xref: /freebsd/sys/net/if_vlan.c (revision 99429157e8615dc3b7f11afbe3ed92de7476a5db)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  *
5  * Portions of this software were developed by Robert N. M. Watson under
6  * contract to ADARA Networks, Inc.
7  *
8  * Permission to use, copy, modify, and distribute this software and
9  * its documentation for any purpose and without fee is hereby
10  * granted, provided that both the above copyright notice and this
11  * permission notice appear in all copies, that both the above
12  * copyright notice and this permission notice appear in all
13  * supporting documentation, and that the name of M.I.T. not be used
14  * in advertising or publicity pertaining to distribution of the
15  * software without specific, written prior permission.  M.I.T. makes
16  * no representations about the suitability of this software for any
17  * purpose.  It is provided "as is" without express or implied
18  * warranty.
19  *
20  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
21  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
22  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
23  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
24  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
27  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
36  * This is sort of sneaky in the implementation, since
37  * we need to pretend to be enough of an Ethernet implementation
38  * to make arp work.  The way we do this is by telling everyone
39  * that we are an Ethernet, and then catch the packets that
40  * ether_output() sends to us via if_transmit(), rewrite them for
41  * use by the real outgoing interface, and ask it to send them.
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_inet.h"
48 #include "opt_vlan.h"
49 #include "opt_ratelimit.h"
50 
51 #include <sys/param.h>
52 #include <sys/eventhandler.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/module.h>
58 #include <sys/rmlock.h>
59 #include <sys/priv.h>
60 #include <sys/queue.h>
61 #include <sys/socket.h>
62 #include <sys/sockio.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/sx.h>
66 
67 #include <net/bpf.h>
68 #include <net/ethernet.h>
69 #include <net/if.h>
70 #include <net/if_var.h>
71 #include <net/if_clone.h>
72 #include <net/if_dl.h>
73 #include <net/if_types.h>
74 #include <net/if_vlan_var.h>
75 #include <net/vnet.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	VLAN_DEF_HWIDTH	4
83 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
84 
85 #define	UP_AND_RUNNING(ifp) \
86     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
87 
88 LIST_HEAD(ifvlanhead, ifvlan);
89 
90 struct ifvlantrunk {
91 	struct	ifnet   *parent;	/* parent interface of this trunk */
92 	struct	rmlock	lock;
93 #ifdef VLAN_ARRAY
94 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
95 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
96 #else
97 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
98 	uint16_t	hmask;
99 	uint16_t	hwidth;
100 #endif
101 	int		refcnt;
102 };
103 
104 struct vlan_mc_entry {
105 	struct sockaddr_dl		mc_addr;
106 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
107 };
108 
109 struct	ifvlan {
110 	struct	ifvlantrunk *ifv_trunk;
111 	struct	ifnet *ifv_ifp;
112 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
113 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
114 	void	*ifv_cookie;
115 	int	ifv_pflags;	/* special flags we have set on parent */
116 	int	ifv_capenable;
117 	struct	ifv_linkmib {
118 		int	ifvm_encaplen;	/* encapsulation length */
119 		int	ifvm_mtufudge;	/* MTU fudged by this much */
120 		int	ifvm_mintu;	/* min transmission unit */
121 		uint16_t ifvm_proto;	/* encapsulation ethertype */
122 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
123               	uint16_t ifvm_vid;	/* VLAN ID */
124 		uint8_t	ifvm_pcp;	/* Priority Code Point (PCP). */
125 	}	ifv_mib;
126 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
127 #ifndef VLAN_ARRAY
128 	LIST_ENTRY(ifvlan) ifv_list;
129 #endif
130 };
131 #define	ifv_proto	ifv_mib.ifvm_proto
132 #define	ifv_tag		ifv_mib.ifvm_tag
133 #define	ifv_vid 	ifv_mib.ifvm_vid
134 #define	ifv_pcp		ifv_mib.ifvm_pcp
135 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
136 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
137 #define	ifv_mintu	ifv_mib.ifvm_mintu
138 
139 /* Special flags we should propagate to parent. */
140 static struct {
141 	int flag;
142 	int (*func)(struct ifnet *, int);
143 } vlan_pflags[] = {
144 	{IFF_PROMISC, ifpromisc},
145 	{IFF_ALLMULTI, if_allmulti},
146 	{0, NULL}
147 };
148 
149 SYSCTL_DECL(_net_link);
150 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0,
151     "IEEE 802.1Q VLAN");
152 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0,
153     "for consistency");
154 
155 static VNET_DEFINE(int, soft_pad);
156 #define	V_soft_pad	VNET(soft_pad)
157 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
158     &VNET_NAME(soft_pad), 0, "pad short frames before tagging");
159 
160 /*
161  * For now, make preserving PCP via an mbuf tag optional, as it increases
162  * per-packet memory allocations and frees.  In the future, it would be
163  * preferable to reuse ether_vtag for this, or similar.
164  */
165 static int vlan_mtag_pcp = 0;
166 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, &vlan_mtag_pcp, 0,
167 	"Retain VLAN PCP information as packets are passed up the stack");
168 
169 static const char vlanname[] = "vlan";
170 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
171 
172 static eventhandler_tag ifdetach_tag;
173 static eventhandler_tag iflladdr_tag;
174 
175 /*
176  * We have a global mutex, that is used to serialize configuration
177  * changes and isn't used in normal packet delivery.
178  *
179  * We also have a per-trunk rmlock(9), that is locked shared on packet
180  * processing and exclusive when configuration is changed.
181  *
182  * The VLAN_ARRAY substitutes the dynamic hash with a static array
183  * with 4096 entries. In theory this can give a boost in processing,
184  * however on practice it does not. Probably this is because array
185  * is too big to fit into CPU cache.
186  */
187 static struct sx ifv_lock;
188 #define	VLAN_LOCK_INIT()	sx_init(&ifv_lock, "vlan_global")
189 #define	VLAN_LOCK_DESTROY()	sx_destroy(&ifv_lock)
190 #define	VLAN_LOCK_ASSERT()	sx_assert(&ifv_lock, SA_LOCKED)
191 #define	VLAN_LOCK()		sx_xlock(&ifv_lock)
192 #define	VLAN_UNLOCK()		sx_xunlock(&ifv_lock)
193 #define	TRUNK_LOCK_INIT(trunk)	rm_init(&(trunk)->lock, vlanname)
194 #define	TRUNK_LOCK_DESTROY(trunk) rm_destroy(&(trunk)->lock)
195 #define	TRUNK_LOCK(trunk)	rm_wlock(&(trunk)->lock)
196 #define	TRUNK_UNLOCK(trunk)	rm_wunlock(&(trunk)->lock)
197 #define	TRUNK_LOCK_ASSERT(trunk) rm_assert(&(trunk)->lock, RA_WLOCKED)
198 #define	TRUNK_RLOCK(trunk)	rm_rlock(&(trunk)->lock, &tracker)
199 #define	TRUNK_RUNLOCK(trunk)	rm_runlock(&(trunk)->lock, &tracker)
200 #define	TRUNK_LOCK_RASSERT(trunk) rm_assert(&(trunk)->lock, RA_RLOCKED)
201 #define	TRUNK_LOCK_READER	struct rm_priotracker tracker
202 
203 #ifndef VLAN_ARRAY
204 static	void vlan_inithash(struct ifvlantrunk *trunk);
205 static	void vlan_freehash(struct ifvlantrunk *trunk);
206 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
207 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
208 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
209 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
210 	uint16_t vid);
211 #endif
212 static	void trunk_destroy(struct ifvlantrunk *trunk);
213 
214 static	void vlan_init(void *foo);
215 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
216 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
217 #ifdef RATELIMIT
218 static	int vlan_snd_tag_alloc(struct ifnet *,
219     union if_snd_tag_alloc_params *, struct m_snd_tag **);
220 #endif
221 static	void vlan_qflush(struct ifnet *ifp);
222 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
223     int (*func)(struct ifnet *, int));
224 static	int vlan_setflags(struct ifnet *ifp, int status);
225 static	int vlan_setmulti(struct ifnet *ifp);
226 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
227 static	void vlan_unconfig(struct ifnet *ifp);
228 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
229 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
230 static	void vlan_link_state(struct ifnet *ifp);
231 static	void vlan_capabilities(struct ifvlan *ifv);
232 static	void vlan_trunk_capabilities(struct ifnet *ifp);
233 
234 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
235 static	int vlan_clone_match(struct if_clone *, const char *);
236 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
237 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
238 
239 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
240 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
241 
242 static struct if_clone *vlan_cloner;
243 
244 #ifdef VIMAGE
245 static VNET_DEFINE(struct if_clone *, vlan_cloner);
246 #define	V_vlan_cloner	VNET(vlan_cloner)
247 #endif
248 
249 #ifndef VLAN_ARRAY
250 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
251 
252 static void
253 vlan_inithash(struct ifvlantrunk *trunk)
254 {
255 	int i, n;
256 
257 	/*
258 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
259 	 * It is OK in case this function is called before the trunk struct
260 	 * gets hooked up and becomes visible from other threads.
261 	 */
262 
263 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
264 	    ("%s: hash already initialized", __func__));
265 
266 	trunk->hwidth = VLAN_DEF_HWIDTH;
267 	n = 1 << trunk->hwidth;
268 	trunk->hmask = n - 1;
269 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
270 	for (i = 0; i < n; i++)
271 		LIST_INIT(&trunk->hash[i]);
272 }
273 
274 static void
275 vlan_freehash(struct ifvlantrunk *trunk)
276 {
277 #ifdef INVARIANTS
278 	int i;
279 
280 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
281 	for (i = 0; i < (1 << trunk->hwidth); i++)
282 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
283 		    ("%s: hash table not empty", __func__));
284 #endif
285 	free(trunk->hash, M_VLAN);
286 	trunk->hash = NULL;
287 	trunk->hwidth = trunk->hmask = 0;
288 }
289 
290 static int
291 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
292 {
293 	int i, b;
294 	struct ifvlan *ifv2;
295 
296 	TRUNK_LOCK_ASSERT(trunk);
297 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
298 
299 	b = 1 << trunk->hwidth;
300 	i = HASH(ifv->ifv_vid, trunk->hmask);
301 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
302 		if (ifv->ifv_vid == ifv2->ifv_vid)
303 			return (EEXIST);
304 
305 	/*
306 	 * Grow the hash when the number of vlans exceeds half of the number of
307 	 * hash buckets squared. This will make the average linked-list length
308 	 * buckets/2.
309 	 */
310 	if (trunk->refcnt > (b * b) / 2) {
311 		vlan_growhash(trunk, 1);
312 		i = HASH(ifv->ifv_vid, trunk->hmask);
313 	}
314 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
315 	trunk->refcnt++;
316 
317 	return (0);
318 }
319 
320 static int
321 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
322 {
323 	int i, b;
324 	struct ifvlan *ifv2;
325 
326 	TRUNK_LOCK_ASSERT(trunk);
327 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
328 
329 	b = 1 << trunk->hwidth;
330 	i = HASH(ifv->ifv_vid, trunk->hmask);
331 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
332 		if (ifv2 == ifv) {
333 			trunk->refcnt--;
334 			LIST_REMOVE(ifv2, ifv_list);
335 			if (trunk->refcnt < (b * b) / 2)
336 				vlan_growhash(trunk, -1);
337 			return (0);
338 		}
339 
340 	panic("%s: vlan not found\n", __func__);
341 	return (ENOENT); /*NOTREACHED*/
342 }
343 
344 /*
345  * Grow the hash larger or smaller if memory permits.
346  */
347 static void
348 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
349 {
350 	struct ifvlan *ifv;
351 	struct ifvlanhead *hash2;
352 	int hwidth2, i, j, n, n2;
353 
354 	TRUNK_LOCK_ASSERT(trunk);
355 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
356 
357 	if (howmuch == 0) {
358 		/* Harmless yet obvious coding error */
359 		printf("%s: howmuch is 0\n", __func__);
360 		return;
361 	}
362 
363 	hwidth2 = trunk->hwidth + howmuch;
364 	n = 1 << trunk->hwidth;
365 	n2 = 1 << hwidth2;
366 	/* Do not shrink the table below the default */
367 	if (hwidth2 < VLAN_DEF_HWIDTH)
368 		return;
369 
370 	/* M_NOWAIT because we're called with trunk mutex held */
371 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
372 	if (hash2 == NULL) {
373 		printf("%s: out of memory -- hash size not changed\n",
374 		    __func__);
375 		return;		/* We can live with the old hash table */
376 	}
377 	for (j = 0; j < n2; j++)
378 		LIST_INIT(&hash2[j]);
379 	for (i = 0; i < n; i++)
380 		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
381 			LIST_REMOVE(ifv, ifv_list);
382 			j = HASH(ifv->ifv_vid, n2 - 1);
383 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
384 		}
385 	free(trunk->hash, M_VLAN);
386 	trunk->hash = hash2;
387 	trunk->hwidth = hwidth2;
388 	trunk->hmask = n2 - 1;
389 
390 	if (bootverbose)
391 		if_printf(trunk->parent,
392 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
393 }
394 
395 static __inline struct ifvlan *
396 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
397 {
398 	struct ifvlan *ifv;
399 
400 	TRUNK_LOCK_RASSERT(trunk);
401 
402 	LIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
403 		if (ifv->ifv_vid == vid)
404 			return (ifv);
405 	return (NULL);
406 }
407 
408 #if 0
409 /* Debugging code to view the hashtables. */
410 static void
411 vlan_dumphash(struct ifvlantrunk *trunk)
412 {
413 	int i;
414 	struct ifvlan *ifv;
415 
416 	for (i = 0; i < (1 << trunk->hwidth); i++) {
417 		printf("%d: ", i);
418 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
419 			printf("%s ", ifv->ifv_ifp->if_xname);
420 		printf("\n");
421 	}
422 }
423 #endif /* 0 */
424 #else
425 
426 static __inline struct ifvlan *
427 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
428 {
429 
430 	return trunk->vlans[vid];
431 }
432 
433 static __inline int
434 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
435 {
436 
437 	if (trunk->vlans[ifv->ifv_vid] != NULL)
438 		return EEXIST;
439 	trunk->vlans[ifv->ifv_vid] = ifv;
440 	trunk->refcnt++;
441 
442 	return (0);
443 }
444 
445 static __inline int
446 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
447 {
448 
449 	trunk->vlans[ifv->ifv_vid] = NULL;
450 	trunk->refcnt--;
451 
452 	return (0);
453 }
454 
455 static __inline void
456 vlan_freehash(struct ifvlantrunk *trunk)
457 {
458 }
459 
460 static __inline void
461 vlan_inithash(struct ifvlantrunk *trunk)
462 {
463 }
464 
465 #endif /* !VLAN_ARRAY */
466 
467 static void
468 trunk_destroy(struct ifvlantrunk *trunk)
469 {
470 	VLAN_LOCK_ASSERT();
471 
472 	TRUNK_LOCK(trunk);
473 	vlan_freehash(trunk);
474 	trunk->parent->if_vlantrunk = NULL;
475 	TRUNK_UNLOCK(trunk);
476 	TRUNK_LOCK_DESTROY(trunk);
477 	free(trunk, M_VLAN);
478 }
479 
480 /*
481  * Program our multicast filter. What we're actually doing is
482  * programming the multicast filter of the parent. This has the
483  * side effect of causing the parent interface to receive multicast
484  * traffic that it doesn't really want, which ends up being discarded
485  * later by the upper protocol layers. Unfortunately, there's no way
486  * to avoid this: there really is only one physical interface.
487  */
488 static int
489 vlan_setmulti(struct ifnet *ifp)
490 {
491 	struct ifnet		*ifp_p;
492 	struct ifmultiaddr	*ifma;
493 	struct ifvlan		*sc;
494 	struct vlan_mc_entry	*mc;
495 	int			error;
496 
497 	/* Find the parent. */
498 	sc = ifp->if_softc;
499 	TRUNK_LOCK_ASSERT(TRUNK(sc));
500 	ifp_p = PARENT(sc);
501 
502 	CURVNET_SET_QUIET(ifp_p->if_vnet);
503 
504 	/* First, remove any existing filter entries. */
505 	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
506 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
507 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
508 		free(mc, M_VLAN);
509 	}
510 
511 	/* Now program new ones. */
512 	IF_ADDR_WLOCK(ifp);
513 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
514 		if (ifma->ifma_addr->sa_family != AF_LINK)
515 			continue;
516 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
517 		if (mc == NULL) {
518 			IF_ADDR_WUNLOCK(ifp);
519 			return (ENOMEM);
520 		}
521 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
522 		mc->mc_addr.sdl_index = ifp_p->if_index;
523 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
524 	}
525 	IF_ADDR_WUNLOCK(ifp);
526 	SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
527 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
528 		    NULL);
529 		if (error)
530 			return (error);
531 	}
532 
533 	CURVNET_RESTORE();
534 	return (0);
535 }
536 
537 /*
538  * A handler for parent interface link layer address changes.
539  * If the parent interface link layer address is changed we
540  * should also change it on all children vlans.
541  */
542 static void
543 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
544 {
545 	struct ifvlan *ifv;
546 #ifndef VLAN_ARRAY
547 	struct ifvlan *next;
548 #endif
549 	int i;
550 
551 	/*
552 	 * Check if it's a trunk interface first of all
553 	 * to avoid needless locking.
554 	 */
555 	if (ifp->if_vlantrunk == NULL)
556 		return;
557 
558 	VLAN_LOCK();
559 	/*
560 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
561 	 */
562 #ifdef VLAN_ARRAY
563 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
564 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
565 #else /* VLAN_ARRAY */
566 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
567 		LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) {
568 #endif /* VLAN_ARRAY */
569 			VLAN_UNLOCK();
570 			if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp),
571 			    ifp->if_addrlen);
572 			VLAN_LOCK();
573 		}
574 	VLAN_UNLOCK();
575 
576 }
577 
578 /*
579  * A handler for network interface departure events.
580  * Track departure of trunks here so that we don't access invalid
581  * pointers or whatever if a trunk is ripped from under us, e.g.,
582  * by ejecting its hot-plug card.  However, if an ifnet is simply
583  * being renamed, then there's no need to tear down the state.
584  */
585 static void
586 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
587 {
588 	struct ifvlan *ifv;
589 	int i;
590 
591 	/*
592 	 * Check if it's a trunk interface first of all
593 	 * to avoid needless locking.
594 	 */
595 	if (ifp->if_vlantrunk == NULL)
596 		return;
597 
598 	/* If the ifnet is just being renamed, don't do anything. */
599 	if (ifp->if_flags & IFF_RENAMING)
600 		return;
601 
602 	VLAN_LOCK();
603 	/*
604 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
605 	 * Check trunk pointer after each vlan_unconfig() as it will
606 	 * free it and set to NULL after the last vlan was detached.
607 	 */
608 #ifdef VLAN_ARRAY
609 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
610 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
611 			vlan_unconfig_locked(ifv->ifv_ifp, 1);
612 			if (ifp->if_vlantrunk == NULL)
613 				break;
614 		}
615 #else /* VLAN_ARRAY */
616 restart:
617 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
618 		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
619 			vlan_unconfig_locked(ifv->ifv_ifp, 1);
620 			if (ifp->if_vlantrunk)
621 				goto restart;	/* trunk->hwidth can change */
622 			else
623 				break;
624 		}
625 #endif /* VLAN_ARRAY */
626 	/* Trunk should have been destroyed in vlan_unconfig(). */
627 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
628 	VLAN_UNLOCK();
629 }
630 
631 /*
632  * Return the trunk device for a virtual interface.
633  */
634 static struct ifnet  *
635 vlan_trunkdev(struct ifnet *ifp)
636 {
637 	struct ifvlan *ifv;
638 
639 	if (ifp->if_type != IFT_L2VLAN)
640 		return (NULL);
641 	ifv = ifp->if_softc;
642 	ifp = NULL;
643 	VLAN_LOCK();
644 	if (ifv->ifv_trunk)
645 		ifp = PARENT(ifv);
646 	VLAN_UNLOCK();
647 	return (ifp);
648 }
649 
650 /*
651  * Return the 12-bit VLAN VID for this interface, for use by external
652  * components such as Infiniband.
653  *
654  * XXXRW: Note that the function name here is historical; it should be named
655  * vlan_vid().
656  */
657 static int
658 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
659 {
660 	struct ifvlan *ifv;
661 
662 	if (ifp->if_type != IFT_L2VLAN)
663 		return (EINVAL);
664 	ifv = ifp->if_softc;
665 	*vidp = ifv->ifv_vid;
666 	return (0);
667 }
668 
669 /*
670  * Return a driver specific cookie for this interface.  Synchronization
671  * with setcookie must be provided by the driver.
672  */
673 static void *
674 vlan_cookie(struct ifnet *ifp)
675 {
676 	struct ifvlan *ifv;
677 
678 	if (ifp->if_type != IFT_L2VLAN)
679 		return (NULL);
680 	ifv = ifp->if_softc;
681 	return (ifv->ifv_cookie);
682 }
683 
684 /*
685  * Store a cookie in our softc that drivers can use to store driver
686  * private per-instance data in.
687  */
688 static int
689 vlan_setcookie(struct ifnet *ifp, void *cookie)
690 {
691 	struct ifvlan *ifv;
692 
693 	if (ifp->if_type != IFT_L2VLAN)
694 		return (EINVAL);
695 	ifv = ifp->if_softc;
696 	ifv->ifv_cookie = cookie;
697 	return (0);
698 }
699 
700 /*
701  * Return the vlan device present at the specific VID.
702  */
703 static struct ifnet *
704 vlan_devat(struct ifnet *ifp, uint16_t vid)
705 {
706 	struct ifvlantrunk *trunk;
707 	struct ifvlan *ifv;
708 	TRUNK_LOCK_READER;
709 
710 	trunk = ifp->if_vlantrunk;
711 	if (trunk == NULL)
712 		return (NULL);
713 	ifp = NULL;
714 	TRUNK_RLOCK(trunk);
715 	ifv = vlan_gethash(trunk, vid);
716 	if (ifv)
717 		ifp = ifv->ifv_ifp;
718 	TRUNK_RUNLOCK(trunk);
719 	return (ifp);
720 }
721 
722 /*
723  * Recalculate the cached VLAN tag exposed via the MIB.
724  */
725 static void
726 vlan_tag_recalculate(struct ifvlan *ifv)
727 {
728 
729        ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0);
730 }
731 
732 /*
733  * VLAN support can be loaded as a module.  The only place in the
734  * system that's intimately aware of this is ether_input.  We hook
735  * into this code through vlan_input_p which is defined there and
736  * set here.  No one else in the system should be aware of this so
737  * we use an explicit reference here.
738  */
739 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
740 
741 /* For if_link_state_change() eyes only... */
742 extern	void (*vlan_link_state_p)(struct ifnet *);
743 
744 static int
745 vlan_modevent(module_t mod, int type, void *data)
746 {
747 
748 	switch (type) {
749 	case MOD_LOAD:
750 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
751 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
752 		if (ifdetach_tag == NULL)
753 			return (ENOMEM);
754 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
755 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
756 		if (iflladdr_tag == NULL)
757 			return (ENOMEM);
758 		VLAN_LOCK_INIT();
759 		vlan_input_p = vlan_input;
760 		vlan_link_state_p = vlan_link_state;
761 		vlan_trunk_cap_p = vlan_trunk_capabilities;
762 		vlan_trunkdev_p = vlan_trunkdev;
763 		vlan_cookie_p = vlan_cookie;
764 		vlan_setcookie_p = vlan_setcookie;
765 		vlan_tag_p = vlan_tag;
766 		vlan_devat_p = vlan_devat;
767 #ifndef VIMAGE
768 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
769 		    vlan_clone_create, vlan_clone_destroy);
770 #endif
771 		if (bootverbose)
772 			printf("vlan: initialized, using "
773 #ifdef VLAN_ARRAY
774 			       "full-size arrays"
775 #else
776 			       "hash tables with chaining"
777 #endif
778 
779 			       "\n");
780 		break;
781 	case MOD_UNLOAD:
782 #ifndef VIMAGE
783 		if_clone_detach(vlan_cloner);
784 #endif
785 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
786 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
787 		vlan_input_p = NULL;
788 		vlan_link_state_p = NULL;
789 		vlan_trunk_cap_p = NULL;
790 		vlan_trunkdev_p = NULL;
791 		vlan_tag_p = NULL;
792 		vlan_cookie_p = NULL;
793 		vlan_setcookie_p = NULL;
794 		vlan_devat_p = NULL;
795 		VLAN_LOCK_DESTROY();
796 		if (bootverbose)
797 			printf("vlan: unloaded\n");
798 		break;
799 	default:
800 		return (EOPNOTSUPP);
801 	}
802 	return (0);
803 }
804 
805 static moduledata_t vlan_mod = {
806 	"if_vlan",
807 	vlan_modevent,
808 	0
809 };
810 
811 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
812 MODULE_VERSION(if_vlan, 3);
813 
814 #ifdef VIMAGE
815 static void
816 vnet_vlan_init(const void *unused __unused)
817 {
818 
819 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
820 		    vlan_clone_create, vlan_clone_destroy);
821 	V_vlan_cloner = vlan_cloner;
822 }
823 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
824     vnet_vlan_init, NULL);
825 
826 static void
827 vnet_vlan_uninit(const void *unused __unused)
828 {
829 
830 	if_clone_detach(V_vlan_cloner);
831 }
832 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
833     vnet_vlan_uninit, NULL);
834 #endif
835 
836 /*
837  * Check for <etherif>.<vlan> style interface names.
838  */
839 static struct ifnet *
840 vlan_clone_match_ethervid(const char *name, int *vidp)
841 {
842 	char ifname[IFNAMSIZ];
843 	char *cp;
844 	struct ifnet *ifp;
845 	int vid;
846 
847 	strlcpy(ifname, name, IFNAMSIZ);
848 	if ((cp = strchr(ifname, '.')) == NULL)
849 		return (NULL);
850 	*cp = '\0';
851 	if ((ifp = ifunit(ifname)) == NULL)
852 		return (NULL);
853 	/* Parse VID. */
854 	if (*++cp == '\0')
855 		return (NULL);
856 	vid = 0;
857 	for(; *cp >= '0' && *cp <= '9'; cp++)
858 		vid = (vid * 10) + (*cp - '0');
859 	if (*cp != '\0')
860 		return (NULL);
861 	if (vidp != NULL)
862 		*vidp = vid;
863 
864 	return (ifp);
865 }
866 
867 static int
868 vlan_clone_match(struct if_clone *ifc, const char *name)
869 {
870 	const char *cp;
871 
872 	if (vlan_clone_match_ethervid(name, NULL) != NULL)
873 		return (1);
874 
875 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
876 		return (0);
877 	for (cp = name + 4; *cp != '\0'; cp++) {
878 		if (*cp < '0' || *cp > '9')
879 			return (0);
880 	}
881 
882 	return (1);
883 }
884 
885 static int
886 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
887 {
888 	char *dp;
889 	int wildcard;
890 	int unit;
891 	int error;
892 	int vid;
893 	int ethertag;
894 	struct ifvlan *ifv;
895 	struct ifnet *ifp;
896 	struct ifnet *p;
897 	struct ifaddr *ifa;
898 	struct sockaddr_dl *sdl;
899 	struct vlanreq vlr;
900 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
901 
902 	/*
903 	 * There are 3 (ugh) ways to specify the cloned device:
904 	 * o pass a parameter block with the clone request.
905 	 * o specify parameters in the text of the clone device name
906 	 * o specify no parameters and get an unattached device that
907 	 *   must be configured separately.
908 	 * The first technique is preferred; the latter two are
909 	 * supported for backwards compatibility.
910 	 *
911 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
912 	 * called for.
913 	 */
914 	if (params) {
915 		error = copyin(params, &vlr, sizeof(vlr));
916 		if (error)
917 			return error;
918 		p = ifunit(vlr.vlr_parent);
919 		if (p == NULL)
920 			return (ENXIO);
921 		error = ifc_name2unit(name, &unit);
922 		if (error != 0)
923 			return (error);
924 
925 		ethertag = 1;
926 		vid = vlr.vlr_tag;
927 		wildcard = (unit < 0);
928 	} else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) {
929 		ethertag = 1;
930 		unit = -1;
931 		wildcard = 0;
932 	} else {
933 		ethertag = 0;
934 
935 		error = ifc_name2unit(name, &unit);
936 		if (error != 0)
937 			return (error);
938 
939 		wildcard = (unit < 0);
940 	}
941 
942 	error = ifc_alloc_unit(ifc, &unit);
943 	if (error != 0)
944 		return (error);
945 
946 	/* In the wildcard case, we need to update the name. */
947 	if (wildcard) {
948 		for (dp = name; *dp != '\0'; dp++);
949 		if (snprintf(dp, len - (dp-name), "%d", unit) >
950 		    len - (dp-name) - 1) {
951 			panic("%s: interface name too long", __func__);
952 		}
953 	}
954 
955 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
956 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
957 	if (ifp == NULL) {
958 		ifc_free_unit(ifc, unit);
959 		free(ifv, M_VLAN);
960 		return (ENOSPC);
961 	}
962 	SLIST_INIT(&ifv->vlan_mc_listhead);
963 	ifp->if_softc = ifv;
964 	/*
965 	 * Set the name manually rather than using if_initname because
966 	 * we don't conform to the default naming convention for interfaces.
967 	 */
968 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
969 	ifp->if_dname = vlanname;
970 	ifp->if_dunit = unit;
971 	/* NB: flags are not set here */
972 	ifp->if_linkmib = &ifv->ifv_mib;
973 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
974 	/* NB: mtu is not set here */
975 
976 	ifp->if_init = vlan_init;
977 	ifp->if_transmit = vlan_transmit;
978 	ifp->if_qflush = vlan_qflush;
979 	ifp->if_ioctl = vlan_ioctl;
980 #ifdef RATELIMIT
981 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
982 #endif
983 	ifp->if_flags = VLAN_IFFLAGS;
984 	ether_ifattach(ifp, eaddr);
985 	/* Now undo some of the damage... */
986 	ifp->if_baudrate = 0;
987 	ifp->if_type = IFT_L2VLAN;
988 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
989 	ifa = ifp->if_addr;
990 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
991 	sdl->sdl_type = IFT_L2VLAN;
992 
993 	if (ethertag) {
994 		error = vlan_config(ifv, p, vid);
995 		if (error != 0) {
996 			/*
997 			 * Since we've partially failed, we need to back
998 			 * out all the way, otherwise userland could get
999 			 * confused.  Thus, we destroy the interface.
1000 			 */
1001 			ether_ifdetach(ifp);
1002 			vlan_unconfig(ifp);
1003 			if_free(ifp);
1004 			ifc_free_unit(ifc, unit);
1005 			free(ifv, M_VLAN);
1006 
1007 			return (error);
1008 		}
1009 
1010 		/* Update flags on the parent, if necessary. */
1011 		vlan_setflags(ifp, 1);
1012 	}
1013 
1014 	return (0);
1015 }
1016 
1017 static int
1018 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1019 {
1020 	struct ifvlan *ifv = ifp->if_softc;
1021 	int unit = ifp->if_dunit;
1022 
1023 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1024 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1025 	if_free(ifp);
1026 	free(ifv, M_VLAN);
1027 	ifc_free_unit(ifc, unit);
1028 
1029 	return (0);
1030 }
1031 
1032 /*
1033  * The ifp->if_init entry point for vlan(4) is a no-op.
1034  */
1035 static void
1036 vlan_init(void *foo __unused)
1037 {
1038 }
1039 
1040 /*
1041  * The if_transmit method for vlan(4) interface.
1042  */
1043 static int
1044 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1045 {
1046 	struct ifvlan *ifv;
1047 	struct ifnet *p;
1048 	struct m_tag *mtag;
1049 	uint16_t tag;
1050 	int error, len, mcast;
1051 
1052 	ifv = ifp->if_softc;
1053 	p = PARENT(ifv);
1054 	len = m->m_pkthdr.len;
1055 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1056 
1057 	BPF_MTAP(ifp, m);
1058 
1059 	/*
1060 	 * Do not run parent's if_transmit() if the parent is not up,
1061 	 * or parent's driver will cause a system crash.
1062 	 */
1063 	if (!UP_AND_RUNNING(p)) {
1064 		m_freem(m);
1065 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1066 		return (ENETDOWN);
1067 	}
1068 
1069 	/*
1070 	 * Pad the frame to the minimum size allowed if told to.
1071 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1072 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1073 	 * bridges that violate paragraph C.4.4.3.a from the same
1074 	 * document, i.e., fail to pad short frames after untagging.
1075 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1076 	 * untagging it will produce a 62-byte frame, which is a runt
1077 	 * and requires padding.  There are VLAN-enabled network
1078 	 * devices that just discard such runts instead or mishandle
1079 	 * them somehow.
1080 	 */
1081 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1082 		static char pad[8];	/* just zeros */
1083 		int n;
1084 
1085 		for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
1086 		     n > 0; n -= sizeof(pad))
1087 			if (!m_append(m, min(n, sizeof(pad)), pad))
1088 				break;
1089 
1090 		if (n > 0) {
1091 			if_printf(ifp, "cannot pad short frame\n");
1092 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1093 			m_freem(m);
1094 			return (0);
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * If underlying interface can do VLAN tag insertion itself,
1100 	 * just pass the packet along. However, we need some way to
1101 	 * tell the interface where the packet came from so that it
1102 	 * knows how to find the VLAN tag to use, so we attach a
1103 	 * packet tag that holds it.
1104 	 */
1105 	if (vlan_mtag_pcp && (mtag = m_tag_locate(m, MTAG_8021Q,
1106 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1107 		tag = EVL_MAKETAG(ifv->ifv_vid, *(uint8_t *)(mtag + 1), 0);
1108 	else
1109               tag = ifv->ifv_tag;
1110 	if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1111 		m->m_pkthdr.ether_vtag = tag;
1112 		m->m_flags |= M_VLANTAG;
1113 	} else {
1114 		m = ether_vlanencap(m, tag);
1115 		if (m == NULL) {
1116 			if_printf(ifp, "unable to prepend VLAN header\n");
1117 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1118 			return (0);
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * Send it, precisely as ether_output() would have.
1124 	 */
1125 	error = (p->if_transmit)(p, m);
1126 	if (error == 0) {
1127 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1128 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1129 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1130 	} else
1131 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1132 	return (error);
1133 }
1134 
1135 /*
1136  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1137  */
1138 static void
1139 vlan_qflush(struct ifnet *ifp __unused)
1140 {
1141 }
1142 
1143 static void
1144 vlan_input(struct ifnet *ifp, struct mbuf *m)
1145 {
1146 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1147 	struct ifvlan *ifv;
1148 	TRUNK_LOCK_READER;
1149 	struct m_tag *mtag;
1150 	uint16_t vid, tag;
1151 
1152 	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
1153 
1154 	if (m->m_flags & M_VLANTAG) {
1155 		/*
1156 		 * Packet is tagged, but m contains a normal
1157 		 * Ethernet frame; the tag is stored out-of-band.
1158 		 */
1159 		tag = m->m_pkthdr.ether_vtag;
1160 		m->m_flags &= ~M_VLANTAG;
1161 	} else {
1162 		struct ether_vlan_header *evl;
1163 
1164 		/*
1165 		 * Packet is tagged in-band as specified by 802.1q.
1166 		 */
1167 		switch (ifp->if_type) {
1168 		case IFT_ETHER:
1169 			if (m->m_len < sizeof(*evl) &&
1170 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1171 				if_printf(ifp, "cannot pullup VLAN header\n");
1172 				return;
1173 			}
1174 			evl = mtod(m, struct ether_vlan_header *);
1175 			tag = ntohs(evl->evl_tag);
1176 
1177 			/*
1178 			 * Remove the 802.1q header by copying the Ethernet
1179 			 * addresses over it and adjusting the beginning of
1180 			 * the data in the mbuf.  The encapsulated Ethernet
1181 			 * type field is already in place.
1182 			 */
1183 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1184 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1185 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1186 			break;
1187 
1188 		default:
1189 #ifdef INVARIANTS
1190 			panic("%s: %s has unsupported if_type %u",
1191 			      __func__, ifp->if_xname, ifp->if_type);
1192 #endif
1193 			m_freem(m);
1194 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1195 			return;
1196 		}
1197 	}
1198 
1199 	vid = EVL_VLANOFTAG(tag);
1200 
1201 	TRUNK_RLOCK(trunk);
1202 	ifv = vlan_gethash(trunk, vid);
1203 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1204 		TRUNK_RUNLOCK(trunk);
1205 		m_freem(m);
1206 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1207 		return;
1208 	}
1209 	TRUNK_RUNLOCK(trunk);
1210 
1211 	if (vlan_mtag_pcp) {
1212 		/*
1213 		 * While uncommon, it is possible that we will find a 802.1q
1214 		 * packet encapsulated inside another packet that also had an
1215 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1216 		 * arriving over ethernet.  In that case, we replace the
1217 		 * existing 802.1q PCP m_tag value.
1218 		 */
1219 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1220 		if (mtag == NULL) {
1221 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1222 			    sizeof(uint8_t), M_NOWAIT);
1223 			if (mtag == NULL) {
1224 				m_freem(m);
1225 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1226 				return;
1227 			}
1228 			m_tag_prepend(m, mtag);
1229 		}
1230 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1231 	}
1232 
1233 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1234 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1235 
1236 	/* Pass it back through the parent's input routine. */
1237 	(*ifp->if_input)(ifv->ifv_ifp, m);
1238 }
1239 
1240 static int
1241 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid)
1242 {
1243 	struct ifvlantrunk *trunk;
1244 	struct ifnet *ifp;
1245 	int error = 0;
1246 
1247 	/*
1248 	 * We can handle non-ethernet hardware types as long as
1249 	 * they handle the tagging and headers themselves.
1250 	 */
1251 	if (p->if_type != IFT_ETHER &&
1252 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1253 		return (EPROTONOSUPPORT);
1254 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1255 		return (EPROTONOSUPPORT);
1256 	/*
1257 	 * Don't let the caller set up a VLAN VID with
1258 	 * anything except VLID bits.
1259 	 * VID numbers 0x0 and 0xFFF are reserved.
1260 	 */
1261 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1262 		return (EINVAL);
1263 	if (ifv->ifv_trunk)
1264 		return (EBUSY);
1265 
1266 	if (p->if_vlantrunk == NULL) {
1267 		trunk = malloc(sizeof(struct ifvlantrunk),
1268 		    M_VLAN, M_WAITOK | M_ZERO);
1269 		vlan_inithash(trunk);
1270 		VLAN_LOCK();
1271 		if (p->if_vlantrunk != NULL) {
1272 			/* A race that is very unlikely to be hit. */
1273 			vlan_freehash(trunk);
1274 			free(trunk, M_VLAN);
1275 			goto exists;
1276 		}
1277 		TRUNK_LOCK_INIT(trunk);
1278 		TRUNK_LOCK(trunk);
1279 		p->if_vlantrunk = trunk;
1280 		trunk->parent = p;
1281 	} else {
1282 		VLAN_LOCK();
1283 exists:
1284 		trunk = p->if_vlantrunk;
1285 		TRUNK_LOCK(trunk);
1286 	}
1287 
1288 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1289 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1290 	vlan_tag_recalculate(ifv);
1291 	error = vlan_inshash(trunk, ifv);
1292 	if (error)
1293 		goto done;
1294 	ifv->ifv_proto = ETHERTYPE_VLAN;
1295 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1296 	ifv->ifv_mintu = ETHERMIN;
1297 	ifv->ifv_pflags = 0;
1298 	ifv->ifv_capenable = -1;
1299 
1300 	/*
1301 	 * If the parent supports the VLAN_MTU capability,
1302 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1303 	 * use it.
1304 	 */
1305 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1306 		/*
1307 		 * No need to fudge the MTU since the parent can
1308 		 * handle extended frames.
1309 		 */
1310 		ifv->ifv_mtufudge = 0;
1311 	} else {
1312 		/*
1313 		 * Fudge the MTU by the encapsulation size.  This
1314 		 * makes us incompatible with strictly compliant
1315 		 * 802.1Q implementations, but allows us to use
1316 		 * the feature with other NetBSD implementations,
1317 		 * which might still be useful.
1318 		 */
1319 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1320 	}
1321 
1322 	ifv->ifv_trunk = trunk;
1323 	ifp = ifv->ifv_ifp;
1324 	/*
1325 	 * Initialize fields from our parent.  This duplicates some
1326 	 * work with ether_ifattach() but allows for non-ethernet
1327 	 * interfaces to also work.
1328 	 */
1329 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1330 	ifp->if_baudrate = p->if_baudrate;
1331 	ifp->if_output = p->if_output;
1332 	ifp->if_input = p->if_input;
1333 	ifp->if_resolvemulti = p->if_resolvemulti;
1334 	ifp->if_addrlen = p->if_addrlen;
1335 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1336 
1337 	/*
1338 	 * Copy only a selected subset of flags from the parent.
1339 	 * Other flags are none of our business.
1340 	 */
1341 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1342 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1343 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1344 #undef VLAN_COPY_FLAGS
1345 
1346 	ifp->if_link_state = p->if_link_state;
1347 
1348 	vlan_capabilities(ifv);
1349 
1350 	/*
1351 	 * Set up our interface address to reflect the underlying
1352 	 * physical interface's.
1353 	 */
1354 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1355 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1356 	    p->if_addrlen;
1357 
1358 	/*
1359 	 * Configure multicast addresses that may already be
1360 	 * joined on the vlan device.
1361 	 */
1362 	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1363 
1364 	/* We are ready for operation now. */
1365 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1366 done:
1367 	TRUNK_UNLOCK(trunk);
1368 	if (error == 0)
1369 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1370 	VLAN_UNLOCK();
1371 
1372 	return (error);
1373 }
1374 
1375 static void
1376 vlan_unconfig(struct ifnet *ifp)
1377 {
1378 
1379 	VLAN_LOCK();
1380 	vlan_unconfig_locked(ifp, 0);
1381 	VLAN_UNLOCK();
1382 }
1383 
1384 static void
1385 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1386 {
1387 	struct ifvlantrunk *trunk;
1388 	struct vlan_mc_entry *mc;
1389 	struct ifvlan *ifv;
1390 	struct ifnet  *parent;
1391 	int error;
1392 
1393 	VLAN_LOCK_ASSERT();
1394 
1395 	ifv = ifp->if_softc;
1396 	trunk = ifv->ifv_trunk;
1397 	parent = NULL;
1398 
1399 	if (trunk != NULL) {
1400 
1401 		TRUNK_LOCK(trunk);
1402 		parent = trunk->parent;
1403 
1404 		/*
1405 		 * Since the interface is being unconfigured, we need to
1406 		 * empty the list of multicast groups that we may have joined
1407 		 * while we were alive from the parent's list.
1408 		 */
1409 		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1410 			/*
1411 			 * If the parent interface is being detached,
1412 			 * all its multicast addresses have already
1413 			 * been removed.  Warn about errors if
1414 			 * if_delmulti() does fail, but don't abort as
1415 			 * all callers expect vlan destruction to
1416 			 * succeed.
1417 			 */
1418 			if (!departing) {
1419 				error = if_delmulti(parent,
1420 				    (struct sockaddr *)&mc->mc_addr);
1421 				if (error)
1422 					if_printf(ifp,
1423 		    "Failed to delete multicast address from parent: %d\n",
1424 					    error);
1425 			}
1426 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1427 			free(mc, M_VLAN);
1428 		}
1429 
1430 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1431 		vlan_remhash(trunk, ifv);
1432 		ifv->ifv_trunk = NULL;
1433 
1434 		/*
1435 		 * Check if we were the last.
1436 		 */
1437 		if (trunk->refcnt == 0) {
1438 			parent->if_vlantrunk = NULL;
1439 			/*
1440 			 * XXXGL: If some ithread has already entered
1441 			 * vlan_input() and is now blocked on the trunk
1442 			 * lock, then it should preempt us right after
1443 			 * unlock and finish its work. Then we will acquire
1444 			 * lock again in trunk_destroy().
1445 			 */
1446 			TRUNK_UNLOCK(trunk);
1447 			trunk_destroy(trunk);
1448 		} else
1449 			TRUNK_UNLOCK(trunk);
1450 	}
1451 
1452 	/* Disconnect from parent. */
1453 	if (ifv->ifv_pflags)
1454 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1455 	ifp->if_mtu = ETHERMTU;
1456 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1457 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1458 
1459 	/*
1460 	 * Only dispatch an event if vlan was
1461 	 * attached, otherwise there is nothing
1462 	 * to cleanup anyway.
1463 	 */
1464 	if (parent != NULL)
1465 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1466 }
1467 
1468 /* Handle a reference counted flag that should be set on the parent as well */
1469 static int
1470 vlan_setflag(struct ifnet *ifp, int flag, int status,
1471 	     int (*func)(struct ifnet *, int))
1472 {
1473 	struct ifvlan *ifv;
1474 	int error;
1475 
1476 	/* XXX VLAN_LOCK_ASSERT(); */
1477 
1478 	ifv = ifp->if_softc;
1479 	status = status ? (ifp->if_flags & flag) : 0;
1480 	/* Now "status" contains the flag value or 0 */
1481 
1482 	/*
1483 	 * See if recorded parent's status is different from what
1484 	 * we want it to be.  If it is, flip it.  We record parent's
1485 	 * status in ifv_pflags so that we won't clear parent's flag
1486 	 * we haven't set.  In fact, we don't clear or set parent's
1487 	 * flags directly, but get or release references to them.
1488 	 * That's why we can be sure that recorded flags still are
1489 	 * in accord with actual parent's flags.
1490 	 */
1491 	if (status != (ifv->ifv_pflags & flag)) {
1492 		error = (*func)(PARENT(ifv), status);
1493 		if (error)
1494 			return (error);
1495 		ifv->ifv_pflags &= ~flag;
1496 		ifv->ifv_pflags |= status;
1497 	}
1498 	return (0);
1499 }
1500 
1501 /*
1502  * Handle IFF_* flags that require certain changes on the parent:
1503  * if "status" is true, update parent's flags respective to our if_flags;
1504  * if "status" is false, forcedly clear the flags set on parent.
1505  */
1506 static int
1507 vlan_setflags(struct ifnet *ifp, int status)
1508 {
1509 	int error, i;
1510 
1511 	for (i = 0; vlan_pflags[i].flag; i++) {
1512 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1513 				     status, vlan_pflags[i].func);
1514 		if (error)
1515 			return (error);
1516 	}
1517 	return (0);
1518 }
1519 
1520 /* Inform all vlans that their parent has changed link state */
1521 static void
1522 vlan_link_state(struct ifnet *ifp)
1523 {
1524 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1525 	struct ifvlan *ifv;
1526 	int i;
1527 
1528 	TRUNK_LOCK(trunk);
1529 #ifdef VLAN_ARRAY
1530 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1531 		if (trunk->vlans[i] != NULL) {
1532 			ifv = trunk->vlans[i];
1533 #else
1534 	for (i = 0; i < (1 << trunk->hwidth); i++)
1535 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1536 #endif
1537 			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1538 			if_link_state_change(ifv->ifv_ifp,
1539 			    trunk->parent->if_link_state);
1540 		}
1541 	TRUNK_UNLOCK(trunk);
1542 }
1543 
1544 static void
1545 vlan_capabilities(struct ifvlan *ifv)
1546 {
1547 	struct ifnet *p = PARENT(ifv);
1548 	struct ifnet *ifp = ifv->ifv_ifp;
1549 	struct ifnet_hw_tsomax hw_tsomax;
1550 	int cap = 0, ena = 0, mena;
1551 	u_long hwa = 0;
1552 
1553 	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1554 
1555 	/* Mask parent interface enabled capabilities disabled by user. */
1556 	mena = p->if_capenable & ifv->ifv_capenable;
1557 
1558 	/*
1559 	 * If the parent interface can do checksum offloading
1560 	 * on VLANs, then propagate its hardware-assisted
1561 	 * checksumming flags. Also assert that checksum
1562 	 * offloading requires hardware VLAN tagging.
1563 	 */
1564 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1565 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1566 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1567 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1568 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1569 		if (ena & IFCAP_TXCSUM)
1570 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1571 			    CSUM_UDP | CSUM_SCTP);
1572 		if (ena & IFCAP_TXCSUM_IPV6)
1573 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1574 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1575 	}
1576 
1577 	/*
1578 	 * If the parent interface can do TSO on VLANs then
1579 	 * propagate the hardware-assisted flag. TSO on VLANs
1580 	 * does not necessarily require hardware VLAN tagging.
1581 	 */
1582 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1583 	if_hw_tsomax_common(p, &hw_tsomax);
1584 	if_hw_tsomax_update(ifp, &hw_tsomax);
1585 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1586 		cap |= p->if_capabilities & IFCAP_TSO;
1587 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1588 		ena |= mena & IFCAP_TSO;
1589 		if (ena & IFCAP_TSO)
1590 			hwa |= p->if_hwassist & CSUM_TSO;
1591 	}
1592 
1593 	/*
1594 	 * If the parent interface can do LRO and checksum offloading on
1595 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1596 	 * cost nothing, while false negative may lead to some confusions.
1597 	 */
1598 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1599 		cap |= p->if_capabilities & IFCAP_LRO;
1600 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1601 		ena |= p->if_capenable & IFCAP_LRO;
1602 
1603 	/*
1604 	 * If the parent interface can offload TCP connections over VLANs then
1605 	 * propagate its TOE capability to the VLAN interface.
1606 	 *
1607 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1608 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1609 	 * with its own bit.
1610 	 */
1611 #define	IFCAP_VLAN_TOE IFCAP_TOE
1612 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1613 		cap |= p->if_capabilities & IFCAP_TOE;
1614 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1615 		TOEDEV(ifp) = TOEDEV(p);
1616 		ena |= mena & IFCAP_TOE;
1617 	}
1618 
1619 	/*
1620 	 * If the parent interface supports dynamic link state, so does the
1621 	 * VLAN interface.
1622 	 */
1623 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1624 	ena |= (mena & IFCAP_LINKSTATE);
1625 
1626 #ifdef RATELIMIT
1627 	/*
1628 	 * If the parent interface supports ratelimiting, so does the
1629 	 * VLAN interface.
1630 	 */
1631 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1632 	ena |= (mena & IFCAP_TXRTLMT);
1633 #endif
1634 
1635 	ifp->if_capabilities = cap;
1636 	ifp->if_capenable = ena;
1637 	ifp->if_hwassist = hwa;
1638 }
1639 
1640 static void
1641 vlan_trunk_capabilities(struct ifnet *ifp)
1642 {
1643 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1644 	struct ifvlan *ifv;
1645 	int i;
1646 
1647 	TRUNK_LOCK(trunk);
1648 #ifdef VLAN_ARRAY
1649 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1650 		if (trunk->vlans[i] != NULL) {
1651 			ifv = trunk->vlans[i];
1652 #else
1653 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1654 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1655 #endif
1656 			vlan_capabilities(ifv);
1657 	}
1658 	TRUNK_UNLOCK(trunk);
1659 }
1660 
1661 static int
1662 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1663 {
1664 	struct ifnet *p;
1665 	struct ifreq *ifr;
1666 	struct ifaddr *ifa;
1667 	struct ifvlan *ifv;
1668 	struct ifvlantrunk *trunk;
1669 	struct vlanreq vlr;
1670 	int error = 0;
1671 
1672 	ifr = (struct ifreq *)data;
1673 	ifa = (struct ifaddr *) data;
1674 	ifv = ifp->if_softc;
1675 
1676 	switch (cmd) {
1677 	case SIOCSIFADDR:
1678 		ifp->if_flags |= IFF_UP;
1679 #ifdef INET
1680 		if (ifa->ifa_addr->sa_family == AF_INET)
1681 			arp_ifinit(ifp, ifa);
1682 #endif
1683 		break;
1684 	case SIOCGIFADDR:
1685                 {
1686 			struct sockaddr *sa;
1687 
1688 			sa = (struct sockaddr *)&ifr->ifr_data;
1689 			bcopy(IF_LLADDR(ifp), sa->sa_data, ifp->if_addrlen);
1690                 }
1691 		break;
1692 	case SIOCGIFMEDIA:
1693 		VLAN_LOCK();
1694 		if (TRUNK(ifv) != NULL) {
1695 			p = PARENT(ifv);
1696 			VLAN_UNLOCK();
1697 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1698 			/* Limit the result to the parent's current config. */
1699 			if (error == 0) {
1700 				struct ifmediareq *ifmr;
1701 
1702 				ifmr = (struct ifmediareq *)data;
1703 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1704 					ifmr->ifm_count = 1;
1705 					error = copyout(&ifmr->ifm_current,
1706 						ifmr->ifm_ulist,
1707 						sizeof(int));
1708 				}
1709 			}
1710 		} else {
1711 			VLAN_UNLOCK();
1712 			error = EINVAL;
1713 		}
1714 		break;
1715 
1716 	case SIOCSIFMEDIA:
1717 		error = EINVAL;
1718 		break;
1719 
1720 	case SIOCSIFMTU:
1721 		/*
1722 		 * Set the interface MTU.
1723 		 */
1724 		VLAN_LOCK();
1725 		if (TRUNK(ifv) != NULL) {
1726 			if (ifr->ifr_mtu >
1727 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1728 			    ifr->ifr_mtu <
1729 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1730 				error = EINVAL;
1731 			else
1732 				ifp->if_mtu = ifr->ifr_mtu;
1733 		} else
1734 			error = EINVAL;
1735 		VLAN_UNLOCK();
1736 		break;
1737 
1738 	case SIOCSETVLAN:
1739 #ifdef VIMAGE
1740 		/*
1741 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1742 		 * interface to be delegated to a jail without allowing the
1743 		 * jail to change what underlying interface/VID it is
1744 		 * associated with.  We are not entirely convinced that this
1745 		 * is the right way to accomplish that policy goal.
1746 		 */
1747 		if (ifp->if_vnet != ifp->if_home_vnet) {
1748 			error = EPERM;
1749 			break;
1750 		}
1751 #endif
1752 		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1753 		if (error)
1754 			break;
1755 		if (vlr.vlr_parent[0] == '\0') {
1756 			vlan_unconfig(ifp);
1757 			break;
1758 		}
1759 		p = ifunit(vlr.vlr_parent);
1760 		if (p == NULL) {
1761 			error = ENOENT;
1762 			break;
1763 		}
1764 		error = vlan_config(ifv, p, vlr.vlr_tag);
1765 		if (error)
1766 			break;
1767 
1768 		/* Update flags on the parent, if necessary. */
1769 		vlan_setflags(ifp, 1);
1770 		break;
1771 
1772 	case SIOCGETVLAN:
1773 #ifdef VIMAGE
1774 		if (ifp->if_vnet != ifp->if_home_vnet) {
1775 			error = EPERM;
1776 			break;
1777 		}
1778 #endif
1779 		bzero(&vlr, sizeof(vlr));
1780 		VLAN_LOCK();
1781 		if (TRUNK(ifv) != NULL) {
1782 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1783 			    sizeof(vlr.vlr_parent));
1784 			vlr.vlr_tag = ifv->ifv_vid;
1785 		}
1786 		VLAN_UNLOCK();
1787 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1788 		break;
1789 
1790 	case SIOCSIFFLAGS:
1791 		/*
1792 		 * We should propagate selected flags to the parent,
1793 		 * e.g., promiscuous mode.
1794 		 */
1795 		if (TRUNK(ifv) != NULL)
1796 			error = vlan_setflags(ifp, 1);
1797 		break;
1798 
1799 	case SIOCADDMULTI:
1800 	case SIOCDELMULTI:
1801 		/*
1802 		 * If we don't have a parent, just remember the membership for
1803 		 * when we do.
1804 		 */
1805 		trunk = TRUNK(ifv);
1806 		if (trunk != NULL) {
1807 			TRUNK_LOCK(trunk);
1808 			error = vlan_setmulti(ifp);
1809 			TRUNK_UNLOCK(trunk);
1810 		}
1811 		break;
1812 
1813 	case SIOCGVLANPCP:
1814 #ifdef VIMAGE
1815 		if (ifp->if_vnet != ifp->if_home_vnet) {
1816 			error = EPERM;
1817 			break;
1818 		}
1819 #endif
1820 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
1821 		break;
1822 
1823 	case SIOCSVLANPCP:
1824 #ifdef VIMAGE
1825 		if (ifp->if_vnet != ifp->if_home_vnet) {
1826 			error = EPERM;
1827 			break;
1828 		}
1829 #endif
1830 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
1831 		if (error)
1832 			break;
1833 		if (ifr->ifr_vlan_pcp > 7) {
1834 			error = EINVAL;
1835 			break;
1836 		}
1837 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
1838 		vlan_tag_recalculate(ifv);
1839 		break;
1840 
1841 	case SIOCSIFCAP:
1842 		VLAN_LOCK();
1843 		ifv->ifv_capenable = ifr->ifr_reqcap;
1844 		trunk = TRUNK(ifv);
1845 		if (trunk != NULL) {
1846 			TRUNK_LOCK(trunk);
1847 			vlan_capabilities(ifv);
1848 			TRUNK_UNLOCK(trunk);
1849 		}
1850 		VLAN_UNLOCK();
1851 		break;
1852 
1853 	default:
1854 		error = EINVAL;
1855 		break;
1856 	}
1857 
1858 	return (error);
1859 }
1860 
1861 #ifdef RATELIMIT
1862 static int
1863 vlan_snd_tag_alloc(struct ifnet *ifp,
1864     union if_snd_tag_alloc_params *params,
1865     struct m_snd_tag **ppmt)
1866 {
1867 
1868 	/* get trunk device */
1869 	ifp = vlan_trunkdev(ifp);
1870 	if (ifp == NULL || (ifp->if_capenable & IFCAP_TXRTLMT) == 0)
1871 		return (EOPNOTSUPP);
1872 	/* forward allocation request */
1873 	return (ifp->if_snd_tag_alloc(ifp, params, ppmt));
1874 }
1875 #endif
1876