xref: /freebsd/sys/net/if_vlan.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34  * Might be extended some day to also handle IEEE 802.1p priority
35  * tagging.  This is sort of sneaky in the implementation, since
36  * we need to pretend to be enough of an Ethernet implementation
37  * to make arp work.  The way we do this is by telling everyone
38  * that we are an Ethernet, and then catch the packets that
39  * ether_output() left on our output queue when it calls
40  * if_start(), rewrite them for use by the real outgoing interface,
41  * and ask it to send them.
42  */
43 
44 #include "opt_inet.h"
45 #include "opt_vlan.h"
46 
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/module.h>
53 #include <sys/rwlock.h>
54 #include <sys/queue.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 
60 #include <net/bpf.h>
61 #include <net/ethernet.h>
62 #include <net/if.h>
63 #include <net/if_clone.h>
64 #include <net/if_arp.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 #include <net/if_vlan_var.h>
68 
69 #ifdef INET
70 #include <netinet/in.h>
71 #include <netinet/if_ether.h>
72 #endif
73 
74 #define VLANNAME	"vlan"
75 #define	VLAN_DEF_HWIDTH	4
76 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
77 
78 LIST_HEAD(ifvlanhead, ifvlan);
79 
80 struct ifvlantrunk {
81 	struct	ifnet   *parent;	/* parent interface of this trunk */
82 	struct	rwlock	rw;
83 #ifdef VLAN_ARRAY
84 	struct	ifvlan	*vlans[EVL_VLID_MASK+1]; /* static table */
85 #else
86 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
87 	uint16_t	hmask;
88 	uint16_t	hwidth;
89 #endif
90 	int		refcnt;
91 	LIST_ENTRY(ifvlantrunk) trunk_entry;
92 };
93 static LIST_HEAD(, ifvlantrunk) trunk_list;
94 
95 struct vlan_mc_entry {
96 	struct ether_addr		mc_addr;
97 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
98 };
99 
100 struct	ifvlan {
101 	struct	ifvlantrunk *ifv_trunk;
102 	struct	ifnet *ifv_ifp;
103 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
104 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
105 	int	ifv_pflags;	/* special flags we have set on parent */
106 	struct	ifv_linkmib {
107 		int	ifvm_parent;
108 		int	ifvm_encaplen;	/* encapsulation length */
109 		int	ifvm_mtufudge;	/* MTU fudged by this much */
110 		int	ifvm_mintu;	/* min transmission unit */
111 		uint16_t ifvm_proto;	/* encapsulation ethertype */
112 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
113 	}	ifv_mib;
114 	SLIST_HEAD(__vlan_mchead, vlan_mc_entry) vlan_mc_listhead;
115 	LIST_ENTRY(ifvlan) ifv_list;
116 };
117 #define	ifv_tag	ifv_mib.ifvm_tag
118 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
119 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
120 #define	ifv_mintu	ifv_mib.ifvm_mintu
121 
122 /* Special flags we should propagate to parent. */
123 static struct {
124 	int flag;
125 	int (*func)(struct ifnet *, int);
126 } vlan_pflags[] = {
127 	{IFF_PROMISC, ifpromisc},
128 	{IFF_ALLMULTI, if_allmulti},
129 	{0, NULL}
130 };
131 
132 SYSCTL_DECL(_net_link);
133 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
134 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
135 
136 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
137 
138 /*
139  * We have a global mutex, that is used to serialize configuration
140  * changes and isn't used in normal packet delivery.
141  *
142  * We also have a per-trunk rwlock, that is locked shared on packet
143  * processing and exclusive when configuration is changed.
144  *
145  * The VLAN_ARRAY substitutes the dynamic hash with a static array
146  * with 4096 entries. In theory this can give a boots in processing,
147  * however on practice it does not. Probably this is because array
148  * is too big to fit into CPU cache.
149  */
150 static struct mtx ifv_mtx;
151 #define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
152 #define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
153 #define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
154 #define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
155 #define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
156 #define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
157 #define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
158 #define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
159 #define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
160 #define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
161 #define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
162 #define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
163 #define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
164 
165 #ifndef VLAN_ARRAY
166 static	void vlan_inithash(struct ifvlantrunk *trunk);
167 static	void vlan_freehash(struct ifvlantrunk *trunk);
168 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
169 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
170 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
171 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
172 	uint16_t tag);
173 #endif
174 static	void trunk_destroy(struct ifvlantrunk *trunk);
175 
176 static	void vlan_start(struct ifnet *ifp);
177 static	void vlan_ifinit(void *foo);
178 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
179 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
180 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
181     int (*func)(struct ifnet *, int));
182 static	int vlan_setflags(struct ifnet *ifp, int status);
183 static	int vlan_setmulti(struct ifnet *ifp);
184 static	int vlan_unconfig(struct ifnet *ifp);
185 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
186 static	void vlan_link_state(struct ifnet *ifp, int link);
187 static	void vlan_capabilities(struct ifvlan *ifv);
188 static	void vlan_trunk_capabilities(struct ifnet *ifp);
189 
190 static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
191     const char *, int *);
192 static	int vlan_clone_match(struct if_clone *, const char *);
193 static	int vlan_clone_create(struct if_clone *, char *, size_t);
194 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
195 
196 static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
197     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
198 
199 #ifndef VLAN_ARRAY
200 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
201 static void
202 vlan_inithash(struct ifvlantrunk *trunk)
203 {
204 	int i, n;
205 
206 	/*
207 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
208 	 * It is OK in case this function is called before the trunk struct
209 	 * gets hooked up and becomes visible from other threads.
210 	 */
211 
212 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
213 	    ("%s: hash already initialized", __func__));
214 
215 	trunk->hwidth = VLAN_DEF_HWIDTH;
216 	n = 1 << trunk->hwidth;
217 	trunk->hmask = n - 1;
218 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
219 	for (i = 0; i < n; i++)
220 		LIST_INIT(&trunk->hash[i]);
221 }
222 
223 static void
224 vlan_freehash(struct ifvlantrunk *trunk)
225 {
226 #ifdef INVARIANTS
227 	int i;
228 
229 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
230 	for (i = 0; i < (1 << trunk->hwidth); i++)
231 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
232 		    ("%s: hash table not empty", __func__));
233 #endif
234 	free(trunk->hash, M_VLAN);
235 	trunk->hash = NULL;
236 	trunk->hwidth = trunk->hmask = 0;
237 }
238 
239 static int
240 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
241 {
242 	int i, b;
243 	struct ifvlan *ifv2;
244 
245 	TRUNK_LOCK_ASSERT(trunk);
246 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
247 
248 	b = 1 << trunk->hwidth;
249 	i = HASH(ifv->ifv_tag, trunk->hmask);
250 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
251 		if (ifv->ifv_tag == ifv2->ifv_tag)
252 			return (EEXIST);
253 
254 	/*
255 	 * Grow the hash when the number of vlans exceeds half of the number of
256 	 * hash buckets squared. This will make the average linked-list length
257 	 * buckets/2.
258 	 */
259 	if (trunk->refcnt > (b * b) / 2) {
260 		vlan_growhash(trunk, 1);
261 		i = HASH(ifv->ifv_tag, trunk->hmask);
262 	}
263 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
264 	trunk->refcnt++;
265 
266 	return (0);
267 }
268 
269 static int
270 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
271 {
272 	int i, b;
273 	struct ifvlan *ifv2;
274 
275 	TRUNK_LOCK_ASSERT(trunk);
276 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
277 
278 	b = 1 << trunk->hwidth;
279 	i = HASH(ifv->ifv_tag, trunk->hmask);
280 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
281 		if (ifv2 == ifv) {
282 			trunk->refcnt--;
283 			LIST_REMOVE(ifv2, ifv_list);
284 			if (trunk->refcnt < (b * b) / 2)
285 				vlan_growhash(trunk, -1);
286 			return (0);
287 		}
288 
289 	panic("%s: vlan not found\n", __func__);
290 	return (ENOENT); /*NOTREACHED*/
291 }
292 
293 /*
294  * Grow the hash larger or smaller if memory permits.
295  */
296 static void
297 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
298 {
299 
300 	struct ifvlan *ifv;
301 	struct ifvlanhead *hash2;
302 	int hwidth2, i, j, n, n2;
303 
304 	TRUNK_LOCK_ASSERT(trunk);
305 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
306 
307 	if (howmuch == 0) {
308 		/* Harmless yet obvious coding error */
309 		printf("%s: howmuch is 0\n", __func__);
310 		return;
311 	}
312 
313 	hwidth2 = trunk->hwidth + howmuch;
314 	n = 1 << trunk->hwidth;
315 	n2 = 1 << hwidth2;
316 	/* Do not shrink the table below the default */
317 	if (hwidth2 < VLAN_DEF_HWIDTH)
318 		return;
319 
320 	/* M_NOWAIT because we're called with trunk mutex held */
321 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
322 	if (hash2 == NULL) {
323 		printf("%s: out of memory -- hash size not changed\n",
324 		    __func__);
325 		return;		/* We can live with the old hash table */
326 	}
327 	for (j = 0; j < n2; j++)
328 		LIST_INIT(&hash2[j]);
329 	for (i = 0; i < n; i++)
330 		while (!LIST_EMPTY(&trunk->hash[i])) {
331 			ifv = LIST_FIRST(&trunk->hash[i]);
332 			LIST_REMOVE(ifv, ifv_list);
333 			j = HASH(ifv->ifv_tag, n2 - 1);
334 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
335 		}
336 	free(trunk->hash, M_VLAN);
337 	trunk->hash = hash2;
338 	trunk->hwidth = hwidth2;
339 	trunk->hmask = n2 - 1;
340 }
341 
342 static __inline struct ifvlan *
343 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
344 {
345 	struct ifvlan *ifv;
346 
347 	TRUNK_LOCK_RASSERT(trunk);
348 
349 	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
350 		if (ifv->ifv_tag == tag)
351 			return (ifv);
352 	return (NULL);
353 }
354 
355 #if 0
356 /* Debugging code to view the hashtables. */
357 static void
358 vlan_dumphash(struct ifvlantrunk *trunk)
359 {
360 	int i;
361 	struct ifvlan *ifv;
362 
363 	for (i = 0; i < (1 << trunk->hwidth); i++) {
364 		printf("%d: ", i);
365 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
366 			printf("%s ", ifv->ifv_ifp->if_xname);
367 		printf("\n");
368 	}
369 }
370 #endif /* 0 */
371 #endif /* !VLAN_ARRAY */
372 
373 static void
374 trunk_destroy(struct ifvlantrunk *trunk)
375 {
376 	VLAN_LOCK_ASSERT();
377 
378 	TRUNK_LOCK(trunk);
379 #ifndef VLAN_ARRAY
380 	vlan_freehash(trunk);
381 #endif
382 	trunk->parent->if_vlantrunk = NULL;
383 	LIST_REMOVE(trunk, trunk_entry);
384 	TRUNK_UNLOCK(trunk);
385 	TRUNK_LOCK_DESTROY(trunk);
386 	free(trunk, M_VLAN);
387 }
388 
389 /*
390  * Program our multicast filter. What we're actually doing is
391  * programming the multicast filter of the parent. This has the
392  * side effect of causing the parent interface to receive multicast
393  * traffic that it doesn't really want, which ends up being discarded
394  * later by the upper protocol layers. Unfortunately, there's no way
395  * to avoid this: there really is only one physical interface.
396  *
397  * XXX: There is a possible race here if more than one thread is
398  *      modifying the multicast state of the vlan interface at the same time.
399  */
400 static int
401 vlan_setmulti(struct ifnet *ifp)
402 {
403 	struct ifnet		*ifp_p;
404 	struct ifmultiaddr	*ifma, *rifma = NULL;
405 	struct ifvlan		*sc;
406 	struct vlan_mc_entry	*mc = NULL;
407 	struct sockaddr_dl	sdl;
408 	int			error;
409 
410 	/*VLAN_LOCK_ASSERT();*/
411 
412 	/* Find the parent. */
413 	sc = ifp->if_softc;
414 	ifp_p = PARENT(sc);
415 
416 	bzero((char *)&sdl, sizeof(sdl));
417 	sdl.sdl_len = sizeof(sdl);
418 	sdl.sdl_family = AF_LINK;
419 	sdl.sdl_index = ifp_p->if_index;
420 	sdl.sdl_type = IFT_ETHER;
421 	sdl.sdl_alen = ETHER_ADDR_LEN;
422 
423 	/* First, remove any existing filter entries. */
424 	while (SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
425 		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
426 		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
427 		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
428 		if (error)
429 			return (error);
430 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
431 		free(mc, M_VLAN);
432 	}
433 
434 	/* Now program new ones. */
435 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
436 		if (ifma->ifma_addr->sa_family != AF_LINK)
437 			continue;
438 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
439 		if (mc == NULL)
440 			return (ENOMEM);
441 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
442 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
443 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
444 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
445 		    LLADDR(&sdl), ETHER_ADDR_LEN);
446 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
447 		if (error)
448 			return (error);
449 	}
450 
451 	return (0);
452 }
453 
454 /*
455  * VLAN support can be loaded as a module.  The only place in the
456  * system that's intimately aware of this is ether_input.  We hook
457  * into this code through vlan_input_p which is defined there and
458  * set here.  Noone else in the system should be aware of this so
459  * we use an explicit reference here.
460  */
461 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
462 
463 /* For if_link_state_change() eyes only... */
464 extern	void (*vlan_link_state_p)(struct ifnet *, int);
465 
466 static int
467 vlan_modevent(module_t mod, int type, void *data)
468 {
469 
470 	switch (type) {
471 	case MOD_LOAD:
472 		LIST_INIT(&trunk_list);
473 		VLAN_LOCK_INIT();
474 		vlan_input_p = vlan_input;
475 		vlan_link_state_p = vlan_link_state;
476 		vlan_trunk_cap_p = vlan_trunk_capabilities;
477 		if_clone_attach(&vlan_cloner);
478 		break;
479 	case MOD_UNLOAD:
480 	    {
481 		struct ifvlantrunk *trunk, *trunk1;
482 
483 		if_clone_detach(&vlan_cloner);
484 		vlan_input_p = NULL;
485 		vlan_link_state_p = NULL;
486 		vlan_trunk_cap_p = NULL;
487 		VLAN_LOCK();
488 		LIST_FOREACH_SAFE(trunk, &trunk_list, trunk_entry, trunk1)
489 			trunk_destroy(trunk);
490 		VLAN_UNLOCK();
491 		VLAN_LOCK_DESTROY();
492 		break;
493 	    }
494 	default:
495 		return (EOPNOTSUPP);
496 	}
497 	return (0);
498 }
499 
500 static moduledata_t vlan_mod = {
501 	"if_vlan",
502 	vlan_modevent,
503 	0
504 };
505 
506 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
507 MODULE_VERSION(if_vlan, 3);
508 MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
509 
510 static struct ifnet *
511 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
512 {
513 	const char *cp;
514 	struct ifnet *ifp;
515 	int t = 0;
516 
517 	/* Check for <etherif>.<vlan> style interface names. */
518 	IFNET_RLOCK();
519 	TAILQ_FOREACH(ifp, &ifnet, if_link) {
520 		if (ifp->if_type != IFT_ETHER)
521 			continue;
522 		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
523 			continue;
524 		cp = name + strlen(ifp->if_xname);
525 		if (*cp != '.')
526 			continue;
527 		for(; *cp != '\0'; cp++) {
528 			if (*cp < '0' || *cp > '9')
529 				continue;
530 			t = (t * 10) + (*cp - '0');
531 		}
532 		if (tag != NULL)
533 			*tag = t;
534 		break;
535 	}
536 	IFNET_RUNLOCK();
537 
538 	return (ifp);
539 }
540 
541 static int
542 vlan_clone_match(struct if_clone *ifc, const char *name)
543 {
544 	const char *cp;
545 
546 	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
547 		return (1);
548 
549 	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
550 		return (0);
551 	for (cp = name + 4; *cp != '\0'; cp++) {
552 		if (*cp < '0' || *cp > '9')
553 			return (0);
554 	}
555 
556 	return (1);
557 }
558 
559 static int
560 vlan_clone_create(struct if_clone *ifc, char *name, size_t len)
561 {
562 	char *dp;
563 	int wildcard;
564 	int unit;
565 	int error;
566 	int tag;
567 	int ethertag;
568 	struct ifvlan *ifv;
569 	struct ifnet *ifp;
570 	struct ifnet *p;
571 	u_char eaddr[6] = {0,0,0,0,0,0};
572 
573 	if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
574 		ethertag = 1;
575 		unit = -1;
576 		wildcard = 0;
577 
578 		/*
579 		 * Don't let the caller set up a VLAN tag with
580 		 * anything except VLID bits.
581 		 */
582 		if (tag & ~EVL_VLID_MASK)
583 			return (EINVAL);
584 	} else {
585 		ethertag = 0;
586 
587 		error = ifc_name2unit(name, &unit);
588 		if (error != 0)
589 			return (error);
590 
591 		wildcard = (unit < 0);
592 	}
593 
594 	error = ifc_alloc_unit(ifc, &unit);
595 	if (error != 0)
596 		return (error);
597 
598 	/* In the wildcard case, we need to update the name. */
599 	if (wildcard) {
600 		for (dp = name; *dp != '\0'; dp++);
601 		if (snprintf(dp, len - (dp-name), "%d", unit) >
602 		    len - (dp-name) - 1) {
603 			panic("%s: interface name too long", __func__);
604 		}
605 	}
606 
607 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
608 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
609 	if (ifp == NULL) {
610 		ifc_free_unit(ifc, unit);
611 		free(ifv, M_VLAN);
612 		return (ENOSPC);
613 	}
614 	SLIST_INIT(&ifv->vlan_mc_listhead);
615 
616 	ifp->if_softc = ifv;
617 	/*
618 	 * Set the name manually rather than using if_initname because
619 	 * we don't conform to the default naming convention for interfaces.
620 	 */
621 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
622 	ifp->if_dname = ifc->ifc_name;
623 	ifp->if_dunit = unit;
624 	/* NB: flags are not set here */
625 	ifp->if_linkmib = &ifv->ifv_mib;
626 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
627 	/* NB: mtu is not set here */
628 
629 	ifp->if_init = vlan_ifinit;
630 	ifp->if_start = vlan_start;
631 	ifp->if_ioctl = vlan_ioctl;
632 	ifp->if_snd.ifq_maxlen = ifqmaxlen;
633 	ifp->if_flags = VLAN_IFFLAGS;
634 	ether_ifattach(ifp, eaddr);
635 	/* Now undo some of the damage... */
636 	ifp->if_baudrate = 0;
637 	ifp->if_type = IFT_L2VLAN;
638 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
639 
640 	if (ethertag) {
641 		error = vlan_config(ifv, p, tag);
642 		if (error != 0) {
643 			/*
644 			 * Since we've partialy failed, we need to back
645 			 * out all the way, otherwise userland could get
646 			 * confused.  Thus, we destroy the interface.
647 			 */
648 			vlan_unconfig(ifp);
649 			ether_ifdetach(ifp);
650 			if_free_type(ifp, IFT_ETHER);
651 			free(ifv, M_VLAN);
652 
653 			return (error);
654 		}
655 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
656 
657 		/* Update flags on the parent, if necessary. */
658 		vlan_setflags(ifp, 1);
659 	}
660 
661 	return (0);
662 }
663 
664 static int
665 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
666 {
667 	int unit;
668 	struct ifvlan *ifv = ifp->if_softc;
669 
670 	unit = ifp->if_dunit;
671 
672 	vlan_unconfig(ifp);
673 
674 	ether_ifdetach(ifp);
675 	if_free_type(ifp, IFT_ETHER);
676 
677 	free(ifv, M_VLAN);
678 
679 	ifc_free_unit(ifc, unit);
680 
681 	return (0);
682 }
683 
684 /*
685  * The ifp->if_init entry point for vlan(4) is a no-op.
686  */
687 static void
688 vlan_ifinit(void *foo)
689 {
690 
691 }
692 
693 /*
694  * The if_start method for vlan(4) interface. It doesn't
695  * raises the IFF_DRV_OACTIVE flag, since it is called
696  * only from IFQ_HANDOFF() macro in ether_output_frame().
697  * If the interface queue is full, and vlan_start() is
698  * not called, the queue would never get emptied and
699  * interface would stall forever.
700  */
701 static void
702 vlan_start(struct ifnet *ifp)
703 {
704 	struct ifvlan *ifv;
705 	struct ifnet *p;
706 	struct mbuf *m;
707 	int error;
708 
709 	ifv = ifp->if_softc;
710 	p = PARENT(ifv);
711 
712 	for (;;) {
713 		IF_DEQUEUE(&ifp->if_snd, m);
714 		if (m == 0)
715 			break;
716 		BPF_MTAP(ifp, m);
717 
718 		/*
719 		 * Do not run parent's if_start() if the parent is not up,
720 		 * or parent's driver will cause a system crash.
721 		 */
722 		if (!((p->if_flags & IFF_UP) &&
723 		    (p->if_drv_flags & IFF_DRV_RUNNING))) {
724 			m_freem(m);
725 			ifp->if_collisions++;
726 			continue;
727 		}
728 
729 		/*
730 		 * If underlying interface can do VLAN tag insertion itself,
731 		 * just pass the packet along. However, we need some way to
732 		 * tell the interface where the packet came from so that it
733 		 * knows how to find the VLAN tag to use, so we attach a
734 		 * packet tag that holds it.
735 		 */
736 		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
737 			struct m_tag *mtag = (struct m_tag *)
738 			    uma_zalloc(zone_mtag_vlan, M_NOWAIT);
739 			if (mtag == NULL) {
740 				ifp->if_oerrors++;
741 				m_freem(m);
742 				continue;
743 			}
744 			VLAN_TAG_VALUE(mtag) = ifv->ifv_tag;
745 			m_tag_prepend(m, mtag);
746 			m->m_flags |= M_VLANTAG;
747 		} else {
748 			struct ether_vlan_header *evl;
749 
750 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
751 			if (m == NULL) {
752 				if_printf(ifp,
753 				    "unable to prepend VLAN header\n");
754 				ifp->if_oerrors++;
755 				continue;
756 			}
757 			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
758 
759 			if (m->m_len < sizeof(*evl)) {
760 				m = m_pullup(m, sizeof(*evl));
761 				if (m == NULL) {
762 					if_printf(ifp,
763 					    "cannot pullup VLAN header\n");
764 					ifp->if_oerrors++;
765 					continue;
766 				}
767 			}
768 
769 			/*
770 			 * Transform the Ethernet header into an Ethernet header
771 			 * with 802.1Q encapsulation.
772 			 */
773 			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
774 			      mtod(m, char *), ETHER_HDR_LEN);
775 			evl = mtod(m, struct ether_vlan_header *);
776 			evl->evl_proto = evl->evl_encap_proto;
777 			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
778 			evl->evl_tag = htons(ifv->ifv_tag);
779 #ifdef DEBUG
780 			printf("%s: %*D\n", __func__, (int)sizeof(*evl),
781 			    (unsigned char *)evl, ":");
782 #endif
783 		}
784 
785 		/*
786 		 * Send it, precisely as ether_output() would have.
787 		 * We are already running at splimp.
788 		 */
789 		IFQ_HANDOFF(p, m, error);
790 		if (!error)
791 			ifp->if_opackets++;
792 		else
793 			ifp->if_oerrors++;
794 	}
795 }
796 
797 static void
798 vlan_input(struct ifnet *ifp, struct mbuf *m)
799 {
800 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
801 	struct ifvlan *ifv;
802 	struct m_tag *mtag;
803 	uint16_t tag;
804 
805 	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
806 
807 	if (m->m_flags & M_VLANTAG) {
808 		/*
809 		 * Packet is tagged, but m contains a normal
810 		 * Ethernet frame; the tag is stored out-of-band.
811 		 */
812 		mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
813 		KASSERT(mtag != NULL,
814 			("%s: M_VLANTAG without m_tag", __func__));
815 		tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag));
816 		m_tag_delete(m, mtag);
817 		m->m_flags &= ~M_VLANTAG;
818 	} else {
819 		struct ether_vlan_header *evl;
820 
821 		/*
822 		 * Packet is tagged in-band as specified by 802.1q.
823 		 */
824 		mtag = NULL;
825 		switch (ifp->if_type) {
826 		case IFT_ETHER:
827 			if (m->m_len < sizeof(*evl) &&
828 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
829 				if_printf(ifp, "cannot pullup VLAN header\n");
830 				return;
831 			}
832 			evl = mtod(m, struct ether_vlan_header *);
833 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
834 				("%s: bad encapsulation protocol (%u)",
835 				 __func__, ntohs(evl->evl_encap_proto)));
836 
837 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
838 
839 			/*
840 			 * Restore the original ethertype.  We'll remove
841 			 * the encapsulation after we've found the vlan
842 			 * interface corresponding to the tag.
843 			 */
844 			evl->evl_encap_proto = evl->evl_proto;
845 			break;
846 		default:
847 			tag = (uint16_t) -1;
848 #ifdef INVARIANTS
849 			panic("%s: unsupported if_type (%u)",
850 			      __func__, ifp->if_type);
851 #endif
852 			break;
853 		}
854 	}
855 
856 	/*
857 	 * In VLAN_ARRAY case we proceed completely lockless.
858 	 */
859 #ifdef VLAN_ARRAY
860 	ifv = trunk->vlans[tag];
861 	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
862 		m_freem(m);
863 		ifp->if_noproto++;
864 		return;
865 	}
866 #else
867 	TRUNK_RLOCK(trunk);
868 	ifv = vlan_gethash(trunk, tag);
869 	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
870 		TRUNK_RUNLOCK(trunk);
871 		m_freem(m);
872 		ifp->if_noproto++;
873 		return;
874 	}
875 	TRUNK_RUNLOCK(trunk);
876 #endif
877 
878 	if (mtag == NULL) {
879 		/*
880 		 * Packet had an in-line encapsulation header;
881 		 * remove it.  The original header has already
882 		 * been fixed up above.
883 		 */
884 		bcopy(mtod(m, caddr_t),
885 		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
886 		      ETHER_HDR_LEN);
887 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
888 	}
889 
890 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
891 	ifv->ifv_ifp->if_ipackets++;
892 
893 	/* Pass it back through the parent's input routine. */
894 	(*ifp->if_input)(ifv->ifv_ifp, m);
895 }
896 
897 static int
898 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
899 {
900 	struct ifvlantrunk *trunk;
901 	struct ifnet *ifp;
902 	int error = 0;
903 
904 	/* VID numbers 0x0 and 0xFFF are reserved */
905 	if (tag == 0 || tag == 0xFFF)
906 		return (EINVAL);
907 	if (p->if_type != IFT_ETHER)
908 		return (EPROTONOSUPPORT);
909 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
910 		return (EPROTONOSUPPORT);
911 	if (ifv->ifv_trunk)
912 		return (EBUSY);
913 
914 	if (p->if_vlantrunk == NULL) {
915 		trunk = malloc(sizeof(struct ifvlantrunk),
916 		    M_VLAN, M_WAITOK | M_ZERO);
917 #ifndef VLAN_ARRAY
918 		vlan_inithash(trunk);
919 #endif
920 		VLAN_LOCK();
921 		if (p->if_vlantrunk != NULL) {
922 			/* A race that that is very unlikely to be hit. */
923 #ifndef VLAN_ARRAY
924 			vlan_freehash(trunk);
925 #endif
926 			free(trunk, M_VLAN);
927 			goto exists;
928 		}
929 		TRUNK_LOCK_INIT(trunk);
930 		LIST_INSERT_HEAD(&trunk_list, trunk, trunk_entry);
931 		TRUNK_LOCK(trunk);
932 		p->if_vlantrunk = trunk;
933 		trunk->parent = p;
934 	} else {
935 		VLAN_LOCK();
936 exists:
937 		trunk = p->if_vlantrunk;
938 		TRUNK_LOCK(trunk);
939 	}
940 
941 	ifv->ifv_tag = tag;
942 #ifdef VLAN_ARRAY
943 	if (trunk->vlans[tag] != NULL)
944 		error = EEXIST;
945 #else
946 	error = vlan_inshash(trunk, ifv);
947 #endif
948 	if (error)
949 		goto done;
950 
951 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
952 	ifv->ifv_mintu = ETHERMIN;
953 	ifv->ifv_pflags = 0;
954 
955 	/*
956 	 * If the parent supports the VLAN_MTU capability,
957 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
958 	 * use it.
959 	 */
960 	if (p->if_capenable & IFCAP_VLAN_MTU) {
961 		/*
962 		 * No need to fudge the MTU since the parent can
963 		 * handle extended frames.
964 		 */
965 		ifv->ifv_mtufudge = 0;
966 	} else {
967 		/*
968 		 * Fudge the MTU by the encapsulation size.  This
969 		 * makes us incompatible with strictly compliant
970 		 * 802.1Q implementations, but allows us to use
971 		 * the feature with other NetBSD implementations,
972 		 * which might still be useful.
973 		 */
974 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
975 	}
976 
977 	ifv->ifv_trunk = trunk;
978 	ifp = ifv->ifv_ifp;
979 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
980 	ifp->if_baudrate = p->if_baudrate;
981 	/*
982 	 * Copy only a selected subset of flags from the parent.
983 	 * Other flags are none of our business.
984 	 */
985 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
986 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
987 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
988 #undef VLAN_COPY_FLAGS
989 
990 	ifp->if_link_state = p->if_link_state;
991 
992 	vlan_capabilities(ifv);
993 
994 	/*
995 	 * Set up our ``Ethernet address'' to reflect the underlying
996 	 * physical interface's.
997 	 */
998 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
999 
1000 	/*
1001 	 * Configure multicast addresses that may already be
1002 	 * joined on the vlan device.
1003 	 */
1004 	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1005 
1006 #ifdef VLAN_ARRAY
1007 	atomic_store_rel_ptr((uintptr_t *)&trunk->vlans[tag], (uintptr_t)ifv);
1008 	trunk->refcnt++;
1009 #endif
1010 done:
1011 	TRUNK_UNLOCK(trunk);
1012 	VLAN_UNLOCK();
1013 
1014 	return (error);
1015 }
1016 
1017 static int
1018 vlan_unconfig(struct ifnet *ifp)
1019 {
1020 	struct ifvlantrunk *trunk;
1021 	struct vlan_mc_entry *mc;
1022 	struct ifvlan *ifv;
1023 	int error;
1024 
1025 	VLAN_LOCK();
1026 
1027 	ifv = ifp->if_softc;
1028 	trunk = ifv->ifv_trunk;
1029 
1030 	if (trunk) {
1031 		struct sockaddr_dl sdl;
1032 		struct ifnet *p = trunk->parent;
1033 
1034 		TRUNK_LOCK(trunk);
1035 #ifdef VLAN_ARRAY
1036 		atomic_store_rel_ptr((uintptr_t *)&trunk->vlans[ifv->ifv_tag],
1037 		    (uintptr_t)NULL);
1038 		trunk->refcnt--;
1039 #endif
1040 
1041 		/*
1042 		 * Since the interface is being unconfigured, we need to
1043 		 * empty the list of multicast groups that we may have joined
1044 		 * while we were alive from the parent's list.
1045 		 */
1046 		bzero((char *)&sdl, sizeof(sdl));
1047 		sdl.sdl_len = sizeof(sdl);
1048 		sdl.sdl_family = AF_LINK;
1049 		sdl.sdl_index = p->if_index;
1050 		sdl.sdl_type = IFT_ETHER;
1051 		sdl.sdl_alen = ETHER_ADDR_LEN;
1052 
1053 		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
1054 			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
1055 			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1056 			    ETHER_ADDR_LEN);
1057 			error = if_delmulti(p, (struct sockaddr *)&sdl);
1058 			if (error)
1059 				return (error);
1060 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1061 			free(mc, M_VLAN);
1062 		}
1063 
1064 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1065 #ifndef VLAN_ARRAY
1066 		vlan_remhash(trunk, ifv);
1067 #endif
1068 		ifv->ifv_trunk = NULL;
1069 
1070 		/*
1071 		 * Check if we were the last.
1072 		 */
1073 		if (trunk->refcnt == 0) {
1074 			atomic_store_rel_ptr((uintptr_t *)
1075 			    &trunk->parent->if_vlantrunk,
1076 			    (uintptr_t)NULL);
1077 			/*
1078 			 * XXXGL: If some ithread has already entered
1079 			 * vlan_input() and is now blocked on the trunk
1080 			 * lock, then it should preempt us right after
1081 			 * unlock and finish its work. Then we will acquire
1082 			 * lock again in trunk_destroy().
1083 			 * XXX: not true in case of VLAN_ARRAY
1084 			 */
1085 			TRUNK_UNLOCK(trunk);
1086 			trunk_destroy(trunk);
1087 		} else
1088 			TRUNK_UNLOCK(trunk);
1089 	}
1090 
1091 	/* Disconnect from parent. */
1092 	if (ifv->ifv_pflags)
1093 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1094 	ifv->ifv_ifp->if_mtu = ETHERMTU;		/* XXX why not 0? */
1095 	ifv->ifv_ifp->if_link_state = LINK_STATE_UNKNOWN;
1096 
1097 	/* Clear our MAC address. */
1098 	bzero(IF_LLADDR(ifv->ifv_ifp), ETHER_ADDR_LEN);
1099 
1100 	VLAN_UNLOCK();
1101 
1102 	return (0);
1103 }
1104 
1105 /* Handle a reference counted flag that should be set on the parent as well */
1106 static int
1107 vlan_setflag(struct ifnet *ifp, int flag, int status,
1108 	     int (*func)(struct ifnet *, int))
1109 {
1110 	struct ifvlan *ifv;
1111 	int error;
1112 
1113 	/* XXX VLAN_LOCK_ASSERT(); */
1114 
1115 	ifv = ifp->if_softc;
1116 	status = status ? (ifp->if_flags & flag) : 0;
1117 	/* Now "status" contains the flag value or 0 */
1118 
1119 	/*
1120 	 * See if recorded parent's status is different from what
1121 	 * we want it to be.  If it is, flip it.  We record parent's
1122 	 * status in ifv_pflags so that we won't clear parent's flag
1123 	 * we haven't set.  In fact, we don't clear or set parent's
1124 	 * flags directly, but get or release references to them.
1125 	 * That's why we can be sure that recorded flags still are
1126 	 * in accord with actual parent's flags.
1127 	 */
1128 	if (status != (ifv->ifv_pflags & flag)) {
1129 		error = (*func)(PARENT(ifv), status);
1130 		if (error)
1131 			return (error);
1132 		ifv->ifv_pflags &= ~flag;
1133 		ifv->ifv_pflags |= status;
1134 	}
1135 	return (0);
1136 }
1137 
1138 /*
1139  * Handle IFF_* flags that require certain changes on the parent:
1140  * if "status" is true, update parent's flags respective to our if_flags;
1141  * if "status" is false, forcedly clear the flags set on parent.
1142  */
1143 static int
1144 vlan_setflags(struct ifnet *ifp, int status)
1145 {
1146 	int error, i;
1147 
1148 	for (i = 0; vlan_pflags[i].flag; i++) {
1149 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1150 				     status, vlan_pflags[i].func);
1151 		if (error)
1152 			return (error);
1153 	}
1154 	return (0);
1155 }
1156 
1157 /* Inform all vlans that their parent has changed link state */
1158 static void
1159 vlan_link_state(struct ifnet *ifp, int link)
1160 {
1161 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1162 	struct ifvlan *ifv;
1163 	int i;
1164 
1165 	TRUNK_LOCK(trunk);
1166 #ifdef VLAN_ARRAY
1167 	for (i = 0; i < EVL_VLID_MASK+1; i++)
1168 		if (trunk->vlans[i] != NULL) {
1169 			ifv = trunk->vlans[i];
1170 #else
1171 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1172 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1173 #endif
1174 			if_link_state_change(ifv->ifv_ifp,
1175 			    trunk->parent->if_link_state);
1176 	}
1177 	TRUNK_UNLOCK(trunk);
1178 }
1179 
1180 static void
1181 vlan_capabilities(struct ifvlan *ifv)
1182 {
1183 	struct ifnet *p = PARENT(ifv);
1184 	struct ifnet *ifp = ifv->ifv_ifp;
1185 
1186 	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1187 
1188 	/*
1189 	 * If the parent interface can do checksum offloading
1190 	 * on VLANs, then propagate its hardware-assisted
1191 	 * checksumming flags. Also assert that checksum
1192 	 * offloading requires hardware VLAN tagging.
1193 	 */
1194 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1195 		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1196 
1197 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1198 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1199 		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1200 		ifp->if_hwassist = p->if_hwassist;
1201 	} else {
1202 		ifp->if_capenable = 0;
1203 		ifp->if_hwassist = 0;
1204 	}
1205 }
1206 
1207 static void
1208 vlan_trunk_capabilities(struct ifnet *ifp)
1209 {
1210 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1211 	struct ifvlan *ifv;
1212 	int i;
1213 
1214 	TRUNK_LOCK(trunk);
1215 #ifdef VLAN_ARRAY
1216 	for (i = 0; i < EVL_VLID_MASK+1; i++)
1217 		if (trunk->vlans[i] != NULL) {
1218 			ifv = trunk->vlans[i];
1219 #else
1220 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1221 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1222 #endif
1223 			vlan_capabilities(ifv);
1224 	}
1225 	TRUNK_UNLOCK(trunk);
1226 }
1227 
1228 static int
1229 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1230 {
1231 	struct ifaddr *ifa;
1232 	struct ifnet *p;
1233 	struct ifreq *ifr;
1234 	struct ifvlan *ifv;
1235 	struct vlanreq vlr;
1236 	int error = 0;
1237 
1238 	ifr = (struct ifreq *)data;
1239 	ifa = (struct ifaddr *)data;
1240 	ifv = ifp->if_softc;
1241 
1242 	switch (cmd) {
1243 	case SIOCSIFADDR:
1244 		ifp->if_flags |= IFF_UP;
1245 
1246 		switch (ifa->ifa_addr->sa_family) {
1247 #ifdef INET
1248 		case AF_INET:
1249 			arp_ifinit(ifv->ifv_ifp, ifa);
1250 			break;
1251 #endif
1252 		default:
1253 			break;
1254 		}
1255 		break;
1256 
1257 	case SIOCGIFADDR:
1258 		{
1259 			struct sockaddr *sa;
1260 
1261 			sa = (struct sockaddr *) &ifr->ifr_data;
1262 			bcopy(IF_LLADDR(ifp), (caddr_t)sa->sa_data,
1263 			    ETHER_ADDR_LEN);
1264 		}
1265 		break;
1266 
1267 	case SIOCGIFMEDIA:
1268 		VLAN_LOCK();
1269 		if (TRUNK(ifv) != NULL) {
1270 			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1271 					SIOCGIFMEDIA, data);
1272 			VLAN_UNLOCK();
1273 			/* Limit the result to the parent's current config. */
1274 			if (error == 0) {
1275 				struct ifmediareq *ifmr;
1276 
1277 				ifmr = (struct ifmediareq *)data;
1278 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1279 					ifmr->ifm_count = 1;
1280 					error = copyout(&ifmr->ifm_current,
1281 						ifmr->ifm_ulist,
1282 						sizeof(int));
1283 				}
1284 			}
1285 		} else {
1286 			VLAN_UNLOCK();
1287 			error = EINVAL;
1288 		}
1289 		break;
1290 
1291 	case SIOCSIFMEDIA:
1292 		error = EINVAL;
1293 		break;
1294 
1295 	case SIOCSIFMTU:
1296 		/*
1297 		 * Set the interface MTU.
1298 		 */
1299 		VLAN_LOCK();
1300 		if (TRUNK(ifv) != NULL) {
1301 			if (ifr->ifr_mtu >
1302 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1303 			    ifr->ifr_mtu <
1304 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1305 				error = EINVAL;
1306 			else
1307 				ifp->if_mtu = ifr->ifr_mtu;
1308 		} else
1309 			error = EINVAL;
1310 		VLAN_UNLOCK();
1311 		break;
1312 
1313 	case SIOCSETVLAN:
1314 		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1315 		if (error)
1316 			break;
1317 		if (vlr.vlr_parent[0] == '\0') {
1318 			vlan_unconfig(ifp);
1319 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1320 			break;
1321 		}
1322 		p = ifunit(vlr.vlr_parent);
1323 		if (p == 0) {
1324 			error = ENOENT;
1325 			break;
1326 		}
1327 		/*
1328 		 * Don't let the caller set up a VLAN tag with
1329 		 * anything except VLID bits.
1330 		 */
1331 		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1332 			error = EINVAL;
1333 			break;
1334 		}
1335 		error = vlan_config(ifv, p, vlr.vlr_tag);
1336 		if (error)
1337 			break;
1338 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1339 
1340 		/* Update flags on the parent, if necessary. */
1341 		vlan_setflags(ifp, 1);
1342 		break;
1343 
1344 	case SIOCGETVLAN:
1345 		bzero(&vlr, sizeof(vlr));
1346 		VLAN_LOCK();
1347 		if (TRUNK(ifv) != NULL) {
1348 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1349 			    sizeof(vlr.vlr_parent));
1350 			vlr.vlr_tag = ifv->ifv_tag;
1351 		}
1352 		VLAN_UNLOCK();
1353 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1354 		break;
1355 
1356 	case SIOCSIFFLAGS:
1357 		/*
1358 		 * We should propagate selected flags to the parent,
1359 		 * e.g., promiscuous mode.
1360 		 */
1361 		if (TRUNK(ifv) != NULL)
1362 			error = vlan_setflags(ifp, 1);
1363 		break;
1364 
1365 	case SIOCADDMULTI:
1366 	case SIOCDELMULTI:
1367 		/*
1368 		 * If we don't have a parent, just remember the membership for
1369 		 * when we do.
1370 		 */
1371 		if (TRUNK(ifv) != NULL)
1372 			error = vlan_setmulti(ifp);
1373 		break;
1374 
1375 	default:
1376 		error = EINVAL;
1377 	}
1378 
1379 	return (error);
1380 }
1381