xref: /freebsd/sys/net/if_vlan.c (revision 69c5fa5cd1ec9b09ed88a086607a8a0993818db9)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_inet.h"
49 #include "opt_inet6.h"
50 #include "opt_kern_tls.h"
51 #include "opt_vlan.h"
52 #include "opt_ratelimit.h"
53 
54 #include <sys/param.h>
55 #include <sys/eventhandler.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/rmlock.h>
62 #include <sys/priv.h>
63 #include <sys/queue.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/sysctl.h>
67 #include <sys/systm.h>
68 #include <sys/sx.h>
69 #include <sys/taskqueue.h>
70 
71 #include <net/bpf.h>
72 #include <net/ethernet.h>
73 #include <net/if.h>
74 #include <net/if_var.h>
75 #include <net/if_clone.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78 #include <net/if_vlan_var.h>
79 #include <net/route.h>
80 #include <net/vnet.h>
81 
82 #ifdef INET
83 #include <netinet/in.h>
84 #include <netinet/if_ether.h>
85 #endif
86 
87 #ifdef INET6
88 /*
89  * XXX: declare here to avoid to include many inet6 related files..
90  * should be more generalized?
91  */
92 extern void	nd6_setmtu(struct ifnet *);
93 #endif
94 
95 #define	VLAN_DEF_HWIDTH	4
96 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
97 
98 #define	UP_AND_RUNNING(ifp) \
99     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
100 
101 CK_SLIST_HEAD(ifvlanhead, ifvlan);
102 
103 struct ifvlantrunk {
104 	struct	ifnet   *parent;	/* parent interface of this trunk */
105 	struct	mtx	lock;
106 #ifdef VLAN_ARRAY
107 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
108 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
109 #else
110 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
111 	uint16_t	hmask;
112 	uint16_t	hwidth;
113 #endif
114 	int		refcnt;
115 };
116 
117 #if defined(KERN_TLS) || defined(RATELIMIT)
118 struct vlan_snd_tag {
119 	struct m_snd_tag com;
120 	struct m_snd_tag *tag;
121 };
122 
123 static inline struct vlan_snd_tag *
124 mst_to_vst(struct m_snd_tag *mst)
125 {
126 
127 	return (__containerof(mst, struct vlan_snd_tag, com));
128 }
129 #endif
130 
131 /*
132  * This macro provides a facility to iterate over every vlan on a trunk with
133  * the assumption that none will be added/removed during iteration.
134  */
135 #ifdef VLAN_ARRAY
136 #define VLAN_FOREACH(_ifv, _trunk) \
137 	size_t _i; \
138 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
139 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
140 #else /* VLAN_ARRAY */
141 #define VLAN_FOREACH(_ifv, _trunk) \
142 	struct ifvlan *_next; \
143 	size_t _i; \
144 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
145 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
146 #endif /* VLAN_ARRAY */
147 
148 /*
149  * This macro provides a facility to iterate over every vlan on a trunk while
150  * also modifying the number of vlans on the trunk. The iteration continues
151  * until some condition is met or there are no more vlans on the trunk.
152  */
153 #ifdef VLAN_ARRAY
154 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
155 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
156 	size_t _i; \
157 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
158 		if (((_ifv) = (_trunk)->vlans[_i]))
159 #else /* VLAN_ARRAY */
160 /*
161  * The hash table case is more complicated. We allow for the hash table to be
162  * modified (i.e. vlans removed) while we are iterating over it. To allow for
163  * this we must restart the iteration every time we "touch" something during
164  * the iteration, since removal will resize the hash table and invalidate our
165  * current position. If acting on the touched element causes the trunk to be
166  * emptied, then iteration also stops.
167  */
168 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
169 	size_t _i; \
170 	bool _touch = false; \
171 	for (_i = 0; \
172 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
173 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
174 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
175 		    (_touch = true))
176 #endif /* VLAN_ARRAY */
177 
178 struct vlan_mc_entry {
179 	struct sockaddr_dl		mc_addr;
180 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
181 	struct epoch_context		mc_epoch_ctx;
182 };
183 
184 struct ifvlan {
185 	struct	ifvlantrunk *ifv_trunk;
186 	struct	ifnet *ifv_ifp;
187 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
188 #define	PARENT(ifv)	(TRUNK(ifv)->parent)
189 	void	*ifv_cookie;
190 	int	ifv_pflags;	/* special flags we have set on parent */
191 	int	ifv_capenable;
192 	int	ifv_encaplen;	/* encapsulation length */
193 	int	ifv_mtufudge;	/* MTU fudged by this much */
194 	int	ifv_mintu;	/* min transmission unit */
195 	struct  ether_8021q_tag ifv_qtag;
196 #define ifv_proto	ifv_qtag.proto
197 #define ifv_vid		ifv_qtag.vid
198 #define ifv_pcp		ifv_qtag.pcp
199 	struct task lladdr_task;
200 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
201 #ifndef VLAN_ARRAY
202 	CK_SLIST_ENTRY(ifvlan) ifv_list;
203 #endif
204 };
205 
206 /* Special flags we should propagate to parent. */
207 static struct {
208 	int flag;
209 	int (*func)(struct ifnet *, int);
210 } vlan_pflags[] = {
211 	{IFF_PROMISC, ifpromisc},
212 	{IFF_ALLMULTI, if_allmulti},
213 	{0, NULL}
214 };
215 
216 extern int vlan_mtag_pcp;
217 
218 static const char vlanname[] = "vlan";
219 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
220 
221 static eventhandler_tag ifdetach_tag;
222 static eventhandler_tag iflladdr_tag;
223 
224 /*
225  * if_vlan uses two module-level synchronizations primitives to allow concurrent
226  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
227  * while they are being used for tx/rx. To accomplish this in a way that has
228  * acceptable performance and cooperation with other parts of the network stack
229  * there is a non-sleepable epoch(9) and an sx(9).
230  *
231  * The performance-sensitive paths that warrant using the epoch(9) are
232  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
233  * existence using if_vlantrunk, and being in the network tx/rx paths the use
234  * of an epoch(9) gives a measureable improvement in performance.
235  *
236  * The reason for having an sx(9) is mostly because there are still areas that
237  * must be sleepable and also have safe concurrent access to a vlan interface.
238  * Since the sx(9) exists, it is used by default in most paths unless sleeping
239  * is not permitted, or if it is not clear whether sleeping is permitted.
240  *
241  */
242 #define _VLAN_SX_ID ifv_sx
243 
244 static struct sx _VLAN_SX_ID;
245 
246 #define VLAN_LOCKING_INIT() \
247 	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
248 
249 #define VLAN_LOCKING_DESTROY() \
250 	sx_destroy(&_VLAN_SX_ID)
251 
252 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
253 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
254 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
255 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
256 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
257 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
258 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
259 
260 /*
261  * We also have a per-trunk mutex that should be acquired when changing
262  * its state.
263  */
264 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
265 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
266 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
267 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
268 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
269 
270 /*
271  * The VLAN_ARRAY substitutes the dynamic hash with a static array
272  * with 4096 entries. In theory this can give a boost in processing,
273  * however in practice it does not. Probably this is because the array
274  * is too big to fit into CPU cache.
275  */
276 #ifndef VLAN_ARRAY
277 static	void vlan_inithash(struct ifvlantrunk *trunk);
278 static	void vlan_freehash(struct ifvlantrunk *trunk);
279 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
280 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
281 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
282 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
283 	uint16_t vid);
284 #endif
285 static	void trunk_destroy(struct ifvlantrunk *trunk);
286 
287 static	void vlan_init(void *foo);
288 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
289 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
290 #if defined(KERN_TLS) || defined(RATELIMIT)
291 static	int vlan_snd_tag_alloc(struct ifnet *,
292     union if_snd_tag_alloc_params *, struct m_snd_tag **);
293 static	int vlan_snd_tag_modify(struct m_snd_tag *,
294     union if_snd_tag_modify_params *);
295 static	int vlan_snd_tag_query(struct m_snd_tag *,
296     union if_snd_tag_query_params *);
297 static	void vlan_snd_tag_free(struct m_snd_tag *);
298 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
299 static void vlan_ratelimit_query(struct ifnet *,
300     struct if_ratelimit_query_results *);
301 #endif
302 static	void vlan_qflush(struct ifnet *ifp);
303 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
304     int (*func)(struct ifnet *, int));
305 static	int vlan_setflags(struct ifnet *ifp, int status);
306 static	int vlan_setmulti(struct ifnet *ifp);
307 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
308 static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
309     const struct sockaddr *dst, struct route *ro);
310 static	void vlan_unconfig(struct ifnet *ifp);
311 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
312 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
313 	uint16_t proto);
314 static	void vlan_link_state(struct ifnet *ifp);
315 static	void vlan_capabilities(struct ifvlan *ifv);
316 static	void vlan_trunk_capabilities(struct ifnet *ifp);
317 
318 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
319 static	int vlan_clone_match(struct if_clone *, const char *);
320 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
321 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
322 
323 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
324 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
325 
326 static  void vlan_lladdr_fn(void *arg, int pending);
327 
328 static struct if_clone *vlan_cloner;
329 
330 #ifdef VIMAGE
331 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
332 #define	V_vlan_cloner	VNET(vlan_cloner)
333 #endif
334 
335 static void
336 vlan_mc_free(struct epoch_context *ctx)
337 {
338 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
339 	free(mc, M_VLAN);
340 }
341 
342 #ifndef VLAN_ARRAY
343 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
344 
345 static void
346 vlan_inithash(struct ifvlantrunk *trunk)
347 {
348 	int i, n;
349 
350 	/*
351 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
352 	 * It is OK in case this function is called before the trunk struct
353 	 * gets hooked up and becomes visible from other threads.
354 	 */
355 
356 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
357 	    ("%s: hash already initialized", __func__));
358 
359 	trunk->hwidth = VLAN_DEF_HWIDTH;
360 	n = 1 << trunk->hwidth;
361 	trunk->hmask = n - 1;
362 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
363 	for (i = 0; i < n; i++)
364 		CK_SLIST_INIT(&trunk->hash[i]);
365 }
366 
367 static void
368 vlan_freehash(struct ifvlantrunk *trunk)
369 {
370 #ifdef INVARIANTS
371 	int i;
372 
373 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
374 	for (i = 0; i < (1 << trunk->hwidth); i++)
375 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
376 		    ("%s: hash table not empty", __func__));
377 #endif
378 	free(trunk->hash, M_VLAN);
379 	trunk->hash = NULL;
380 	trunk->hwidth = trunk->hmask = 0;
381 }
382 
383 static int
384 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
385 {
386 	int i, b;
387 	struct ifvlan *ifv2;
388 
389 	VLAN_XLOCK_ASSERT();
390 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
391 
392 	b = 1 << trunk->hwidth;
393 	i = HASH(ifv->ifv_vid, trunk->hmask);
394 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
395 		if (ifv->ifv_vid == ifv2->ifv_vid)
396 			return (EEXIST);
397 
398 	/*
399 	 * Grow the hash when the number of vlans exceeds half of the number of
400 	 * hash buckets squared. This will make the average linked-list length
401 	 * buckets/2.
402 	 */
403 	if (trunk->refcnt > (b * b) / 2) {
404 		vlan_growhash(trunk, 1);
405 		i = HASH(ifv->ifv_vid, trunk->hmask);
406 	}
407 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
408 	trunk->refcnt++;
409 
410 	return (0);
411 }
412 
413 static int
414 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
415 {
416 	int i, b;
417 	struct ifvlan *ifv2;
418 
419 	VLAN_XLOCK_ASSERT();
420 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
421 
422 	b = 1 << trunk->hwidth;
423 	i = HASH(ifv->ifv_vid, trunk->hmask);
424 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
425 		if (ifv2 == ifv) {
426 			trunk->refcnt--;
427 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
428 			if (trunk->refcnt < (b * b) / 2)
429 				vlan_growhash(trunk, -1);
430 			return (0);
431 		}
432 
433 	panic("%s: vlan not found\n", __func__);
434 	return (ENOENT); /*NOTREACHED*/
435 }
436 
437 /*
438  * Grow the hash larger or smaller if memory permits.
439  */
440 static void
441 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
442 {
443 	struct ifvlan *ifv;
444 	struct ifvlanhead *hash2;
445 	int hwidth2, i, j, n, n2;
446 
447 	VLAN_XLOCK_ASSERT();
448 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
449 
450 	if (howmuch == 0) {
451 		/* Harmless yet obvious coding error */
452 		printf("%s: howmuch is 0\n", __func__);
453 		return;
454 	}
455 
456 	hwidth2 = trunk->hwidth + howmuch;
457 	n = 1 << trunk->hwidth;
458 	n2 = 1 << hwidth2;
459 	/* Do not shrink the table below the default */
460 	if (hwidth2 < VLAN_DEF_HWIDTH)
461 		return;
462 
463 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
464 	if (hash2 == NULL) {
465 		printf("%s: out of memory -- hash size not changed\n",
466 		    __func__);
467 		return;		/* We can live with the old hash table */
468 	}
469 	for (j = 0; j < n2; j++)
470 		CK_SLIST_INIT(&hash2[j]);
471 	for (i = 0; i < n; i++)
472 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
473 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
474 			j = HASH(ifv->ifv_vid, n2 - 1);
475 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
476 		}
477 	NET_EPOCH_WAIT();
478 	free(trunk->hash, M_VLAN);
479 	trunk->hash = hash2;
480 	trunk->hwidth = hwidth2;
481 	trunk->hmask = n2 - 1;
482 
483 	if (bootverbose)
484 		if_printf(trunk->parent,
485 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
486 }
487 
488 static __inline struct ifvlan *
489 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
490 {
491 	struct ifvlan *ifv;
492 
493 	NET_EPOCH_ASSERT();
494 
495 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
496 		if (ifv->ifv_vid == vid)
497 			return (ifv);
498 	return (NULL);
499 }
500 
501 #if 0
502 /* Debugging code to view the hashtables. */
503 static void
504 vlan_dumphash(struct ifvlantrunk *trunk)
505 {
506 	int i;
507 	struct ifvlan *ifv;
508 
509 	for (i = 0; i < (1 << trunk->hwidth); i++) {
510 		printf("%d: ", i);
511 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
512 			printf("%s ", ifv->ifv_ifp->if_xname);
513 		printf("\n");
514 	}
515 }
516 #endif /* 0 */
517 #else
518 
519 static __inline struct ifvlan *
520 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
521 {
522 
523 	return trunk->vlans[vid];
524 }
525 
526 static __inline int
527 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
528 {
529 
530 	if (trunk->vlans[ifv->ifv_vid] != NULL)
531 		return EEXIST;
532 	trunk->vlans[ifv->ifv_vid] = ifv;
533 	trunk->refcnt++;
534 
535 	return (0);
536 }
537 
538 static __inline int
539 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
540 {
541 
542 	trunk->vlans[ifv->ifv_vid] = NULL;
543 	trunk->refcnt--;
544 
545 	return (0);
546 }
547 
548 static __inline void
549 vlan_freehash(struct ifvlantrunk *trunk)
550 {
551 }
552 
553 static __inline void
554 vlan_inithash(struct ifvlantrunk *trunk)
555 {
556 }
557 
558 #endif /* !VLAN_ARRAY */
559 
560 static void
561 trunk_destroy(struct ifvlantrunk *trunk)
562 {
563 	VLAN_XLOCK_ASSERT();
564 
565 	vlan_freehash(trunk);
566 	trunk->parent->if_vlantrunk = NULL;
567 	TRUNK_LOCK_DESTROY(trunk);
568 	if_rele(trunk->parent);
569 	free(trunk, M_VLAN);
570 }
571 
572 /*
573  * Program our multicast filter. What we're actually doing is
574  * programming the multicast filter of the parent. This has the
575  * side effect of causing the parent interface to receive multicast
576  * traffic that it doesn't really want, which ends up being discarded
577  * later by the upper protocol layers. Unfortunately, there's no way
578  * to avoid this: there really is only one physical interface.
579  */
580 static int
581 vlan_setmulti(struct ifnet *ifp)
582 {
583 	struct ifnet		*ifp_p;
584 	struct ifmultiaddr	*ifma;
585 	struct ifvlan		*sc;
586 	struct vlan_mc_entry	*mc;
587 	int			error;
588 
589 	VLAN_XLOCK_ASSERT();
590 
591 	/* Find the parent. */
592 	sc = ifp->if_softc;
593 	ifp_p = PARENT(sc);
594 
595 	CURVNET_SET_QUIET(ifp_p->if_vnet);
596 
597 	/* First, remove any existing filter entries. */
598 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
599 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
600 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
601 		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
602 	}
603 
604 	/* Now program new ones. */
605 	IF_ADDR_WLOCK(ifp);
606 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
607 		if (ifma->ifma_addr->sa_family != AF_LINK)
608 			continue;
609 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
610 		if (mc == NULL) {
611 			IF_ADDR_WUNLOCK(ifp);
612 			return (ENOMEM);
613 		}
614 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
615 		mc->mc_addr.sdl_index = ifp_p->if_index;
616 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
617 	}
618 	IF_ADDR_WUNLOCK(ifp);
619 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
620 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
621 		    NULL);
622 		if (error)
623 			return (error);
624 	}
625 
626 	CURVNET_RESTORE();
627 	return (0);
628 }
629 
630 /*
631  * A handler for parent interface link layer address changes.
632  * If the parent interface link layer address is changed we
633  * should also change it on all children vlans.
634  */
635 static void
636 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
637 {
638 	struct epoch_tracker et;
639 	struct ifvlan *ifv;
640 	struct ifnet *ifv_ifp;
641 	struct ifvlantrunk *trunk;
642 	struct sockaddr_dl *sdl;
643 
644 	/* Need the epoch since this is run on taskqueue_swi. */
645 	NET_EPOCH_ENTER(et);
646 	trunk = ifp->if_vlantrunk;
647 	if (trunk == NULL) {
648 		NET_EPOCH_EXIT(et);
649 		return;
650 	}
651 
652 	/*
653 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
654 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
655 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
656 	 */
657 	TRUNK_WLOCK(trunk);
658 	VLAN_FOREACH(ifv, trunk) {
659 		/*
660 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
661 		 * to actually call if_setlladdr. if_setlladdr needs to
662 		 * be deferred to a taskqueue because it will call into
663 		 * the if_vlan ioctl path and try to acquire the global
664 		 * lock.
665 		 */
666 		ifv_ifp = ifv->ifv_ifp;
667 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
668 		    ifp->if_addrlen);
669 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
670 		sdl->sdl_alen = ifp->if_addrlen;
671 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
672 	}
673 	TRUNK_WUNLOCK(trunk);
674 	NET_EPOCH_EXIT(et);
675 }
676 
677 /*
678  * A handler for network interface departure events.
679  * Track departure of trunks here so that we don't access invalid
680  * pointers or whatever if a trunk is ripped from under us, e.g.,
681  * by ejecting its hot-plug card.  However, if an ifnet is simply
682  * being renamed, then there's no need to tear down the state.
683  */
684 static void
685 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
686 {
687 	struct ifvlan *ifv;
688 	struct ifvlantrunk *trunk;
689 
690 	/* If the ifnet is just being renamed, don't do anything. */
691 	if (ifp->if_flags & IFF_RENAMING)
692 		return;
693 	VLAN_XLOCK();
694 	trunk = ifp->if_vlantrunk;
695 	if (trunk == NULL) {
696 		VLAN_XUNLOCK();
697 		return;
698 	}
699 
700 	/*
701 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
702 	 * Check trunk pointer after each vlan_unconfig() as it will
703 	 * free it and set to NULL after the last vlan was detached.
704 	 */
705 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
706 	    ifp->if_vlantrunk == NULL)
707 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
708 
709 	/* Trunk should have been destroyed in vlan_unconfig(). */
710 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
711 	VLAN_XUNLOCK();
712 }
713 
714 /*
715  * Return the trunk device for a virtual interface.
716  */
717 static struct ifnet  *
718 vlan_trunkdev(struct ifnet *ifp)
719 {
720 	struct ifvlan *ifv;
721 
722 	NET_EPOCH_ASSERT();
723 
724 	if (ifp->if_type != IFT_L2VLAN)
725 		return (NULL);
726 
727 	ifv = ifp->if_softc;
728 	ifp = NULL;
729 	if (ifv->ifv_trunk)
730 		ifp = PARENT(ifv);
731 	return (ifp);
732 }
733 
734 /*
735  * Return the 12-bit VLAN VID for this interface, for use by external
736  * components such as Infiniband.
737  *
738  * XXXRW: Note that the function name here is historical; it should be named
739  * vlan_vid().
740  */
741 static int
742 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
743 {
744 	struct ifvlan *ifv;
745 
746 	if (ifp->if_type != IFT_L2VLAN)
747 		return (EINVAL);
748 	ifv = ifp->if_softc;
749 	*vidp = ifv->ifv_vid;
750 	return (0);
751 }
752 
753 static int
754 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
755 {
756 	struct ifvlan *ifv;
757 
758 	if (ifp->if_type != IFT_L2VLAN)
759 		return (EINVAL);
760 	ifv = ifp->if_softc;
761 	*pcpp = ifv->ifv_pcp;
762 	return (0);
763 }
764 
765 /*
766  * Return a driver specific cookie for this interface.  Synchronization
767  * with setcookie must be provided by the driver.
768  */
769 static void *
770 vlan_cookie(struct ifnet *ifp)
771 {
772 	struct ifvlan *ifv;
773 
774 	if (ifp->if_type != IFT_L2VLAN)
775 		return (NULL);
776 	ifv = ifp->if_softc;
777 	return (ifv->ifv_cookie);
778 }
779 
780 /*
781  * Store a cookie in our softc that drivers can use to store driver
782  * private per-instance data in.
783  */
784 static int
785 vlan_setcookie(struct ifnet *ifp, void *cookie)
786 {
787 	struct ifvlan *ifv;
788 
789 	if (ifp->if_type != IFT_L2VLAN)
790 		return (EINVAL);
791 	ifv = ifp->if_softc;
792 	ifv->ifv_cookie = cookie;
793 	return (0);
794 }
795 
796 /*
797  * Return the vlan device present at the specific VID.
798  */
799 static struct ifnet *
800 vlan_devat(struct ifnet *ifp, uint16_t vid)
801 {
802 	struct ifvlantrunk *trunk;
803 	struct ifvlan *ifv;
804 
805 	NET_EPOCH_ASSERT();
806 
807 	trunk = ifp->if_vlantrunk;
808 	if (trunk == NULL)
809 		return (NULL);
810 	ifp = NULL;
811 	ifv = vlan_gethash(trunk, vid);
812 	if (ifv)
813 		ifp = ifv->ifv_ifp;
814 	return (ifp);
815 }
816 
817 /*
818  * VLAN support can be loaded as a module.  The only place in the
819  * system that's intimately aware of this is ether_input.  We hook
820  * into this code through vlan_input_p which is defined there and
821  * set here.  No one else in the system should be aware of this so
822  * we use an explicit reference here.
823  */
824 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
825 
826 /* For if_link_state_change() eyes only... */
827 extern	void (*vlan_link_state_p)(struct ifnet *);
828 
829 static int
830 vlan_modevent(module_t mod, int type, void *data)
831 {
832 
833 	switch (type) {
834 	case MOD_LOAD:
835 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
836 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
837 		if (ifdetach_tag == NULL)
838 			return (ENOMEM);
839 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
840 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
841 		if (iflladdr_tag == NULL)
842 			return (ENOMEM);
843 		VLAN_LOCKING_INIT();
844 		vlan_input_p = vlan_input;
845 		vlan_link_state_p = vlan_link_state;
846 		vlan_trunk_cap_p = vlan_trunk_capabilities;
847 		vlan_trunkdev_p = vlan_trunkdev;
848 		vlan_cookie_p = vlan_cookie;
849 		vlan_setcookie_p = vlan_setcookie;
850 		vlan_tag_p = vlan_tag;
851 		vlan_pcp_p = vlan_pcp;
852 		vlan_devat_p = vlan_devat;
853 #ifndef VIMAGE
854 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
855 		    vlan_clone_create, vlan_clone_destroy);
856 #endif
857 		if (bootverbose)
858 			printf("vlan: initialized, using "
859 #ifdef VLAN_ARRAY
860 			       "full-size arrays"
861 #else
862 			       "hash tables with chaining"
863 #endif
864 
865 			       "\n");
866 		break;
867 	case MOD_UNLOAD:
868 #ifndef VIMAGE
869 		if_clone_detach(vlan_cloner);
870 #endif
871 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
872 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
873 		vlan_input_p = NULL;
874 		vlan_link_state_p = NULL;
875 		vlan_trunk_cap_p = NULL;
876 		vlan_trunkdev_p = NULL;
877 		vlan_tag_p = NULL;
878 		vlan_cookie_p = NULL;
879 		vlan_setcookie_p = NULL;
880 		vlan_devat_p = NULL;
881 		VLAN_LOCKING_DESTROY();
882 		if (bootverbose)
883 			printf("vlan: unloaded\n");
884 		break;
885 	default:
886 		return (EOPNOTSUPP);
887 	}
888 	return (0);
889 }
890 
891 static moduledata_t vlan_mod = {
892 	"if_vlan",
893 	vlan_modevent,
894 	0
895 };
896 
897 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
898 MODULE_VERSION(if_vlan, 3);
899 
900 #ifdef VIMAGE
901 static void
902 vnet_vlan_init(const void *unused __unused)
903 {
904 
905 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
906 		    vlan_clone_create, vlan_clone_destroy);
907 	V_vlan_cloner = vlan_cloner;
908 }
909 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
910     vnet_vlan_init, NULL);
911 
912 static void
913 vnet_vlan_uninit(const void *unused __unused)
914 {
915 
916 	if_clone_detach(V_vlan_cloner);
917 }
918 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
919     vnet_vlan_uninit, NULL);
920 #endif
921 
922 /*
923  * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
924  */
925 static struct ifnet *
926 vlan_clone_match_ethervid(const char *name, int *vidp)
927 {
928 	char ifname[IFNAMSIZ];
929 	char *cp;
930 	struct ifnet *ifp;
931 	int vid;
932 
933 	strlcpy(ifname, name, IFNAMSIZ);
934 	if ((cp = strrchr(ifname, '.')) == NULL)
935 		return (NULL);
936 	*cp = '\0';
937 	if ((ifp = ifunit_ref(ifname)) == NULL)
938 		return (NULL);
939 	/* Parse VID. */
940 	if (*++cp == '\0') {
941 		if_rele(ifp);
942 		return (NULL);
943 	}
944 	vid = 0;
945 	for(; *cp >= '0' && *cp <= '9'; cp++)
946 		vid = (vid * 10) + (*cp - '0');
947 	if (*cp != '\0') {
948 		if_rele(ifp);
949 		return (NULL);
950 	}
951 	if (vidp != NULL)
952 		*vidp = vid;
953 
954 	return (ifp);
955 }
956 
957 static int
958 vlan_clone_match(struct if_clone *ifc, const char *name)
959 {
960 	struct ifnet *ifp;
961 	const char *cp;
962 
963 	ifp = vlan_clone_match_ethervid(name, NULL);
964 	if (ifp != NULL) {
965 		if_rele(ifp);
966 		return (1);
967 	}
968 
969 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
970 		return (0);
971 	for (cp = name + 4; *cp != '\0'; cp++) {
972 		if (*cp < '0' || *cp > '9')
973 			return (0);
974 	}
975 
976 	return (1);
977 }
978 
979 static int
980 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
981 {
982 	char *dp;
983 	bool wildcard = false;
984 	bool subinterface = false;
985 	int unit;
986 	int error;
987 	int vid = 0;
988 	uint16_t proto = ETHERTYPE_VLAN;
989 	struct ifvlan *ifv;
990 	struct ifnet *ifp;
991 	struct ifnet *p = NULL;
992 	struct ifaddr *ifa;
993 	struct sockaddr_dl *sdl;
994 	struct vlanreq vlr;
995 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
996 
997 
998 	/*
999 	 * There are three ways to specify the cloned device:
1000 	 * o pass a parameter block with the clone request.
1001 	 * o specify parameters in the text of the clone device name
1002 	 * o specify no parameters and get an unattached device that
1003 	 *   must be configured separately.
1004 	 * The first technique is preferred; the latter two are supported
1005 	 * for backwards compatibility.
1006 	 *
1007 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1008 	 * called for.
1009 	 */
1010 
1011 	if (params) {
1012 		error = copyin(params, &vlr, sizeof(vlr));
1013 		if (error)
1014 			return error;
1015 		vid = vlr.vlr_tag;
1016 		proto = vlr.vlr_proto;
1017 
1018 		p = ifunit_ref(vlr.vlr_parent);
1019 		if (p == NULL)
1020 			return (ENXIO);
1021 	}
1022 
1023 	if ((error = ifc_name2unit(name, &unit)) == 0) {
1024 
1025 		/*
1026 		 * vlanX interface. Set wildcard to true if the unit number
1027 		 * is not fixed (-1)
1028 		 */
1029 		wildcard = (unit < 0);
1030 	} else {
1031 		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1032 		if (p_tmp != NULL) {
1033 			error = 0;
1034 			subinterface = true;
1035 			unit = IF_DUNIT_NONE;
1036 			wildcard = false;
1037 			if (p != NULL) {
1038 				if_rele(p_tmp);
1039 				if (p != p_tmp)
1040 					error = EINVAL;
1041 			} else
1042 				p = p_tmp;
1043 		} else
1044 			error = ENXIO;
1045 	}
1046 
1047 	if (error != 0) {
1048 		if (p != NULL)
1049 			if_rele(p);
1050 		return (error);
1051 	}
1052 
1053 	if (!subinterface) {
1054 		/* vlanX interface, mark X as busy or allocate new unit # */
1055 		error = ifc_alloc_unit(ifc, &unit);
1056 		if (error != 0) {
1057 			if (p != NULL)
1058 				if_rele(p);
1059 			return (error);
1060 		}
1061 	}
1062 
1063 	/* In the wildcard case, we need to update the name. */
1064 	if (wildcard) {
1065 		for (dp = name; *dp != '\0'; dp++);
1066 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1067 		    len - (dp-name) - 1) {
1068 			panic("%s: interface name too long", __func__);
1069 		}
1070 	}
1071 
1072 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1073 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1074 	if (ifp == NULL) {
1075 		if (!subinterface)
1076 			ifc_free_unit(ifc, unit);
1077 		free(ifv, M_VLAN);
1078 		if (p != NULL)
1079 			if_rele(p);
1080 		return (ENOSPC);
1081 	}
1082 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1083 	ifp->if_softc = ifv;
1084 	/*
1085 	 * Set the name manually rather than using if_initname because
1086 	 * we don't conform to the default naming convention for interfaces.
1087 	 */
1088 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1089 	ifp->if_dname = vlanname;
1090 	ifp->if_dunit = unit;
1091 
1092 	ifp->if_init = vlan_init;
1093 	ifp->if_transmit = vlan_transmit;
1094 	ifp->if_qflush = vlan_qflush;
1095 	ifp->if_ioctl = vlan_ioctl;
1096 #if defined(KERN_TLS) || defined(RATELIMIT)
1097 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1098 	ifp->if_snd_tag_modify = vlan_snd_tag_modify;
1099 	ifp->if_snd_tag_query = vlan_snd_tag_query;
1100 	ifp->if_snd_tag_free = vlan_snd_tag_free;
1101 	ifp->if_next_snd_tag = vlan_next_snd_tag;
1102 	ifp->if_ratelimit_query = vlan_ratelimit_query;
1103 #endif
1104 	ifp->if_flags = VLAN_IFFLAGS;
1105 	ether_ifattach(ifp, eaddr);
1106 	/* Now undo some of the damage... */
1107 	ifp->if_baudrate = 0;
1108 	ifp->if_type = IFT_L2VLAN;
1109 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1110 	ifa = ifp->if_addr;
1111 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1112 	sdl->sdl_type = IFT_L2VLAN;
1113 
1114 	if (p != NULL) {
1115 		error = vlan_config(ifv, p, vid, proto);
1116 		if_rele(p);
1117 		if (error != 0) {
1118 			/*
1119 			 * Since we've partially failed, we need to back
1120 			 * out all the way, otherwise userland could get
1121 			 * confused.  Thus, we destroy the interface.
1122 			 */
1123 			ether_ifdetach(ifp);
1124 			vlan_unconfig(ifp);
1125 			if_free(ifp);
1126 			if (!subinterface)
1127 				ifc_free_unit(ifc, unit);
1128 			free(ifv, M_VLAN);
1129 
1130 			return (error);
1131 		}
1132 	}
1133 
1134 	return (0);
1135 }
1136 
1137 static int
1138 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1139 {
1140 	struct ifvlan *ifv = ifp->if_softc;
1141 	int unit = ifp->if_dunit;
1142 
1143 	if (ifp->if_vlantrunk)
1144 		return (EBUSY);
1145 
1146 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1147 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1148 	/*
1149 	 * We should have the only reference to the ifv now, so we can now
1150 	 * drain any remaining lladdr task before freeing the ifnet and the
1151 	 * ifvlan.
1152 	 */
1153 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1154 	NET_EPOCH_WAIT();
1155 	if_free(ifp);
1156 	free(ifv, M_VLAN);
1157 	if (unit != IF_DUNIT_NONE)
1158 		ifc_free_unit(ifc, unit);
1159 
1160 	return (0);
1161 }
1162 
1163 /*
1164  * The ifp->if_init entry point for vlan(4) is a no-op.
1165  */
1166 static void
1167 vlan_init(void *foo __unused)
1168 {
1169 }
1170 
1171 /*
1172  * The if_transmit method for vlan(4) interface.
1173  */
1174 static int
1175 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1176 {
1177 	struct ifvlan *ifv;
1178 	struct ifnet *p;
1179 	int error, len, mcast;
1180 
1181 	NET_EPOCH_ASSERT();
1182 
1183 	ifv = ifp->if_softc;
1184 	if (TRUNK(ifv) == NULL) {
1185 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1186 		m_freem(m);
1187 		return (ENETDOWN);
1188 	}
1189 	p = PARENT(ifv);
1190 	len = m->m_pkthdr.len;
1191 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1192 
1193 	BPF_MTAP(ifp, m);
1194 
1195 #if defined(KERN_TLS) || defined(RATELIMIT)
1196 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1197 		struct vlan_snd_tag *vst;
1198 		struct m_snd_tag *mst;
1199 
1200 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1201 		mst = m->m_pkthdr.snd_tag;
1202 		vst = mst_to_vst(mst);
1203 		if (vst->tag->ifp != p) {
1204 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1205 			m_freem(m);
1206 			return (EAGAIN);
1207 		}
1208 
1209 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1210 		m_snd_tag_rele(mst);
1211 	}
1212 #endif
1213 
1214 	/*
1215 	 * Do not run parent's if_transmit() if the parent is not up,
1216 	 * or parent's driver will cause a system crash.
1217 	 */
1218 	if (!UP_AND_RUNNING(p)) {
1219 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1220 		m_freem(m);
1221 		return (ENETDOWN);
1222 	}
1223 
1224 	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1225 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1226 		return (0);
1227 	}
1228 
1229 	/*
1230 	 * Send it, precisely as ether_output() would have.
1231 	 */
1232 	error = (p->if_transmit)(p, m);
1233 	if (error == 0) {
1234 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1235 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1236 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1237 	} else
1238 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1239 	return (error);
1240 }
1241 
1242 static int
1243 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1244     struct route *ro)
1245 {
1246 	struct ifvlan *ifv;
1247 	struct ifnet *p;
1248 
1249 	NET_EPOCH_ASSERT();
1250 
1251 	/*
1252 	 * Find the first non-VLAN parent interface.
1253 	 */
1254 	ifv = ifp->if_softc;
1255 	do {
1256 		if (TRUNK(ifv) == NULL) {
1257 			m_freem(m);
1258 			return (ENETDOWN);
1259 		}
1260 		p = PARENT(ifv);
1261 		ifv = p->if_softc;
1262 	} while (p->if_type == IFT_L2VLAN);
1263 
1264 	return p->if_output(ifp, m, dst, ro);
1265 }
1266 
1267 /*
1268  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1269  */
1270 static void
1271 vlan_qflush(struct ifnet *ifp __unused)
1272 {
1273 }
1274 
1275 static void
1276 vlan_input(struct ifnet *ifp, struct mbuf *m)
1277 {
1278 	struct ifvlantrunk *trunk;
1279 	struct ifvlan *ifv;
1280 	struct m_tag *mtag;
1281 	uint16_t vid, tag;
1282 
1283 	NET_EPOCH_ASSERT();
1284 
1285 	trunk = ifp->if_vlantrunk;
1286 	if (trunk == NULL) {
1287 		m_freem(m);
1288 		return;
1289 	}
1290 
1291 	if (m->m_flags & M_VLANTAG) {
1292 		/*
1293 		 * Packet is tagged, but m contains a normal
1294 		 * Ethernet frame; the tag is stored out-of-band.
1295 		 */
1296 		tag = m->m_pkthdr.ether_vtag;
1297 		m->m_flags &= ~M_VLANTAG;
1298 	} else {
1299 		struct ether_vlan_header *evl;
1300 
1301 		/*
1302 		 * Packet is tagged in-band as specified by 802.1q.
1303 		 */
1304 		switch (ifp->if_type) {
1305 		case IFT_ETHER:
1306 			if (m->m_len < sizeof(*evl) &&
1307 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1308 				if_printf(ifp, "cannot pullup VLAN header\n");
1309 				return;
1310 			}
1311 			evl = mtod(m, struct ether_vlan_header *);
1312 			tag = ntohs(evl->evl_tag);
1313 
1314 			/*
1315 			 * Remove the 802.1q header by copying the Ethernet
1316 			 * addresses over it and adjusting the beginning of
1317 			 * the data in the mbuf.  The encapsulated Ethernet
1318 			 * type field is already in place.
1319 			 */
1320 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1321 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1322 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1323 			break;
1324 
1325 		default:
1326 #ifdef INVARIANTS
1327 			panic("%s: %s has unsupported if_type %u",
1328 			      __func__, ifp->if_xname, ifp->if_type);
1329 #endif
1330 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1331 			m_freem(m);
1332 			return;
1333 		}
1334 	}
1335 
1336 	vid = EVL_VLANOFTAG(tag);
1337 
1338 	ifv = vlan_gethash(trunk, vid);
1339 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1340 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1341 		m_freem(m);
1342 		return;
1343 	}
1344 
1345 	if (vlan_mtag_pcp) {
1346 		/*
1347 		 * While uncommon, it is possible that we will find a 802.1q
1348 		 * packet encapsulated inside another packet that also had an
1349 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1350 		 * arriving over ethernet.  In that case, we replace the
1351 		 * existing 802.1q PCP m_tag value.
1352 		 */
1353 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1354 		if (mtag == NULL) {
1355 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1356 			    sizeof(uint8_t), M_NOWAIT);
1357 			if (mtag == NULL) {
1358 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1359 				m_freem(m);
1360 				return;
1361 			}
1362 			m_tag_prepend(m, mtag);
1363 		}
1364 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1365 	}
1366 
1367 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1368 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1369 
1370 	/* Pass it back through the parent's input routine. */
1371 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1372 }
1373 
1374 static void
1375 vlan_lladdr_fn(void *arg, int pending __unused)
1376 {
1377 	struct ifvlan *ifv;
1378 	struct ifnet *ifp;
1379 
1380 	ifv = (struct ifvlan *)arg;
1381 	ifp = ifv->ifv_ifp;
1382 
1383 	CURVNET_SET(ifp->if_vnet);
1384 
1385 	/* The ifv_ifp already has the lladdr copied in. */
1386 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1387 
1388 	CURVNET_RESTORE();
1389 }
1390 
1391 static int
1392 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1393 	uint16_t proto)
1394 {
1395 	struct epoch_tracker et;
1396 	struct ifvlantrunk *trunk;
1397 	struct ifnet *ifp;
1398 	int error = 0;
1399 
1400 	/*
1401 	 * We can handle non-ethernet hardware types as long as
1402 	 * they handle the tagging and headers themselves.
1403 	 */
1404 	if (p->if_type != IFT_ETHER &&
1405 	    p->if_type != IFT_L2VLAN &&
1406 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1407 		return (EPROTONOSUPPORT);
1408 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1409 		return (EPROTONOSUPPORT);
1410 	/*
1411 	 * Don't let the caller set up a VLAN VID with
1412 	 * anything except VLID bits.
1413 	 * VID numbers 0x0 and 0xFFF are reserved.
1414 	 */
1415 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1416 		return (EINVAL);
1417 	if (ifv->ifv_trunk)
1418 		return (EBUSY);
1419 
1420 	VLAN_XLOCK();
1421 	if (p->if_vlantrunk == NULL) {
1422 		trunk = malloc(sizeof(struct ifvlantrunk),
1423 		    M_VLAN, M_WAITOK | M_ZERO);
1424 		vlan_inithash(trunk);
1425 		TRUNK_LOCK_INIT(trunk);
1426 		TRUNK_WLOCK(trunk);
1427 		p->if_vlantrunk = trunk;
1428 		trunk->parent = p;
1429 		if_ref(trunk->parent);
1430 		TRUNK_WUNLOCK(trunk);
1431 	} else {
1432 		trunk = p->if_vlantrunk;
1433 	}
1434 
1435 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1436 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1437 	error = vlan_inshash(trunk, ifv);
1438 	if (error)
1439 		goto done;
1440 	ifv->ifv_proto = proto;
1441 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1442 	ifv->ifv_mintu = ETHERMIN;
1443 	ifv->ifv_pflags = 0;
1444 	ifv->ifv_capenable = -1;
1445 
1446 	/*
1447 	 * If the parent supports the VLAN_MTU capability,
1448 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1449 	 * use it.
1450 	 */
1451 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1452 		/*
1453 		 * No need to fudge the MTU since the parent can
1454 		 * handle extended frames.
1455 		 */
1456 		ifv->ifv_mtufudge = 0;
1457 	} else {
1458 		/*
1459 		 * Fudge the MTU by the encapsulation size.  This
1460 		 * makes us incompatible with strictly compliant
1461 		 * 802.1Q implementations, but allows us to use
1462 		 * the feature with other NetBSD implementations,
1463 		 * which might still be useful.
1464 		 */
1465 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1466 	}
1467 
1468 	ifv->ifv_trunk = trunk;
1469 	ifp = ifv->ifv_ifp;
1470 	/*
1471 	 * Initialize fields from our parent.  This duplicates some
1472 	 * work with ether_ifattach() but allows for non-ethernet
1473 	 * interfaces to also work.
1474 	 */
1475 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1476 	ifp->if_baudrate = p->if_baudrate;
1477 	ifp->if_input = p->if_input;
1478 	ifp->if_resolvemulti = p->if_resolvemulti;
1479 	ifp->if_addrlen = p->if_addrlen;
1480 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1481 	ifp->if_pcp = ifv->ifv_pcp;
1482 
1483 	/*
1484 	 * We wrap the parent's if_output using vlan_output to ensure that it
1485 	 * can't become stale.
1486 	 */
1487 	ifp->if_output = vlan_output;
1488 
1489 	/*
1490 	 * Copy only a selected subset of flags from the parent.
1491 	 * Other flags are none of our business.
1492 	 */
1493 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1494 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1495 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1496 #undef VLAN_COPY_FLAGS
1497 
1498 	ifp->if_link_state = p->if_link_state;
1499 
1500 	NET_EPOCH_ENTER(et);
1501 	vlan_capabilities(ifv);
1502 	NET_EPOCH_EXIT(et);
1503 
1504 	/*
1505 	 * Set up our interface address to reflect the underlying
1506 	 * physical interface's.
1507 	 */
1508 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1509 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1510 	    p->if_addrlen;
1511 
1512 	/*
1513 	 * Do not schedule link address update if it was the same
1514 	 * as previous parent's. This helps avoid updating for each
1515 	 * associated llentry.
1516 	 */
1517 	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1518 		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1519 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1520 	}
1521 
1522 	/* We are ready for operation now. */
1523 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1524 
1525 	/* Update flags on the parent, if necessary. */
1526 	vlan_setflags(ifp, 1);
1527 
1528 	/*
1529 	 * Configure multicast addresses that may already be
1530 	 * joined on the vlan device.
1531 	 */
1532 	(void)vlan_setmulti(ifp);
1533 
1534 done:
1535 	if (error == 0)
1536 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1537 	VLAN_XUNLOCK();
1538 
1539 	return (error);
1540 }
1541 
1542 static void
1543 vlan_unconfig(struct ifnet *ifp)
1544 {
1545 
1546 	VLAN_XLOCK();
1547 	vlan_unconfig_locked(ifp, 0);
1548 	VLAN_XUNLOCK();
1549 }
1550 
1551 static void
1552 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1553 {
1554 	struct ifvlantrunk *trunk;
1555 	struct vlan_mc_entry *mc;
1556 	struct ifvlan *ifv;
1557 	struct ifnet  *parent;
1558 	int error;
1559 
1560 	VLAN_XLOCK_ASSERT();
1561 
1562 	ifv = ifp->if_softc;
1563 	trunk = ifv->ifv_trunk;
1564 	parent = NULL;
1565 
1566 	if (trunk != NULL) {
1567 		parent = trunk->parent;
1568 
1569 		/*
1570 		 * Since the interface is being unconfigured, we need to
1571 		 * empty the list of multicast groups that we may have joined
1572 		 * while we were alive from the parent's list.
1573 		 */
1574 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1575 			/*
1576 			 * If the parent interface is being detached,
1577 			 * all its multicast addresses have already
1578 			 * been removed.  Warn about errors if
1579 			 * if_delmulti() does fail, but don't abort as
1580 			 * all callers expect vlan destruction to
1581 			 * succeed.
1582 			 */
1583 			if (!departing) {
1584 				error = if_delmulti(parent,
1585 				    (struct sockaddr *)&mc->mc_addr);
1586 				if (error)
1587 					if_printf(ifp,
1588 		    "Failed to delete multicast address from parent: %d\n",
1589 					    error);
1590 			}
1591 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1592 			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1593 		}
1594 
1595 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1596 
1597 		vlan_remhash(trunk, ifv);
1598 		ifv->ifv_trunk = NULL;
1599 
1600 		/*
1601 		 * Check if we were the last.
1602 		 */
1603 		if (trunk->refcnt == 0) {
1604 			parent->if_vlantrunk = NULL;
1605 			NET_EPOCH_WAIT();
1606 			trunk_destroy(trunk);
1607 		}
1608 	}
1609 
1610 	/* Disconnect from parent. */
1611 	if (ifv->ifv_pflags)
1612 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1613 	ifp->if_mtu = ETHERMTU;
1614 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1615 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1616 
1617 	/*
1618 	 * Only dispatch an event if vlan was
1619 	 * attached, otherwise there is nothing
1620 	 * to cleanup anyway.
1621 	 */
1622 	if (parent != NULL)
1623 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1624 }
1625 
1626 /* Handle a reference counted flag that should be set on the parent as well */
1627 static int
1628 vlan_setflag(struct ifnet *ifp, int flag, int status,
1629 	     int (*func)(struct ifnet *, int))
1630 {
1631 	struct ifvlan *ifv;
1632 	int error;
1633 
1634 	VLAN_SXLOCK_ASSERT();
1635 
1636 	ifv = ifp->if_softc;
1637 	status = status ? (ifp->if_flags & flag) : 0;
1638 	/* Now "status" contains the flag value or 0 */
1639 
1640 	/*
1641 	 * See if recorded parent's status is different from what
1642 	 * we want it to be.  If it is, flip it.  We record parent's
1643 	 * status in ifv_pflags so that we won't clear parent's flag
1644 	 * we haven't set.  In fact, we don't clear or set parent's
1645 	 * flags directly, but get or release references to them.
1646 	 * That's why we can be sure that recorded flags still are
1647 	 * in accord with actual parent's flags.
1648 	 */
1649 	if (status != (ifv->ifv_pflags & flag)) {
1650 		error = (*func)(PARENT(ifv), status);
1651 		if (error)
1652 			return (error);
1653 		ifv->ifv_pflags &= ~flag;
1654 		ifv->ifv_pflags |= status;
1655 	}
1656 	return (0);
1657 }
1658 
1659 /*
1660  * Handle IFF_* flags that require certain changes on the parent:
1661  * if "status" is true, update parent's flags respective to our if_flags;
1662  * if "status" is false, forcedly clear the flags set on parent.
1663  */
1664 static int
1665 vlan_setflags(struct ifnet *ifp, int status)
1666 {
1667 	int error, i;
1668 
1669 	for (i = 0; vlan_pflags[i].flag; i++) {
1670 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1671 				     status, vlan_pflags[i].func);
1672 		if (error)
1673 			return (error);
1674 	}
1675 	return (0);
1676 }
1677 
1678 /* Inform all vlans that their parent has changed link state */
1679 static void
1680 vlan_link_state(struct ifnet *ifp)
1681 {
1682 	struct epoch_tracker et;
1683 	struct ifvlantrunk *trunk;
1684 	struct ifvlan *ifv;
1685 
1686 	NET_EPOCH_ENTER(et);
1687 	trunk = ifp->if_vlantrunk;
1688 	if (trunk == NULL) {
1689 		NET_EPOCH_EXIT(et);
1690 		return;
1691 	}
1692 
1693 	TRUNK_WLOCK(trunk);
1694 	VLAN_FOREACH(ifv, trunk) {
1695 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1696 		if_link_state_change(ifv->ifv_ifp,
1697 		    trunk->parent->if_link_state);
1698 	}
1699 	TRUNK_WUNLOCK(trunk);
1700 	NET_EPOCH_EXIT(et);
1701 }
1702 
1703 static void
1704 vlan_capabilities(struct ifvlan *ifv)
1705 {
1706 	struct ifnet *p;
1707 	struct ifnet *ifp;
1708 	struct ifnet_hw_tsomax hw_tsomax;
1709 	int cap = 0, ena = 0, mena;
1710 	u_long hwa = 0;
1711 
1712 	NET_EPOCH_ASSERT();
1713 	VLAN_SXLOCK_ASSERT();
1714 
1715 	p = PARENT(ifv);
1716 	ifp = ifv->ifv_ifp;
1717 
1718 	/* Mask parent interface enabled capabilities disabled by user. */
1719 	mena = p->if_capenable & ifv->ifv_capenable;
1720 
1721 	/*
1722 	 * If the parent interface can do checksum offloading
1723 	 * on VLANs, then propagate its hardware-assisted
1724 	 * checksumming flags. Also assert that checksum
1725 	 * offloading requires hardware VLAN tagging.
1726 	 */
1727 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1728 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1729 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1730 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1731 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1732 		if (ena & IFCAP_TXCSUM)
1733 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1734 			    CSUM_UDP | CSUM_SCTP);
1735 		if (ena & IFCAP_TXCSUM_IPV6)
1736 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1737 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1738 	}
1739 
1740 	/*
1741 	 * If the parent interface can do TSO on VLANs then
1742 	 * propagate the hardware-assisted flag. TSO on VLANs
1743 	 * does not necessarily require hardware VLAN tagging.
1744 	 */
1745 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1746 	if_hw_tsomax_common(p, &hw_tsomax);
1747 	if_hw_tsomax_update(ifp, &hw_tsomax);
1748 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1749 		cap |= p->if_capabilities & IFCAP_TSO;
1750 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1751 		ena |= mena & IFCAP_TSO;
1752 		if (ena & IFCAP_TSO)
1753 			hwa |= p->if_hwassist & CSUM_TSO;
1754 	}
1755 
1756 	/*
1757 	 * If the parent interface can do LRO and checksum offloading on
1758 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1759 	 * cost nothing, while false negative may lead to some confusions.
1760 	 */
1761 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1762 		cap |= p->if_capabilities & IFCAP_LRO;
1763 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1764 		ena |= p->if_capenable & IFCAP_LRO;
1765 
1766 	/*
1767 	 * If the parent interface can offload TCP connections over VLANs then
1768 	 * propagate its TOE capability to the VLAN interface.
1769 	 *
1770 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1771 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1772 	 * with its own bit.
1773 	 */
1774 #define	IFCAP_VLAN_TOE IFCAP_TOE
1775 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1776 		cap |= p->if_capabilities & IFCAP_TOE;
1777 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1778 		TOEDEV(ifp) = TOEDEV(p);
1779 		ena |= mena & IFCAP_TOE;
1780 	}
1781 
1782 	/*
1783 	 * If the parent interface supports dynamic link state, so does the
1784 	 * VLAN interface.
1785 	 */
1786 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1787 	ena |= (mena & IFCAP_LINKSTATE);
1788 
1789 #ifdef RATELIMIT
1790 	/*
1791 	 * If the parent interface supports ratelimiting, so does the
1792 	 * VLAN interface.
1793 	 */
1794 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1795 	ena |= (mena & IFCAP_TXRTLMT);
1796 #endif
1797 
1798 	/*
1799 	 * If the parent interface supports unmapped mbufs, so does
1800 	 * the VLAN interface.  Note that this should be fine even for
1801 	 * interfaces that don't support hardware tagging as headers
1802 	 * are prepended in normal mbufs to unmapped mbufs holding
1803 	 * payload data.
1804 	 */
1805 	cap |= (p->if_capabilities & IFCAP_MEXTPG);
1806 	ena |= (mena & IFCAP_MEXTPG);
1807 
1808 	/*
1809 	 * If the parent interface can offload encryption and segmentation
1810 	 * of TLS records over TCP, propagate it's capability to the VLAN
1811 	 * interface.
1812 	 *
1813 	 * All TLS drivers in the tree today can deal with VLANs.  If
1814 	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
1815 	 * defined.
1816 	 */
1817 	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1818 		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1819 	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1820 		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1821 
1822 	ifp->if_capabilities = cap;
1823 	ifp->if_capenable = ena;
1824 	ifp->if_hwassist = hwa;
1825 }
1826 
1827 static void
1828 vlan_trunk_capabilities(struct ifnet *ifp)
1829 {
1830 	struct epoch_tracker et;
1831 	struct ifvlantrunk *trunk;
1832 	struct ifvlan *ifv;
1833 
1834 	VLAN_SLOCK();
1835 	trunk = ifp->if_vlantrunk;
1836 	if (trunk == NULL) {
1837 		VLAN_SUNLOCK();
1838 		return;
1839 	}
1840 	NET_EPOCH_ENTER(et);
1841 	VLAN_FOREACH(ifv, trunk)
1842 		vlan_capabilities(ifv);
1843 	NET_EPOCH_EXIT(et);
1844 	VLAN_SUNLOCK();
1845 }
1846 
1847 static int
1848 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1849 {
1850 	struct ifnet *p;
1851 	struct ifreq *ifr;
1852 	struct ifaddr *ifa;
1853 	struct ifvlan *ifv;
1854 	struct ifvlantrunk *trunk;
1855 	struct vlanreq vlr;
1856 	int error = 0, oldmtu;
1857 
1858 	ifr = (struct ifreq *)data;
1859 	ifa = (struct ifaddr *) data;
1860 	ifv = ifp->if_softc;
1861 
1862 	switch (cmd) {
1863 	case SIOCSIFADDR:
1864 		ifp->if_flags |= IFF_UP;
1865 #ifdef INET
1866 		if (ifa->ifa_addr->sa_family == AF_INET)
1867 			arp_ifinit(ifp, ifa);
1868 #endif
1869 		break;
1870 	case SIOCGIFADDR:
1871 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1872 		    ifp->if_addrlen);
1873 		break;
1874 	case SIOCGIFMEDIA:
1875 		VLAN_SLOCK();
1876 		if (TRUNK(ifv) != NULL) {
1877 			p = PARENT(ifv);
1878 			if_ref(p);
1879 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1880 			if_rele(p);
1881 			/* Limit the result to the parent's current config. */
1882 			if (error == 0) {
1883 				struct ifmediareq *ifmr;
1884 
1885 				ifmr = (struct ifmediareq *)data;
1886 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1887 					ifmr->ifm_count = 1;
1888 					error = copyout(&ifmr->ifm_current,
1889 						ifmr->ifm_ulist,
1890 						sizeof(int));
1891 				}
1892 			}
1893 		} else {
1894 			error = EINVAL;
1895 		}
1896 		VLAN_SUNLOCK();
1897 		break;
1898 
1899 	case SIOCSIFMEDIA:
1900 		error = EINVAL;
1901 		break;
1902 
1903 	case SIOCSIFMTU:
1904 		/*
1905 		 * Set the interface MTU.
1906 		 */
1907 		VLAN_SLOCK();
1908 		trunk = TRUNK(ifv);
1909 		if (trunk != NULL) {
1910 			TRUNK_WLOCK(trunk);
1911 			if (ifr->ifr_mtu >
1912 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1913 			    ifr->ifr_mtu <
1914 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1915 				error = EINVAL;
1916 			else
1917 				ifp->if_mtu = ifr->ifr_mtu;
1918 			TRUNK_WUNLOCK(trunk);
1919 		} else
1920 			error = EINVAL;
1921 		VLAN_SUNLOCK();
1922 		break;
1923 
1924 	case SIOCSETVLAN:
1925 #ifdef VIMAGE
1926 		/*
1927 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1928 		 * interface to be delegated to a jail without allowing the
1929 		 * jail to change what underlying interface/VID it is
1930 		 * associated with.  We are not entirely convinced that this
1931 		 * is the right way to accomplish that policy goal.
1932 		 */
1933 		if (ifp->if_vnet != ifp->if_home_vnet) {
1934 			error = EPERM;
1935 			break;
1936 		}
1937 #endif
1938 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
1939 		if (error)
1940 			break;
1941 		if (vlr.vlr_parent[0] == '\0') {
1942 			vlan_unconfig(ifp);
1943 			break;
1944 		}
1945 		p = ifunit_ref(vlr.vlr_parent);
1946 		if (p == NULL) {
1947 			error = ENOENT;
1948 			break;
1949 		}
1950 		oldmtu = ifp->if_mtu;
1951 		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
1952 		if_rele(p);
1953 
1954 		/*
1955 		 * VLAN MTU may change during addition of the vlandev.
1956 		 * If it did, do network layer specific procedure.
1957 		 */
1958 		if (ifp->if_mtu != oldmtu) {
1959 #ifdef INET6
1960 			nd6_setmtu(ifp);
1961 #endif
1962 			rt_updatemtu(ifp);
1963 		}
1964 		break;
1965 
1966 	case SIOCGETVLAN:
1967 #ifdef VIMAGE
1968 		if (ifp->if_vnet != ifp->if_home_vnet) {
1969 			error = EPERM;
1970 			break;
1971 		}
1972 #endif
1973 		bzero(&vlr, sizeof(vlr));
1974 		VLAN_SLOCK();
1975 		if (TRUNK(ifv) != NULL) {
1976 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1977 			    sizeof(vlr.vlr_parent));
1978 			vlr.vlr_tag = ifv->ifv_vid;
1979 			vlr.vlr_proto = ifv->ifv_proto;
1980 		}
1981 		VLAN_SUNLOCK();
1982 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
1983 		break;
1984 
1985 	case SIOCSIFFLAGS:
1986 		/*
1987 		 * We should propagate selected flags to the parent,
1988 		 * e.g., promiscuous mode.
1989 		 */
1990 		VLAN_XLOCK();
1991 		if (TRUNK(ifv) != NULL)
1992 			error = vlan_setflags(ifp, 1);
1993 		VLAN_XUNLOCK();
1994 		break;
1995 
1996 	case SIOCADDMULTI:
1997 	case SIOCDELMULTI:
1998 		/*
1999 		 * If we don't have a parent, just remember the membership for
2000 		 * when we do.
2001 		 *
2002 		 * XXX We need the rmlock here to avoid sleeping while
2003 		 * holding in6_multi_mtx.
2004 		 */
2005 		VLAN_XLOCK();
2006 		trunk = TRUNK(ifv);
2007 		if (trunk != NULL)
2008 			error = vlan_setmulti(ifp);
2009 		VLAN_XUNLOCK();
2010 
2011 		break;
2012 	case SIOCGVLANPCP:
2013 #ifdef VIMAGE
2014 		if (ifp->if_vnet != ifp->if_home_vnet) {
2015 			error = EPERM;
2016 			break;
2017 		}
2018 #endif
2019 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2020 		break;
2021 
2022 	case SIOCSVLANPCP:
2023 #ifdef VIMAGE
2024 		if (ifp->if_vnet != ifp->if_home_vnet) {
2025 			error = EPERM;
2026 			break;
2027 		}
2028 #endif
2029 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2030 		if (error)
2031 			break;
2032 		if (ifr->ifr_vlan_pcp > 7) {
2033 			error = EINVAL;
2034 			break;
2035 		}
2036 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2037 		ifp->if_pcp = ifv->ifv_pcp;
2038 		/* broadcast event about PCP change */
2039 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2040 		break;
2041 
2042 	case SIOCSIFCAP:
2043 		VLAN_SLOCK();
2044 		ifv->ifv_capenable = ifr->ifr_reqcap;
2045 		trunk = TRUNK(ifv);
2046 		if (trunk != NULL) {
2047 			struct epoch_tracker et;
2048 
2049 			NET_EPOCH_ENTER(et);
2050 			vlan_capabilities(ifv);
2051 			NET_EPOCH_EXIT(et);
2052 		}
2053 		VLAN_SUNLOCK();
2054 		break;
2055 
2056 	default:
2057 		error = EINVAL;
2058 		break;
2059 	}
2060 
2061 	return (error);
2062 }
2063 
2064 #if defined(KERN_TLS) || defined(RATELIMIT)
2065 static int
2066 vlan_snd_tag_alloc(struct ifnet *ifp,
2067     union if_snd_tag_alloc_params *params,
2068     struct m_snd_tag **ppmt)
2069 {
2070 	struct epoch_tracker et;
2071 	struct vlan_snd_tag *vst;
2072 	struct ifvlan *ifv;
2073 	struct ifnet *parent;
2074 	int error;
2075 
2076 	NET_EPOCH_ENTER(et);
2077 	ifv = ifp->if_softc;
2078 	if (ifv->ifv_trunk != NULL)
2079 		parent = PARENT(ifv);
2080 	else
2081 		parent = NULL;
2082 	if (parent == NULL) {
2083 		NET_EPOCH_EXIT(et);
2084 		return (EOPNOTSUPP);
2085 	}
2086 	if_ref(parent);
2087 	NET_EPOCH_EXIT(et);
2088 
2089 	vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2090 	if (vst == NULL) {
2091 		if_rele(parent);
2092 		return (ENOMEM);
2093 	}
2094 
2095 	error = m_snd_tag_alloc(parent, params, &vst->tag);
2096 	if_rele(parent);
2097 	if (error) {
2098 		free(vst, M_VLAN);
2099 		return (error);
2100 	}
2101 
2102 	m_snd_tag_init(&vst->com, ifp, vst->tag->type);
2103 
2104 	*ppmt = &vst->com;
2105 	return (0);
2106 }
2107 
2108 static struct m_snd_tag *
2109 vlan_next_snd_tag(struct m_snd_tag *mst)
2110 {
2111 	struct vlan_snd_tag *vst;
2112 
2113 	vst = mst_to_vst(mst);
2114 	return (vst->tag);
2115 }
2116 
2117 static int
2118 vlan_snd_tag_modify(struct m_snd_tag *mst,
2119     union if_snd_tag_modify_params *params)
2120 {
2121 	struct vlan_snd_tag *vst;
2122 
2123 	vst = mst_to_vst(mst);
2124 	return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params));
2125 }
2126 
2127 static int
2128 vlan_snd_tag_query(struct m_snd_tag *mst,
2129     union if_snd_tag_query_params *params)
2130 {
2131 	struct vlan_snd_tag *vst;
2132 
2133 	vst = mst_to_vst(mst);
2134 	return (vst->tag->ifp->if_snd_tag_query(vst->tag, params));
2135 }
2136 
2137 static void
2138 vlan_snd_tag_free(struct m_snd_tag *mst)
2139 {
2140 	struct vlan_snd_tag *vst;
2141 
2142 	vst = mst_to_vst(mst);
2143 	m_snd_tag_rele(vst->tag);
2144 	free(vst, M_VLAN);
2145 }
2146 
2147 static void
2148 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
2149 {
2150 	/*
2151 	 * For vlan, we have an indirect
2152 	 * interface. The caller needs to
2153 	 * get a ratelimit tag on the actual
2154 	 * interface the flow will go on.
2155 	 */
2156 	q->rate_table = NULL;
2157 	q->flags = RT_IS_INDIRECT;
2158 	q->max_flows = 0;
2159 	q->number_of_rates = 0;
2160 }
2161 
2162 #endif
2163