809 return (NULL); 810 ifp = NULL; 811 ifv = vlan_gethash(trunk, vid); 812 if (ifv) 813 ifp = ifv->ifv_ifp; 814 return (ifp); 815 } 816 817 /* 818 * VLAN support can be loaded as a module. The only place in the 819 * system that's intimately aware of this is ether_input. We hook 820 * into this code through vlan_input_p which is defined there and 821 * set here. No one else in the system should be aware of this so 822 * we use an explicit reference here. 823 */ 824 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 825 826 /* For if_link_state_change() eyes only... */ 827 extern void (*vlan_link_state_p)(struct ifnet *); 828 829 static int 830 vlan_modevent(module_t mod, int type, void *data) 831 { 832 833 switch (type) { 834 case MOD_LOAD: 835 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 836 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 837 if (ifdetach_tag == NULL) 838 return (ENOMEM); 839 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, 840 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 841 if (iflladdr_tag == NULL) 842 return (ENOMEM); 843 VLAN_LOCKING_INIT(); 844 vlan_input_p = vlan_input; 845 vlan_link_state_p = vlan_link_state; 846 vlan_trunk_cap_p = vlan_trunk_capabilities; 847 vlan_trunkdev_p = vlan_trunkdev; 848 vlan_cookie_p = vlan_cookie; 849 vlan_setcookie_p = vlan_setcookie; 850 vlan_tag_p = vlan_tag; 851 vlan_pcp_p = vlan_pcp; 852 vlan_devat_p = vlan_devat; 853 #ifndef VIMAGE 854 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 855 vlan_clone_create, vlan_clone_destroy); 856 #endif 857 if (bootverbose) 858 printf("vlan: initialized, using " 859 #ifdef VLAN_ARRAY 860 "full-size arrays" 861 #else 862 "hash tables with chaining" 863 #endif 864 865 "\n"); 866 break; 867 case MOD_UNLOAD: 868 #ifndef VIMAGE 869 if_clone_detach(vlan_cloner); 870 #endif 871 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 872 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); 873 vlan_input_p = NULL; 874 vlan_link_state_p = NULL; 875 vlan_trunk_cap_p = NULL; 876 vlan_trunkdev_p = NULL; 877 vlan_tag_p = NULL; 878 vlan_cookie_p = NULL; 879 vlan_setcookie_p = NULL; 880 vlan_devat_p = NULL; 881 VLAN_LOCKING_DESTROY(); 882 if (bootverbose) 883 printf("vlan: unloaded\n"); 884 break; 885 default: 886 return (EOPNOTSUPP); 887 } 888 return (0); 889 } 890 891 static moduledata_t vlan_mod = { 892 "if_vlan", 893 vlan_modevent, 894 0 895 }; 896 897 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 898 MODULE_VERSION(if_vlan, 3); 899 900 #ifdef VIMAGE 901 static void 902 vnet_vlan_init(const void *unused __unused) 903 { 904 905 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 906 vlan_clone_create, vlan_clone_destroy); 907 V_vlan_cloner = vlan_cloner; 908 } 909 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 910 vnet_vlan_init, NULL); 911 912 static void 913 vnet_vlan_uninit(const void *unused __unused) 914 { 915 916 if_clone_detach(V_vlan_cloner); 917 } 918 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, 919 vnet_vlan_uninit, NULL); 920 #endif 921 922 /* 923 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names. 924 */ 925 static struct ifnet * 926 vlan_clone_match_ethervid(const char *name, int *vidp) 927 { 928 char ifname[IFNAMSIZ]; 929 char *cp; 930 struct ifnet *ifp; 931 int vid; 932 933 strlcpy(ifname, name, IFNAMSIZ); 934 if ((cp = strrchr(ifname, '.')) == NULL) 935 return (NULL); 936 *cp = '\0'; 937 if ((ifp = ifunit_ref(ifname)) == NULL) 938 return (NULL); 939 /* Parse VID. */ 940 if (*++cp == '\0') { 941 if_rele(ifp); 942 return (NULL); 943 } 944 vid = 0; 945 for(; *cp >= '0' && *cp <= '9'; cp++) 946 vid = (vid * 10) + (*cp - '0'); 947 if (*cp != '\0') { 948 if_rele(ifp); 949 return (NULL); 950 } 951 if (vidp != NULL) 952 *vidp = vid; 953 954 return (ifp); 955 } 956 957 static int 958 vlan_clone_match(struct if_clone *ifc, const char *name) 959 { 960 struct ifnet *ifp; 961 const char *cp; 962 963 ifp = vlan_clone_match_ethervid(name, NULL); 964 if (ifp != NULL) { 965 if_rele(ifp); 966 return (1); 967 } 968 969 if (strncmp(vlanname, name, strlen(vlanname)) != 0) 970 return (0); 971 for (cp = name + 4; *cp != '\0'; cp++) { 972 if (*cp < '0' || *cp > '9') 973 return (0); 974 } 975 976 return (1); 977 } 978 979 static int 980 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) 981 { 982 char *dp; 983 bool wildcard = false; 984 bool subinterface = false; 985 int unit; 986 int error; 987 int vid = 0; 988 uint16_t proto = ETHERTYPE_VLAN; 989 struct ifvlan *ifv; 990 struct ifnet *ifp; 991 struct ifnet *p = NULL; 992 struct ifaddr *ifa; 993 struct sockaddr_dl *sdl; 994 struct vlanreq vlr; 995 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 996 997 998 /* 999 * There are three ways to specify the cloned device: 1000 * o pass a parameter block with the clone request. 1001 * o specify parameters in the text of the clone device name 1002 * o specify no parameters and get an unattached device that 1003 * must be configured separately. 1004 * The first technique is preferred; the latter two are supported 1005 * for backwards compatibility. 1006 * 1007 * XXXRW: Note historic use of the word "tag" here. New ioctls may be 1008 * called for. 1009 */ 1010 1011 if (params) { 1012 error = copyin(params, &vlr, sizeof(vlr)); 1013 if (error) 1014 return error; 1015 vid = vlr.vlr_tag; 1016 proto = vlr.vlr_proto; 1017 1018 p = ifunit_ref(vlr.vlr_parent); 1019 if (p == NULL) 1020 return (ENXIO); 1021 } 1022 1023 if ((error = ifc_name2unit(name, &unit)) == 0) { 1024 1025 /* 1026 * vlanX interface. Set wildcard to true if the unit number 1027 * is not fixed (-1) 1028 */ 1029 wildcard = (unit < 0); 1030 } else { 1031 struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid); 1032 if (p_tmp != NULL) { 1033 error = 0; 1034 subinterface = true; 1035 unit = IF_DUNIT_NONE; 1036 wildcard = false; 1037 if (p != NULL) { 1038 if_rele(p_tmp); 1039 if (p != p_tmp) 1040 error = EINVAL; 1041 } else 1042 p = p_tmp; 1043 } else 1044 error = ENXIO; 1045 } 1046 1047 if (error != 0) { 1048 if (p != NULL) 1049 if_rele(p); 1050 return (error); 1051 } 1052 1053 if (!subinterface) { 1054 /* vlanX interface, mark X as busy or allocate new unit # */ 1055 error = ifc_alloc_unit(ifc, &unit); 1056 if (error != 0) { 1057 if (p != NULL) 1058 if_rele(p); 1059 return (error); 1060 } 1061 } 1062 1063 /* In the wildcard case, we need to update the name. */ 1064 if (wildcard) { 1065 for (dp = name; *dp != '\0'; dp++); 1066 if (snprintf(dp, len - (dp-name), "%d", unit) > 1067 len - (dp-name) - 1) { 1068 panic("%s: interface name too long", __func__); 1069 } 1070 } 1071 1072 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 1073 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 1074 if (ifp == NULL) { 1075 if (!subinterface) 1076 ifc_free_unit(ifc, unit); 1077 free(ifv, M_VLAN); 1078 if (p != NULL) 1079 if_rele(p); 1080 return (ENOSPC); 1081 } 1082 CK_SLIST_INIT(&ifv->vlan_mc_listhead); 1083 ifp->if_softc = ifv; 1084 /* 1085 * Set the name manually rather than using if_initname because 1086 * we don't conform to the default naming convention for interfaces. 1087 */ 1088 strlcpy(ifp->if_xname, name, IFNAMSIZ); 1089 ifp->if_dname = vlanname; 1090 ifp->if_dunit = unit; 1091 1092 ifp->if_init = vlan_init; 1093 ifp->if_transmit = vlan_transmit; 1094 ifp->if_qflush = vlan_qflush; 1095 ifp->if_ioctl = vlan_ioctl; 1096 #if defined(KERN_TLS) || defined(RATELIMIT) 1097 ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; 1098 ifp->if_snd_tag_modify = vlan_snd_tag_modify; 1099 ifp->if_snd_tag_query = vlan_snd_tag_query; 1100 ifp->if_snd_tag_free = vlan_snd_tag_free; 1101 ifp->if_next_snd_tag = vlan_next_snd_tag; 1102 ifp->if_ratelimit_query = vlan_ratelimit_query; 1103 #endif 1104 ifp->if_flags = VLAN_IFFLAGS; 1105 ether_ifattach(ifp, eaddr); 1106 /* Now undo some of the damage... */ 1107 ifp->if_baudrate = 0; 1108 ifp->if_type = IFT_L2VLAN; 1109 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 1110 ifa = ifp->if_addr; 1111 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1112 sdl->sdl_type = IFT_L2VLAN; 1113 1114 if (p != NULL) { 1115 error = vlan_config(ifv, p, vid, proto); 1116 if_rele(p); 1117 if (error != 0) { 1118 /* 1119 * Since we've partially failed, we need to back 1120 * out all the way, otherwise userland could get 1121 * confused. Thus, we destroy the interface. 1122 */ 1123 ether_ifdetach(ifp); 1124 vlan_unconfig(ifp); 1125 if_free(ifp); 1126 if (!subinterface) 1127 ifc_free_unit(ifc, unit); 1128 free(ifv, M_VLAN); 1129 1130 return (error); 1131 } 1132 } 1133 1134 return (0); 1135 } 1136 1137 static int 1138 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) 1139 { 1140 struct ifvlan *ifv = ifp->if_softc; 1141 int unit = ifp->if_dunit; 1142 1143 if (ifp->if_vlantrunk) 1144 return (EBUSY); 1145 1146 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 1147 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 1148 /* 1149 * We should have the only reference to the ifv now, so we can now 1150 * drain any remaining lladdr task before freeing the ifnet and the 1151 * ifvlan. 1152 */ 1153 taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); 1154 NET_EPOCH_WAIT(); 1155 if_free(ifp); 1156 free(ifv, M_VLAN); 1157 if (unit != IF_DUNIT_NONE) 1158 ifc_free_unit(ifc, unit); 1159 1160 return (0); 1161 } 1162 1163 /* 1164 * The ifp->if_init entry point for vlan(4) is a no-op. 1165 */ 1166 static void 1167 vlan_init(void *foo __unused) 1168 { 1169 } 1170 1171 /* 1172 * The if_transmit method for vlan(4) interface. 1173 */ 1174 static int 1175 vlan_transmit(struct ifnet *ifp, struct mbuf *m) 1176 { 1177 struct ifvlan *ifv; 1178 struct ifnet *p; 1179 int error, len, mcast; 1180 1181 NET_EPOCH_ASSERT(); 1182 1183 ifv = ifp->if_softc; 1184 if (TRUNK(ifv) == NULL) { 1185 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1186 m_freem(m); 1187 return (ENETDOWN); 1188 } 1189 p = PARENT(ifv); 1190 len = m->m_pkthdr.len; 1191 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; 1192 1193 BPF_MTAP(ifp, m); 1194 1195 #if defined(KERN_TLS) || defined(RATELIMIT) 1196 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1197 struct vlan_snd_tag *vst; 1198 struct m_snd_tag *mst; 1199 1200 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 1201 mst = m->m_pkthdr.snd_tag; 1202 vst = mst_to_vst(mst); 1203 if (vst->tag->ifp != p) { 1204 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1205 m_freem(m); 1206 return (EAGAIN); 1207 } 1208 1209 m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag); 1210 m_snd_tag_rele(mst); 1211 } 1212 #endif 1213 1214 /* 1215 * Do not run parent's if_transmit() if the parent is not up, 1216 * or parent's driver will cause a system crash. 1217 */ 1218 if (!UP_AND_RUNNING(p)) { 1219 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1220 m_freem(m); 1221 return (ENETDOWN); 1222 } 1223 1224 if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) { 1225 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1226 return (0); 1227 } 1228 1229 /* 1230 * Send it, precisely as ether_output() would have. 1231 */ 1232 error = (p->if_transmit)(p, m); 1233 if (error == 0) { 1234 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1235 if_inc_counter(ifp, IFCOUNTER_OBYTES, len); 1236 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); 1237 } else 1238 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1239 return (error); 1240 } 1241 1242 static int 1243 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, 1244 struct route *ro) 1245 { 1246 struct ifvlan *ifv; 1247 struct ifnet *p; 1248 1249 NET_EPOCH_ASSERT(); 1250 1251 /* 1252 * Find the first non-VLAN parent interface. 1253 */ 1254 ifv = ifp->if_softc; 1255 do { 1256 if (TRUNK(ifv) == NULL) { 1257 m_freem(m); 1258 return (ENETDOWN); 1259 } 1260 p = PARENT(ifv); 1261 ifv = p->if_softc; 1262 } while (p->if_type == IFT_L2VLAN); 1263 1264 return p->if_output(ifp, m, dst, ro); 1265 } 1266 1267 /* 1268 * The ifp->if_qflush entry point for vlan(4) is a no-op. 1269 */ 1270 static void 1271 vlan_qflush(struct ifnet *ifp __unused) 1272 { 1273 } 1274 1275 static void 1276 vlan_input(struct ifnet *ifp, struct mbuf *m) 1277 { 1278 struct ifvlantrunk *trunk; 1279 struct ifvlan *ifv; 1280 struct m_tag *mtag; 1281 uint16_t vid, tag; 1282 1283 NET_EPOCH_ASSERT(); 1284 1285 trunk = ifp->if_vlantrunk; 1286 if (trunk == NULL) { 1287 m_freem(m); 1288 return; 1289 } 1290 1291 if (m->m_flags & M_VLANTAG) { 1292 /* 1293 * Packet is tagged, but m contains a normal 1294 * Ethernet frame; the tag is stored out-of-band. 1295 */ 1296 tag = m->m_pkthdr.ether_vtag; 1297 m->m_flags &= ~M_VLANTAG; 1298 } else { 1299 struct ether_vlan_header *evl; 1300 1301 /* 1302 * Packet is tagged in-band as specified by 802.1q. 1303 */ 1304 switch (ifp->if_type) { 1305 case IFT_ETHER: 1306 if (m->m_len < sizeof(*evl) && 1307 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1308 if_printf(ifp, "cannot pullup VLAN header\n"); 1309 return; 1310 } 1311 evl = mtod(m, struct ether_vlan_header *); 1312 tag = ntohs(evl->evl_tag); 1313 1314 /* 1315 * Remove the 802.1q header by copying the Ethernet 1316 * addresses over it and adjusting the beginning of 1317 * the data in the mbuf. The encapsulated Ethernet 1318 * type field is already in place. 1319 */ 1320 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 1321 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1322 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1323 break; 1324 1325 default: 1326 #ifdef INVARIANTS 1327 panic("%s: %s has unsupported if_type %u", 1328 __func__, ifp->if_xname, ifp->if_type); 1329 #endif 1330 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1331 m_freem(m); 1332 return; 1333 } 1334 } 1335 1336 vid = EVL_VLANOFTAG(tag); 1337 1338 ifv = vlan_gethash(trunk, vid); 1339 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 1340 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1341 m_freem(m); 1342 return; 1343 } 1344 1345 if (vlan_mtag_pcp) { 1346 /* 1347 * While uncommon, it is possible that we will find a 802.1q 1348 * packet encapsulated inside another packet that also had an 1349 * 802.1q header. For example, ethernet tunneled over IPSEC 1350 * arriving over ethernet. In that case, we replace the 1351 * existing 802.1q PCP m_tag value. 1352 */ 1353 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 1354 if (mtag == NULL) { 1355 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, 1356 sizeof(uint8_t), M_NOWAIT); 1357 if (mtag == NULL) { 1358 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1359 m_freem(m); 1360 return; 1361 } 1362 m_tag_prepend(m, mtag); 1363 } 1364 *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); 1365 } 1366 1367 m->m_pkthdr.rcvif = ifv->ifv_ifp; 1368 if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); 1369 1370 /* Pass it back through the parent's input routine. */ 1371 (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); 1372 } 1373 1374 static void 1375 vlan_lladdr_fn(void *arg, int pending __unused) 1376 { 1377 struct ifvlan *ifv; 1378 struct ifnet *ifp; 1379 1380 ifv = (struct ifvlan *)arg; 1381 ifp = ifv->ifv_ifp; 1382 1383 CURVNET_SET(ifp->if_vnet); 1384 1385 /* The ifv_ifp already has the lladdr copied in. */ 1386 if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); 1387 1388 CURVNET_RESTORE(); 1389 } 1390 1391 static int 1392 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid, 1393 uint16_t proto) 1394 { 1395 struct epoch_tracker et; 1396 struct ifvlantrunk *trunk; 1397 struct ifnet *ifp; 1398 int error = 0; 1399 1400 /* 1401 * We can handle non-ethernet hardware types as long as 1402 * they handle the tagging and headers themselves. 1403 */ 1404 if (p->if_type != IFT_ETHER && 1405 p->if_type != IFT_L2VLAN && 1406 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1407 return (EPROTONOSUPPORT); 1408 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 1409 return (EPROTONOSUPPORT); 1410 /* 1411 * Don't let the caller set up a VLAN VID with 1412 * anything except VLID bits. 1413 * VID numbers 0x0 and 0xFFF are reserved. 1414 */ 1415 if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) 1416 return (EINVAL); 1417 if (ifv->ifv_trunk) 1418 return (EBUSY); 1419 1420 VLAN_XLOCK(); 1421 if (p->if_vlantrunk == NULL) { 1422 trunk = malloc(sizeof(struct ifvlantrunk), 1423 M_VLAN, M_WAITOK | M_ZERO); 1424 vlan_inithash(trunk); 1425 TRUNK_LOCK_INIT(trunk); 1426 TRUNK_WLOCK(trunk); 1427 p->if_vlantrunk = trunk; 1428 trunk->parent = p; 1429 if_ref(trunk->parent); 1430 TRUNK_WUNLOCK(trunk); 1431 } else { 1432 trunk = p->if_vlantrunk; 1433 } 1434 1435 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ 1436 ifv->ifv_pcp = 0; /* Default: best effort delivery. */ 1437 error = vlan_inshash(trunk, ifv); 1438 if (error) 1439 goto done; 1440 ifv->ifv_proto = proto; 1441 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1442 ifv->ifv_mintu = ETHERMIN; 1443 ifv->ifv_pflags = 0; 1444 ifv->ifv_capenable = -1; 1445 1446 /* 1447 * If the parent supports the VLAN_MTU capability, 1448 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1449 * use it. 1450 */ 1451 if (p->if_capenable & IFCAP_VLAN_MTU) { 1452 /* 1453 * No need to fudge the MTU since the parent can 1454 * handle extended frames. 1455 */ 1456 ifv->ifv_mtufudge = 0; 1457 } else { 1458 /* 1459 * Fudge the MTU by the encapsulation size. This 1460 * makes us incompatible with strictly compliant 1461 * 802.1Q implementations, but allows us to use 1462 * the feature with other NetBSD implementations, 1463 * which might still be useful. 1464 */ 1465 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1466 } 1467 1468 ifv->ifv_trunk = trunk; 1469 ifp = ifv->ifv_ifp; 1470 /* 1471 * Initialize fields from our parent. This duplicates some 1472 * work with ether_ifattach() but allows for non-ethernet 1473 * interfaces to also work. 1474 */ 1475 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1476 ifp->if_baudrate = p->if_baudrate; 1477 ifp->if_input = p->if_input; 1478 ifp->if_resolvemulti = p->if_resolvemulti; 1479 ifp->if_addrlen = p->if_addrlen; 1480 ifp->if_broadcastaddr = p->if_broadcastaddr; 1481 ifp->if_pcp = ifv->ifv_pcp; 1482 1483 /* 1484 * We wrap the parent's if_output using vlan_output to ensure that it 1485 * can't become stale. 1486 */ 1487 ifp->if_output = vlan_output; 1488 1489 /* 1490 * Copy only a selected subset of flags from the parent. 1491 * Other flags are none of our business. 1492 */ 1493 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1494 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1495 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1496 #undef VLAN_COPY_FLAGS 1497 1498 ifp->if_link_state = p->if_link_state; 1499 1500 NET_EPOCH_ENTER(et); 1501 vlan_capabilities(ifv); 1502 NET_EPOCH_EXIT(et); 1503 1504 /* 1505 * Set up our interface address to reflect the underlying 1506 * physical interface's. 1507 */ 1508 TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); 1509 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = 1510 p->if_addrlen; 1511 1512 /* 1513 * Do not schedule link address update if it was the same 1514 * as previous parent's. This helps avoid updating for each 1515 * associated llentry. 1516 */ 1517 if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) { 1518 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); 1519 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 1520 } 1521 1522 /* We are ready for operation now. */ 1523 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1524 1525 /* Update flags on the parent, if necessary. */ 1526 vlan_setflags(ifp, 1); 1527 1528 /* 1529 * Configure multicast addresses that may already be 1530 * joined on the vlan device. 1531 */ 1532 (void)vlan_setmulti(ifp); 1533 1534 done: 1535 if (error == 0) 1536 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); 1537 VLAN_XUNLOCK(); 1538 1539 return (error); 1540 } 1541 1542 static void 1543 vlan_unconfig(struct ifnet *ifp) 1544 { 1545 1546 VLAN_XLOCK(); 1547 vlan_unconfig_locked(ifp, 0); 1548 VLAN_XUNLOCK(); 1549 } 1550 1551 static void 1552 vlan_unconfig_locked(struct ifnet *ifp, int departing) 1553 { 1554 struct ifvlantrunk *trunk; 1555 struct vlan_mc_entry *mc; 1556 struct ifvlan *ifv; 1557 struct ifnet *parent; 1558 int error; 1559 1560 VLAN_XLOCK_ASSERT(); 1561 1562 ifv = ifp->if_softc; 1563 trunk = ifv->ifv_trunk; 1564 parent = NULL; 1565 1566 if (trunk != NULL) { 1567 parent = trunk->parent; 1568 1569 /* 1570 * Since the interface is being unconfigured, we need to 1571 * empty the list of multicast groups that we may have joined 1572 * while we were alive from the parent's list. 1573 */ 1574 while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1575 /* 1576 * If the parent interface is being detached, 1577 * all its multicast addresses have already 1578 * been removed. Warn about errors if 1579 * if_delmulti() does fail, but don't abort as 1580 * all callers expect vlan destruction to 1581 * succeed. 1582 */ 1583 if (!departing) { 1584 error = if_delmulti(parent, 1585 (struct sockaddr *)&mc->mc_addr); 1586 if (error) 1587 if_printf(ifp, 1588 "Failed to delete multicast address from parent: %d\n", 1589 error); 1590 } 1591 CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1592 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 1593 } 1594 1595 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1596 1597 vlan_remhash(trunk, ifv); 1598 ifv->ifv_trunk = NULL; 1599 1600 /* 1601 * Check if we were the last. 1602 */ 1603 if (trunk->refcnt == 0) { 1604 parent->if_vlantrunk = NULL; 1605 NET_EPOCH_WAIT(); 1606 trunk_destroy(trunk); 1607 } 1608 } 1609 1610 /* Disconnect from parent. */ 1611 if (ifv->ifv_pflags) 1612 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1613 ifp->if_mtu = ETHERMTU; 1614 ifp->if_link_state = LINK_STATE_UNKNOWN; 1615 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1616 1617 /* 1618 * Only dispatch an event if vlan was 1619 * attached, otherwise there is nothing 1620 * to cleanup anyway. 1621 */ 1622 if (parent != NULL) 1623 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); 1624 } 1625 1626 /* Handle a reference counted flag that should be set on the parent as well */ 1627 static int 1628 vlan_setflag(struct ifnet *ifp, int flag, int status, 1629 int (*func)(struct ifnet *, int)) 1630 { 1631 struct ifvlan *ifv; 1632 int error; 1633 1634 VLAN_SXLOCK_ASSERT(); 1635 1636 ifv = ifp->if_softc; 1637 status = status ? (ifp->if_flags & flag) : 0; 1638 /* Now "status" contains the flag value or 0 */ 1639 1640 /* 1641 * See if recorded parent's status is different from what 1642 * we want it to be. If it is, flip it. We record parent's 1643 * status in ifv_pflags so that we won't clear parent's flag 1644 * we haven't set. In fact, we don't clear or set parent's 1645 * flags directly, but get or release references to them. 1646 * That's why we can be sure that recorded flags still are 1647 * in accord with actual parent's flags. 1648 */ 1649 if (status != (ifv->ifv_pflags & flag)) { 1650 error = (*func)(PARENT(ifv), status); 1651 if (error) 1652 return (error); 1653 ifv->ifv_pflags &= ~flag; 1654 ifv->ifv_pflags |= status; 1655 } 1656 return (0); 1657 } 1658 1659 /* 1660 * Handle IFF_* flags that require certain changes on the parent: 1661 * if "status" is true, update parent's flags respective to our if_flags; 1662 * if "status" is false, forcedly clear the flags set on parent. 1663 */ 1664 static int 1665 vlan_setflags(struct ifnet *ifp, int status) 1666 { 1667 int error, i; 1668 1669 for (i = 0; vlan_pflags[i].flag; i++) { 1670 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1671 status, vlan_pflags[i].func); 1672 if (error) 1673 return (error); 1674 } 1675 return (0); 1676 } 1677 1678 /* Inform all vlans that their parent has changed link state */ 1679 static void 1680 vlan_link_state(struct ifnet *ifp) 1681 { 1682 struct epoch_tracker et; 1683 struct ifvlantrunk *trunk; 1684 struct ifvlan *ifv; 1685 1686 NET_EPOCH_ENTER(et); 1687 trunk = ifp->if_vlantrunk; 1688 if (trunk == NULL) { 1689 NET_EPOCH_EXIT(et); 1690 return; 1691 } 1692 1693 TRUNK_WLOCK(trunk); 1694 VLAN_FOREACH(ifv, trunk) { 1695 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 1696 if_link_state_change(ifv->ifv_ifp, 1697 trunk->parent->if_link_state); 1698 } 1699 TRUNK_WUNLOCK(trunk); 1700 NET_EPOCH_EXIT(et); 1701 } 1702 1703 static void 1704 vlan_capabilities(struct ifvlan *ifv) 1705 { 1706 struct ifnet *p; 1707 struct ifnet *ifp; 1708 struct ifnet_hw_tsomax hw_tsomax; 1709 int cap = 0, ena = 0, mena; 1710 u_long hwa = 0; 1711 1712 NET_EPOCH_ASSERT(); 1713 VLAN_SXLOCK_ASSERT(); 1714 1715 p = PARENT(ifv); 1716 ifp = ifv->ifv_ifp; 1717 1718 /* Mask parent interface enabled capabilities disabled by user. */ 1719 mena = p->if_capenable & ifv->ifv_capenable; 1720 1721 /* 1722 * If the parent interface can do checksum offloading 1723 * on VLANs, then propagate its hardware-assisted 1724 * checksumming flags. Also assert that checksum 1725 * offloading requires hardware VLAN tagging. 1726 */ 1727 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1728 cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1729 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 1730 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1731 ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1732 if (ena & IFCAP_TXCSUM) 1733 hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | 1734 CSUM_UDP | CSUM_SCTP); 1735 if (ena & IFCAP_TXCSUM_IPV6) 1736 hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | 1737 CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); 1738 } 1739 1740 /* 1741 * If the parent interface can do TSO on VLANs then 1742 * propagate the hardware-assisted flag. TSO on VLANs 1743 * does not necessarily require hardware VLAN tagging. 1744 */ 1745 memset(&hw_tsomax, 0, sizeof(hw_tsomax)); 1746 if_hw_tsomax_common(p, &hw_tsomax); 1747 if_hw_tsomax_update(ifp, &hw_tsomax); 1748 if (p->if_capabilities & IFCAP_VLAN_HWTSO) 1749 cap |= p->if_capabilities & IFCAP_TSO; 1750 if (p->if_capenable & IFCAP_VLAN_HWTSO) { 1751 ena |= mena & IFCAP_TSO; 1752 if (ena & IFCAP_TSO) 1753 hwa |= p->if_hwassist & CSUM_TSO; 1754 } 1755 1756 /* 1757 * If the parent interface can do LRO and checksum offloading on 1758 * VLANs, then guess it may do LRO on VLANs. False positive here 1759 * cost nothing, while false negative may lead to some confusions. 1760 */ 1761 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1762 cap |= p->if_capabilities & IFCAP_LRO; 1763 if (p->if_capenable & IFCAP_VLAN_HWCSUM) 1764 ena |= p->if_capenable & IFCAP_LRO; 1765 1766 /* 1767 * If the parent interface can offload TCP connections over VLANs then 1768 * propagate its TOE capability to the VLAN interface. 1769 * 1770 * All TOE drivers in the tree today can deal with VLANs. If this 1771 * changes then IFCAP_VLAN_TOE should be promoted to a full capability 1772 * with its own bit. 1773 */ 1774 #define IFCAP_VLAN_TOE IFCAP_TOE 1775 if (p->if_capabilities & IFCAP_VLAN_TOE) 1776 cap |= p->if_capabilities & IFCAP_TOE; 1777 if (p->if_capenable & IFCAP_VLAN_TOE) { 1778 TOEDEV(ifp) = TOEDEV(p); 1779 ena |= mena & IFCAP_TOE; 1780 } 1781 1782 /* 1783 * If the parent interface supports dynamic link state, so does the 1784 * VLAN interface. 1785 */ 1786 cap |= (p->if_capabilities & IFCAP_LINKSTATE); 1787 ena |= (mena & IFCAP_LINKSTATE); 1788 1789 #ifdef RATELIMIT 1790 /* 1791 * If the parent interface supports ratelimiting, so does the 1792 * VLAN interface. 1793 */ 1794 cap |= (p->if_capabilities & IFCAP_TXRTLMT); 1795 ena |= (mena & IFCAP_TXRTLMT); 1796 #endif 1797 1798 /* 1799 * If the parent interface supports unmapped mbufs, so does 1800 * the VLAN interface. Note that this should be fine even for 1801 * interfaces that don't support hardware tagging as headers 1802 * are prepended in normal mbufs to unmapped mbufs holding 1803 * payload data. 1804 */ 1805 cap |= (p->if_capabilities & IFCAP_MEXTPG); 1806 ena |= (mena & IFCAP_MEXTPG); 1807 1808 /* 1809 * If the parent interface can offload encryption and segmentation 1810 * of TLS records over TCP, propagate it's capability to the VLAN 1811 * interface. 1812 * 1813 * All TLS drivers in the tree today can deal with VLANs. If 1814 * this ever changes, then a new IFCAP_VLAN_TXTLS can be 1815 * defined. 1816 */ 1817 if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1818 cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1819 if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1820 ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1821 1822 ifp->if_capabilities = cap; 1823 ifp->if_capenable = ena; 1824 ifp->if_hwassist = hwa; 1825 } 1826 1827 static void 1828 vlan_trunk_capabilities(struct ifnet *ifp) 1829 { 1830 struct epoch_tracker et; 1831 struct ifvlantrunk *trunk; 1832 struct ifvlan *ifv; 1833 1834 VLAN_SLOCK(); 1835 trunk = ifp->if_vlantrunk; 1836 if (trunk == NULL) { 1837 VLAN_SUNLOCK(); 1838 return; 1839 } 1840 NET_EPOCH_ENTER(et); 1841 VLAN_FOREACH(ifv, trunk) 1842 vlan_capabilities(ifv); 1843 NET_EPOCH_EXIT(et); 1844 VLAN_SUNLOCK(); 1845 } 1846 1847 static int 1848 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1849 { 1850 struct ifnet *p; 1851 struct ifreq *ifr; 1852 struct ifaddr *ifa; 1853 struct ifvlan *ifv; 1854 struct ifvlantrunk *trunk; 1855 struct vlanreq vlr; 1856 int error = 0, oldmtu; 1857 1858 ifr = (struct ifreq *)data; 1859 ifa = (struct ifaddr *) data; 1860 ifv = ifp->if_softc; 1861 1862 switch (cmd) { 1863 case SIOCSIFADDR: 1864 ifp->if_flags |= IFF_UP; 1865 #ifdef INET 1866 if (ifa->ifa_addr->sa_family == AF_INET) 1867 arp_ifinit(ifp, ifa); 1868 #endif 1869 break; 1870 case SIOCGIFADDR: 1871 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1872 ifp->if_addrlen); 1873 break; 1874 case SIOCGIFMEDIA: 1875 VLAN_SLOCK(); 1876 if (TRUNK(ifv) != NULL) { 1877 p = PARENT(ifv); 1878 if_ref(p); 1879 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); 1880 if_rele(p); 1881 /* Limit the result to the parent's current config. */ 1882 if (error == 0) { 1883 struct ifmediareq *ifmr; 1884 1885 ifmr = (struct ifmediareq *)data; 1886 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 1887 ifmr->ifm_count = 1; 1888 error = copyout(&ifmr->ifm_current, 1889 ifmr->ifm_ulist, 1890 sizeof(int)); 1891 } 1892 } 1893 } else { 1894 error = EINVAL; 1895 } 1896 VLAN_SUNLOCK(); 1897 break; 1898 1899 case SIOCSIFMEDIA: 1900 error = EINVAL; 1901 break; 1902 1903 case SIOCSIFMTU: 1904 /* 1905 * Set the interface MTU. 1906 */ 1907 VLAN_SLOCK(); 1908 trunk = TRUNK(ifv); 1909 if (trunk != NULL) { 1910 TRUNK_WLOCK(trunk); 1911 if (ifr->ifr_mtu > 1912 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 1913 ifr->ifr_mtu < 1914 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 1915 error = EINVAL; 1916 else 1917 ifp->if_mtu = ifr->ifr_mtu; 1918 TRUNK_WUNLOCK(trunk); 1919 } else 1920 error = EINVAL; 1921 VLAN_SUNLOCK(); 1922 break; 1923 1924 case SIOCSETVLAN: 1925 #ifdef VIMAGE 1926 /* 1927 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN 1928 * interface to be delegated to a jail without allowing the 1929 * jail to change what underlying interface/VID it is 1930 * associated with. We are not entirely convinced that this 1931 * is the right way to accomplish that policy goal. 1932 */ 1933 if (ifp->if_vnet != ifp->if_home_vnet) { 1934 error = EPERM; 1935 break; 1936 } 1937 #endif 1938 error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); 1939 if (error) 1940 break; 1941 if (vlr.vlr_parent[0] == '\0') { 1942 vlan_unconfig(ifp); 1943 break; 1944 } 1945 p = ifunit_ref(vlr.vlr_parent); 1946 if (p == NULL) { 1947 error = ENOENT; 1948 break; 1949 } 1950 oldmtu = ifp->if_mtu; 1951 error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto); 1952 if_rele(p); 1953 1954 /* 1955 * VLAN MTU may change during addition of the vlandev. 1956 * If it did, do network layer specific procedure. 1957 */ 1958 if (ifp->if_mtu != oldmtu) { 1959 #ifdef INET6 1960 nd6_setmtu(ifp); 1961 #endif 1962 rt_updatemtu(ifp); 1963 } 1964 break; 1965 1966 case SIOCGETVLAN: 1967 #ifdef VIMAGE 1968 if (ifp->if_vnet != ifp->if_home_vnet) { 1969 error = EPERM; 1970 break; 1971 } 1972 #endif 1973 bzero(&vlr, sizeof(vlr)); 1974 VLAN_SLOCK(); 1975 if (TRUNK(ifv) != NULL) { 1976 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 1977 sizeof(vlr.vlr_parent)); 1978 vlr.vlr_tag = ifv->ifv_vid; 1979 vlr.vlr_proto = ifv->ifv_proto; 1980 } 1981 VLAN_SUNLOCK(); 1982 error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); 1983 break; 1984 1985 case SIOCSIFFLAGS: 1986 /* 1987 * We should propagate selected flags to the parent, 1988 * e.g., promiscuous mode. 1989 */ 1990 VLAN_XLOCK(); 1991 if (TRUNK(ifv) != NULL) 1992 error = vlan_setflags(ifp, 1); 1993 VLAN_XUNLOCK(); 1994 break; 1995 1996 case SIOCADDMULTI: 1997 case SIOCDELMULTI: 1998 /* 1999 * If we don't have a parent, just remember the membership for 2000 * when we do. 2001 * 2002 * XXX We need the rmlock here to avoid sleeping while 2003 * holding in6_multi_mtx. 2004 */ 2005 VLAN_XLOCK(); 2006 trunk = TRUNK(ifv); 2007 if (trunk != NULL) 2008 error = vlan_setmulti(ifp); 2009 VLAN_XUNLOCK(); 2010 2011 break; 2012 case SIOCGVLANPCP: 2013 #ifdef VIMAGE 2014 if (ifp->if_vnet != ifp->if_home_vnet) { 2015 error = EPERM; 2016 break; 2017 } 2018 #endif 2019 ifr->ifr_vlan_pcp = ifv->ifv_pcp; 2020 break; 2021 2022 case SIOCSVLANPCP: 2023 #ifdef VIMAGE 2024 if (ifp->if_vnet != ifp->if_home_vnet) { 2025 error = EPERM; 2026 break; 2027 } 2028 #endif 2029 error = priv_check(curthread, PRIV_NET_SETVLANPCP); 2030 if (error) 2031 break; 2032 if (ifr->ifr_vlan_pcp > 7) { 2033 error = EINVAL; 2034 break; 2035 } 2036 ifv->ifv_pcp = ifr->ifr_vlan_pcp; 2037 ifp->if_pcp = ifv->ifv_pcp; 2038 /* broadcast event about PCP change */ 2039 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 2040 break; 2041 2042 case SIOCSIFCAP: 2043 VLAN_SLOCK(); 2044 ifv->ifv_capenable = ifr->ifr_reqcap; 2045 trunk = TRUNK(ifv); 2046 if (trunk != NULL) { 2047 struct epoch_tracker et; 2048 2049 NET_EPOCH_ENTER(et); 2050 vlan_capabilities(ifv); 2051 NET_EPOCH_EXIT(et); 2052 } 2053 VLAN_SUNLOCK(); 2054 break; 2055 2056 default: 2057 error = EINVAL; 2058 break; 2059 } 2060 2061 return (error); 2062 } 2063 2064 #if defined(KERN_TLS) || defined(RATELIMIT) 2065 static int 2066 vlan_snd_tag_alloc(struct ifnet *ifp, 2067 union if_snd_tag_alloc_params *params, 2068 struct m_snd_tag **ppmt) 2069 { 2070 struct epoch_tracker et; 2071 struct vlan_snd_tag *vst; 2072 struct ifvlan *ifv; 2073 struct ifnet *parent; 2074 int error; 2075 2076 NET_EPOCH_ENTER(et); 2077 ifv = ifp->if_softc; 2078 if (ifv->ifv_trunk != NULL) 2079 parent = PARENT(ifv); 2080 else 2081 parent = NULL; 2082 if (parent == NULL) { 2083 NET_EPOCH_EXIT(et); 2084 return (EOPNOTSUPP); 2085 } 2086 if_ref(parent); 2087 NET_EPOCH_EXIT(et); 2088 2089 vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT); 2090 if (vst == NULL) { 2091 if_rele(parent); 2092 return (ENOMEM); 2093 } 2094 2095 error = m_snd_tag_alloc(parent, params, &vst->tag); 2096 if_rele(parent); 2097 if (error) { 2098 free(vst, M_VLAN); 2099 return (error); 2100 } 2101 2102 m_snd_tag_init(&vst->com, ifp, vst->tag->type); 2103 2104 *ppmt = &vst->com; 2105 return (0); 2106 } 2107 2108 static struct m_snd_tag * 2109 vlan_next_snd_tag(struct m_snd_tag *mst) 2110 { 2111 struct vlan_snd_tag *vst; 2112 2113 vst = mst_to_vst(mst); 2114 return (vst->tag); 2115 } 2116 2117 static int 2118 vlan_snd_tag_modify(struct m_snd_tag *mst, 2119 union if_snd_tag_modify_params *params) 2120 { 2121 struct vlan_snd_tag *vst; 2122 2123 vst = mst_to_vst(mst); 2124 return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params)); 2125 } 2126 2127 static int 2128 vlan_snd_tag_query(struct m_snd_tag *mst, 2129 union if_snd_tag_query_params *params) 2130 { 2131 struct vlan_snd_tag *vst; 2132 2133 vst = mst_to_vst(mst); 2134 return (vst->tag->ifp->if_snd_tag_query(vst->tag, params)); 2135 } 2136 2137 static void 2138 vlan_snd_tag_free(struct m_snd_tag *mst) 2139 { 2140 struct vlan_snd_tag *vst; 2141 2142 vst = mst_to_vst(mst); 2143 m_snd_tag_rele(vst->tag); 2144 free(vst, M_VLAN); 2145 } 2146 2147 static void 2148 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q) 2149 { 2150 /* 2151 * For vlan, we have an indirect 2152 * interface. The caller needs to 2153 * get a ratelimit tag on the actual 2154 * interface the flow will go on. 2155 */ 2156 q->rate_table = NULL; 2157 q->flags = RT_IS_INDIRECT; 2158 q->max_flows = 0; 2159 q->number_of_rates = 0; 2160 } 2161 2162 #endif 2163