xref: /freebsd/sys/net/if_vlan.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_inet.h"
49 #include "opt_inet6.h"
50 #include "opt_kern_tls.h"
51 #include "opt_netlink.h"
52 #include "opt_vlan.h"
53 #include "opt_ratelimit.h"
54 
55 #include <sys/param.h>
56 #include <sys/eventhandler.h>
57 #include <sys/kernel.h>
58 #include <sys/lock.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/module.h>
62 #include <sys/rmlock.h>
63 #include <sys/priv.h>
64 #include <sys/queue.h>
65 #include <sys/socket.h>
66 #include <sys/sockio.h>
67 #include <sys/sysctl.h>
68 #include <sys/systm.h>
69 #include <sys/sx.h>
70 #include <sys/taskqueue.h>
71 
72 #include <net/bpf.h>
73 #include <net/ethernet.h>
74 #include <net/if.h>
75 #include <net/if_var.h>
76 #include <net/if_private.h>
77 #include <net/if_clone.h>
78 #include <net/if_dl.h>
79 #include <net/if_types.h>
80 #include <net/if_vlan_var.h>
81 #include <net/route.h>
82 #include <net/vnet.h>
83 
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/if_ether.h>
87 #endif
88 
89 #include <netlink/netlink.h>
90 #include <netlink/netlink_ctl.h>
91 #include <netlink/netlink_route.h>
92 #include <netlink/route/route_var.h>
93 
94 #define	VLAN_DEF_HWIDTH	4
95 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
96 
97 #define	UP_AND_RUNNING(ifp) \
98     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
99 
100 CK_SLIST_HEAD(ifvlanhead, ifvlan);
101 
102 struct ifvlantrunk {
103 	struct	ifnet   *parent;	/* parent interface of this trunk */
104 	struct	mtx	lock;
105 #ifdef VLAN_ARRAY
106 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
107 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
108 #else
109 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
110 	uint16_t	hmask;
111 	uint16_t	hwidth;
112 #endif
113 	int		refcnt;
114 };
115 
116 #if defined(KERN_TLS) || defined(RATELIMIT)
117 struct vlan_snd_tag {
118 	struct m_snd_tag com;
119 	struct m_snd_tag *tag;
120 };
121 
122 static inline struct vlan_snd_tag *
123 mst_to_vst(struct m_snd_tag *mst)
124 {
125 
126 	return (__containerof(mst, struct vlan_snd_tag, com));
127 }
128 #endif
129 
130 /*
131  * This macro provides a facility to iterate over every vlan on a trunk with
132  * the assumption that none will be added/removed during iteration.
133  */
134 #ifdef VLAN_ARRAY
135 #define VLAN_FOREACH(_ifv, _trunk) \
136 	size_t _i; \
137 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
138 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
139 #else /* VLAN_ARRAY */
140 #define VLAN_FOREACH(_ifv, _trunk) \
141 	struct ifvlan *_next; \
142 	size_t _i; \
143 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
144 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
145 #endif /* VLAN_ARRAY */
146 
147 /*
148  * This macro provides a facility to iterate over every vlan on a trunk while
149  * also modifying the number of vlans on the trunk. The iteration continues
150  * until some condition is met or there are no more vlans on the trunk.
151  */
152 #ifdef VLAN_ARRAY
153 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
154 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
155 	size_t _i; \
156 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
157 		if (((_ifv) = (_trunk)->vlans[_i]))
158 #else /* VLAN_ARRAY */
159 /*
160  * The hash table case is more complicated. We allow for the hash table to be
161  * modified (i.e. vlans removed) while we are iterating over it. To allow for
162  * this we must restart the iteration every time we "touch" something during
163  * the iteration, since removal will resize the hash table and invalidate our
164  * current position. If acting on the touched element causes the trunk to be
165  * emptied, then iteration also stops.
166  */
167 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
168 	size_t _i; \
169 	bool _touch = false; \
170 	for (_i = 0; \
171 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
172 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
173 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
174 		    (_touch = true))
175 #endif /* VLAN_ARRAY */
176 
177 struct vlan_mc_entry {
178 	struct sockaddr_dl		mc_addr;
179 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
180 	struct epoch_context		mc_epoch_ctx;
181 };
182 
183 struct ifvlan {
184 	struct	ifvlantrunk *ifv_trunk;
185 	struct	ifnet *ifv_ifp;
186 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
187 #define	PARENT(ifv)	(TRUNK(ifv)->parent)
188 	void	*ifv_cookie;
189 	int	ifv_pflags;	/* special flags we have set on parent */
190 	int	ifv_capenable;
191 	int	ifv_encaplen;	/* encapsulation length */
192 	int	ifv_mtufudge;	/* MTU fudged by this much */
193 	int	ifv_mintu;	/* min transmission unit */
194 	struct  ether_8021q_tag ifv_qtag;
195 #define ifv_proto	ifv_qtag.proto
196 #define ifv_vid		ifv_qtag.vid
197 #define ifv_pcp		ifv_qtag.pcp
198 	struct task lladdr_task;
199 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
200 #ifndef VLAN_ARRAY
201 	CK_SLIST_ENTRY(ifvlan) ifv_list;
202 #endif
203 };
204 
205 /* Special flags we should propagate to parent. */
206 static struct {
207 	int flag;
208 	int (*func)(struct ifnet *, int);
209 } vlan_pflags[] = {
210 	{IFF_PROMISC, ifpromisc},
211 	{IFF_ALLMULTI, if_allmulti},
212 	{0, NULL}
213 };
214 
215 VNET_DECLARE(int, vlan_mtag_pcp);
216 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
217 
218 static const char vlanname[] = "vlan";
219 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
220 
221 static eventhandler_tag ifdetach_tag;
222 static eventhandler_tag iflladdr_tag;
223 static eventhandler_tag ifevent_tag;
224 
225 /*
226  * if_vlan uses two module-level synchronizations primitives to allow concurrent
227  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
228  * while they are being used for tx/rx. To accomplish this in a way that has
229  * acceptable performance and cooperation with other parts of the network stack
230  * there is a non-sleepable epoch(9) and an sx(9).
231  *
232  * The performance-sensitive paths that warrant using the epoch(9) are
233  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
234  * existence using if_vlantrunk, and being in the network tx/rx paths the use
235  * of an epoch(9) gives a measureable improvement in performance.
236  *
237  * The reason for having an sx(9) is mostly because there are still areas that
238  * must be sleepable and also have safe concurrent access to a vlan interface.
239  * Since the sx(9) exists, it is used by default in most paths unless sleeping
240  * is not permitted, or if it is not clear whether sleeping is permitted.
241  *
242  */
243 #define _VLAN_SX_ID ifv_sx
244 
245 static struct sx _VLAN_SX_ID;
246 
247 #define VLAN_LOCKING_INIT() \
248 	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
249 
250 #define VLAN_LOCKING_DESTROY() \
251 	sx_destroy(&_VLAN_SX_ID)
252 
253 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
254 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
255 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
256 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
257 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
258 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
259 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
260 
261 /*
262  * We also have a per-trunk mutex that should be acquired when changing
263  * its state.
264  */
265 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
266 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
267 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
268 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
269 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
270 
271 /*
272  * The VLAN_ARRAY substitutes the dynamic hash with a static array
273  * with 4096 entries. In theory this can give a boost in processing,
274  * however in practice it does not. Probably this is because the array
275  * is too big to fit into CPU cache.
276  */
277 #ifndef VLAN_ARRAY
278 static	void vlan_inithash(struct ifvlantrunk *trunk);
279 static	void vlan_freehash(struct ifvlantrunk *trunk);
280 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
281 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
282 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
283 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
284 	uint16_t vid);
285 #endif
286 static	void trunk_destroy(struct ifvlantrunk *trunk);
287 
288 static	void vlan_init(void *foo);
289 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
290 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
291 #if defined(KERN_TLS) || defined(RATELIMIT)
292 static	int vlan_snd_tag_alloc(struct ifnet *,
293     union if_snd_tag_alloc_params *, struct m_snd_tag **);
294 static	int vlan_snd_tag_modify(struct m_snd_tag *,
295     union if_snd_tag_modify_params *);
296 static	int vlan_snd_tag_query(struct m_snd_tag *,
297     union if_snd_tag_query_params *);
298 static	void vlan_snd_tag_free(struct m_snd_tag *);
299 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
300 static void vlan_ratelimit_query(struct ifnet *,
301     struct if_ratelimit_query_results *);
302 #endif
303 static	void vlan_qflush(struct ifnet *ifp);
304 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
305     int (*func)(struct ifnet *, int));
306 static	int vlan_setflags(struct ifnet *ifp, int status);
307 static	int vlan_setmulti(struct ifnet *ifp);
308 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
309 #ifdef ALTQ
310 static void vlan_altq_start(struct ifnet *ifp);
311 static	int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m);
312 #endif
313 static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
314     const struct sockaddr *dst, struct route *ro);
315 static	void vlan_unconfig(struct ifnet *ifp);
316 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
317 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
318 	uint16_t proto);
319 static	void vlan_link_state(struct ifnet *ifp);
320 static	void vlan_capabilities(struct ifvlan *ifv);
321 static	void vlan_trunk_capabilities(struct ifnet *ifp);
322 
323 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
324 static	int vlan_clone_match(struct if_clone *, const char *);
325 static	int vlan_clone_create(struct if_clone *, char *, size_t,
326     struct ifc_data *, struct ifnet **);
327 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *, uint32_t);
328 
329 static int vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
330     struct ifc_data_nl *ifd);
331 static int vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd);
332 static void vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw);
333 
334 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
335 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
336 static  void vlan_ifevent(void *arg, struct ifnet *ifp, int event);
337 
338 static  void vlan_lladdr_fn(void *arg, int pending);
339 
340 static struct if_clone *vlan_cloner;
341 
342 #ifdef VIMAGE
343 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
344 #define	V_vlan_cloner	VNET(vlan_cloner)
345 #endif
346 
347 #ifdef RATELIMIT
348 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = {
349 	.snd_tag_modify = vlan_snd_tag_modify,
350 	.snd_tag_query = vlan_snd_tag_query,
351 	.snd_tag_free = vlan_snd_tag_free,
352 	.next_snd_tag = vlan_next_snd_tag,
353 	.type = IF_SND_TAG_TYPE_UNLIMITED
354 };
355 
356 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = {
357 	.snd_tag_modify = vlan_snd_tag_modify,
358 	.snd_tag_query = vlan_snd_tag_query,
359 	.snd_tag_free = vlan_snd_tag_free,
360 	.next_snd_tag = vlan_next_snd_tag,
361 	.type = IF_SND_TAG_TYPE_RATE_LIMIT
362 };
363 #endif
364 
365 #ifdef KERN_TLS
366 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = {
367 	.snd_tag_modify = vlan_snd_tag_modify,
368 	.snd_tag_query = vlan_snd_tag_query,
369 	.snd_tag_free = vlan_snd_tag_free,
370 	.next_snd_tag = vlan_next_snd_tag,
371 	.type = IF_SND_TAG_TYPE_TLS
372 };
373 
374 #ifdef RATELIMIT
375 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = {
376 	.snd_tag_modify = vlan_snd_tag_modify,
377 	.snd_tag_query = vlan_snd_tag_query,
378 	.snd_tag_free = vlan_snd_tag_free,
379 	.next_snd_tag = vlan_next_snd_tag,
380 	.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT
381 };
382 #endif
383 #endif
384 
385 static void
386 vlan_mc_free(struct epoch_context *ctx)
387 {
388 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
389 	free(mc, M_VLAN);
390 }
391 
392 #ifndef VLAN_ARRAY
393 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
394 
395 static void
396 vlan_inithash(struct ifvlantrunk *trunk)
397 {
398 	int i, n;
399 
400 	/*
401 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
402 	 * It is OK in case this function is called before the trunk struct
403 	 * gets hooked up and becomes visible from other threads.
404 	 */
405 
406 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
407 	    ("%s: hash already initialized", __func__));
408 
409 	trunk->hwidth = VLAN_DEF_HWIDTH;
410 	n = 1 << trunk->hwidth;
411 	trunk->hmask = n - 1;
412 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
413 	for (i = 0; i < n; i++)
414 		CK_SLIST_INIT(&trunk->hash[i]);
415 }
416 
417 static void
418 vlan_freehash(struct ifvlantrunk *trunk)
419 {
420 #ifdef INVARIANTS
421 	int i;
422 
423 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
424 	for (i = 0; i < (1 << trunk->hwidth); i++)
425 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
426 		    ("%s: hash table not empty", __func__));
427 #endif
428 	free(trunk->hash, M_VLAN);
429 	trunk->hash = NULL;
430 	trunk->hwidth = trunk->hmask = 0;
431 }
432 
433 static int
434 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
435 {
436 	int i, b;
437 	struct ifvlan *ifv2;
438 
439 	VLAN_XLOCK_ASSERT();
440 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
441 
442 	b = 1 << trunk->hwidth;
443 	i = HASH(ifv->ifv_vid, trunk->hmask);
444 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
445 		if (ifv->ifv_vid == ifv2->ifv_vid)
446 			return (EEXIST);
447 
448 	/*
449 	 * Grow the hash when the number of vlans exceeds half of the number of
450 	 * hash buckets squared. This will make the average linked-list length
451 	 * buckets/2.
452 	 */
453 	if (trunk->refcnt > (b * b) / 2) {
454 		vlan_growhash(trunk, 1);
455 		i = HASH(ifv->ifv_vid, trunk->hmask);
456 	}
457 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
458 	trunk->refcnt++;
459 
460 	return (0);
461 }
462 
463 static int
464 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
465 {
466 	int i, b;
467 	struct ifvlan *ifv2;
468 
469 	VLAN_XLOCK_ASSERT();
470 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
471 
472 	b = 1 << (trunk->hwidth - 1);
473 	i = HASH(ifv->ifv_vid, trunk->hmask);
474 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
475 		if (ifv2 == ifv) {
476 			trunk->refcnt--;
477 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
478 			if (trunk->refcnt < (b * b) / 2)
479 				vlan_growhash(trunk, -1);
480 			return (0);
481 		}
482 
483 	panic("%s: vlan not found\n", __func__);
484 	return (ENOENT); /*NOTREACHED*/
485 }
486 
487 /*
488  * Grow the hash larger or smaller if memory permits.
489  */
490 static void
491 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
492 {
493 	struct ifvlan *ifv;
494 	struct ifvlanhead *hash2;
495 	int hwidth2, i, j, n, n2;
496 
497 	VLAN_XLOCK_ASSERT();
498 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
499 
500 	if (howmuch == 0) {
501 		/* Harmless yet obvious coding error */
502 		printf("%s: howmuch is 0\n", __func__);
503 		return;
504 	}
505 
506 	hwidth2 = trunk->hwidth + howmuch;
507 	n = 1 << trunk->hwidth;
508 	n2 = 1 << hwidth2;
509 	/* Do not shrink the table below the default */
510 	if (hwidth2 < VLAN_DEF_HWIDTH)
511 		return;
512 
513 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
514 	if (hash2 == NULL) {
515 		printf("%s: out of memory -- hash size not changed\n",
516 		    __func__);
517 		return;		/* We can live with the old hash table */
518 	}
519 	for (j = 0; j < n2; j++)
520 		CK_SLIST_INIT(&hash2[j]);
521 	for (i = 0; i < n; i++)
522 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
523 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
524 			j = HASH(ifv->ifv_vid, n2 - 1);
525 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
526 		}
527 	NET_EPOCH_WAIT();
528 	free(trunk->hash, M_VLAN);
529 	trunk->hash = hash2;
530 	trunk->hwidth = hwidth2;
531 	trunk->hmask = n2 - 1;
532 
533 	if (bootverbose)
534 		if_printf(trunk->parent,
535 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
536 }
537 
538 static __inline struct ifvlan *
539 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
540 {
541 	struct ifvlan *ifv;
542 
543 	NET_EPOCH_ASSERT();
544 
545 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
546 		if (ifv->ifv_vid == vid)
547 			return (ifv);
548 	return (NULL);
549 }
550 
551 #if 0
552 /* Debugging code to view the hashtables. */
553 static void
554 vlan_dumphash(struct ifvlantrunk *trunk)
555 {
556 	int i;
557 	struct ifvlan *ifv;
558 
559 	for (i = 0; i < (1 << trunk->hwidth); i++) {
560 		printf("%d: ", i);
561 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
562 			printf("%s ", ifv->ifv_ifp->if_xname);
563 		printf("\n");
564 	}
565 }
566 #endif /* 0 */
567 #else
568 
569 static __inline struct ifvlan *
570 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
571 {
572 
573 	return trunk->vlans[vid];
574 }
575 
576 static __inline int
577 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
578 {
579 
580 	if (trunk->vlans[ifv->ifv_vid] != NULL)
581 		return EEXIST;
582 	trunk->vlans[ifv->ifv_vid] = ifv;
583 	trunk->refcnt++;
584 
585 	return (0);
586 }
587 
588 static __inline int
589 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
590 {
591 
592 	trunk->vlans[ifv->ifv_vid] = NULL;
593 	trunk->refcnt--;
594 
595 	return (0);
596 }
597 
598 static __inline void
599 vlan_freehash(struct ifvlantrunk *trunk)
600 {
601 }
602 
603 static __inline void
604 vlan_inithash(struct ifvlantrunk *trunk)
605 {
606 }
607 
608 #endif /* !VLAN_ARRAY */
609 
610 static void
611 trunk_destroy(struct ifvlantrunk *trunk)
612 {
613 	VLAN_XLOCK_ASSERT();
614 
615 	vlan_freehash(trunk);
616 	trunk->parent->if_vlantrunk = NULL;
617 	TRUNK_LOCK_DESTROY(trunk);
618 	if_rele(trunk->parent);
619 	free(trunk, M_VLAN);
620 }
621 
622 /*
623  * Program our multicast filter. What we're actually doing is
624  * programming the multicast filter of the parent. This has the
625  * side effect of causing the parent interface to receive multicast
626  * traffic that it doesn't really want, which ends up being discarded
627  * later by the upper protocol layers. Unfortunately, there's no way
628  * to avoid this: there really is only one physical interface.
629  */
630 static int
631 vlan_setmulti(struct ifnet *ifp)
632 {
633 	struct ifnet		*ifp_p;
634 	struct ifmultiaddr	*ifma;
635 	struct ifvlan		*sc;
636 	struct vlan_mc_entry	*mc;
637 	int			error;
638 
639 	VLAN_XLOCK_ASSERT();
640 
641 	/* Find the parent. */
642 	sc = ifp->if_softc;
643 	ifp_p = PARENT(sc);
644 
645 	CURVNET_SET_QUIET(ifp_p->if_vnet);
646 
647 	/* First, remove any existing filter entries. */
648 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
649 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
650 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
651 		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
652 	}
653 
654 	/* Now program new ones. */
655 	IF_ADDR_WLOCK(ifp);
656 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
657 		if (ifma->ifma_addr->sa_family != AF_LINK)
658 			continue;
659 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
660 		if (mc == NULL) {
661 			IF_ADDR_WUNLOCK(ifp);
662 			CURVNET_RESTORE();
663 			return (ENOMEM);
664 		}
665 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
666 		mc->mc_addr.sdl_index = ifp_p->if_index;
667 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
668 	}
669 	IF_ADDR_WUNLOCK(ifp);
670 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
671 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
672 		    NULL);
673 		if (error) {
674 			CURVNET_RESTORE();
675 			return (error);
676 		}
677 	}
678 
679 	CURVNET_RESTORE();
680 	return (0);
681 }
682 
683 /*
684  * A handler for interface ifnet events.
685  */
686 static void
687 vlan_ifevent(void *arg __unused, struct ifnet *ifp, int event)
688 {
689 	struct epoch_tracker et;
690 	struct ifvlan *ifv;
691 	struct ifvlantrunk *trunk;
692 
693 	if (event != IFNET_EVENT_UPDATE_BAUDRATE)
694 		return;
695 
696 	NET_EPOCH_ENTER(et);
697 	trunk = ifp->if_vlantrunk;
698 	if (trunk == NULL) {
699 		NET_EPOCH_EXIT(et);
700 		return;
701 	}
702 
703 	TRUNK_WLOCK(trunk);
704 	VLAN_FOREACH(ifv, trunk) {
705 		ifv->ifv_ifp->if_baudrate = ifp->if_baudrate;
706 	}
707 	TRUNK_WUNLOCK(trunk);
708 	NET_EPOCH_EXIT(et);
709 }
710 
711 /*
712  * A handler for parent interface link layer address changes.
713  * If the parent interface link layer address is changed we
714  * should also change it on all children vlans.
715  */
716 static void
717 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
718 {
719 	struct epoch_tracker et;
720 	struct ifvlan *ifv;
721 	struct ifnet *ifv_ifp;
722 	struct ifvlantrunk *trunk;
723 	struct sockaddr_dl *sdl;
724 
725 	/* Need the epoch since this is run on taskqueue_swi. */
726 	NET_EPOCH_ENTER(et);
727 	trunk = ifp->if_vlantrunk;
728 	if (trunk == NULL) {
729 		NET_EPOCH_EXIT(et);
730 		return;
731 	}
732 
733 	/*
734 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
735 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
736 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
737 	 */
738 	TRUNK_WLOCK(trunk);
739 	VLAN_FOREACH(ifv, trunk) {
740 		/*
741 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
742 		 * to actually call if_setlladdr. if_setlladdr needs to
743 		 * be deferred to a taskqueue because it will call into
744 		 * the if_vlan ioctl path and try to acquire the global
745 		 * lock.
746 		 */
747 		ifv_ifp = ifv->ifv_ifp;
748 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
749 		    ifp->if_addrlen);
750 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
751 		sdl->sdl_alen = ifp->if_addrlen;
752 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
753 	}
754 	TRUNK_WUNLOCK(trunk);
755 	NET_EPOCH_EXIT(et);
756 }
757 
758 /*
759  * A handler for network interface departure events.
760  * Track departure of trunks here so that we don't access invalid
761  * pointers or whatever if a trunk is ripped from under us, e.g.,
762  * by ejecting its hot-plug card.  However, if an ifnet is simply
763  * being renamed, then there's no need to tear down the state.
764  */
765 static void
766 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
767 {
768 	struct ifvlan *ifv;
769 	struct ifvlantrunk *trunk;
770 
771 	/* If the ifnet is just being renamed, don't do anything. */
772 	if (ifp->if_flags & IFF_RENAMING)
773 		return;
774 	VLAN_XLOCK();
775 	trunk = ifp->if_vlantrunk;
776 	if (trunk == NULL) {
777 		VLAN_XUNLOCK();
778 		return;
779 	}
780 
781 	/*
782 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
783 	 * Check trunk pointer after each vlan_unconfig() as it will
784 	 * free it and set to NULL after the last vlan was detached.
785 	 */
786 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
787 	    ifp->if_vlantrunk == NULL)
788 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
789 
790 	/* Trunk should have been destroyed in vlan_unconfig(). */
791 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
792 	VLAN_XUNLOCK();
793 }
794 
795 /*
796  * Return the trunk device for a virtual interface.
797  */
798 static struct ifnet  *
799 vlan_trunkdev(struct ifnet *ifp)
800 {
801 	struct ifvlan *ifv;
802 
803 	NET_EPOCH_ASSERT();
804 
805 	if (ifp->if_type != IFT_L2VLAN)
806 		return (NULL);
807 
808 	ifv = ifp->if_softc;
809 	ifp = NULL;
810 	if (ifv->ifv_trunk)
811 		ifp = PARENT(ifv);
812 	return (ifp);
813 }
814 
815 /*
816  * Return the 12-bit VLAN VID for this interface, for use by external
817  * components such as Infiniband.
818  *
819  * XXXRW: Note that the function name here is historical; it should be named
820  * vlan_vid().
821  */
822 static int
823 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
824 {
825 	struct ifvlan *ifv;
826 
827 	if (ifp->if_type != IFT_L2VLAN)
828 		return (EINVAL);
829 	ifv = ifp->if_softc;
830 	*vidp = ifv->ifv_vid;
831 	return (0);
832 }
833 
834 static int
835 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
836 {
837 	struct ifvlan *ifv;
838 
839 	if (ifp->if_type != IFT_L2VLAN)
840 		return (EINVAL);
841 	ifv = ifp->if_softc;
842 	*pcpp = ifv->ifv_pcp;
843 	return (0);
844 }
845 
846 /*
847  * Return a driver specific cookie for this interface.  Synchronization
848  * with setcookie must be provided by the driver.
849  */
850 static void *
851 vlan_cookie(struct ifnet *ifp)
852 {
853 	struct ifvlan *ifv;
854 
855 	if (ifp->if_type != IFT_L2VLAN)
856 		return (NULL);
857 	ifv = ifp->if_softc;
858 	return (ifv->ifv_cookie);
859 }
860 
861 /*
862  * Store a cookie in our softc that drivers can use to store driver
863  * private per-instance data in.
864  */
865 static int
866 vlan_setcookie(struct ifnet *ifp, void *cookie)
867 {
868 	struct ifvlan *ifv;
869 
870 	if (ifp->if_type != IFT_L2VLAN)
871 		return (EINVAL);
872 	ifv = ifp->if_softc;
873 	ifv->ifv_cookie = cookie;
874 	return (0);
875 }
876 
877 /*
878  * Return the vlan device present at the specific VID.
879  */
880 static struct ifnet *
881 vlan_devat(struct ifnet *ifp, uint16_t vid)
882 {
883 	struct ifvlantrunk *trunk;
884 	struct ifvlan *ifv;
885 
886 	NET_EPOCH_ASSERT();
887 
888 	trunk = ifp->if_vlantrunk;
889 	if (trunk == NULL)
890 		return (NULL);
891 	ifp = NULL;
892 	ifv = vlan_gethash(trunk, vid);
893 	if (ifv)
894 		ifp = ifv->ifv_ifp;
895 	return (ifp);
896 }
897 
898 /*
899  * VLAN support can be loaded as a module.  The only place in the
900  * system that's intimately aware of this is ether_input.  We hook
901  * into this code through vlan_input_p which is defined there and
902  * set here.  No one else in the system should be aware of this so
903  * we use an explicit reference here.
904  */
905 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
906 
907 /* For if_link_state_change() eyes only... */
908 extern	void (*vlan_link_state_p)(struct ifnet *);
909 
910 static struct if_clone_addreq_v2 vlan_addreq = {
911 	.version = 2,
912 	.match_f = vlan_clone_match,
913 	.create_f = vlan_clone_create,
914 	.destroy_f = vlan_clone_destroy,
915 	.create_nl_f = vlan_clone_create_nl,
916 	.modify_nl_f = vlan_clone_modify_nl,
917 	.dump_nl_f = vlan_clone_dump_nl,
918 };
919 
920 static int
921 vlan_modevent(module_t mod, int type, void *data)
922 {
923 
924 	switch (type) {
925 	case MOD_LOAD:
926 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
927 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
928 		if (ifdetach_tag == NULL)
929 			return (ENOMEM);
930 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
931 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
932 		if (iflladdr_tag == NULL)
933 			return (ENOMEM);
934 		ifevent_tag = EVENTHANDLER_REGISTER(ifnet_event,
935 		    vlan_ifevent, NULL, EVENTHANDLER_PRI_ANY);
936 		if (ifevent_tag == NULL)
937 			return (ENOMEM);
938 		VLAN_LOCKING_INIT();
939 		vlan_input_p = vlan_input;
940 		vlan_link_state_p = vlan_link_state;
941 		vlan_trunk_cap_p = vlan_trunk_capabilities;
942 		vlan_trunkdev_p = vlan_trunkdev;
943 		vlan_cookie_p = vlan_cookie;
944 		vlan_setcookie_p = vlan_setcookie;
945 		vlan_tag_p = vlan_tag;
946 		vlan_pcp_p = vlan_pcp;
947 		vlan_devat_p = vlan_devat;
948 #ifndef VIMAGE
949 		vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
950 #endif
951 		if (bootverbose)
952 			printf("vlan: initialized, using "
953 #ifdef VLAN_ARRAY
954 			       "full-size arrays"
955 #else
956 			       "hash tables with chaining"
957 #endif
958 
959 			       "\n");
960 		break;
961 	case MOD_UNLOAD:
962 #ifndef VIMAGE
963 		ifc_detach_cloner(vlan_cloner);
964 #endif
965 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
966 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
967 		EVENTHANDLER_DEREGISTER(ifnet_event, ifevent_tag);
968 		vlan_input_p = NULL;
969 		vlan_link_state_p = NULL;
970 		vlan_trunk_cap_p = NULL;
971 		vlan_trunkdev_p = NULL;
972 		vlan_tag_p = NULL;
973 		vlan_cookie_p = NULL;
974 		vlan_setcookie_p = NULL;
975 		vlan_devat_p = NULL;
976 		VLAN_LOCKING_DESTROY();
977 		if (bootverbose)
978 			printf("vlan: unloaded\n");
979 		break;
980 	default:
981 		return (EOPNOTSUPP);
982 	}
983 	return (0);
984 }
985 
986 static moduledata_t vlan_mod = {
987 	"if_vlan",
988 	vlan_modevent,
989 	0
990 };
991 
992 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
993 MODULE_VERSION(if_vlan, 3);
994 
995 #ifdef VIMAGE
996 static void
997 vnet_vlan_init(const void *unused __unused)
998 {
999 	vlan_cloner = ifc_attach_cloner(vlanname, (struct if_clone_addreq *)&vlan_addreq);
1000 	V_vlan_cloner = vlan_cloner;
1001 }
1002 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
1003     vnet_vlan_init, NULL);
1004 
1005 static void
1006 vnet_vlan_uninit(const void *unused __unused)
1007 {
1008 
1009 	ifc_detach_cloner(V_vlan_cloner);
1010 }
1011 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
1012     vnet_vlan_uninit, NULL);
1013 #endif
1014 
1015 /*
1016  * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
1017  */
1018 static struct ifnet *
1019 vlan_clone_match_ethervid(const char *name, int *vidp)
1020 {
1021 	char ifname[IFNAMSIZ];
1022 	char *cp;
1023 	struct ifnet *ifp;
1024 	int vid;
1025 
1026 	strlcpy(ifname, name, IFNAMSIZ);
1027 	if ((cp = strrchr(ifname, '.')) == NULL)
1028 		return (NULL);
1029 	*cp = '\0';
1030 	if ((ifp = ifunit_ref(ifname)) == NULL)
1031 		return (NULL);
1032 	/* Parse VID. */
1033 	if (*++cp == '\0') {
1034 		if_rele(ifp);
1035 		return (NULL);
1036 	}
1037 	vid = 0;
1038 	for(; *cp >= '0' && *cp <= '9'; cp++)
1039 		vid = (vid * 10) + (*cp - '0');
1040 	if (*cp != '\0') {
1041 		if_rele(ifp);
1042 		return (NULL);
1043 	}
1044 	if (vidp != NULL)
1045 		*vidp = vid;
1046 
1047 	return (ifp);
1048 }
1049 
1050 static int
1051 vlan_clone_match(struct if_clone *ifc, const char *name)
1052 {
1053 	struct ifnet *ifp;
1054 	const char *cp;
1055 
1056 	ifp = vlan_clone_match_ethervid(name, NULL);
1057 	if (ifp != NULL) {
1058 		if_rele(ifp);
1059 		return (1);
1060 	}
1061 
1062 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
1063 		return (0);
1064 	for (cp = name + 4; *cp != '\0'; cp++) {
1065 		if (*cp < '0' || *cp > '9')
1066 			return (0);
1067 	}
1068 
1069 	return (1);
1070 }
1071 
1072 static int
1073 vlan_clone_create(struct if_clone *ifc, char *name, size_t len,
1074     struct ifc_data *ifd, struct ifnet **ifpp)
1075 {
1076 	char *dp;
1077 	bool wildcard = false;
1078 	bool subinterface = false;
1079 	int unit;
1080 	int error;
1081 	int vid = 0;
1082 	uint16_t proto = ETHERTYPE_VLAN;
1083 	struct ifvlan *ifv;
1084 	struct ifnet *ifp;
1085 	struct ifnet *p = NULL;
1086 	struct ifaddr *ifa;
1087 	struct sockaddr_dl *sdl;
1088 	struct vlanreq vlr;
1089 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
1090 
1091 
1092 	/*
1093 	 * There are three ways to specify the cloned device:
1094 	 * o pass a parameter block with the clone request.
1095 	 * o specify parameters in the text of the clone device name
1096 	 * o specify no parameters and get an unattached device that
1097 	 *   must be configured separately.
1098 	 * The first technique is preferred; the latter two are supported
1099 	 * for backwards compatibility.
1100 	 *
1101 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1102 	 * called for.
1103 	 */
1104 
1105 	if (ifd->params != NULL) {
1106 		error = ifc_copyin(ifd, &vlr, sizeof(vlr));
1107 		if (error)
1108 			return error;
1109 		vid = vlr.vlr_tag;
1110 		proto = vlr.vlr_proto;
1111 
1112 #ifdef COMPAT_FREEBSD12
1113 		if (proto == 0)
1114 			proto = ETHERTYPE_VLAN;
1115 #endif
1116 		p = ifunit_ref(vlr.vlr_parent);
1117 		if (p == NULL)
1118 			return (ENXIO);
1119 	}
1120 
1121 	if ((error = ifc_name2unit(name, &unit)) == 0) {
1122 
1123 		/*
1124 		 * vlanX interface. Set wildcard to true if the unit number
1125 		 * is not fixed (-1)
1126 		 */
1127 		wildcard = (unit < 0);
1128 	} else {
1129 		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1130 		if (p_tmp != NULL) {
1131 			error = 0;
1132 			subinterface = true;
1133 			unit = IF_DUNIT_NONE;
1134 			wildcard = false;
1135 			if (p != NULL) {
1136 				if_rele(p_tmp);
1137 				if (p != p_tmp)
1138 					error = EINVAL;
1139 			} else
1140 				p = p_tmp;
1141 		} else
1142 			error = ENXIO;
1143 	}
1144 
1145 	if (error != 0) {
1146 		if (p != NULL)
1147 			if_rele(p);
1148 		return (error);
1149 	}
1150 
1151 	if (!subinterface) {
1152 		/* vlanX interface, mark X as busy or allocate new unit # */
1153 		error = ifc_alloc_unit(ifc, &unit);
1154 		if (error != 0) {
1155 			if (p != NULL)
1156 				if_rele(p);
1157 			return (error);
1158 		}
1159 	}
1160 
1161 	/* In the wildcard case, we need to update the name. */
1162 	if (wildcard) {
1163 		for (dp = name; *dp != '\0'; dp++);
1164 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1165 		    len - (dp-name) - 1) {
1166 			panic("%s: interface name too long", __func__);
1167 		}
1168 	}
1169 
1170 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1171 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1172 	if (ifp == NULL) {
1173 		if (!subinterface)
1174 			ifc_free_unit(ifc, unit);
1175 		free(ifv, M_VLAN);
1176 		if (p != NULL)
1177 			if_rele(p);
1178 		return (ENOSPC);
1179 	}
1180 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1181 	ifp->if_softc = ifv;
1182 	/*
1183 	 * Set the name manually rather than using if_initname because
1184 	 * we don't conform to the default naming convention for interfaces.
1185 	 */
1186 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1187 	ifp->if_dname = vlanname;
1188 	ifp->if_dunit = unit;
1189 
1190 	ifp->if_init = vlan_init;
1191 #ifdef ALTQ
1192 	ifp->if_start = vlan_altq_start;
1193 	ifp->if_transmit = vlan_altq_transmit;
1194 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
1195 	ifp->if_snd.ifq_drv_maxlen = 0;
1196 	IFQ_SET_READY(&ifp->if_snd);
1197 #else
1198 	ifp->if_transmit = vlan_transmit;
1199 #endif
1200 	ifp->if_qflush = vlan_qflush;
1201 	ifp->if_ioctl = vlan_ioctl;
1202 #if defined(KERN_TLS) || defined(RATELIMIT)
1203 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1204 	ifp->if_ratelimit_query = vlan_ratelimit_query;
1205 #endif
1206 	ifp->if_flags = VLAN_IFFLAGS;
1207 	ether_ifattach(ifp, eaddr);
1208 	/* Now undo some of the damage... */
1209 	ifp->if_baudrate = 0;
1210 	ifp->if_type = IFT_L2VLAN;
1211 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1212 	ifa = ifp->if_addr;
1213 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1214 	sdl->sdl_type = IFT_L2VLAN;
1215 
1216 	if (p != NULL) {
1217 		error = vlan_config(ifv, p, vid, proto);
1218 		if_rele(p);
1219 		if (error != 0) {
1220 			/*
1221 			 * Since we've partially failed, we need to back
1222 			 * out all the way, otherwise userland could get
1223 			 * confused.  Thus, we destroy the interface.
1224 			 */
1225 			ether_ifdetach(ifp);
1226 			vlan_unconfig(ifp);
1227 			if_free(ifp);
1228 			if (!subinterface)
1229 				ifc_free_unit(ifc, unit);
1230 			free(ifv, M_VLAN);
1231 
1232 			return (error);
1233 		}
1234 	}
1235 	*ifpp = ifp;
1236 
1237 	return (0);
1238 }
1239 
1240 /*
1241  *
1242  * Parsers of IFLA_INFO_DATA inside IFLA_LINKINFO of RTM_NEWLINK
1243  *    {{nla_len=8, nla_type=IFLA_LINK}, 2},
1244  *    {{nla_len=12, nla_type=IFLA_IFNAME}, "xvlan22"},
1245  *    {{nla_len=24, nla_type=IFLA_LINKINFO},
1246  *     [
1247  *      {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1248  *      {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1249  */
1250 
1251 struct nl_parsed_vlan {
1252 	uint16_t vlan_id;
1253 	uint16_t vlan_proto;
1254 	struct ifla_vlan_flags vlan_flags;
1255 };
1256 
1257 #define	_OUT(_field)	offsetof(struct nl_parsed_vlan, _field)
1258 static const struct nlattr_parser nla_p_vlan[] = {
1259 	{ .type = IFLA_VLAN_ID, .off = _OUT(vlan_id), .cb = nlattr_get_uint16 },
1260 	{ .type = IFLA_VLAN_FLAGS, .off = _OUT(vlan_flags), .cb = nlattr_get_nla },
1261 	{ .type = IFLA_VLAN_PROTOCOL, .off = _OUT(vlan_proto), .cb = nlattr_get_uint16 },
1262 };
1263 #undef _OUT
1264 NL_DECLARE_ATTR_PARSER(vlan_parser, nla_p_vlan);
1265 
1266 static int
1267 vlan_clone_create_nl(struct if_clone *ifc, char *name, size_t len,
1268     struct ifc_data_nl *ifd)
1269 {
1270 	struct epoch_tracker et;
1271         struct ifnet *ifp_parent;
1272 	struct nl_pstate *npt = ifd->npt;
1273 	struct nl_parsed_link *lattrs = ifd->lattrs;
1274 	int error;
1275 
1276 	/*
1277 	 * lattrs.ifla_ifname is the new interface name
1278 	 * lattrs.ifi_index contains parent interface index
1279 	 * lattrs.ifla_idata contains un-parsed vlan data
1280 	 */
1281 	struct nl_parsed_vlan attrs = {
1282 		.vlan_id = 0xFEFE,
1283 		.vlan_proto = ETHERTYPE_VLAN
1284 	};
1285 
1286 	if (lattrs->ifla_idata == NULL) {
1287 		nlmsg_report_err_msg(npt, "vlan id is required, guessing not supported");
1288 		return (ENOTSUP);
1289 	}
1290 
1291 	error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, npt, &attrs);
1292 	if (error != 0)
1293 		return (error);
1294 	if (attrs.vlan_id > 4095) {
1295 		nlmsg_report_err_msg(npt, "Invalid VID: %d", attrs.vlan_id);
1296 		return (EINVAL);
1297 	}
1298 	if (attrs.vlan_proto != ETHERTYPE_VLAN && attrs.vlan_proto != ETHERTYPE_QINQ) {
1299 		nlmsg_report_err_msg(npt, "Unsupported ethertype: 0x%04X", attrs.vlan_proto);
1300 		return (ENOTSUP);
1301 	}
1302 
1303 	struct vlanreq params = {
1304 		.vlr_tag = attrs.vlan_id,
1305 		.vlr_proto = attrs.vlan_proto,
1306 	};
1307 	struct ifc_data ifd_new = { .flags = IFC_F_SYSSPACE, .unit = ifd->unit, .params = &params };
1308 
1309 	NET_EPOCH_ENTER(et);
1310 	ifp_parent = ifnet_byindex(lattrs->ifi_index);
1311 	if (ifp_parent != NULL)
1312 		strlcpy(params.vlr_parent, if_name(ifp_parent), sizeof(params.vlr_parent));
1313 	NET_EPOCH_EXIT(et);
1314 
1315 	if (ifp_parent == NULL) {
1316 		nlmsg_report_err_msg(npt, "unable to find parent interface %u", lattrs->ifi_index);
1317 		return (ENOENT);
1318 	}
1319 
1320 	error = vlan_clone_create(ifc, name, len, &ifd_new, &ifd->ifp);
1321 
1322 	return (error);
1323 }
1324 
1325 static int
1326 vlan_clone_modify_nl(struct ifnet *ifp, struct ifc_data_nl *ifd)
1327 {
1328 	struct nl_parsed_link *lattrs = ifd->lattrs;
1329 
1330 	if ((lattrs->ifla_idata != NULL) && ((ifd->flags & IFC_F_CREATE) == 0)) {
1331 		struct epoch_tracker et;
1332 		struct nl_parsed_vlan attrs = {
1333 			.vlan_proto = ETHERTYPE_VLAN,
1334 		};
1335 		int error;
1336 
1337 		error = nl_parse_nested(lattrs->ifla_idata, &vlan_parser, ifd->npt, &attrs);
1338 		if (error != 0)
1339 			return (error);
1340 
1341 		NET_EPOCH_ENTER(et);
1342 		struct ifnet *ifp_parent = ifnet_byindex_ref(lattrs->ifla_link);
1343 		NET_EPOCH_EXIT(et);
1344 
1345 		if (ifp_parent == NULL) {
1346 			nlmsg_report_err_msg(ifd->npt, "unable to find parent interface %u",
1347 			    lattrs->ifla_link);
1348 			return (ENOENT);
1349 		}
1350 
1351 		struct ifvlan *ifv = ifp->if_softc;
1352 		error = vlan_config(ifv, ifp_parent, attrs.vlan_id, attrs.vlan_proto);
1353 
1354 		if_rele(ifp_parent);
1355 		if (error != 0)
1356 			return (error);
1357 	}
1358 
1359 	return (nl_modify_ifp_generic(ifp, ifd->lattrs, ifd->bm, ifd->npt));
1360 }
1361 
1362 /*
1363  *    {{nla_len=24, nla_type=IFLA_LINKINFO},
1364  *     [
1365  *      {{nla_len=8, nla_type=IFLA_INFO_KIND}, "vlan"...},
1366  *      {{nla_len=12, nla_type=IFLA_INFO_DATA}, "\x06\x00\x01\x00\x16\x00\x00\x00"}]}
1367  */
1368 static void
1369 vlan_clone_dump_nl(struct ifnet *ifp, struct nl_writer *nw)
1370 {
1371 	uint32_t parent_index = 0;
1372 	uint16_t vlan_id = 0;
1373 	uint16_t vlan_proto = 0;
1374 
1375 	VLAN_SLOCK();
1376 	struct ifvlan *ifv = ifp->if_softc;
1377 	if (TRUNK(ifv) != NULL)
1378 		parent_index = PARENT(ifv)->if_index;
1379 	vlan_id = ifv->ifv_vid;
1380 	vlan_proto = ifv->ifv_proto;
1381 	VLAN_SUNLOCK();
1382 
1383 	if (parent_index != 0)
1384 		nlattr_add_u32(nw, IFLA_LINK, parent_index);
1385 
1386 	int off = nlattr_add_nested(nw, IFLA_LINKINFO);
1387 	if (off != 0) {
1388 		nlattr_add_string(nw, IFLA_INFO_KIND, "vlan");
1389 		int off2 = nlattr_add_nested(nw, IFLA_INFO_DATA);
1390 		if (off2 != 0) {
1391 			nlattr_add_u16(nw, IFLA_VLAN_ID, vlan_id);
1392 			nlattr_add_u16(nw, IFLA_VLAN_PROTOCOL, vlan_proto);
1393 			nlattr_set_len(nw, off2);
1394 		}
1395 		nlattr_set_len(nw, off);
1396 	}
1397 }
1398 
1399 static int
1400 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
1401 {
1402 	struct ifvlan *ifv = ifp->if_softc;
1403 	int unit = ifp->if_dunit;
1404 
1405 	if (ifp->if_vlantrunk)
1406 		return (EBUSY);
1407 
1408 #ifdef ALTQ
1409 	IFQ_PURGE(&ifp->if_snd);
1410 #endif
1411 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1412 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1413 	/*
1414 	 * We should have the only reference to the ifv now, so we can now
1415 	 * drain any remaining lladdr task before freeing the ifnet and the
1416 	 * ifvlan.
1417 	 */
1418 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1419 	NET_EPOCH_WAIT();
1420 	if_free(ifp);
1421 	free(ifv, M_VLAN);
1422 	if (unit != IF_DUNIT_NONE)
1423 		ifc_free_unit(ifc, unit);
1424 
1425 	return (0);
1426 }
1427 
1428 /*
1429  * The ifp->if_init entry point for vlan(4) is a no-op.
1430  */
1431 static void
1432 vlan_init(void *foo __unused)
1433 {
1434 }
1435 
1436 /*
1437  * The if_transmit method for vlan(4) interface.
1438  */
1439 static int
1440 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1441 {
1442 	struct ifvlan *ifv;
1443 	struct ifnet *p;
1444 	int error, len, mcast;
1445 
1446 	NET_EPOCH_ASSERT();
1447 
1448 	ifv = ifp->if_softc;
1449 	if (TRUNK(ifv) == NULL) {
1450 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1451 		m_freem(m);
1452 		return (ENETDOWN);
1453 	}
1454 	p = PARENT(ifv);
1455 	len = m->m_pkthdr.len;
1456 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1457 
1458 	BPF_MTAP(ifp, m);
1459 
1460 #if defined(KERN_TLS) || defined(RATELIMIT)
1461 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1462 		struct vlan_snd_tag *vst;
1463 		struct m_snd_tag *mst;
1464 
1465 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1466 		mst = m->m_pkthdr.snd_tag;
1467 		vst = mst_to_vst(mst);
1468 		if (vst->tag->ifp != p) {
1469 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1470 			m_freem(m);
1471 			return (EAGAIN);
1472 		}
1473 
1474 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1475 		m_snd_tag_rele(mst);
1476 	}
1477 #endif
1478 
1479 	/*
1480 	 * Do not run parent's if_transmit() if the parent is not up,
1481 	 * or parent's driver will cause a system crash.
1482 	 */
1483 	if (!UP_AND_RUNNING(p)) {
1484 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1485 		m_freem(m);
1486 		return (ENETDOWN);
1487 	}
1488 
1489 	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1490 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1491 		return (0);
1492 	}
1493 
1494 	/*
1495 	 * Send it, precisely as ether_output() would have.
1496 	 */
1497 	error = (p->if_transmit)(p, m);
1498 	if (error == 0) {
1499 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1500 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1501 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1502 	} else
1503 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1504 	return (error);
1505 }
1506 
1507 static int
1508 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1509     struct route *ro)
1510 {
1511 	struct ifvlan *ifv;
1512 	struct ifnet *p;
1513 
1514 	NET_EPOCH_ASSERT();
1515 
1516 	/*
1517 	 * Find the first non-VLAN parent interface.
1518 	 */
1519 	ifv = ifp->if_softc;
1520 	do {
1521 		if (TRUNK(ifv) == NULL) {
1522 			m_freem(m);
1523 			return (ENETDOWN);
1524 		}
1525 		p = PARENT(ifv);
1526 		ifv = p->if_softc;
1527 	} while (p->if_type == IFT_L2VLAN);
1528 
1529 	return p->if_output(ifp, m, dst, ro);
1530 }
1531 
1532 #ifdef ALTQ
1533 static void
1534 vlan_altq_start(if_t ifp)
1535 {
1536 	struct ifaltq *ifq = &ifp->if_snd;
1537 	struct mbuf *m;
1538 
1539 	IFQ_LOCK(ifq);
1540 	IFQ_DEQUEUE_NOLOCK(ifq, m);
1541 	while (m != NULL) {
1542 		vlan_transmit(ifp, m);
1543 		IFQ_DEQUEUE_NOLOCK(ifq, m);
1544 	}
1545 	IFQ_UNLOCK(ifq);
1546 }
1547 
1548 static int
1549 vlan_altq_transmit(if_t ifp, struct mbuf *m)
1550 {
1551 	int err;
1552 
1553 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
1554 		IFQ_ENQUEUE(&ifp->if_snd, m, err);
1555 		if (err == 0)
1556 			vlan_altq_start(ifp);
1557 	} else
1558 		err = vlan_transmit(ifp, m);
1559 
1560 	return (err);
1561 }
1562 #endif	/* ALTQ */
1563 
1564 /*
1565  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1566  */
1567 static void
1568 vlan_qflush(struct ifnet *ifp __unused)
1569 {
1570 }
1571 
1572 static void
1573 vlan_input(struct ifnet *ifp, struct mbuf *m)
1574 {
1575 	struct ifvlantrunk *trunk;
1576 	struct ifvlan *ifv;
1577 	struct m_tag *mtag;
1578 	uint16_t vid, tag;
1579 
1580 	NET_EPOCH_ASSERT();
1581 
1582 	trunk = ifp->if_vlantrunk;
1583 	if (trunk == NULL) {
1584 		m_freem(m);
1585 		return;
1586 	}
1587 
1588 	if (m->m_flags & M_VLANTAG) {
1589 		/*
1590 		 * Packet is tagged, but m contains a normal
1591 		 * Ethernet frame; the tag is stored out-of-band.
1592 		 */
1593 		tag = m->m_pkthdr.ether_vtag;
1594 		m->m_flags &= ~M_VLANTAG;
1595 	} else {
1596 		struct ether_vlan_header *evl;
1597 
1598 		/*
1599 		 * Packet is tagged in-band as specified by 802.1q.
1600 		 */
1601 		switch (ifp->if_type) {
1602 		case IFT_ETHER:
1603 			if (m->m_len < sizeof(*evl) &&
1604 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1605 				if_printf(ifp, "cannot pullup VLAN header\n");
1606 				return;
1607 			}
1608 			evl = mtod(m, struct ether_vlan_header *);
1609 			tag = ntohs(evl->evl_tag);
1610 
1611 			/*
1612 			 * Remove the 802.1q header by copying the Ethernet
1613 			 * addresses over it and adjusting the beginning of
1614 			 * the data in the mbuf.  The encapsulated Ethernet
1615 			 * type field is already in place.
1616 			 */
1617 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1618 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1619 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1620 			break;
1621 
1622 		default:
1623 #ifdef INVARIANTS
1624 			panic("%s: %s has unsupported if_type %u",
1625 			      __func__, ifp->if_xname, ifp->if_type);
1626 #endif
1627 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1628 			m_freem(m);
1629 			return;
1630 		}
1631 	}
1632 
1633 	vid = EVL_VLANOFTAG(tag);
1634 
1635 	ifv = vlan_gethash(trunk, vid);
1636 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1637 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1638 		m_freem(m);
1639 		return;
1640 	}
1641 
1642 	if (V_vlan_mtag_pcp) {
1643 		/*
1644 		 * While uncommon, it is possible that we will find a 802.1q
1645 		 * packet encapsulated inside another packet that also had an
1646 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1647 		 * arriving over ethernet.  In that case, we replace the
1648 		 * existing 802.1q PCP m_tag value.
1649 		 */
1650 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1651 		if (mtag == NULL) {
1652 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1653 			    sizeof(uint8_t), M_NOWAIT);
1654 			if (mtag == NULL) {
1655 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1656 				m_freem(m);
1657 				return;
1658 			}
1659 			m_tag_prepend(m, mtag);
1660 		}
1661 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1662 	}
1663 
1664 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1665 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1666 
1667 	/* Pass it back through the parent's input routine. */
1668 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1669 }
1670 
1671 static void
1672 vlan_lladdr_fn(void *arg, int pending __unused)
1673 {
1674 	struct ifvlan *ifv;
1675 	struct ifnet *ifp;
1676 
1677 	ifv = (struct ifvlan *)arg;
1678 	ifp = ifv->ifv_ifp;
1679 
1680 	CURVNET_SET(ifp->if_vnet);
1681 
1682 	/* The ifv_ifp already has the lladdr copied in. */
1683 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1684 
1685 	CURVNET_RESTORE();
1686 }
1687 
1688 static int
1689 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1690 	uint16_t proto)
1691 {
1692 	struct epoch_tracker et;
1693 	struct ifvlantrunk *trunk;
1694 	struct ifnet *ifp;
1695 	int error = 0;
1696 
1697 	/*
1698 	 * We can handle non-ethernet hardware types as long as
1699 	 * they handle the tagging and headers themselves.
1700 	 */
1701 	if (p->if_type != IFT_ETHER &&
1702 	    p->if_type != IFT_L2VLAN &&
1703 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1704 		return (EPROTONOSUPPORT);
1705 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1706 		return (EPROTONOSUPPORT);
1707 	/*
1708 	 * Don't let the caller set up a VLAN VID with
1709 	 * anything except VLID bits.
1710 	 * VID numbers 0x0 and 0xFFF are reserved.
1711 	 */
1712 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1713 		return (EINVAL);
1714 	if (ifv->ifv_trunk) {
1715 		trunk = ifv->ifv_trunk;
1716 		if (trunk->parent != p)
1717 			return (EBUSY);
1718 
1719 		VLAN_XLOCK();
1720 
1721 		ifv->ifv_proto = proto;
1722 
1723 		if (ifv->ifv_vid != vid) {
1724 			/* Re-hash */
1725 			vlan_remhash(trunk, ifv);
1726 			ifv->ifv_vid = vid;
1727 			error = vlan_inshash(trunk, ifv);
1728 		}
1729 		/* Will unlock */
1730 		goto done;
1731 	}
1732 
1733 	VLAN_XLOCK();
1734 	if (p->if_vlantrunk == NULL) {
1735 		trunk = malloc(sizeof(struct ifvlantrunk),
1736 		    M_VLAN, M_WAITOK | M_ZERO);
1737 		vlan_inithash(trunk);
1738 		TRUNK_LOCK_INIT(trunk);
1739 		TRUNK_WLOCK(trunk);
1740 		p->if_vlantrunk = trunk;
1741 		trunk->parent = p;
1742 		if_ref(trunk->parent);
1743 		TRUNK_WUNLOCK(trunk);
1744 	} else {
1745 		trunk = p->if_vlantrunk;
1746 	}
1747 
1748 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1749 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1750 	error = vlan_inshash(trunk, ifv);
1751 	if (error)
1752 		goto done;
1753 	ifv->ifv_proto = proto;
1754 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1755 	ifv->ifv_mintu = ETHERMIN;
1756 	ifv->ifv_pflags = 0;
1757 	ifv->ifv_capenable = -1;
1758 
1759 	/*
1760 	 * If the parent supports the VLAN_MTU capability,
1761 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1762 	 * use it.
1763 	 */
1764 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1765 		/*
1766 		 * No need to fudge the MTU since the parent can
1767 		 * handle extended frames.
1768 		 */
1769 		ifv->ifv_mtufudge = 0;
1770 	} else {
1771 		/*
1772 		 * Fudge the MTU by the encapsulation size.  This
1773 		 * makes us incompatible with strictly compliant
1774 		 * 802.1Q implementations, but allows us to use
1775 		 * the feature with other NetBSD implementations,
1776 		 * which might still be useful.
1777 		 */
1778 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1779 	}
1780 
1781 	ifv->ifv_trunk = trunk;
1782 	ifp = ifv->ifv_ifp;
1783 	/*
1784 	 * Initialize fields from our parent.  This duplicates some
1785 	 * work with ether_ifattach() but allows for non-ethernet
1786 	 * interfaces to also work.
1787 	 */
1788 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1789 	ifp->if_baudrate = p->if_baudrate;
1790 	ifp->if_input = p->if_input;
1791 	ifp->if_resolvemulti = p->if_resolvemulti;
1792 	ifp->if_addrlen = p->if_addrlen;
1793 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1794 	ifp->if_pcp = ifv->ifv_pcp;
1795 
1796 	/*
1797 	 * We wrap the parent's if_output using vlan_output to ensure that it
1798 	 * can't become stale.
1799 	 */
1800 	ifp->if_output = vlan_output;
1801 
1802 	/*
1803 	 * Copy only a selected subset of flags from the parent.
1804 	 * Other flags are none of our business.
1805 	 */
1806 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1807 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1808 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1809 #undef VLAN_COPY_FLAGS
1810 
1811 	ifp->if_link_state = p->if_link_state;
1812 
1813 	NET_EPOCH_ENTER(et);
1814 	vlan_capabilities(ifv);
1815 	NET_EPOCH_EXIT(et);
1816 
1817 	/*
1818 	 * Set up our interface address to reflect the underlying
1819 	 * physical interface's.
1820 	 */
1821 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1822 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1823 	    p->if_addrlen;
1824 
1825 	/*
1826 	 * Do not schedule link address update if it was the same
1827 	 * as previous parent's. This helps avoid updating for each
1828 	 * associated llentry.
1829 	 */
1830 	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1831 		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1832 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1833 	}
1834 
1835 	/* We are ready for operation now. */
1836 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1837 
1838 	/* Update flags on the parent, if necessary. */
1839 	vlan_setflags(ifp, 1);
1840 
1841 	/*
1842 	 * Configure multicast addresses that may already be
1843 	 * joined on the vlan device.
1844 	 */
1845 	(void)vlan_setmulti(ifp);
1846 
1847 done:
1848 	if (error == 0)
1849 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1850 	VLAN_XUNLOCK();
1851 
1852 	return (error);
1853 }
1854 
1855 static void
1856 vlan_unconfig(struct ifnet *ifp)
1857 {
1858 
1859 	VLAN_XLOCK();
1860 	vlan_unconfig_locked(ifp, 0);
1861 	VLAN_XUNLOCK();
1862 }
1863 
1864 static void
1865 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1866 {
1867 	struct ifvlantrunk *trunk;
1868 	struct vlan_mc_entry *mc;
1869 	struct ifvlan *ifv;
1870 	struct ifnet  *parent;
1871 	int error;
1872 
1873 	VLAN_XLOCK_ASSERT();
1874 
1875 	ifv = ifp->if_softc;
1876 	trunk = ifv->ifv_trunk;
1877 	parent = NULL;
1878 
1879 	if (trunk != NULL) {
1880 		parent = trunk->parent;
1881 
1882 		/*
1883 		 * Since the interface is being unconfigured, we need to
1884 		 * empty the list of multicast groups that we may have joined
1885 		 * while we were alive from the parent's list.
1886 		 */
1887 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1888 			/*
1889 			 * If the parent interface is being detached,
1890 			 * all its multicast addresses have already
1891 			 * been removed.  Warn about errors if
1892 			 * if_delmulti() does fail, but don't abort as
1893 			 * all callers expect vlan destruction to
1894 			 * succeed.
1895 			 */
1896 			if (!departing) {
1897 				error = if_delmulti(parent,
1898 				    (struct sockaddr *)&mc->mc_addr);
1899 				if (error)
1900 					if_printf(ifp,
1901 		    "Failed to delete multicast address from parent: %d\n",
1902 					    error);
1903 			}
1904 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1905 			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1906 		}
1907 
1908 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1909 
1910 		vlan_remhash(trunk, ifv);
1911 		ifv->ifv_trunk = NULL;
1912 
1913 		/*
1914 		 * Check if we were the last.
1915 		 */
1916 		if (trunk->refcnt == 0) {
1917 			parent->if_vlantrunk = NULL;
1918 			NET_EPOCH_WAIT();
1919 			trunk_destroy(trunk);
1920 		}
1921 	}
1922 
1923 	/* Disconnect from parent. */
1924 	if (ifv->ifv_pflags)
1925 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1926 	ifp->if_mtu = ETHERMTU;
1927 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1928 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1929 
1930 	/*
1931 	 * Only dispatch an event if vlan was
1932 	 * attached, otherwise there is nothing
1933 	 * to cleanup anyway.
1934 	 */
1935 	if (parent != NULL)
1936 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1937 }
1938 
1939 /* Handle a reference counted flag that should be set on the parent as well */
1940 static int
1941 vlan_setflag(struct ifnet *ifp, int flag, int status,
1942 	     int (*func)(struct ifnet *, int))
1943 {
1944 	struct ifvlan *ifv;
1945 	int error;
1946 
1947 	VLAN_SXLOCK_ASSERT();
1948 
1949 	ifv = ifp->if_softc;
1950 	status = status ? (ifp->if_flags & flag) : 0;
1951 	/* Now "status" contains the flag value or 0 */
1952 
1953 	/*
1954 	 * See if recorded parent's status is different from what
1955 	 * we want it to be.  If it is, flip it.  We record parent's
1956 	 * status in ifv_pflags so that we won't clear parent's flag
1957 	 * we haven't set.  In fact, we don't clear or set parent's
1958 	 * flags directly, but get or release references to them.
1959 	 * That's why we can be sure that recorded flags still are
1960 	 * in accord with actual parent's flags.
1961 	 */
1962 	if (status != (ifv->ifv_pflags & flag)) {
1963 		error = (*func)(PARENT(ifv), status);
1964 		if (error)
1965 			return (error);
1966 		ifv->ifv_pflags &= ~flag;
1967 		ifv->ifv_pflags |= status;
1968 	}
1969 	return (0);
1970 }
1971 
1972 /*
1973  * Handle IFF_* flags that require certain changes on the parent:
1974  * if "status" is true, update parent's flags respective to our if_flags;
1975  * if "status" is false, forcedly clear the flags set on parent.
1976  */
1977 static int
1978 vlan_setflags(struct ifnet *ifp, int status)
1979 {
1980 	int error, i;
1981 
1982 	for (i = 0; vlan_pflags[i].flag; i++) {
1983 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1984 				     status, vlan_pflags[i].func);
1985 		if (error)
1986 			return (error);
1987 	}
1988 	return (0);
1989 }
1990 
1991 /* Inform all vlans that their parent has changed link state */
1992 static void
1993 vlan_link_state(struct ifnet *ifp)
1994 {
1995 	struct epoch_tracker et;
1996 	struct ifvlantrunk *trunk;
1997 	struct ifvlan *ifv;
1998 
1999 	NET_EPOCH_ENTER(et);
2000 	trunk = ifp->if_vlantrunk;
2001 	if (trunk == NULL) {
2002 		NET_EPOCH_EXIT(et);
2003 		return;
2004 	}
2005 
2006 	TRUNK_WLOCK(trunk);
2007 	VLAN_FOREACH(ifv, trunk) {
2008 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
2009 		if_link_state_change(ifv->ifv_ifp,
2010 		    trunk->parent->if_link_state);
2011 	}
2012 	TRUNK_WUNLOCK(trunk);
2013 	NET_EPOCH_EXIT(et);
2014 }
2015 
2016 static void
2017 vlan_capabilities(struct ifvlan *ifv)
2018 {
2019 	struct ifnet *p;
2020 	struct ifnet *ifp;
2021 	struct ifnet_hw_tsomax hw_tsomax;
2022 	int cap = 0, ena = 0, mena;
2023 	u_long hwa = 0;
2024 
2025 	NET_EPOCH_ASSERT();
2026 	VLAN_SXLOCK_ASSERT();
2027 
2028 	p = PARENT(ifv);
2029 	ifp = ifv->ifv_ifp;
2030 
2031 	/* Mask parent interface enabled capabilities disabled by user. */
2032 	mena = p->if_capenable & ifv->ifv_capenable;
2033 
2034 	/*
2035 	 * If the parent interface can do checksum offloading
2036 	 * on VLANs, then propagate its hardware-assisted
2037 	 * checksumming flags. Also assert that checksum
2038 	 * offloading requires hardware VLAN tagging.
2039 	 */
2040 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2041 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2042 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
2043 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
2044 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
2045 		if (ena & IFCAP_TXCSUM)
2046 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
2047 			    CSUM_UDP | CSUM_SCTP);
2048 		if (ena & IFCAP_TXCSUM_IPV6)
2049 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
2050 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
2051 	}
2052 
2053 	/*
2054 	 * If the parent interface can do TSO on VLANs then
2055 	 * propagate the hardware-assisted flag. TSO on VLANs
2056 	 * does not necessarily require hardware VLAN tagging.
2057 	 */
2058 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
2059 	if_hw_tsomax_common(p, &hw_tsomax);
2060 	if_hw_tsomax_update(ifp, &hw_tsomax);
2061 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
2062 		cap |= p->if_capabilities & IFCAP_TSO;
2063 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
2064 		ena |= mena & IFCAP_TSO;
2065 		if (ena & IFCAP_TSO)
2066 			hwa |= p->if_hwassist & CSUM_TSO;
2067 	}
2068 
2069 	/*
2070 	 * If the parent interface can do LRO and checksum offloading on
2071 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
2072 	 * cost nothing, while false negative may lead to some confusions.
2073 	 */
2074 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
2075 		cap |= p->if_capabilities & IFCAP_LRO;
2076 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
2077 		ena |= p->if_capenable & IFCAP_LRO;
2078 
2079 	/*
2080 	 * If the parent interface can offload TCP connections over VLANs then
2081 	 * propagate its TOE capability to the VLAN interface.
2082 	 *
2083 	 * All TOE drivers in the tree today can deal with VLANs.  If this
2084 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
2085 	 * with its own bit.
2086 	 */
2087 #define	IFCAP_VLAN_TOE IFCAP_TOE
2088 	if (p->if_capabilities & IFCAP_VLAN_TOE)
2089 		cap |= p->if_capabilities & IFCAP_TOE;
2090 	if (p->if_capenable & IFCAP_VLAN_TOE) {
2091 		SETTOEDEV(ifp, TOEDEV(p));
2092 		ena |= mena & IFCAP_TOE;
2093 	}
2094 
2095 	/*
2096 	 * If the parent interface supports dynamic link state, so does the
2097 	 * VLAN interface.
2098 	 */
2099 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
2100 	ena |= (mena & IFCAP_LINKSTATE);
2101 
2102 #ifdef RATELIMIT
2103 	/*
2104 	 * If the parent interface supports ratelimiting, so does the
2105 	 * VLAN interface.
2106 	 */
2107 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
2108 	ena |= (mena & IFCAP_TXRTLMT);
2109 #endif
2110 
2111 	/*
2112 	 * If the parent interface supports unmapped mbufs, so does
2113 	 * the VLAN interface.  Note that this should be fine even for
2114 	 * interfaces that don't support hardware tagging as headers
2115 	 * are prepended in normal mbufs to unmapped mbufs holding
2116 	 * payload data.
2117 	 */
2118 	cap |= (p->if_capabilities & IFCAP_MEXTPG);
2119 	ena |= (mena & IFCAP_MEXTPG);
2120 
2121 	/*
2122 	 * If the parent interface can offload encryption and segmentation
2123 	 * of TLS records over TCP, propagate it's capability to the VLAN
2124 	 * interface.
2125 	 *
2126 	 * All TLS drivers in the tree today can deal with VLANs.  If
2127 	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
2128 	 * defined.
2129 	 */
2130 	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2131 		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2132 	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
2133 		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
2134 
2135 	ifp->if_capabilities = cap;
2136 	ifp->if_capenable = ena;
2137 	ifp->if_hwassist = hwa;
2138 }
2139 
2140 static void
2141 vlan_trunk_capabilities(struct ifnet *ifp)
2142 {
2143 	struct epoch_tracker et;
2144 	struct ifvlantrunk *trunk;
2145 	struct ifvlan *ifv;
2146 
2147 	VLAN_SLOCK();
2148 	trunk = ifp->if_vlantrunk;
2149 	if (trunk == NULL) {
2150 		VLAN_SUNLOCK();
2151 		return;
2152 	}
2153 	NET_EPOCH_ENTER(et);
2154 	VLAN_FOREACH(ifv, trunk)
2155 		vlan_capabilities(ifv);
2156 	NET_EPOCH_EXIT(et);
2157 	VLAN_SUNLOCK();
2158 }
2159 
2160 static int
2161 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2162 {
2163 	struct ifnet *p;
2164 	struct ifreq *ifr;
2165 #ifdef INET
2166 	struct ifaddr *ifa;
2167 #endif
2168 	struct ifvlan *ifv;
2169 	struct ifvlantrunk *trunk;
2170 	struct vlanreq vlr;
2171 	int error = 0, oldmtu;
2172 
2173 	ifr = (struct ifreq *)data;
2174 #ifdef INET
2175 	ifa = (struct ifaddr *) data;
2176 #endif
2177 	ifv = ifp->if_softc;
2178 
2179 	switch (cmd) {
2180 	case SIOCSIFADDR:
2181 		ifp->if_flags |= IFF_UP;
2182 #ifdef INET
2183 		if (ifa->ifa_addr->sa_family == AF_INET)
2184 			arp_ifinit(ifp, ifa);
2185 #endif
2186 		break;
2187 	case SIOCGIFADDR:
2188 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
2189 		    ifp->if_addrlen);
2190 		break;
2191 	case SIOCGIFMEDIA:
2192 		VLAN_SLOCK();
2193 		if (TRUNK(ifv) != NULL) {
2194 			p = PARENT(ifv);
2195 			if_ref(p);
2196 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
2197 			if_rele(p);
2198 			/* Limit the result to the parent's current config. */
2199 			if (error == 0) {
2200 				struct ifmediareq *ifmr;
2201 
2202 				ifmr = (struct ifmediareq *)data;
2203 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
2204 					ifmr->ifm_count = 1;
2205 					error = copyout(&ifmr->ifm_current,
2206 						ifmr->ifm_ulist,
2207 						sizeof(int));
2208 				}
2209 			}
2210 		} else {
2211 			error = EINVAL;
2212 		}
2213 		VLAN_SUNLOCK();
2214 		break;
2215 
2216 	case SIOCSIFMEDIA:
2217 		error = EINVAL;
2218 		break;
2219 
2220 	case SIOCSIFMTU:
2221 		/*
2222 		 * Set the interface MTU.
2223 		 */
2224 		VLAN_SLOCK();
2225 		trunk = TRUNK(ifv);
2226 		if (trunk != NULL) {
2227 			TRUNK_WLOCK(trunk);
2228 			if (ifr->ifr_mtu >
2229 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
2230 			    ifr->ifr_mtu <
2231 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
2232 				error = EINVAL;
2233 			else
2234 				ifp->if_mtu = ifr->ifr_mtu;
2235 			TRUNK_WUNLOCK(trunk);
2236 		} else
2237 			error = EINVAL;
2238 		VLAN_SUNLOCK();
2239 		break;
2240 
2241 	case SIOCSETVLAN:
2242 #ifdef VIMAGE
2243 		/*
2244 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
2245 		 * interface to be delegated to a jail without allowing the
2246 		 * jail to change what underlying interface/VID it is
2247 		 * associated with.  We are not entirely convinced that this
2248 		 * is the right way to accomplish that policy goal.
2249 		 */
2250 		if (ifp->if_vnet != ifp->if_home_vnet) {
2251 			error = EPERM;
2252 			break;
2253 		}
2254 #endif
2255 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
2256 		if (error)
2257 			break;
2258 		if (vlr.vlr_parent[0] == '\0') {
2259 			vlan_unconfig(ifp);
2260 			break;
2261 		}
2262 		p = ifunit_ref(vlr.vlr_parent);
2263 		if (p == NULL) {
2264 			error = ENOENT;
2265 			break;
2266 		}
2267 #ifdef COMPAT_FREEBSD12
2268 		if (vlr.vlr_proto == 0)
2269 			vlr.vlr_proto = ETHERTYPE_VLAN;
2270 #endif
2271 		oldmtu = ifp->if_mtu;
2272 		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
2273 		if_rele(p);
2274 
2275 		/*
2276 		 * VLAN MTU may change during addition of the vlandev.
2277 		 * If it did, do network layer specific procedure.
2278 		 */
2279 		if (ifp->if_mtu != oldmtu)
2280 			if_notifymtu(ifp);
2281 		break;
2282 
2283 	case SIOCGETVLAN:
2284 #ifdef VIMAGE
2285 		if (ifp->if_vnet != ifp->if_home_vnet) {
2286 			error = EPERM;
2287 			break;
2288 		}
2289 #endif
2290 		bzero(&vlr, sizeof(vlr));
2291 		VLAN_SLOCK();
2292 		if (TRUNK(ifv) != NULL) {
2293 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
2294 			    sizeof(vlr.vlr_parent));
2295 			vlr.vlr_tag = ifv->ifv_vid;
2296 			vlr.vlr_proto = ifv->ifv_proto;
2297 		}
2298 		VLAN_SUNLOCK();
2299 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
2300 		break;
2301 
2302 	case SIOCSIFFLAGS:
2303 		/*
2304 		 * We should propagate selected flags to the parent,
2305 		 * e.g., promiscuous mode.
2306 		 */
2307 		VLAN_SLOCK();
2308 		if (TRUNK(ifv) != NULL)
2309 			error = vlan_setflags(ifp, 1);
2310 		VLAN_SUNLOCK();
2311 		break;
2312 
2313 	case SIOCADDMULTI:
2314 	case SIOCDELMULTI:
2315 		/*
2316 		 * If we don't have a parent, just remember the membership for
2317 		 * when we do.
2318 		 *
2319 		 * XXX We need the rmlock here to avoid sleeping while
2320 		 * holding in6_multi_mtx.
2321 		 */
2322 		VLAN_XLOCK();
2323 		trunk = TRUNK(ifv);
2324 		if (trunk != NULL)
2325 			error = vlan_setmulti(ifp);
2326 		VLAN_XUNLOCK();
2327 
2328 		break;
2329 	case SIOCGVLANPCP:
2330 #ifdef VIMAGE
2331 		if (ifp->if_vnet != ifp->if_home_vnet) {
2332 			error = EPERM;
2333 			break;
2334 		}
2335 #endif
2336 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2337 		break;
2338 
2339 	case SIOCSVLANPCP:
2340 #ifdef VIMAGE
2341 		if (ifp->if_vnet != ifp->if_home_vnet) {
2342 			error = EPERM;
2343 			break;
2344 		}
2345 #endif
2346 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2347 		if (error)
2348 			break;
2349 		if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) {
2350 			error = EINVAL;
2351 			break;
2352 		}
2353 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2354 		ifp->if_pcp = ifv->ifv_pcp;
2355 		/* broadcast event about PCP change */
2356 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2357 		break;
2358 
2359 	case SIOCSIFCAP:
2360 		VLAN_SLOCK();
2361 		ifv->ifv_capenable = ifr->ifr_reqcap;
2362 		trunk = TRUNK(ifv);
2363 		if (trunk != NULL) {
2364 			struct epoch_tracker et;
2365 
2366 			NET_EPOCH_ENTER(et);
2367 			vlan_capabilities(ifv);
2368 			NET_EPOCH_EXIT(et);
2369 		}
2370 		VLAN_SUNLOCK();
2371 		break;
2372 
2373 	default:
2374 		error = EINVAL;
2375 		break;
2376 	}
2377 
2378 	return (error);
2379 }
2380 
2381 #if defined(KERN_TLS) || defined(RATELIMIT)
2382 static int
2383 vlan_snd_tag_alloc(struct ifnet *ifp,
2384     union if_snd_tag_alloc_params *params,
2385     struct m_snd_tag **ppmt)
2386 {
2387 	struct epoch_tracker et;
2388 	const struct if_snd_tag_sw *sw;
2389 	struct vlan_snd_tag *vst;
2390 	struct ifvlan *ifv;
2391 	struct ifnet *parent;
2392 	struct m_snd_tag *mst;
2393 	int error;
2394 
2395 	NET_EPOCH_ENTER(et);
2396 	ifv = ifp->if_softc;
2397 
2398 	switch (params->hdr.type) {
2399 #ifdef RATELIMIT
2400 	case IF_SND_TAG_TYPE_UNLIMITED:
2401 		sw = &vlan_snd_tag_ul_sw;
2402 		break;
2403 	case IF_SND_TAG_TYPE_RATE_LIMIT:
2404 		sw = &vlan_snd_tag_rl_sw;
2405 		break;
2406 #endif
2407 #ifdef KERN_TLS
2408 	case IF_SND_TAG_TYPE_TLS:
2409 		sw = &vlan_snd_tag_tls_sw;
2410 		break;
2411 	case IF_SND_TAG_TYPE_TLS_RX:
2412 		sw = NULL;
2413 		if (params->tls_rx.vlan_id != 0)
2414 			goto failure;
2415 		params->tls_rx.vlan_id = ifv->ifv_vid;
2416 		break;
2417 #ifdef RATELIMIT
2418 	case IF_SND_TAG_TYPE_TLS_RATE_LIMIT:
2419 		sw = &vlan_snd_tag_tls_rl_sw;
2420 		break;
2421 #endif
2422 #endif
2423 	default:
2424 		goto failure;
2425 	}
2426 
2427 	if (ifv->ifv_trunk != NULL)
2428 		parent = PARENT(ifv);
2429 	else
2430 		parent = NULL;
2431 	if (parent == NULL)
2432 		goto failure;
2433 	if_ref(parent);
2434 	NET_EPOCH_EXIT(et);
2435 
2436 	if (sw != NULL) {
2437 		vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2438 		if (vst == NULL) {
2439 			if_rele(parent);
2440 			return (ENOMEM);
2441 		}
2442 	} else
2443 		vst = NULL;
2444 
2445 	error = m_snd_tag_alloc(parent, params, &mst);
2446 	if_rele(parent);
2447 	if (error) {
2448 		free(vst, M_VLAN);
2449 		return (error);
2450 	}
2451 
2452 	if (sw != NULL) {
2453 		m_snd_tag_init(&vst->com, ifp, sw);
2454 		vst->tag = mst;
2455 
2456 		*ppmt = &vst->com;
2457 	} else
2458 		*ppmt = mst;
2459 
2460 	return (0);
2461 failure:
2462 	NET_EPOCH_EXIT(et);
2463 	return (EOPNOTSUPP);
2464 }
2465 
2466 static struct m_snd_tag *
2467 vlan_next_snd_tag(struct m_snd_tag *mst)
2468 {
2469 	struct vlan_snd_tag *vst;
2470 
2471 	vst = mst_to_vst(mst);
2472 	return (vst->tag);
2473 }
2474 
2475 static int
2476 vlan_snd_tag_modify(struct m_snd_tag *mst,
2477     union if_snd_tag_modify_params *params)
2478 {
2479 	struct vlan_snd_tag *vst;
2480 
2481 	vst = mst_to_vst(mst);
2482 	return (vst->tag->sw->snd_tag_modify(vst->tag, params));
2483 }
2484 
2485 static int
2486 vlan_snd_tag_query(struct m_snd_tag *mst,
2487     union if_snd_tag_query_params *params)
2488 {
2489 	struct vlan_snd_tag *vst;
2490 
2491 	vst = mst_to_vst(mst);
2492 	return (vst->tag->sw->snd_tag_query(vst->tag, params));
2493 }
2494 
2495 static void
2496 vlan_snd_tag_free(struct m_snd_tag *mst)
2497 {
2498 	struct vlan_snd_tag *vst;
2499 
2500 	vst = mst_to_vst(mst);
2501 	m_snd_tag_rele(vst->tag);
2502 	free(vst, M_VLAN);
2503 }
2504 
2505 static void
2506 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
2507 {
2508 	/*
2509 	 * For vlan, we have an indirect
2510 	 * interface. The caller needs to
2511 	 * get a ratelimit tag on the actual
2512 	 * interface the flow will go on.
2513 	 */
2514 	q->rate_table = NULL;
2515 	q->flags = RT_IS_INDIRECT;
2516 	q->max_flows = 0;
2517 	q->number_of_rates = 0;
2518 }
2519 
2520 #endif
2521