xref: /freebsd/sys/net/if_vlan.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 /*
33  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34  * Might be extended some day to also handle IEEE 802.1p priority
35  * tagging.  This is sort of sneaky in the implementation, since
36  * we need to pretend to be enough of an Ethernet implementation
37  * to make arp work.  The way we do this is by telling everyone
38  * that we are an Ethernet, and then catch the packets that
39  * ether_output() left on our output queue when it calls
40  * if_start(), rewrite them for use by the real outgoing interface,
41  * and ask it to send them.
42  */
43 
44 #include "opt_inet.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/module.h>
51 #include <sys/queue.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 
57 #include <net/bpf.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/if_ether.h>
68 #endif
69 
70 #define VLANNAME	"vlan"
71 
72 struct vlan_mc_entry {
73 	struct ether_addr		mc_addr;
74 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
75 };
76 
77 struct	ifvlan {
78 	struct	arpcom ifv_ac;	/* make this an interface */
79 	struct	ifnet *ifv_p;	/* parent inteface of this vlan */
80 	struct	ifv_linkmib {
81 		int	ifvm_parent;
82 		int	ifvm_encaplen;	/* encapsulation length */
83 		int	ifvm_mtufudge;	/* MTU fudged by this much */
84 		int	ifvm_mintu;	/* min transmission unit */
85 		u_int16_t ifvm_proto; /* encapsulation ethertype */
86 		u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
87 	}	ifv_mib;
88 	SLIST_HEAD(__vlan_mchead, vlan_mc_entry)	vlan_mc_listhead;
89 	LIST_ENTRY(ifvlan) ifv_list;
90 	int	ifv_flags;
91 };
92 #define	ifv_if	ifv_ac.ac_if
93 #define	ifv_tag	ifv_mib.ifvm_tag
94 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
95 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
96 #define	ifv_mintu	ifv_mib.ifvm_mintu
97 
98 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
99 
100 SYSCTL_DECL(_net_link);
101 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
102 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
103 
104 static MALLOC_DEFINE(M_VLAN, "vlan", "802.1Q Virtual LAN Interface");
105 static LIST_HEAD(, ifvlan) ifv_list;
106 
107 /*
108  * Locking: one lock is used to guard both the ifv_list and modification
109  * to vlan data structures.  We are rather conservative here; probably
110  * more than necessary.
111  */
112 static struct mtx ifv_mtx;
113 #define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan", NULL, MTX_DEF)
114 #define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
115 #define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
116 #define	VLAN_LOCK()	mtx_lock(&ifv_mtx)
117 #define	VLAN_UNLOCK()	mtx_unlock(&ifv_mtx)
118 
119 static	int vlan_clone_create(struct if_clone *, int);
120 static	void vlan_clone_destroy(struct ifnet *);
121 static	void vlan_start(struct ifnet *ifp);
122 static	void vlan_ifinit(void *foo);
123 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
124 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
125 static	int vlan_setmulti(struct ifnet *ifp);
126 static	int vlan_unconfig(struct ifnet *ifp);
127 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p);
128 
129 struct if_clone vlan_cloner = IF_CLONE_INITIALIZER("vlan",
130     vlan_clone_create, vlan_clone_destroy, 0, IF_MAXUNIT);
131 
132 /*
133  * Program our multicast filter. What we're actually doing is
134  * programming the multicast filter of the parent. This has the
135  * side effect of causing the parent interface to receive multicast
136  * traffic that it doesn't really want, which ends up being discarded
137  * later by the upper protocol layers. Unfortunately, there's no way
138  * to avoid this: there really is only one physical interface.
139  */
140 static int
141 vlan_setmulti(struct ifnet *ifp)
142 {
143 	struct ifnet		*ifp_p;
144 	struct ifmultiaddr	*ifma, *rifma = NULL;
145 	struct ifvlan		*sc;
146 	struct vlan_mc_entry	*mc = NULL;
147 	struct sockaddr_dl	sdl;
148 	int			error;
149 
150 	/* Find the parent. */
151 	sc = ifp->if_softc;
152 	ifp_p = sc->ifv_p;
153 
154 	/*
155 	 * If we don't have a parent, just remember the membership for
156 	 * when we do.
157 	 */
158 	if (ifp_p == NULL)
159 		return(0);
160 
161 	bzero((char *)&sdl, sizeof sdl);
162 	sdl.sdl_len = sizeof sdl;
163 	sdl.sdl_family = AF_LINK;
164 	sdl.sdl_index = ifp_p->if_index;
165 	sdl.sdl_type = IFT_ETHER;
166 	sdl.sdl_alen = ETHER_ADDR_LEN;
167 
168 	/* First, remove any existing filter entries. */
169 	while(SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
170 		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
171 		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
172 		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
173 		if (error)
174 			return(error);
175 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
176 		free(mc, M_VLAN);
177 	}
178 
179 	/* Now program new ones. */
180 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
181 		if (ifma->ifma_addr->sa_family != AF_LINK)
182 			continue;
183 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
184 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
185 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
186 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
187 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
188 		    LLADDR(&sdl), ETHER_ADDR_LEN);
189 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
190 		if (error)
191 			return(error);
192 	}
193 
194 	return(0);
195 }
196 
197 /*
198  * VLAN support can be loaded as a module.  The only place in the
199  * system that's intimately aware of this is ether_input.  We hook
200  * into this code through vlan_input_p which is defined there and
201  * set here.  Noone else in the system should be aware of this so
202  * we use an explicit reference here.
203  *
204  * NB: Noone should ever need to check if vlan_input_p is null or
205  *     not.  This is because interfaces have a count of the number
206  *     of active vlans (if_nvlans) and this should never be bumped
207  *     except by vlan_config--which is in this module so therefore
208  *     the module must be loaded and vlan_input_p must be non-NULL.
209  */
210 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
211 
212 static int
213 vlan_modevent(module_t mod, int type, void *data)
214 {
215 
216 	switch (type) {
217 	case MOD_LOAD:
218 		LIST_INIT(&ifv_list);
219 		VLAN_LOCK_INIT();
220 		vlan_input_p = vlan_input;
221 		if_clone_attach(&vlan_cloner);
222 		break;
223 	case MOD_UNLOAD:
224 		if_clone_detach(&vlan_cloner);
225 		vlan_input_p = NULL;
226 		while (!LIST_EMPTY(&ifv_list))
227 			vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if);
228 		VLAN_LOCK_DESTROY();
229 		break;
230 	}
231 	return 0;
232 }
233 
234 static moduledata_t vlan_mod = {
235 	"if_vlan",
236 	vlan_modevent,
237 	0
238 };
239 
240 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
241 
242 static int
243 vlan_clone_create(struct if_clone *ifc, int unit)
244 {
245 	struct ifvlan *ifv;
246 	struct ifnet *ifp;
247 
248 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
249 	ifp = &ifv->ifv_if;
250 	SLIST_INIT(&ifv->vlan_mc_listhead);
251 
252 	ifp->if_softc = ifv;
253 	ifp->if_name = "vlan";
254 	ifp->if_unit = unit;
255 	/* NB: flags are not set here */
256 	ifp->if_linkmib = &ifv->ifv_mib;
257 	ifp->if_linkmiblen = sizeof ifv->ifv_mib;
258 	/* NB: mtu is not set here */
259 
260 	ifp->if_init = vlan_ifinit;
261 	ifp->if_start = vlan_start;
262 	ifp->if_ioctl = vlan_ioctl;
263 	ifp->if_snd.ifq_maxlen = ifqmaxlen;
264 	ether_ifattach(ifp, ifv->ifv_ac.ac_enaddr);
265 	/* Now undo some of the damage... */
266 	ifp->if_baudrate = 0;
267 	ifp->if_type = IFT_L2VLAN;
268 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
269 
270 	VLAN_LOCK();
271 	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
272 	VLAN_UNLOCK();
273 
274 	return (0);
275 }
276 
277 static void
278 vlan_clone_destroy(struct ifnet *ifp)
279 {
280 	struct ifvlan *ifv = ifp->if_softc;
281 
282 	VLAN_LOCK();
283 	LIST_REMOVE(ifv, ifv_list);
284 	vlan_unconfig(ifp);
285 	VLAN_UNLOCK();
286 
287 	ether_ifdetach(ifp);
288 
289 	free(ifv, M_VLAN);
290 }
291 
292 static void
293 vlan_ifinit(void *foo)
294 {
295 	return;
296 }
297 
298 static void
299 vlan_start(struct ifnet *ifp)
300 {
301 	struct ifvlan *ifv;
302 	struct ifnet *p;
303 	struct ether_vlan_header *evl;
304 	struct mbuf *m;
305 
306 	ifv = ifp->if_softc;
307 	p = ifv->ifv_p;
308 
309 	ifp->if_flags |= IFF_OACTIVE;
310 	for (;;) {
311 		IF_DEQUEUE(&ifp->if_snd, m);
312 		if (m == 0)
313 			break;
314 		BPF_MTAP(ifp, m);
315 
316 		/*
317 		 * Do not run parent's if_start() if the parent is not up,
318 		 * or parent's driver will cause a system crash.
319 		 */
320 		if ((p->if_flags & (IFF_UP | IFF_RUNNING)) !=
321 					(IFF_UP | IFF_RUNNING)) {
322 			m_freem(m);
323 			ifp->if_collisions++;
324 			continue;
325 		}
326 
327 		/*
328 		 * If underlying interface can do VLAN tag insertion itself,
329 		 * just pass the packet along. However, we need some way to
330 		 * tell the interface where the packet came from so that it
331 		 * knows how to find the VLAN tag to use, so we attach a
332 		 * packet tag that holds it.
333 		 */
334 		if (p->if_capabilities & IFCAP_VLAN_HWTAGGING) {
335 			struct m_tag *mtag = m_tag_alloc(MTAG_VLAN,
336 							 MTAG_VLAN_TAG,
337 							 sizeof (u_int),
338 							 M_NOWAIT);
339 			if (mtag == NULL) {
340 				ifp->if_oerrors++;
341 				m_freem(m);
342 				continue;
343 			}
344 			*(u_int*)(mtag+1) = ifv->ifv_tag;
345 			m_tag_prepend(m, mtag);
346 		} else {
347 			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
348 			if (m == NULL) {
349 				if_printf(ifp, "unable to prepend VLAN header");
350 				ifp->if_ierrors++;
351 				continue;
352 			}
353 			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
354 
355 			if (m->m_len < sizeof(*evl)) {
356 				m = m_pullup(m, sizeof(*evl));
357 				if (m == NULL) {
358 					if_printf(ifp,
359 					    "cannot pullup VLAN header");
360 					ifp->if_ierrors++;
361 					continue;
362 				}
363 			}
364 
365 			/*
366 			 * Transform the Ethernet header into an Ethernet header
367 			 * with 802.1Q encapsulation.
368 			 */
369 			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
370 			      mtod(m, char *), ETHER_HDR_LEN);
371 			evl = mtod(m, struct ether_vlan_header *);
372 			evl->evl_proto = evl->evl_encap_proto;
373 			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
374 			evl->evl_tag = htons(ifv->ifv_tag);
375 #ifdef DEBUG
376 			printf("vlan_start: %*D\n", (int)sizeof *evl,
377 			    (unsigned char *)evl, ":");
378 #endif
379 		}
380 
381 		/*
382 		 * Send it, precisely as ether_output() would have.
383 		 * We are already running at splimp.
384 		 */
385 		if (IF_HANDOFF(&p->if_snd, m, p))
386 			ifp->if_opackets++;
387 		else
388 			ifp->if_oerrors++;
389 	}
390 	ifp->if_flags &= ~IFF_OACTIVE;
391 
392 	return;
393 }
394 
395 static void
396 vlan_input(struct ifnet *ifp, struct mbuf *m)
397 {
398 	struct ether_vlan_header *evl;
399 	struct ifvlan *ifv;
400 	struct m_tag *mtag;
401 	u_int tag;
402 
403 	mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
404 	if (mtag != NULL) {
405 		/*
406 		 * Packet is tagged, m contains a normal
407 		 * Ethernet frame; the tag is stored out-of-band.
408 		 */
409 		tag = EVL_VLANOFTAG(*(u_int*)(mtag+1));
410 		m_tag_delete(m, mtag);
411 	} else {
412 		switch (ifp->if_type) {
413 		case IFT_ETHER:
414 			if (m->m_len < sizeof (*evl) &&
415 			    (m = m_pullup(m, sizeof (*evl))) == NULL) {
416 				if_printf(ifp, "cannot pullup VLAN header\n");
417 				return;
418 			}
419 			evl = mtod(m, struct ether_vlan_header *);
420 			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
421 				("vlan_input: bad encapsulated protocols (%u)",
422 				 ntohs(evl->evl_encap_proto)));
423 
424 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
425 
426 			/*
427 			 * Restore the original ethertype.  We'll remove
428 			 * the encapsulation after we've found the vlan
429 			 * interface corresponding to the tag.
430 			 */
431 			evl->evl_encap_proto = evl->evl_proto;
432 			break;
433 		default:
434 			tag = (u_int) -1;
435 #ifdef DIAGNOSTIC
436 			panic("vlan_input: unsupported if type %u", ifp->if_type);
437 #endif
438 			break;
439 		}
440 	}
441 
442 	VLAN_LOCK();
443 	LIST_FOREACH(ifv, &ifv_list, ifv_list)
444 		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
445 			break;
446 
447 	if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
448 		VLAN_UNLOCK();
449 		m_freem(m);
450 		ifp->if_noproto++;
451 		return;
452 	}
453 	VLAN_UNLOCK();		/* XXX extend below? */
454 
455 	if (mtag == NULL) {
456 		/*
457 		 * Packet had an in-line encapsulation header;
458 		 * remove it.  The original header has already
459 		 * been fixed up above.
460 		 */
461 		bcopy(mtod(m, caddr_t),
462 		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
463 		      ETHER_HDR_LEN);
464 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
465 	}
466 
467 	m->m_pkthdr.rcvif = &ifv->ifv_if;
468 	ifv->ifv_if.if_ipackets++;
469 
470 	/* Pass it back through the parent's input routine. */
471 	(*ifp->if_input)(&ifv->ifv_if, m);
472 }
473 
474 static int
475 vlan_config(struct ifvlan *ifv, struct ifnet *p)
476 {
477 	struct ifaddr *ifa1, *ifa2;
478 	struct sockaddr_dl *sdl1, *sdl2;
479 
480 	VLAN_LOCK_ASSERT();
481 
482 	if (p->if_data.ifi_type != IFT_ETHER)
483 		return EPROTONOSUPPORT;
484 	if (ifv->ifv_p)
485 		return EBUSY;
486 
487 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
488 	ifv->ifv_mintu = ETHERMIN;
489 	ifv->ifv_flags = 0;
490 
491 	/*
492 	 * If the parent supports the VLAN_MTU capability,
493 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
494 	 * enable it.
495 	 */
496 	p->if_nvlans++;
497 	if (p->if_nvlans == 1 && (p->if_capabilities & IFCAP_VLAN_MTU) != 0) {
498 		/*
499 		 * Enable Tx/Rx of VLAN-sized frames.
500 		 */
501 		p->if_capenable |= IFCAP_VLAN_MTU;
502 		if (p->if_flags & IFF_UP) {
503 			struct ifreq ifr;
504 			int error;
505 
506 			ifr.ifr_flags = p->if_flags;
507 			error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
508 			    (caddr_t) &ifr);
509 			if (error) {
510 				p->if_nvlans--;
511 				if (p->if_nvlans == 0)
512 					p->if_capenable &= ~IFCAP_VLAN_MTU;
513 				return (error);
514 			}
515 		}
516 		ifv->ifv_mtufudge = 0;
517 	} else if ((p->if_capabilities & IFCAP_VLAN_MTU) == 0) {
518 		/*
519 		 * Fudge the MTU by the encapsulation size.  This
520 		 * makes us incompatible with strictly compliant
521 		 * 802.1Q implementations, but allows us to use
522 		 * the feature with other NetBSD implementations,
523 		 * which might still be useful.
524 		 */
525 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
526 	}
527 
528 	ifv->ifv_p = p;
529 	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
530 	/*
531 	 * Copy only a selected subset of flags from the parent.
532 	 * Other flags are none of our business.
533 	 */
534 	ifv->ifv_if.if_flags = (p->if_flags &
535 	    (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT));
536 
537 	/*
538 	 * If the parent interface can do hardware-assisted
539 	 * VLAN encapsulation, then propagate its hardware-
540 	 * assisted checksumming flags.
541 	 */
542 	if (p->if_capabilities & IFCAP_VLAN_HWTAGGING)
543 		ifv->ifv_if.if_capabilities |= p->if_capabilities & IFCAP_HWCSUM;
544 
545 	/*
546 	 * Set up our ``Ethernet address'' to reflect the underlying
547 	 * physical interface's.
548 	 */
549 	ifa1 = ifaddr_byindex(ifv->ifv_if.if_index);
550 	ifa2 = ifaddr_byindex(p->if_index);
551 	sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
552 	sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
553 	sdl1->sdl_type = IFT_ETHER;
554 	sdl1->sdl_alen = ETHER_ADDR_LEN;
555 	bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
556 	bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
557 
558 	/*
559 	 * Configure multicast addresses that may already be
560 	 * joined on the vlan device.
561 	 */
562 	(void)vlan_setmulti(&ifv->ifv_if);
563 
564 	return 0;
565 }
566 
567 static int
568 vlan_unconfig(struct ifnet *ifp)
569 {
570 	struct ifaddr *ifa;
571 	struct sockaddr_dl *sdl;
572 	struct vlan_mc_entry *mc;
573 	struct ifvlan *ifv;
574 	struct ifnet *p;
575 	int error;
576 
577 	VLAN_LOCK_ASSERT();
578 
579 	ifv = ifp->if_softc;
580 	p = ifv->ifv_p;
581 
582 	if (p) {
583 		struct sockaddr_dl sdl;
584 
585 		/*
586 		 * Since the interface is being unconfigured, we need to
587 		 * empty the list of multicast groups that we may have joined
588 		 * while we were alive from the parent's list.
589 		 */
590 		bzero((char *)&sdl, sizeof sdl);
591 		sdl.sdl_len = sizeof sdl;
592 		sdl.sdl_family = AF_LINK;
593 		sdl.sdl_index = p->if_index;
594 		sdl.sdl_type = IFT_ETHER;
595 		sdl.sdl_alen = ETHER_ADDR_LEN;
596 
597 		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
598 			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
599 			bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
600 			error = if_delmulti(p, (struct sockaddr *)&sdl);
601 			if (error)
602 				return(error);
603 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
604 			free(mc, M_VLAN);
605 		}
606 
607 		p->if_nvlans--;
608 		if (p->if_nvlans == 0) {
609 			/*
610 			 * Disable Tx/Rx of VLAN-sized frames.
611 			 */
612 			p->if_capenable &= ~IFCAP_VLAN_MTU;
613 			if (p->if_flags & IFF_UP) {
614 				struct ifreq ifr;
615 
616 				ifr.ifr_flags = p->if_flags;
617 				(*p->if_ioctl)(p, SIOCSIFFLAGS, (caddr_t) &ifr);
618 			}
619 		}
620 	}
621 
622 	/* Disconnect from parent. */
623 	ifv->ifv_p = NULL;
624 	ifv->ifv_if.if_mtu = ETHERMTU;		/* XXX why not 0? */
625 	ifv->ifv_flags = 0;
626 
627 	/* Clear our MAC address. */
628 	ifa = ifaddr_byindex(ifv->ifv_if.if_index);
629 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
630 	sdl->sdl_type = IFT_ETHER;
631 	sdl->sdl_alen = ETHER_ADDR_LEN;
632 	bzero(LLADDR(sdl), ETHER_ADDR_LEN);
633 	bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
634 
635 	return 0;
636 }
637 
638 static int
639 vlan_set_promisc(struct ifnet *ifp)
640 {
641 	struct ifvlan *ifv = ifp->if_softc;
642 	int error = 0;
643 
644 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
645 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
646 			error = ifpromisc(ifv->ifv_p, 1);
647 			if (error == 0)
648 				ifv->ifv_flags |= IFVF_PROMISC;
649 		}
650 	} else {
651 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
652 			error = ifpromisc(ifv->ifv_p, 0);
653 			if (error == 0)
654 				ifv->ifv_flags &= ~IFVF_PROMISC;
655 		}
656 	}
657 
658 	return (error);
659 }
660 
661 static int
662 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
663 {
664 	struct ifaddr *ifa;
665 	struct ifnet *p;
666 	struct ifreq *ifr;
667 	struct ifvlan *ifv;
668 	struct vlanreq vlr;
669 	int error = 0;
670 
671 	ifr = (struct ifreq *)data;
672 	ifa = (struct ifaddr *)data;
673 	ifv = ifp->if_softc;
674 
675 	switch (cmd) {
676 	case SIOCSIFADDR:
677 		ifp->if_flags |= IFF_UP;
678 
679 		switch (ifa->ifa_addr->sa_family) {
680 #ifdef INET
681 		case AF_INET:
682 			arp_ifinit(&ifv->ifv_if, ifa);
683 			break;
684 #endif
685 		default:
686 			break;
687 		}
688 		break;
689 
690 	case SIOCGIFADDR:
691 		{
692 			struct sockaddr *sa;
693 
694 			sa = (struct sockaddr *) &ifr->ifr_data;
695 			bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr,
696 			      (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
697 		}
698 		break;
699 
700 	case SIOCGIFMEDIA:
701 		VLAN_LOCK();
702 		if (ifv->ifv_p != NULL) {
703 			error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
704 					SIOCGIFMEDIA, data);
705 			VLAN_UNLOCK();
706 			/* Limit the result to the parent's current config. */
707 			if (error == 0) {
708 				struct ifmediareq *ifmr;
709 
710 				ifmr = (struct ifmediareq *) data;
711 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
712 					ifmr->ifm_count = 1;
713 					error = copyout(&ifmr->ifm_current,
714 						ifmr->ifm_ulist,
715 						sizeof(int));
716 				}
717 			}
718 		} else {
719 			VLAN_UNLOCK();
720 			error = EINVAL;
721 		}
722 		break;
723 
724 	case SIOCSIFMEDIA:
725 		error = EINVAL;
726 		break;
727 
728 	case SIOCSIFMTU:
729 		/*
730 		 * Set the interface MTU.
731 		 */
732 		VLAN_LOCK();
733 		if (ifv->ifv_p != NULL) {
734 			if (ifr->ifr_mtu >
735 			     (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
736 			    ifr->ifr_mtu <
737 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
738 				error = EINVAL;
739 			else
740 				ifp->if_mtu = ifr->ifr_mtu;
741 		} else
742 			error = EINVAL;
743 		VLAN_UNLOCK();
744 		break;
745 
746 	case SIOCSETVLAN:
747 		error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
748 		if (error)
749 			break;
750 		if (vlr.vlr_parent[0] == '\0') {
751 			VLAN_LOCK();
752 			vlan_unconfig(ifp);
753 			if (ifp->if_flags & IFF_UP)
754 				if_down(ifp);
755 			ifp->if_flags &= ~IFF_RUNNING;
756 			VLAN_UNLOCK();
757 			break;
758 		}
759 		p = ifunit(vlr.vlr_parent);
760 		if (p == 0) {
761 			error = ENOENT;
762 			break;
763 		}
764 		/*
765 		 * Don't let the caller set up a VLAN tag with
766 		 * anything except VLID bits.
767 		 */
768 		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
769 			error = EINVAL;
770 			break;
771 		}
772 		VLAN_LOCK();
773 		error = vlan_config(ifv, p);
774 		if (error) {
775 			VLAN_UNLOCK();
776 			break;
777 		}
778 		ifv->ifv_tag = vlr.vlr_tag;
779 		ifp->if_flags |= IFF_RUNNING;
780 		VLAN_UNLOCK();
781 
782 		/* Update promiscuous mode, if necessary. */
783 		vlan_set_promisc(ifp);
784 		break;
785 
786 	case SIOCGETVLAN:
787 		bzero(&vlr, sizeof vlr);
788 		VLAN_LOCK();
789 		if (ifv->ifv_p) {
790 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent),
791 			    "%s%d", ifv->ifv_p->if_name, ifv->ifv_p->if_unit);
792 			vlr.vlr_tag = ifv->ifv_tag;
793 		}
794 		VLAN_UNLOCK();
795 		error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
796 		break;
797 
798 	case SIOCSIFFLAGS:
799 		/*
800 		 * For promiscuous mode, we enable promiscuous mode on
801 		 * the parent if we need promiscuous on the VLAN interface.
802 		 */
803 		if (ifv->ifv_p != NULL)
804 			error = vlan_set_promisc(ifp);
805 		break;
806 
807 	case SIOCADDMULTI:
808 	case SIOCDELMULTI:
809 		error = vlan_setmulti(ifp);
810 		break;
811 	default:
812 		error = EINVAL;
813 	}
814 	return error;
815 }
816