xref: /freebsd/sys/net/if_vlan.c (revision 7773002178c8dbc52b44e4d705f07706409af8e4)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34  * Might be extended some day to also handle IEEE 802.1p priority
35  * tagging.  This is sort of sneaky in the implementation, since
36  * we need to pretend to be enough of an Ethernet implementation
37  * to make arp work.  The way we do this is by telling everyone
38  * that we are an Ethernet, and then catch the packets that
39  * ether_output() left on our output queue when it calls
40  * if_start(), rewrite them for use by the real outgoing interface,
41  * and ask it to send them.
42  */
43 
44 #include "opt_inet.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/module.h>
51 #include <sys/queue.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #include <net/bpf.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/if_ether.h>
68 #endif
69 
70 #define VLANNAME	"vlan"
71 
72 struct vlan_mc_entry {
73 	struct ether_addr		mc_addr;
74 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
75 };
76 
77 struct	ifvlan {
78 	struct	arpcom ifv_ac;	/* make this an interface */
79 	struct	ifnet *ifv_p;	/* parent inteface of this vlan */
80 	struct	ifv_linkmib {
81 		int	ifvm_parent;
82 		int	ifvm_encaplen;	/* encapsulation length */
83 		int	ifvm_mtufudge;	/* MTU fudged by this much */
84 		int	ifvm_mintu;	/* min transmission unit */
85 		u_int16_t ifvm_proto; /* encapsulation ethertype */
86 		u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
87 	}	ifv_mib;
88 	SLIST_HEAD(__vlan_mchead, vlan_mc_entry)	vlan_mc_listhead;
89 	LIST_ENTRY(ifvlan) ifv_list;
90 	int	ifv_flags;
91 };
92 #define	ifv_if	ifv_ac.ac_if
93 #define	ifv_tag	ifv_mib.ifvm_tag
94 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
95 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
96 #define	ifv_mintu	ifv_mib.ifvm_mintu
97 
98 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
99 
100 SYSCTL_DECL(_net_link);
101 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
102 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
103 
104 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
105 static LIST_HEAD(, ifvlan) ifv_list;
106 
107 /*
108  * Locking: one lock is used to guard both the ifv_list and modification
109  * to vlan data structures.  We are rather conservative here; probably
110  * more than necessary.
111  */
112 static struct mtx ifv_mtx;
113 #define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, VLANNAME, NULL, MTX_DEF)
114 #define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
115 #define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
116 #define	VLAN_LOCK()	mtx_lock(&ifv_mtx)
117 #define	VLAN_UNLOCK()	mtx_unlock(&ifv_mtx)
118 
119 static	int vlan_clone_create(struct if_clone *, int);
120 static	void vlan_clone_destroy(struct ifnet *);
121 static	void vlan_start(struct ifnet *ifp);
122 static	void vlan_ifinit(void *foo);
123 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
124 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
125 static	int vlan_setmulti(struct ifnet *ifp);
126 static	int vlan_unconfig(struct ifnet *ifp);
127 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p);
128 
129 struct if_clone vlan_cloner = IF_CLONE_INITIALIZER(VLANNAME,
130     vlan_clone_create, vlan_clone_destroy, 0, IF_MAXUNIT);
131 
132 /*
133  * Program our multicast filter. What we're actually doing is
134  * programming the multicast filter of the parent. This has the
135  * side effect of causing the parent interface to receive multicast
136  * traffic that it doesn't really want, which ends up being discarded
137  * later by the upper protocol layers. Unfortunately, there's no way
138  * to avoid this: there really is only one physical interface.
139  */
140 static int
141 vlan_setmulti(struct ifnet *ifp)
142 {
143 	struct ifnet		*ifp_p;
144 	struct ifmultiaddr	*ifma, *rifma = NULL;
145 	struct ifvlan		*sc;
146 	struct vlan_mc_entry	*mc = NULL;
147 	struct sockaddr_dl	sdl;
148 	int			error;
149 
150 	/* Find the parent. */
151 	sc = ifp->if_softc;
152 	ifp_p = sc->ifv_p;
153 
154 	/*
155 	 * If we don't have a parent, just remember the membership for
156 	 * when we do.
157 	 */
158 	if (ifp_p == NULL)
159 		return(0);
160 
161 	bzero((char *)&sdl, sizeof sdl);
162 	sdl.sdl_len = sizeof sdl;
163 	sdl.sdl_family = AF_LINK;
164 	sdl.sdl_index = ifp_p->if_index;
165 	sdl.sdl_type = IFT_ETHER;
166 	sdl.sdl_alen = ETHER_ADDR_LEN;
167 
168 	/* First, remove any existing filter entries. */
169 	while(SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
170 		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
171 		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
172 		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
173 		if (error)
174 			return(error);
175 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
176 		free(mc, M_VLAN);
177 	}
178 
179 	/* Now program new ones. */
180 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
181 		if (ifma->ifma_addr->sa_family != AF_LINK)
182 			continue;
183 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
184 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
185 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
186 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
187 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
188 		    LLADDR(&sdl), ETHER_ADDR_LEN);
189 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
190 		if (error)
191 			return(error);
192 	}
193 
194 	return(0);
195 }
196 
197 /*
198  * VLAN support can be loaded as a module.  The only place in the
199  * system that's intimately aware of this is ether_input.  We hook
200  * into this code through vlan_input_p which is defined there and
201  * set here.  Noone else in the system should be aware of this so
202  * we use an explicit reference here.
203  *
204  * NB: Noone should ever need to check if vlan_input_p is null or
205  *     not.  This is because interfaces have a count of the number
206  *     of active vlans (if_nvlans) and this should never be bumped
207  *     except by vlan_config--which is in this module so therefore
208  *     the module must be loaded and vlan_input_p must be non-NULL.
209  */
210 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
211 
212 static int
213 vlan_modevent(module_t mod, int type, void *data)
214 {
215 
216 	switch (type) {
217 	case MOD_LOAD:
218 		LIST_INIT(&ifv_list);
219 		VLAN_LOCK_INIT();
220 		vlan_input_p = vlan_input;
221 		if_clone_attach(&vlan_cloner);
222 		break;
223 	case MOD_UNLOAD:
224 		if_clone_detach(&vlan_cloner);
225 		vlan_input_p = NULL;
226 		while (!LIST_EMPTY(&ifv_list))
227 			vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if);
228 		VLAN_LOCK_DESTROY();
229 		break;
230 	}
231 	return 0;
232 }
233 
234 static moduledata_t vlan_mod = {
235 	"if_vlan",
236 	vlan_modevent,
237 	0
238 };
239 
240 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
241 
242 static int
243 vlan_clone_create(struct if_clone *ifc, int unit)
244 {
245 	struct ifvlan *ifv;
246 	struct ifnet *ifp;
247 
248 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
249 	ifp = &ifv->ifv_if;
250 	SLIST_INIT(&ifv->vlan_mc_listhead);
251 
252 	ifp->if_softc = ifv;
253 	if_initname(ifp, ifc->ifc_name, unit);
254 	/* NB: flags are not set here */
255 	ifp->if_linkmib = &ifv->ifv_mib;
256 	ifp->if_linkmiblen = sizeof ifv->ifv_mib;
257 	/* NB: mtu is not set here */
258 
259 	ifp->if_init = vlan_ifinit;
260 	ifp->if_start = vlan_start;
261 	ifp->if_ioctl = vlan_ioctl;
262 	ifp->if_snd.ifq_maxlen = ifqmaxlen;
263 	ether_ifattach(ifp, ifv->ifv_ac.ac_enaddr);
264 	/* Now undo some of the damage... */
265 	ifp->if_baudrate = 0;
266 	ifp->if_type = IFT_L2VLAN;
267 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
268 
269 	VLAN_LOCK();
270 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
271 	VLAN_UNLOCK();
272 
273 	return (0);
274 }
275 
276 static void
277 vlan_clone_destroy(struct ifnet *ifp)
278 {
279 	struct ifvlan *ifv = ifp->if_softc;
280 
281 	VLAN_LOCK();
282 	LIST_REMOVE(ifv, ifv_list);
283 	vlan_unconfig(ifp);
284 	VLAN_UNLOCK();
285 
286 	ether_ifdetach(ifp);
287 
288 	free(ifv, M_VLAN);
289 }
290 
291 static void
292 vlan_ifinit(void *foo)
293 {
294 	return;
295 }
296 
297 static void
298 vlan_start(struct ifnet *ifp)
299 {
300 	struct ifvlan *ifv;
301 	struct ifnet *p;
302 	struct ether_vlan_header *evl;
303 	struct mbuf *m;
304 
305 	ifv = ifp->if_softc;
306 	p = ifv->ifv_p;
307 
308 	ifp->if_flags |= IFF_OACTIVE;
309 	for (;;) {
310 		IF_DEQUEUE(&ifp->if_snd, m);
311 		if (m == 0)
312 			break;
313 		BPF_MTAP(ifp, m);
314 
315 		/*
316 		 * Do not run parent's if_start() if the parent is not up,
317 		 * or parent's driver will cause a system crash.
318 		 */
319 		if ((p->if_flags & (IFF_UP | IFF_RUNNING)) !=
320 					(IFF_UP | IFF_RUNNING)) {
321 			m_freem(m);
322 			ifp->if_collisions++;
323 			continue;
324 		}
325 
326 		/*
327 		 * If underlying interface can do VLAN tag insertion itself,
328 		 * just pass the packet along. However, we need some way to
329 		 * tell the interface where the packet came from so that it
330 		 * knows how to find the VLAN tag to use, so we attach a
331 		 * packet tag that holds it.
332 		 */
333 		if (p->if_capabilities & IFCAP_VLAN_HWTAGGING) {
334 			struct m_tag *mtag = m_tag_alloc(MTAG_VLAN,
335 							 MTAG_VLAN_TAG,
336 							 sizeof (u_int),
337 							 M_NOWAIT);
338 			if (mtag == NULL) {
339 				ifp->if_oerrors++;
340 				m_freem(m);
341 				continue;
342 			}
343 			*(u_int*)(mtag+1) = ifv->ifv_tag;
344 			m_tag_prepend(m, mtag);
345 		} else {
346 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
347 			if (m == NULL) {
348 				if_printf(ifp, "unable to prepend VLAN header");
349 				ifp->if_ierrors++;
350 				continue;
351 			}
352 			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
353 
354 			if (m->m_len < sizeof(*evl)) {
355 				m = m_pullup(m, sizeof(*evl));
356 				if (m == NULL) {
357 					if_printf(ifp,
358 					    "cannot pullup VLAN header");
359 					ifp->if_ierrors++;
360 					continue;
361 				}
362 			}
363 
364 			/*
365 			 * Transform the Ethernet header into an Ethernet header
366 			 * with 802.1Q encapsulation.
367 			 */
368 			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
369 			      mtod(m, char *), ETHER_HDR_LEN);
370 			evl = mtod(m, struct ether_vlan_header *);
371 			evl->evl_proto = evl->evl_encap_proto;
372 			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
373 			evl->evl_tag = htons(ifv->ifv_tag);
374 #ifdef DEBUG
375 			printf("vlan_start: %*D\n", (int)sizeof *evl,
376 			    (unsigned char *)evl, ":");
377 #endif
378 		}
379 
380 		/*
381 		 * Send it, precisely as ether_output() would have.
382 		 * We are already running at splimp.
383 		 */
384 		if (IF_HANDOFF(&p->if_snd, m, p))
385 			ifp->if_opackets++;
386 		else
387 			ifp->if_oerrors++;
388 	}
389 	ifp->if_flags &= ~IFF_OACTIVE;
390 
391 	return;
392 }
393 
394 static void
395 vlan_input(struct ifnet *ifp, struct mbuf *m)
396 {
397 	struct ether_vlan_header *evl;
398 	struct ifvlan *ifv;
399 	struct m_tag *mtag;
400 	u_int tag;
401 
402 	mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
403 	if (mtag != NULL) {
404 		/*
405 		 * Packet is tagged, m contains a normal
406 		 * Ethernet frame; the tag is stored out-of-band.
407 		 */
408 		tag = EVL_VLANOFTAG(*(u_int*)(mtag+1));
409 		m_tag_delete(m, mtag);
410 	} else {
411 		switch (ifp->if_type) {
412 		case IFT_ETHER:
413 			if (m->m_len < sizeof (*evl) &&
414 			    (m = m_pullup(m, sizeof (*evl))) == NULL) {
415 				if_printf(ifp, "cannot pullup VLAN header\n");
416 				return;
417 			}
418 			evl = mtod(m, struct ether_vlan_header *);
419 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
420 				("vlan_input: bad encapsulated protocols (%u)",
421 				 ntohs(evl->evl_encap_proto)));
422 
423 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
424 
425 			/*
426 			 * Restore the original ethertype.  We'll remove
427 			 * the encapsulation after we've found the vlan
428 			 * interface corresponding to the tag.
429 			 */
430 			evl->evl_encap_proto = evl->evl_proto;
431 			break;
432 		default:
433 			tag = (u_int) -1;
434 #ifdef DIAGNOSTIC
435 			panic("vlan_input: unsupported if type %u", ifp->if_type);
436 #endif
437 			break;
438 		}
439 	}
440 
441 	VLAN_LOCK();
442 	LIST_FOREACH(ifv, &ifv_list, ifv_list)
443 		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
444 			break;
445 
446 	if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
447 		VLAN_UNLOCK();
448 		m_freem(m);
449 		ifp->if_noproto++;
450 		return;
451 	}
452 	VLAN_UNLOCK();		/* XXX extend below? */
453 
454 	if (mtag == NULL) {
455 		/*
456 		 * Packet had an in-line encapsulation header;
457 		 * remove it.  The original header has already
458 		 * been fixed up above.
459 		 */
460 		bcopy(mtod(m, caddr_t),
461 		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
462 		      ETHER_HDR_LEN);
463 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
464 	}
465 
466 	m->m_pkthdr.rcvif = &ifv->ifv_if;
467 	ifv->ifv_if.if_ipackets++;
468 
469 	/* Pass it back through the parent's input routine. */
470 	(*ifp->if_input)(&ifv->ifv_if, m);
471 }
472 
473 static int
474 vlan_config(struct ifvlan *ifv, struct ifnet *p)
475 {
476 	struct ifaddr *ifa1, *ifa2;
477 	struct sockaddr_dl *sdl1, *sdl2;
478 
479 	VLAN_LOCK_ASSERT();
480 
481 	if (p->if_data.ifi_type != IFT_ETHER)
482 		return EPROTONOSUPPORT;
483 	if (ifv->ifv_p)
484 		return EBUSY;
485 
486 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
487 	ifv->ifv_mintu = ETHERMIN;
488 	ifv->ifv_flags = 0;
489 
490 	/*
491 	 * If the parent supports the VLAN_MTU capability,
492 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
493 	 * enable it.
494 	 */
495 	p->if_nvlans++;
496 	if (p->if_nvlans == 1 && (p->if_capabilities & IFCAP_VLAN_MTU) != 0) {
497 		/*
498 		 * Enable Tx/Rx of VLAN-sized frames.
499 		 */
500 		p->if_capenable |= IFCAP_VLAN_MTU;
501 		if (p->if_flags & IFF_UP) {
502 			struct ifreq ifr;
503 			int error;
504 
505 			ifr.ifr_flags = p->if_flags;
506 			error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
507 			    (caddr_t) &ifr);
508 			if (error) {
509 				p->if_nvlans--;
510 				if (p->if_nvlans == 0)
511 					p->if_capenable &= ~IFCAP_VLAN_MTU;
512 				return (error);
513 			}
514 		}
515 		ifv->ifv_mtufudge = 0;
516 	} else if ((p->if_capabilities & IFCAP_VLAN_MTU) == 0) {
517 		/*
518 		 * Fudge the MTU by the encapsulation size.  This
519 		 * makes us incompatible with strictly compliant
520 		 * 802.1Q implementations, but allows us to use
521 		 * the feature with other NetBSD implementations,
522 		 * which might still be useful.
523 		 */
524 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
525 	}
526 
527 	ifv->ifv_p = p;
528 	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
529 	/*
530 	 * Copy only a selected subset of flags from the parent.
531 	 * Other flags are none of our business.
532 	 */
533 	ifv->ifv_if.if_flags = (p->if_flags &
534 	    (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT));
535 
536 	/*
537 	 * If the parent interface can do hardware-assisted
538 	 * VLAN encapsulation, then propagate its hardware-
539 	 * assisted checksumming flags.
540 	 */
541 	if (p->if_capabilities & IFCAP_VLAN_HWTAGGING)
542 		ifv->ifv_if.if_capabilities |= p->if_capabilities & IFCAP_HWCSUM;
543 
544 	/*
545 	 * Set up our ``Ethernet address'' to reflect the underlying
546 	 * physical interface's.
547 	 */
548 	ifa1 = ifaddr_byindex(ifv->ifv_if.if_index);
549 	ifa2 = ifaddr_byindex(p->if_index);
550 	sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
551 	sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
552 	sdl1->sdl_type = IFT_ETHER;
553 	sdl1->sdl_alen = ETHER_ADDR_LEN;
554 	bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
555 	bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
556 
557 	/*
558 	 * Configure multicast addresses that may already be
559 	 * joined on the vlan device.
560 	 */
561 	(void)vlan_setmulti(&ifv->ifv_if);
562 
563 	return 0;
564 }
565 
566 static int
567 vlan_unconfig(struct ifnet *ifp)
568 {
569 	struct ifaddr *ifa;
570 	struct sockaddr_dl *sdl;
571 	struct vlan_mc_entry *mc;
572 	struct ifvlan *ifv;
573 	struct ifnet *p;
574 	int error;
575 
576 	VLAN_LOCK_ASSERT();
577 
578 	ifv = ifp->if_softc;
579 	p = ifv->ifv_p;
580 
581 	if (p) {
582 		struct sockaddr_dl sdl;
583 
584 		/*
585 		 * Since the interface is being unconfigured, we need to
586 		 * empty the list of multicast groups that we may have joined
587 		 * while we were alive from the parent's list.
588 		 */
589 		bzero((char *)&sdl, sizeof sdl);
590 		sdl.sdl_len = sizeof sdl;
591 		sdl.sdl_family = AF_LINK;
592 		sdl.sdl_index = p->if_index;
593 		sdl.sdl_type = IFT_ETHER;
594 		sdl.sdl_alen = ETHER_ADDR_LEN;
595 
596 		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
597 			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
598 			bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
599 			error = if_delmulti(p, (struct sockaddr *)&sdl);
600 			if (error)
601 				return(error);
602 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
603 			free(mc, M_VLAN);
604 		}
605 
606 		p->if_nvlans--;
607 		if (p->if_nvlans == 0) {
608 			/*
609 			 * Disable Tx/Rx of VLAN-sized frames.
610 			 */
611 			p->if_capenable &= ~IFCAP_VLAN_MTU;
612 			if (p->if_flags & IFF_UP) {
613 				struct ifreq ifr;
614 
615 				ifr.ifr_flags = p->if_flags;
616 				(*p->if_ioctl)(p, SIOCSIFFLAGS, (caddr_t) &ifr);
617 			}
618 		}
619 	}
620 
621 	/* Disconnect from parent. */
622 	ifv->ifv_p = NULL;
623 	ifv->ifv_if.if_mtu = ETHERMTU;		/* XXX why not 0? */
624 	ifv->ifv_flags = 0;
625 
626 	/* Clear our MAC address. */
627 	ifa = ifaddr_byindex(ifv->ifv_if.if_index);
628 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
629 	sdl->sdl_type = IFT_ETHER;
630 	sdl->sdl_alen = ETHER_ADDR_LEN;
631 	bzero(LLADDR(sdl), ETHER_ADDR_LEN);
632 	bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
633 
634 	return 0;
635 }
636 
637 static int
638 vlan_set_promisc(struct ifnet *ifp)
639 {
640 	struct ifvlan *ifv = ifp->if_softc;
641 	int error = 0;
642 
643 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
644 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
645 			error = ifpromisc(ifv->ifv_p, 1);
646 			if (error == 0)
647 				ifv->ifv_flags |= IFVF_PROMISC;
648 		}
649 	} else {
650 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
651 			error = ifpromisc(ifv->ifv_p, 0);
652 			if (error == 0)
653 				ifv->ifv_flags &= ~IFVF_PROMISC;
654 		}
655 	}
656 
657 	return (error);
658 }
659 
660 static int
661 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
662 {
663 	struct ifaddr *ifa;
664 	struct ifnet *p;
665 	struct ifreq *ifr;
666 	struct ifvlan *ifv;
667 	struct vlanreq vlr;
668 	int error = 0;
669 
670 	ifr = (struct ifreq *)data;
671 	ifa = (struct ifaddr *)data;
672 	ifv = ifp->if_softc;
673 
674 	switch (cmd) {
675 	case SIOCSIFADDR:
676 		ifp->if_flags |= IFF_UP;
677 
678 		switch (ifa->ifa_addr->sa_family) {
679 #ifdef INET
680 		case AF_INET:
681 			arp_ifinit(&ifv->ifv_if, ifa);
682 			break;
683 #endif
684 		default:
685 			break;
686 		}
687 		break;
688 
689 	case SIOCGIFADDR:
690 		{
691 			struct sockaddr *sa;
692 
693 			sa = (struct sockaddr *) &ifr->ifr_data;
694 			bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr,
695 			      (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
696 		}
697 		break;
698 
699 	case SIOCGIFMEDIA:
700 		VLAN_LOCK();
701 		if (ifv->ifv_p != NULL) {
702 			error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
703 					SIOCGIFMEDIA, data);
704 			VLAN_UNLOCK();
705 			/* Limit the result to the parent's current config. */
706 			if (error == 0) {
707 				struct ifmediareq *ifmr;
708 
709 				ifmr = (struct ifmediareq *) data;
710 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
711 					ifmr->ifm_count = 1;
712 					error = copyout(&ifmr->ifm_current,
713 						ifmr->ifm_ulist,
714 						sizeof(int));
715 				}
716 			}
717 		} else {
718 			VLAN_UNLOCK();
719 			error = EINVAL;
720 		}
721 		break;
722 
723 	case SIOCSIFMEDIA:
724 		error = EINVAL;
725 		break;
726 
727 	case SIOCSIFMTU:
728 		/*
729 		 * Set the interface MTU.
730 		 */
731 		VLAN_LOCK();
732 		if (ifv->ifv_p != NULL) {
733 			if (ifr->ifr_mtu >
734 			     (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
735 			    ifr->ifr_mtu <
736 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
737 				error = EINVAL;
738 			else
739 				ifp->if_mtu = ifr->ifr_mtu;
740 		} else
741 			error = EINVAL;
742 		VLAN_UNLOCK();
743 		break;
744 
745 	case SIOCSETVLAN:
746 		error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
747 		if (error)
748 			break;
749 		if (vlr.vlr_parent[0] == '\0') {
750 			VLAN_LOCK();
751 			vlan_unconfig(ifp);
752 			if (ifp->if_flags & IFF_UP)
753 				if_down(ifp);
754 			ifp->if_flags &= ~IFF_RUNNING;
755 			VLAN_UNLOCK();
756 			break;
757 		}
758 		p = ifunit(vlr.vlr_parent);
759 		if (p == 0) {
760 			error = ENOENT;
761 			break;
762 		}
763 		/*
764 		 * Don't let the caller set up a VLAN tag with
765 		 * anything except VLID bits.
766 		 */
767 		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
768 			error = EINVAL;
769 			break;
770 		}
771 		VLAN_LOCK();
772 		error = vlan_config(ifv, p);
773 		if (error) {
774 			VLAN_UNLOCK();
775 			break;
776 		}
777 		ifv->ifv_tag = vlr.vlr_tag;
778 		ifp->if_flags |= IFF_RUNNING;
779 		VLAN_UNLOCK();
780 
781 		/* Update promiscuous mode, if necessary. */
782 		vlan_set_promisc(ifp);
783 		break;
784 
785 	case SIOCGETVLAN:
786 		bzero(&vlr, sizeof vlr);
787 		VLAN_LOCK();
788 		if (ifv->ifv_p) {
789 			strlcpy(vlr.vlr_parent, ifv->ifv_p->if_xname,
790 			    sizeof(vlr.vlr_parent));
791 			vlr.vlr_tag = ifv->ifv_tag;
792 		}
793 		VLAN_UNLOCK();
794 		error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
795 		break;
796 
797 	case SIOCSIFFLAGS:
798 		/*
799 		 * For promiscuous mode, we enable promiscuous mode on
800 		 * the parent if we need promiscuous on the VLAN interface.
801 		 */
802 		if (ifv->ifv_p != NULL)
803 			error = vlan_set_promisc(ifp);
804 		break;
805 
806 	case SIOCADDMULTI:
807 	case SIOCDELMULTI:
808 		error = vlan_setmulti(ifp);
809 		break;
810 	default:
811 		error = EINVAL;
812 	}
813 	return error;
814 }
815