xref: /freebsd/sys/net/if_vlan.c (revision 9336e0699bda8a301cd2bfa37106b6ec5e32012e)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34  * Might be extended some day to also handle IEEE 802.1p priority
35  * tagging.  This is sort of sneaky in the implementation, since
36  * we need to pretend to be enough of an Ethernet implementation
37  * to make arp work.  The way we do this is by telling everyone
38  * that we are an Ethernet, and then catch the packets that
39  * ether_output() left on our output queue when it calls
40  * if_start(), rewrite them for use by the real outgoing interface,
41  * and ask it to send them.
42  */
43 
44 #include "opt_vlan.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/module.h>
52 #include <sys/rwlock.h>
53 #include <sys/queue.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <sys/systm.h>
58 
59 #include <net/bpf.h>
60 #include <net/ethernet.h>
61 #include <net/if.h>
62 #include <net/if_clone.h>
63 #include <net/if_dl.h>
64 #include <net/if_types.h>
65 #include <net/if_vlan_var.h>
66 
67 #define VLANNAME	"vlan"
68 #define	VLAN_DEF_HWIDTH	4
69 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
70 
71 #define	UP_AND_RUNNING(ifp) \
72     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
73 
74 LIST_HEAD(ifvlanhead, ifvlan);
75 
76 struct ifvlantrunk {
77 	struct	ifnet   *parent;	/* parent interface of this trunk */
78 	struct	rwlock	rw;
79 #ifdef VLAN_ARRAY
80 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
81 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
82 #else
83 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
84 	uint16_t	hmask;
85 	uint16_t	hwidth;
86 #endif
87 	int		refcnt;
88 };
89 
90 struct vlan_mc_entry {
91 	struct ether_addr		mc_addr;
92 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
93 };
94 
95 struct	ifvlan {
96 	struct	ifvlantrunk *ifv_trunk;
97 	struct	ifnet *ifv_ifp;
98 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
99 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
100 	int	ifv_pflags;	/* special flags we have set on parent */
101 	struct	ifv_linkmib {
102 		int	ifvm_encaplen;	/* encapsulation length */
103 		int	ifvm_mtufudge;	/* MTU fudged by this much */
104 		int	ifvm_mintu;	/* min transmission unit */
105 		uint16_t ifvm_proto;	/* encapsulation ethertype */
106 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
107 	}	ifv_mib;
108 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
109 #ifndef VLAN_ARRAY
110 	LIST_ENTRY(ifvlan) ifv_list;
111 #endif
112 };
113 #define	ifv_proto	ifv_mib.ifvm_proto
114 #define	ifv_tag		ifv_mib.ifvm_tag
115 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
116 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
117 #define	ifv_mintu	ifv_mib.ifvm_mintu
118 
119 /* Special flags we should propagate to parent. */
120 static struct {
121 	int flag;
122 	int (*func)(struct ifnet *, int);
123 } vlan_pflags[] = {
124 	{IFF_PROMISC, ifpromisc},
125 	{IFF_ALLMULTI, if_allmulti},
126 	{0, NULL}
127 };
128 
129 SYSCTL_DECL(_net_link);
130 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
131 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
132 
133 static int soft_pad = 0;
134 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
135 	   "pad short frames before tagging");
136 
137 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
138 
139 static eventhandler_tag ifdetach_tag;
140 
141 /*
142  * We have a global mutex, that is used to serialize configuration
143  * changes and isn't used in normal packet delivery.
144  *
145  * We also have a per-trunk rwlock, that is locked shared on packet
146  * processing and exclusive when configuration is changed.
147  *
148  * The VLAN_ARRAY substitutes the dynamic hash with a static array
149  * with 4096 entries. In theory this can give a boost in processing,
150  * however on practice it does not. Probably this is because array
151  * is too big to fit into CPU cache.
152  */
153 static struct mtx ifv_mtx;
154 #define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
155 #define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
156 #define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
157 #define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
158 #define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
159 #define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
160 #define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
161 #define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
162 #define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
163 #define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
164 #define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
165 #define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
166 #define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
167 
168 #ifndef VLAN_ARRAY
169 static	void vlan_inithash(struct ifvlantrunk *trunk);
170 static	void vlan_freehash(struct ifvlantrunk *trunk);
171 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
172 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
173 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
174 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
175 	uint16_t tag);
176 #endif
177 static	void trunk_destroy(struct ifvlantrunk *trunk);
178 
179 static	void vlan_start(struct ifnet *ifp);
180 static	void vlan_init(void *foo);
181 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
182 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
183 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
184     int (*func)(struct ifnet *, int));
185 static	int vlan_setflags(struct ifnet *ifp, int status);
186 static	int vlan_setmulti(struct ifnet *ifp);
187 static	int vlan_unconfig(struct ifnet *ifp);
188 static	int vlan_unconfig_locked(struct ifnet *ifp);
189 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
190 static	void vlan_link_state(struct ifnet *ifp, int link);
191 static	void vlan_capabilities(struct ifvlan *ifv);
192 static	void vlan_trunk_capabilities(struct ifnet *ifp);
193 
194 static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
195     const char *, int *);
196 static	int vlan_clone_match(struct if_clone *, const char *);
197 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
198 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
199 
200 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
201 
202 static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
203     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
204 
205 #ifndef VLAN_ARRAY
206 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
207 
208 static void
209 vlan_inithash(struct ifvlantrunk *trunk)
210 {
211 	int i, n;
212 
213 	/*
214 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
215 	 * It is OK in case this function is called before the trunk struct
216 	 * gets hooked up and becomes visible from other threads.
217 	 */
218 
219 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
220 	    ("%s: hash already initialized", __func__));
221 
222 	trunk->hwidth = VLAN_DEF_HWIDTH;
223 	n = 1 << trunk->hwidth;
224 	trunk->hmask = n - 1;
225 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
226 	for (i = 0; i < n; i++)
227 		LIST_INIT(&trunk->hash[i]);
228 }
229 
230 static void
231 vlan_freehash(struct ifvlantrunk *trunk)
232 {
233 #ifdef INVARIANTS
234 	int i;
235 
236 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
237 	for (i = 0; i < (1 << trunk->hwidth); i++)
238 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
239 		    ("%s: hash table not empty", __func__));
240 #endif
241 	free(trunk->hash, M_VLAN);
242 	trunk->hash = NULL;
243 	trunk->hwidth = trunk->hmask = 0;
244 }
245 
246 static int
247 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
248 {
249 	int i, b;
250 	struct ifvlan *ifv2;
251 
252 	TRUNK_LOCK_ASSERT(trunk);
253 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
254 
255 	b = 1 << trunk->hwidth;
256 	i = HASH(ifv->ifv_tag, trunk->hmask);
257 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
258 		if (ifv->ifv_tag == ifv2->ifv_tag)
259 			return (EEXIST);
260 
261 	/*
262 	 * Grow the hash when the number of vlans exceeds half of the number of
263 	 * hash buckets squared. This will make the average linked-list length
264 	 * buckets/2.
265 	 */
266 	if (trunk->refcnt > (b * b) / 2) {
267 		vlan_growhash(trunk, 1);
268 		i = HASH(ifv->ifv_tag, trunk->hmask);
269 	}
270 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
271 	trunk->refcnt++;
272 
273 	return (0);
274 }
275 
276 static int
277 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
278 {
279 	int i, b;
280 	struct ifvlan *ifv2;
281 
282 	TRUNK_LOCK_ASSERT(trunk);
283 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
284 
285 	b = 1 << trunk->hwidth;
286 	i = HASH(ifv->ifv_tag, trunk->hmask);
287 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
288 		if (ifv2 == ifv) {
289 			trunk->refcnt--;
290 			LIST_REMOVE(ifv2, ifv_list);
291 			if (trunk->refcnt < (b * b) / 2)
292 				vlan_growhash(trunk, -1);
293 			return (0);
294 		}
295 
296 	panic("%s: vlan not found\n", __func__);
297 	return (ENOENT); /*NOTREACHED*/
298 }
299 
300 /*
301  * Grow the hash larger or smaller if memory permits.
302  */
303 static void
304 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
305 {
306 	struct ifvlan *ifv;
307 	struct ifvlanhead *hash2;
308 	int hwidth2, i, j, n, n2;
309 
310 	TRUNK_LOCK_ASSERT(trunk);
311 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
312 
313 	if (howmuch == 0) {
314 		/* Harmless yet obvious coding error */
315 		printf("%s: howmuch is 0\n", __func__);
316 		return;
317 	}
318 
319 	hwidth2 = trunk->hwidth + howmuch;
320 	n = 1 << trunk->hwidth;
321 	n2 = 1 << hwidth2;
322 	/* Do not shrink the table below the default */
323 	if (hwidth2 < VLAN_DEF_HWIDTH)
324 		return;
325 
326 	/* M_NOWAIT because we're called with trunk mutex held */
327 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
328 	if (hash2 == NULL) {
329 		printf("%s: out of memory -- hash size not changed\n",
330 		    __func__);
331 		return;		/* We can live with the old hash table */
332 	}
333 	for (j = 0; j < n2; j++)
334 		LIST_INIT(&hash2[j]);
335 	for (i = 0; i < n; i++)
336 		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
337 			LIST_REMOVE(ifv, ifv_list);
338 			j = HASH(ifv->ifv_tag, n2 - 1);
339 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
340 		}
341 	free(trunk->hash, M_VLAN);
342 	trunk->hash = hash2;
343 	trunk->hwidth = hwidth2;
344 	trunk->hmask = n2 - 1;
345 
346 	if (bootverbose)
347 		if_printf(trunk->parent,
348 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
349 }
350 
351 static __inline struct ifvlan *
352 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
353 {
354 	struct ifvlan *ifv;
355 
356 	TRUNK_LOCK_RASSERT(trunk);
357 
358 	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
359 		if (ifv->ifv_tag == tag)
360 			return (ifv);
361 	return (NULL);
362 }
363 
364 #if 0
365 /* Debugging code to view the hashtables. */
366 static void
367 vlan_dumphash(struct ifvlantrunk *trunk)
368 {
369 	int i;
370 	struct ifvlan *ifv;
371 
372 	for (i = 0; i < (1 << trunk->hwidth); i++) {
373 		printf("%d: ", i);
374 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
375 			printf("%s ", ifv->ifv_ifp->if_xname);
376 		printf("\n");
377 	}
378 }
379 #endif /* 0 */
380 #endif /* !VLAN_ARRAY */
381 
382 static void
383 trunk_destroy(struct ifvlantrunk *trunk)
384 {
385 	VLAN_LOCK_ASSERT();
386 
387 	TRUNK_LOCK(trunk);
388 #ifndef VLAN_ARRAY
389 	vlan_freehash(trunk);
390 #endif
391 	trunk->parent->if_vlantrunk = NULL;
392 	TRUNK_UNLOCK(trunk);
393 	TRUNK_LOCK_DESTROY(trunk);
394 	free(trunk, M_VLAN);
395 }
396 
397 /*
398  * Program our multicast filter. What we're actually doing is
399  * programming the multicast filter of the parent. This has the
400  * side effect of causing the parent interface to receive multicast
401  * traffic that it doesn't really want, which ends up being discarded
402  * later by the upper protocol layers. Unfortunately, there's no way
403  * to avoid this: there really is only one physical interface.
404  *
405  * XXX: There is a possible race here if more than one thread is
406  *      modifying the multicast state of the vlan interface at the same time.
407  */
408 static int
409 vlan_setmulti(struct ifnet *ifp)
410 {
411 	struct ifnet		*ifp_p;
412 	struct ifmultiaddr	*ifma, *rifma = NULL;
413 	struct ifvlan		*sc;
414 	struct vlan_mc_entry	*mc;
415 	struct sockaddr_dl	sdl;
416 	int			error;
417 
418 	/*VLAN_LOCK_ASSERT();*/
419 
420 	/* Find the parent. */
421 	sc = ifp->if_softc;
422 	ifp_p = PARENT(sc);
423 
424 	bzero((char *)&sdl, sizeof(sdl));
425 	sdl.sdl_len = sizeof(sdl);
426 	sdl.sdl_family = AF_LINK;
427 	sdl.sdl_index = ifp_p->if_index;
428 	sdl.sdl_type = IFT_ETHER;
429 	sdl.sdl_alen = ETHER_ADDR_LEN;
430 
431 	/* First, remove any existing filter entries. */
432 	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
433 		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
434 		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
435 		if (error)
436 			return (error);
437 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
438 		free(mc, M_VLAN);
439 	}
440 
441 	/* Now program new ones. */
442 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
443 		if (ifma->ifma_addr->sa_family != AF_LINK)
444 			continue;
445 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
446 		if (mc == NULL)
447 			return (ENOMEM);
448 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
449 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
450 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
451 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
452 		    LLADDR(&sdl), ETHER_ADDR_LEN);
453 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
454 		if (error)
455 			return (error);
456 	}
457 
458 	return (0);
459 }
460 
461 /*
462  * A handler for network interface departure events.
463  * Track departure of trunks here so that we don't access invalid
464  * pointers or whatever if a trunk is ripped from under us, e.g.,
465  * by ejecting its hot-plug card.
466  */
467 static void
468 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
469 {
470 	struct ifvlan *ifv;
471 	int i;
472 
473 	/*
474 	 * Check if it's a trunk interface first of all
475 	 * to avoid needless locking.
476 	 */
477 	if (ifp->if_vlantrunk == NULL)
478 		return;
479 
480 	VLAN_LOCK();
481 	/*
482 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
483 	 * Check trunk pointer after each vlan_unconfig() as it will
484 	 * free it and set to NULL after the last vlan was detached.
485 	 */
486 #ifdef VLAN_ARRAY
487 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
488 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
489 			vlan_unconfig_locked(ifv->ifv_ifp);
490 			if (ifp->if_vlantrunk == NULL)
491 				break;
492 		}
493 #else /* VLAN_ARRAY */
494 restart:
495 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
496 		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
497 			vlan_unconfig_locked(ifv->ifv_ifp);
498 			if (ifp->if_vlantrunk)
499 				goto restart;	/* trunk->hwidth can change */
500 			else
501 				break;
502 		}
503 #endif /* VLAN_ARRAY */
504 	/* Trunk should have been destroyed in vlan_unconfig(). */
505 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
506 	VLAN_UNLOCK();
507 }
508 
509 /*
510  * VLAN support can be loaded as a module.  The only place in the
511  * system that's intimately aware of this is ether_input.  We hook
512  * into this code through vlan_input_p which is defined there and
513  * set here.  Noone else in the system should be aware of this so
514  * we use an explicit reference here.
515  */
516 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
517 
518 /* For if_link_state_change() eyes only... */
519 extern	void (*vlan_link_state_p)(struct ifnet *, int);
520 
521 static int
522 vlan_modevent(module_t mod, int type, void *data)
523 {
524 
525 	switch (type) {
526 	case MOD_LOAD:
527 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
528 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
529 		if (ifdetach_tag == NULL)
530 			return (ENOMEM);
531 		VLAN_LOCK_INIT();
532 		vlan_input_p = vlan_input;
533 		vlan_link_state_p = vlan_link_state;
534 		vlan_trunk_cap_p = vlan_trunk_capabilities;
535 		if_clone_attach(&vlan_cloner);
536 		if (bootverbose)
537 			printf("vlan: initialized, using "
538 #ifdef VLAN_ARRAY
539 			       "full-size arrays"
540 #else
541 			       "hash tables with chaining"
542 #endif
543 
544 			       "\n");
545 		break;
546 	case MOD_UNLOAD:
547 		if_clone_detach(&vlan_cloner);
548 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
549 		vlan_input_p = NULL;
550 		vlan_link_state_p = NULL;
551 		vlan_trunk_cap_p = NULL;
552 		VLAN_LOCK_DESTROY();
553 		if (bootverbose)
554 			printf("vlan: unloaded\n");
555 		break;
556 	default:
557 		return (EOPNOTSUPP);
558 	}
559 	return (0);
560 }
561 
562 static moduledata_t vlan_mod = {
563 	"if_vlan",
564 	vlan_modevent,
565 	0
566 };
567 
568 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
569 MODULE_VERSION(if_vlan, 3);
570 MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
571 
572 static struct ifnet *
573 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
574 {
575 	const char *cp;
576 	struct ifnet *ifp;
577 	int t = 0;
578 
579 	/* Check for <etherif>.<vlan> style interface names. */
580 	IFNET_RLOCK();
581 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
582 		if (ifp->if_type != IFT_ETHER)
583 			continue;
584 		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
585 			continue;
586 		cp = name + strlen(ifp->if_xname);
587 		if (*cp != '.')
588 			continue;
589 		for(; *cp != '\0'; cp++) {
590 			if (*cp < '0' || *cp > '9')
591 				continue;
592 			t = (t * 10) + (*cp - '0');
593 		}
594 		if (tag != NULL)
595 			*tag = t;
596 		break;
597 	}
598 	IFNET_RUNLOCK();
599 
600 	return (ifp);
601 }
602 
603 static int
604 vlan_clone_match(struct if_clone *ifc, const char *name)
605 {
606 	const char *cp;
607 
608 	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
609 		return (1);
610 
611 	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
612 		return (0);
613 	for (cp = name + 4; *cp != '\0'; cp++) {
614 		if (*cp < '0' || *cp > '9')
615 			return (0);
616 	}
617 
618 	return (1);
619 }
620 
621 static int
622 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
623 {
624 	char *dp;
625 	int wildcard;
626 	int unit;
627 	int error;
628 	int tag;
629 	int ethertag;
630 	struct ifvlan *ifv;
631 	struct ifnet *ifp;
632 	struct ifnet *p;
633 	struct vlanreq vlr;
634 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
635 
636 	/*
637 	 * There are 3 (ugh) ways to specify the cloned device:
638 	 * o pass a parameter block with the clone request.
639 	 * o specify parameters in the text of the clone device name
640 	 * o specify no parameters and get an unattached device that
641 	 *   must be configured separately.
642 	 * The first technique is preferred; the latter two are
643 	 * supported for backwards compatibilty.
644 	 */
645 	if (params) {
646 		error = copyin(params, &vlr, sizeof(vlr));
647 		if (error)
648 			return error;
649 		p = ifunit(vlr.vlr_parent);
650 		if (p == NULL)
651 			return ENXIO;
652 		/*
653 		 * Don't let the caller set up a VLAN tag with
654 		 * anything except VLID bits.
655 		 */
656 		if (vlr.vlr_tag & ~EVL_VLID_MASK)
657 			return (EINVAL);
658 		error = ifc_name2unit(name, &unit);
659 		if (error != 0)
660 			return (error);
661 
662 		ethertag = 1;
663 		tag = vlr.vlr_tag;
664 		wildcard = (unit < 0);
665 	} else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
666 		ethertag = 1;
667 		unit = -1;
668 		wildcard = 0;
669 
670 		/*
671 		 * Don't let the caller set up a VLAN tag with
672 		 * anything except VLID bits.
673 		 */
674 		if (tag & ~EVL_VLID_MASK)
675 			return (EINVAL);
676 	} else {
677 		ethertag = 0;
678 
679 		error = ifc_name2unit(name, &unit);
680 		if (error != 0)
681 			return (error);
682 
683 		wildcard = (unit < 0);
684 	}
685 
686 	error = ifc_alloc_unit(ifc, &unit);
687 	if (error != 0)
688 		return (error);
689 
690 	/* In the wildcard case, we need to update the name. */
691 	if (wildcard) {
692 		for (dp = name; *dp != '\0'; dp++);
693 		if (snprintf(dp, len - (dp-name), "%d", unit) >
694 		    len - (dp-name) - 1) {
695 			panic("%s: interface name too long", __func__);
696 		}
697 	}
698 
699 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
700 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
701 	if (ifp == NULL) {
702 		ifc_free_unit(ifc, unit);
703 		free(ifv, M_VLAN);
704 		return (ENOSPC);
705 	}
706 	SLIST_INIT(&ifv->vlan_mc_listhead);
707 
708 	ifp->if_softc = ifv;
709 	/*
710 	 * Set the name manually rather than using if_initname because
711 	 * we don't conform to the default naming convention for interfaces.
712 	 */
713 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
714 	ifp->if_dname = ifc->ifc_name;
715 	ifp->if_dunit = unit;
716 	/* NB: flags are not set here */
717 	ifp->if_linkmib = &ifv->ifv_mib;
718 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
719 	/* NB: mtu is not set here */
720 
721 	ifp->if_init = vlan_init;
722 	ifp->if_start = vlan_start;
723 	ifp->if_ioctl = vlan_ioctl;
724 	ifp->if_snd.ifq_maxlen = ifqmaxlen;
725 	ifp->if_flags = VLAN_IFFLAGS;
726 	ether_ifattach(ifp, eaddr);
727 	/* Now undo some of the damage... */
728 	ifp->if_baudrate = 0;
729 	ifp->if_type = IFT_L2VLAN;
730 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
731 
732 	if (ethertag) {
733 		error = vlan_config(ifv, p, tag);
734 		if (error != 0) {
735 			/*
736 			 * Since we've partialy failed, we need to back
737 			 * out all the way, otherwise userland could get
738 			 * confused.  Thus, we destroy the interface.
739 			 */
740 			ether_ifdetach(ifp);
741 			vlan_unconfig(ifp);
742 			if_free_type(ifp, IFT_ETHER);
743 			free(ifv, M_VLAN);
744 
745 			return (error);
746 		}
747 
748 		/* Update flags on the parent, if necessary. */
749 		vlan_setflags(ifp, 1);
750 	}
751 
752 	return (0);
753 }
754 
755 static int
756 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
757 {
758 	struct ifvlan *ifv = ifp->if_softc;
759 	int unit = ifp->if_dunit;
760 
761 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
762 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
763 	if_free_type(ifp, IFT_ETHER);
764 	free(ifv, M_VLAN);
765 	ifc_free_unit(ifc, unit);
766 
767 	return (0);
768 }
769 
770 /*
771  * The ifp->if_init entry point for vlan(4) is a no-op.
772  */
773 static void
774 vlan_init(void *foo __unused)
775 {
776 }
777 
778 /*
779  * The if_start method for vlan(4) interface. It doesn't
780  * raises the IFF_DRV_OACTIVE flag, since it is called
781  * only from IFQ_HANDOFF() macro in ether_output_frame().
782  * If the interface queue is full, and vlan_start() is
783  * not called, the queue would never get emptied and
784  * interface would stall forever.
785  */
786 static void
787 vlan_start(struct ifnet *ifp)
788 {
789 	struct ifvlan *ifv;
790 	struct ifnet *p;
791 	struct mbuf *m;
792 	int error;
793 
794 	ifv = ifp->if_softc;
795 	p = PARENT(ifv);
796 
797 	for (;;) {
798 		IF_DEQUEUE(&ifp->if_snd, m);
799 		if (m == NULL)
800 			break;
801 		BPF_MTAP(ifp, m);
802 
803 		/*
804 		 * Do not run parent's if_start() if the parent is not up,
805 		 * or parent's driver will cause a system crash.
806 		 */
807 		if (!UP_AND_RUNNING(p)) {
808 			m_freem(m);
809 			ifp->if_collisions++;
810 			continue;
811 		}
812 
813 		/*
814 		 * Pad the frame to the minimum size allowed if told to.
815 		 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
816 		 * paragraph C.4.4.3.b.  It can help to work around buggy
817 		 * bridges that violate paragraph C.4.4.3.a from the same
818 		 * document, i.e., fail to pad short frames after untagging.
819 		 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
820 		 * untagging it will produce a 62-byte frame, which is a runt
821 		 * and requires padding.  There are VLAN-enabled network
822 		 * devices that just discard such runts instead or mishandle
823 		 * them somehow.
824 		 */
825 		if (soft_pad) {
826 			static char pad[8];	/* just zeros */
827 			int n;
828 
829 			for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
830 			     n > 0; n -= sizeof(pad))
831 				if (!m_append(m, min(n, sizeof(pad)), pad))
832 					break;
833 
834 			if (n > 0) {
835 				if_printf(ifp, "cannot pad short frame\n");
836 				ifp->if_oerrors++;
837 				m_freem(m);
838 				continue;
839 			}
840 		}
841 
842 		/*
843 		 * If underlying interface can do VLAN tag insertion itself,
844 		 * just pass the packet along. However, we need some way to
845 		 * tell the interface where the packet came from so that it
846 		 * knows how to find the VLAN tag to use, so we attach a
847 		 * packet tag that holds it.
848 		 */
849 		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
850 			m->m_pkthdr.ether_vtag = ifv->ifv_tag;
851 			m->m_flags |= M_VLANTAG;
852 		} else {
853 			m = ether_vlanencap(m, ifv->ifv_tag);
854 			if (m == NULL) {
855 				if_printf(ifp,
856 				    "unable to prepend VLAN header\n");
857 				ifp->if_oerrors++;
858 				continue;
859 			}
860 		}
861 
862 		/*
863 		 * Send it, precisely as ether_output() would have.
864 		 * We are already running at splimp.
865 		 */
866 		IFQ_HANDOFF(p, m, error);
867 		if (!error)
868 			ifp->if_opackets++;
869 		else
870 			ifp->if_oerrors++;
871 	}
872 }
873 
874 static void
875 vlan_input(struct ifnet *ifp, struct mbuf *m)
876 {
877 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
878 	struct ifvlan *ifv;
879 	uint16_t tag;
880 
881 	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
882 
883 	if (m->m_flags & M_VLANTAG) {
884 		/*
885 		 * Packet is tagged, but m contains a normal
886 		 * Ethernet frame; the tag is stored out-of-band.
887 		 */
888 		tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
889 		m->m_flags &= ~M_VLANTAG;
890 	} else {
891 		struct ether_vlan_header *evl;
892 
893 		/*
894 		 * Packet is tagged in-band as specified by 802.1q.
895 		 */
896 		switch (ifp->if_type) {
897 		case IFT_ETHER:
898 			if (m->m_len < sizeof(*evl) &&
899 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
900 				if_printf(ifp, "cannot pullup VLAN header\n");
901 				return;
902 			}
903 			evl = mtod(m, struct ether_vlan_header *);
904 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
905 
906 			/*
907 			 * Remove the 802.1q header by copying the Ethernet
908 			 * addresses over it and adjusting the beginning of
909 			 * the data in the mbuf.  The encapsulated Ethernet
910 			 * type field is already in place.
911 			 */
912 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
913 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
914 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
915 			break;
916 
917 		default:
918 #ifdef INVARIANTS
919 			panic("%s: %s has unsupported if_type %u",
920 			      __func__, ifp->if_xname, ifp->if_type);
921 #endif
922 			m_freem(m);
923 			ifp->if_noproto++;
924 			return;
925 		}
926 	}
927 
928 	TRUNK_RLOCK(trunk);
929 #ifdef VLAN_ARRAY
930 	ifv = trunk->vlans[tag];
931 #else
932 	ifv = vlan_gethash(trunk, tag);
933 #endif
934 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
935 		TRUNK_RUNLOCK(trunk);
936 		m_freem(m);
937 		ifp->if_noproto++;
938 		return;
939 	}
940 	TRUNK_RUNLOCK(trunk);
941 
942 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
943 	ifv->ifv_ifp->if_ipackets++;
944 
945 	/* Pass it back through the parent's input routine. */
946 	(*ifp->if_input)(ifv->ifv_ifp, m);
947 }
948 
949 static int
950 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
951 {
952 	struct ifvlantrunk *trunk;
953 	struct ifnet *ifp;
954 	int error = 0;
955 
956 	/* VID numbers 0x0 and 0xFFF are reserved */
957 	if (tag == 0 || tag == 0xFFF)
958 		return (EINVAL);
959 	if (p->if_type != IFT_ETHER)
960 		return (EPROTONOSUPPORT);
961 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
962 		return (EPROTONOSUPPORT);
963 	if (ifv->ifv_trunk)
964 		return (EBUSY);
965 
966 	if (p->if_vlantrunk == NULL) {
967 		trunk = malloc(sizeof(struct ifvlantrunk),
968 		    M_VLAN, M_WAITOK | M_ZERO);
969 #ifndef VLAN_ARRAY
970 		vlan_inithash(trunk);
971 #endif
972 		VLAN_LOCK();
973 		if (p->if_vlantrunk != NULL) {
974 			/* A race that that is very unlikely to be hit. */
975 #ifndef VLAN_ARRAY
976 			vlan_freehash(trunk);
977 #endif
978 			free(trunk, M_VLAN);
979 			goto exists;
980 		}
981 		TRUNK_LOCK_INIT(trunk);
982 		TRUNK_LOCK(trunk);
983 		p->if_vlantrunk = trunk;
984 		trunk->parent = p;
985 	} else {
986 		VLAN_LOCK();
987 exists:
988 		trunk = p->if_vlantrunk;
989 		TRUNK_LOCK(trunk);
990 	}
991 
992 	ifv->ifv_tag = tag;	/* must set this before vlan_inshash() */
993 #ifdef VLAN_ARRAY
994 	if (trunk->vlans[tag] != NULL) {
995 		error = EEXIST;
996 		goto done;
997 	}
998 	trunk->vlans[tag] = ifv;
999 	trunk->refcnt++;
1000 #else
1001 	error = vlan_inshash(trunk, ifv);
1002 	if (error)
1003 		goto done;
1004 #endif
1005 	ifv->ifv_proto = ETHERTYPE_VLAN;
1006 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1007 	ifv->ifv_mintu = ETHERMIN;
1008 	ifv->ifv_pflags = 0;
1009 
1010 	/*
1011 	 * If the parent supports the VLAN_MTU capability,
1012 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1013 	 * use it.
1014 	 */
1015 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1016 		/*
1017 		 * No need to fudge the MTU since the parent can
1018 		 * handle extended frames.
1019 		 */
1020 		ifv->ifv_mtufudge = 0;
1021 	} else {
1022 		/*
1023 		 * Fudge the MTU by the encapsulation size.  This
1024 		 * makes us incompatible with strictly compliant
1025 		 * 802.1Q implementations, but allows us to use
1026 		 * the feature with other NetBSD implementations,
1027 		 * which might still be useful.
1028 		 */
1029 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1030 	}
1031 
1032 	ifv->ifv_trunk = trunk;
1033 	ifp = ifv->ifv_ifp;
1034 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1035 	ifp->if_baudrate = p->if_baudrate;
1036 	/*
1037 	 * Copy only a selected subset of flags from the parent.
1038 	 * Other flags are none of our business.
1039 	 */
1040 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1041 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1042 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1043 #undef VLAN_COPY_FLAGS
1044 
1045 	ifp->if_link_state = p->if_link_state;
1046 
1047 	vlan_capabilities(ifv);
1048 
1049 	/*
1050 	 * Set up our ``Ethernet address'' to reflect the underlying
1051 	 * physical interface's.
1052 	 */
1053 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
1054 
1055 	/*
1056 	 * Configure multicast addresses that may already be
1057 	 * joined on the vlan device.
1058 	 */
1059 	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1060 
1061 	/* We are ready for operation now. */
1062 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1063 done:
1064 	TRUNK_UNLOCK(trunk);
1065 	VLAN_UNLOCK();
1066 
1067 	return (error);
1068 }
1069 
1070 static int
1071 vlan_unconfig(struct ifnet *ifp)
1072 {
1073 	int ret;
1074 
1075 	VLAN_LOCK();
1076 	ret = vlan_unconfig_locked(ifp);
1077 	VLAN_UNLOCK();
1078 	return (ret);
1079 }
1080 
1081 static int
1082 vlan_unconfig_locked(struct ifnet *ifp)
1083 {
1084 	struct ifvlantrunk *trunk;
1085 	struct vlan_mc_entry *mc;
1086 	struct ifvlan *ifv;
1087 	int error;
1088 
1089 	VLAN_LOCK_ASSERT();
1090 
1091 	ifv = ifp->if_softc;
1092 	trunk = ifv->ifv_trunk;
1093 
1094 	if (trunk) {
1095 		struct sockaddr_dl sdl;
1096 		struct ifnet *p = trunk->parent;
1097 
1098 		TRUNK_LOCK(trunk);
1099 
1100 		/*
1101 		 * Since the interface is being unconfigured, we need to
1102 		 * empty the list of multicast groups that we may have joined
1103 		 * while we were alive from the parent's list.
1104 		 */
1105 		bzero((char *)&sdl, sizeof(sdl));
1106 		sdl.sdl_len = sizeof(sdl);
1107 		sdl.sdl_family = AF_LINK;
1108 		sdl.sdl_index = p->if_index;
1109 		sdl.sdl_type = IFT_ETHER;
1110 		sdl.sdl_alen = ETHER_ADDR_LEN;
1111 
1112 		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1113 			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1114 			    ETHER_ADDR_LEN);
1115 			error = if_delmulti(p, (struct sockaddr *)&sdl);
1116 			if (error)
1117 				return (error);
1118 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1119 			free(mc, M_VLAN);
1120 		}
1121 
1122 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1123 #ifdef VLAN_ARRAY
1124 		trunk->vlans[ifv->ifv_tag] = NULL;
1125 		trunk->refcnt--;
1126 #else
1127 		vlan_remhash(trunk, ifv);
1128 #endif
1129 		ifv->ifv_trunk = NULL;
1130 
1131 		/*
1132 		 * Check if we were the last.
1133 		 */
1134 		if (trunk->refcnt == 0) {
1135 			trunk->parent->if_vlantrunk = NULL;
1136 			/*
1137 			 * XXXGL: If some ithread has already entered
1138 			 * vlan_input() and is now blocked on the trunk
1139 			 * lock, then it should preempt us right after
1140 			 * unlock and finish its work. Then we will acquire
1141 			 * lock again in trunk_destroy().
1142 			 */
1143 			TRUNK_UNLOCK(trunk);
1144 			trunk_destroy(trunk);
1145 		} else
1146 			TRUNK_UNLOCK(trunk);
1147 	}
1148 
1149 	/* Disconnect from parent. */
1150 	if (ifv->ifv_pflags)
1151 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1152 	ifp->if_mtu = ETHERMTU;
1153 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1154 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1155 
1156 	return (0);
1157 }
1158 
1159 /* Handle a reference counted flag that should be set on the parent as well */
1160 static int
1161 vlan_setflag(struct ifnet *ifp, int flag, int status,
1162 	     int (*func)(struct ifnet *, int))
1163 {
1164 	struct ifvlan *ifv;
1165 	int error;
1166 
1167 	/* XXX VLAN_LOCK_ASSERT(); */
1168 
1169 	ifv = ifp->if_softc;
1170 	status = status ? (ifp->if_flags & flag) : 0;
1171 	/* Now "status" contains the flag value or 0 */
1172 
1173 	/*
1174 	 * See if recorded parent's status is different from what
1175 	 * we want it to be.  If it is, flip it.  We record parent's
1176 	 * status in ifv_pflags so that we won't clear parent's flag
1177 	 * we haven't set.  In fact, we don't clear or set parent's
1178 	 * flags directly, but get or release references to them.
1179 	 * That's why we can be sure that recorded flags still are
1180 	 * in accord with actual parent's flags.
1181 	 */
1182 	if (status != (ifv->ifv_pflags & flag)) {
1183 		error = (*func)(PARENT(ifv), status);
1184 		if (error)
1185 			return (error);
1186 		ifv->ifv_pflags &= ~flag;
1187 		ifv->ifv_pflags |= status;
1188 	}
1189 	return (0);
1190 }
1191 
1192 /*
1193  * Handle IFF_* flags that require certain changes on the parent:
1194  * if "status" is true, update parent's flags respective to our if_flags;
1195  * if "status" is false, forcedly clear the flags set on parent.
1196  */
1197 static int
1198 vlan_setflags(struct ifnet *ifp, int status)
1199 {
1200 	int error, i;
1201 
1202 	for (i = 0; vlan_pflags[i].flag; i++) {
1203 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1204 				     status, vlan_pflags[i].func);
1205 		if (error)
1206 			return (error);
1207 	}
1208 	return (0);
1209 }
1210 
1211 /* Inform all vlans that their parent has changed link state */
1212 static void
1213 vlan_link_state(struct ifnet *ifp, int link)
1214 {
1215 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1216 	struct ifvlan *ifv;
1217 	int i;
1218 
1219 	TRUNK_LOCK(trunk);
1220 #ifdef VLAN_ARRAY
1221 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1222 		if (trunk->vlans[i] != NULL) {
1223 			ifv = trunk->vlans[i];
1224 #else
1225 	for (i = 0; i < (1 << trunk->hwidth); i++)
1226 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1227 #endif
1228 			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1229 			if_link_state_change(ifv->ifv_ifp,
1230 			    trunk->parent->if_link_state);
1231 		}
1232 	TRUNK_UNLOCK(trunk);
1233 }
1234 
1235 static void
1236 vlan_capabilities(struct ifvlan *ifv)
1237 {
1238 	struct ifnet *p = PARENT(ifv);
1239 	struct ifnet *ifp = ifv->ifv_ifp;
1240 
1241 	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1242 
1243 	/*
1244 	 * If the parent interface can do checksum offloading
1245 	 * on VLANs, then propagate its hardware-assisted
1246 	 * checksumming flags. Also assert that checksum
1247 	 * offloading requires hardware VLAN tagging.
1248 	 */
1249 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1250 		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1251 
1252 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1253 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1254 		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1255 		ifp->if_hwassist = p->if_hwassist;
1256 	} else {
1257 		ifp->if_capenable = 0;
1258 		ifp->if_hwassist = 0;
1259 	}
1260 }
1261 
1262 static void
1263 vlan_trunk_capabilities(struct ifnet *ifp)
1264 {
1265 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1266 	struct ifvlan *ifv;
1267 	int i;
1268 
1269 	TRUNK_LOCK(trunk);
1270 #ifdef VLAN_ARRAY
1271 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1272 		if (trunk->vlans[i] != NULL) {
1273 			ifv = trunk->vlans[i];
1274 #else
1275 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1276 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1277 #endif
1278 			vlan_capabilities(ifv);
1279 	}
1280 	TRUNK_UNLOCK(trunk);
1281 }
1282 
1283 static int
1284 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1285 {
1286 	struct ifaddr *ifa;
1287 	struct ifnet *p;
1288 	struct ifreq *ifr;
1289 	struct ifvlan *ifv;
1290 	struct vlanreq vlr;
1291 	int error = 0;
1292 
1293 	ifr = (struct ifreq *)data;
1294 	ifa = (struct ifaddr *)data;
1295 	ifv = ifp->if_softc;
1296 
1297 	switch (cmd) {
1298 	case SIOCGIFMEDIA:
1299 		VLAN_LOCK();
1300 		if (TRUNK(ifv) != NULL) {
1301 			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1302 					SIOCGIFMEDIA, data);
1303 			VLAN_UNLOCK();
1304 			/* Limit the result to the parent's current config. */
1305 			if (error == 0) {
1306 				struct ifmediareq *ifmr;
1307 
1308 				ifmr = (struct ifmediareq *)data;
1309 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1310 					ifmr->ifm_count = 1;
1311 					error = copyout(&ifmr->ifm_current,
1312 						ifmr->ifm_ulist,
1313 						sizeof(int));
1314 				}
1315 			}
1316 		} else {
1317 			VLAN_UNLOCK();
1318 			error = EINVAL;
1319 		}
1320 		break;
1321 
1322 	case SIOCSIFMEDIA:
1323 		error = EINVAL;
1324 		break;
1325 
1326 	case SIOCSIFMTU:
1327 		/*
1328 		 * Set the interface MTU.
1329 		 */
1330 		VLAN_LOCK();
1331 		if (TRUNK(ifv) != NULL) {
1332 			if (ifr->ifr_mtu >
1333 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1334 			    ifr->ifr_mtu <
1335 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1336 				error = EINVAL;
1337 			else
1338 				ifp->if_mtu = ifr->ifr_mtu;
1339 		} else
1340 			error = EINVAL;
1341 		VLAN_UNLOCK();
1342 		break;
1343 
1344 	case SIOCSETVLAN:
1345 		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1346 		if (error)
1347 			break;
1348 		if (vlr.vlr_parent[0] == '\0') {
1349 			vlan_unconfig(ifp);
1350 			break;
1351 		}
1352 		p = ifunit(vlr.vlr_parent);
1353 		if (p == 0) {
1354 			error = ENOENT;
1355 			break;
1356 		}
1357 		/*
1358 		 * Don't let the caller set up a VLAN tag with
1359 		 * anything except VLID bits.
1360 		 */
1361 		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1362 			error = EINVAL;
1363 			break;
1364 		}
1365 		error = vlan_config(ifv, p, vlr.vlr_tag);
1366 		if (error)
1367 			break;
1368 
1369 		/* Update flags on the parent, if necessary. */
1370 		vlan_setflags(ifp, 1);
1371 		break;
1372 
1373 	case SIOCGETVLAN:
1374 		bzero(&vlr, sizeof(vlr));
1375 		VLAN_LOCK();
1376 		if (TRUNK(ifv) != NULL) {
1377 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1378 			    sizeof(vlr.vlr_parent));
1379 			vlr.vlr_tag = ifv->ifv_tag;
1380 		}
1381 		VLAN_UNLOCK();
1382 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1383 		break;
1384 
1385 	case SIOCSIFFLAGS:
1386 		/*
1387 		 * We should propagate selected flags to the parent,
1388 		 * e.g., promiscuous mode.
1389 		 */
1390 		if (TRUNK(ifv) != NULL)
1391 			error = vlan_setflags(ifp, 1);
1392 		break;
1393 
1394 	case SIOCADDMULTI:
1395 	case SIOCDELMULTI:
1396 		/*
1397 		 * If we don't have a parent, just remember the membership for
1398 		 * when we do.
1399 		 */
1400 		if (TRUNK(ifv) != NULL)
1401 			error = vlan_setmulti(ifp);
1402 		break;
1403 
1404 	default:
1405 		error = ether_ioctl(ifp, cmd, data);
1406 	}
1407 
1408 	return (error);
1409 }
1410