xref: /freebsd/sys/net/if_vlan.c (revision 6683132d54bd6d589889e43dabdc53d35e38a028)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_inet.h"
49 #include "opt_vlan.h"
50 #include "opt_ratelimit.h"
51 
52 #include <sys/param.h>
53 #include <sys/eventhandler.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/module.h>
59 #include <sys/rmlock.h>
60 #include <sys/priv.h>
61 #include <sys/queue.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/sx.h>
67 #include <sys/taskqueue.h>
68 
69 #include <net/bpf.h>
70 #include <net/ethernet.h>
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_clone.h>
74 #include <net/if_dl.h>
75 #include <net/if_types.h>
76 #include <net/if_vlan_var.h>
77 #include <net/vnet.h>
78 
79 #ifdef INET
80 #include <netinet/in.h>
81 #include <netinet/if_ether.h>
82 #endif
83 
84 #define	VLAN_DEF_HWIDTH	4
85 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
86 
87 #define	UP_AND_RUNNING(ifp) \
88     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
89 
90 CK_SLIST_HEAD(ifvlanhead, ifvlan);
91 
92 struct ifvlantrunk {
93 	struct	ifnet   *parent;	/* parent interface of this trunk */
94 	struct	mtx	lock;
95 #ifdef VLAN_ARRAY
96 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
97 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
98 #else
99 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
100 	uint16_t	hmask;
101 	uint16_t	hwidth;
102 #endif
103 	int		refcnt;
104 };
105 
106 #ifdef RATELIMIT
107 struct vlan_snd_tag {
108 	struct m_snd_tag com;
109 	struct m_snd_tag *tag;
110 };
111 
112 static inline struct vlan_snd_tag *
113 mst_to_vst(struct m_snd_tag *mst)
114 {
115 
116 	return (__containerof(mst, struct vlan_snd_tag, com));
117 }
118 #endif
119 
120 /*
121  * This macro provides a facility to iterate over every vlan on a trunk with
122  * the assumption that none will be added/removed during iteration.
123  */
124 #ifdef VLAN_ARRAY
125 #define VLAN_FOREACH(_ifv, _trunk) \
126 	size_t _i; \
127 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
128 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
129 #else /* VLAN_ARRAY */
130 #define VLAN_FOREACH(_ifv, _trunk) \
131 	struct ifvlan *_next; \
132 	size_t _i; \
133 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
134 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
135 #endif /* VLAN_ARRAY */
136 
137 /*
138  * This macro provides a facility to iterate over every vlan on a trunk while
139  * also modifying the number of vlans on the trunk. The iteration continues
140  * until some condition is met or there are no more vlans on the trunk.
141  */
142 #ifdef VLAN_ARRAY
143 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
144 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
145 	size_t _i; \
146 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
147 		if (((_ifv) = (_trunk)->vlans[_i]))
148 #else /* VLAN_ARRAY */
149 /*
150  * The hash table case is more complicated. We allow for the hash table to be
151  * modified (i.e. vlans removed) while we are iterating over it. To allow for
152  * this we must restart the iteration every time we "touch" something during
153  * the iteration, since removal will resize the hash table and invalidate our
154  * current position. If acting on the touched element causes the trunk to be
155  * emptied, then iteration also stops.
156  */
157 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
158 	size_t _i; \
159 	bool _touch = false; \
160 	for (_i = 0; \
161 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
162 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
163 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
164 		    (_touch = true))
165 #endif /* VLAN_ARRAY */
166 
167 struct vlan_mc_entry {
168 	struct sockaddr_dl		mc_addr;
169 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
170 	struct epoch_context		mc_epoch_ctx;
171 };
172 
173 struct ifvlan {
174 	struct	ifvlantrunk *ifv_trunk;
175 	struct	ifnet *ifv_ifp;
176 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
177 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
178 	void	*ifv_cookie;
179 	int	ifv_pflags;	/* special flags we have set on parent */
180 	int	ifv_capenable;
181 	int	ifv_encaplen;	/* encapsulation length */
182 	int	ifv_mtufudge;	/* MTU fudged by this much */
183 	int	ifv_mintu;	/* min transmission unit */
184 	uint16_t ifv_proto;	/* encapsulation ethertype */
185 	uint16_t ifv_tag;	/* tag to apply on packets leaving if */
186 	uint16_t ifv_vid;	/* VLAN ID */
187 	uint8_t	ifv_pcp;	/* Priority Code Point (PCP). */
188 	struct task lladdr_task;
189 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
190 #ifndef VLAN_ARRAY
191 	CK_SLIST_ENTRY(ifvlan) ifv_list;
192 #endif
193 };
194 
195 /* Special flags we should propagate to parent. */
196 static struct {
197 	int flag;
198 	int (*func)(struct ifnet *, int);
199 } vlan_pflags[] = {
200 	{IFF_PROMISC, ifpromisc},
201 	{IFF_ALLMULTI, if_allmulti},
202 	{0, NULL}
203 };
204 
205 extern int vlan_mtag_pcp;
206 
207 static const char vlanname[] = "vlan";
208 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
209 
210 static eventhandler_tag ifdetach_tag;
211 static eventhandler_tag iflladdr_tag;
212 
213 /*
214  * if_vlan uses two module-level synchronizations primitives to allow concurrent
215  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
216  * while they are being used for tx/rx. To accomplish this in a way that has
217  * acceptable performance and cooperation with other parts of the network stack
218  * there is a non-sleepable epoch(9) and an sx(9).
219  *
220  * The performance-sensitive paths that warrant using the epoch(9) are
221  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
222  * existence using if_vlantrunk, and being in the network tx/rx paths the use
223  * of an epoch(9) gives a measureable improvement in performance.
224  *
225  * The reason for having an sx(9) is mostly because there are still areas that
226  * must be sleepable and also have safe concurrent access to a vlan interface.
227  * Since the sx(9) exists, it is used by default in most paths unless sleeping
228  * is not permitted, or if it is not clear whether sleeping is permitted.
229  *
230  */
231 #define _VLAN_SX_ID ifv_sx
232 
233 static struct sx _VLAN_SX_ID;
234 
235 #define VLAN_LOCKING_INIT() \
236 	sx_init(&_VLAN_SX_ID, "vlan_sx")
237 
238 #define VLAN_LOCKING_DESTROY() \
239 	sx_destroy(&_VLAN_SX_ID)
240 
241 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
242 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
243 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
244 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
245 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
246 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
247 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
248 
249 
250 /*
251  * We also have a per-trunk mutex that should be acquired when changing
252  * its state.
253  */
254 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
255 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
256 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
257 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
258 #define	TRUNK_LOCK_ASSERT(trunk)	MPASS(in_epoch(net_epoch_preempt) || mtx_owned(&(trunk)->lock))
259 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
260 
261 /*
262  * The VLAN_ARRAY substitutes the dynamic hash with a static array
263  * with 4096 entries. In theory this can give a boost in processing,
264  * however in practice it does not. Probably this is because the array
265  * is too big to fit into CPU cache.
266  */
267 #ifndef VLAN_ARRAY
268 static	void vlan_inithash(struct ifvlantrunk *trunk);
269 static	void vlan_freehash(struct ifvlantrunk *trunk);
270 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
271 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
272 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
273 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
274 	uint16_t vid);
275 #endif
276 static	void trunk_destroy(struct ifvlantrunk *trunk);
277 
278 static	void vlan_init(void *foo);
279 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
280 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
281 #ifdef RATELIMIT
282 static	int vlan_snd_tag_alloc(struct ifnet *,
283     union if_snd_tag_alloc_params *, struct m_snd_tag **);
284 static	int vlan_snd_tag_modify(struct m_snd_tag *,
285     union if_snd_tag_modify_params *);
286 static	int vlan_snd_tag_query(struct m_snd_tag *,
287     union if_snd_tag_query_params *);
288 static	void vlan_snd_tag_free(struct m_snd_tag *);
289 #endif
290 static	void vlan_qflush(struct ifnet *ifp);
291 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
292     int (*func)(struct ifnet *, int));
293 static	int vlan_setflags(struct ifnet *ifp, int status);
294 static	int vlan_setmulti(struct ifnet *ifp);
295 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
296 static	void vlan_unconfig(struct ifnet *ifp);
297 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
298 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
299 static	void vlan_link_state(struct ifnet *ifp);
300 static	void vlan_capabilities(struct ifvlan *ifv);
301 static	void vlan_trunk_capabilities(struct ifnet *ifp);
302 
303 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
304 static	int vlan_clone_match(struct if_clone *, const char *);
305 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
306 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
307 
308 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
309 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
310 
311 static  void vlan_lladdr_fn(void *arg, int pending);
312 
313 static struct if_clone *vlan_cloner;
314 
315 #ifdef VIMAGE
316 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
317 #define	V_vlan_cloner	VNET(vlan_cloner)
318 #endif
319 
320 static void
321 vlan_mc_free(struct epoch_context *ctx)
322 {
323 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
324 	free(mc, M_VLAN);
325 }
326 
327 #ifndef VLAN_ARRAY
328 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
329 
330 static void
331 vlan_inithash(struct ifvlantrunk *trunk)
332 {
333 	int i, n;
334 
335 	/*
336 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
337 	 * It is OK in case this function is called before the trunk struct
338 	 * gets hooked up and becomes visible from other threads.
339 	 */
340 
341 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
342 	    ("%s: hash already initialized", __func__));
343 
344 	trunk->hwidth = VLAN_DEF_HWIDTH;
345 	n = 1 << trunk->hwidth;
346 	trunk->hmask = n - 1;
347 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
348 	for (i = 0; i < n; i++)
349 		CK_SLIST_INIT(&trunk->hash[i]);
350 }
351 
352 static void
353 vlan_freehash(struct ifvlantrunk *trunk)
354 {
355 #ifdef INVARIANTS
356 	int i;
357 
358 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
359 	for (i = 0; i < (1 << trunk->hwidth); i++)
360 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
361 		    ("%s: hash table not empty", __func__));
362 #endif
363 	free(trunk->hash, M_VLAN);
364 	trunk->hash = NULL;
365 	trunk->hwidth = trunk->hmask = 0;
366 }
367 
368 static int
369 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
370 {
371 	int i, b;
372 	struct ifvlan *ifv2;
373 
374 	VLAN_XLOCK_ASSERT();
375 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
376 
377 	b = 1 << trunk->hwidth;
378 	i = HASH(ifv->ifv_vid, trunk->hmask);
379 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
380 		if (ifv->ifv_vid == ifv2->ifv_vid)
381 			return (EEXIST);
382 
383 	/*
384 	 * Grow the hash when the number of vlans exceeds half of the number of
385 	 * hash buckets squared. This will make the average linked-list length
386 	 * buckets/2.
387 	 */
388 	if (trunk->refcnt > (b * b) / 2) {
389 		vlan_growhash(trunk, 1);
390 		i = HASH(ifv->ifv_vid, trunk->hmask);
391 	}
392 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
393 	trunk->refcnt++;
394 
395 	return (0);
396 }
397 
398 static int
399 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
400 {
401 	int i, b;
402 	struct ifvlan *ifv2;
403 
404 	VLAN_XLOCK_ASSERT();
405 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
406 
407 	b = 1 << trunk->hwidth;
408 	i = HASH(ifv->ifv_vid, trunk->hmask);
409 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
410 		if (ifv2 == ifv) {
411 			trunk->refcnt--;
412 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
413 			if (trunk->refcnt < (b * b) / 2)
414 				vlan_growhash(trunk, -1);
415 			return (0);
416 		}
417 
418 	panic("%s: vlan not found\n", __func__);
419 	return (ENOENT); /*NOTREACHED*/
420 }
421 
422 /*
423  * Grow the hash larger or smaller if memory permits.
424  */
425 static void
426 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
427 {
428 	struct ifvlan *ifv;
429 	struct ifvlanhead *hash2;
430 	int hwidth2, i, j, n, n2;
431 
432 	VLAN_XLOCK_ASSERT();
433 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
434 
435 	if (howmuch == 0) {
436 		/* Harmless yet obvious coding error */
437 		printf("%s: howmuch is 0\n", __func__);
438 		return;
439 	}
440 
441 	hwidth2 = trunk->hwidth + howmuch;
442 	n = 1 << trunk->hwidth;
443 	n2 = 1 << hwidth2;
444 	/* Do not shrink the table below the default */
445 	if (hwidth2 < VLAN_DEF_HWIDTH)
446 		return;
447 
448 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
449 	if (hash2 == NULL) {
450 		printf("%s: out of memory -- hash size not changed\n",
451 		    __func__);
452 		return;		/* We can live with the old hash table */
453 	}
454 	for (j = 0; j < n2; j++)
455 		CK_SLIST_INIT(&hash2[j]);
456 	for (i = 0; i < n; i++)
457 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
458 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
459 			j = HASH(ifv->ifv_vid, n2 - 1);
460 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
461 		}
462 	NET_EPOCH_WAIT();
463 	free(trunk->hash, M_VLAN);
464 	trunk->hash = hash2;
465 	trunk->hwidth = hwidth2;
466 	trunk->hmask = n2 - 1;
467 
468 	if (bootverbose)
469 		if_printf(trunk->parent,
470 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
471 }
472 
473 static __inline struct ifvlan *
474 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
475 {
476 	struct ifvlan *ifv;
477 
478 	NET_EPOCH_ASSERT();
479 
480 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
481 		if (ifv->ifv_vid == vid)
482 			return (ifv);
483 	return (NULL);
484 }
485 
486 #if 0
487 /* Debugging code to view the hashtables. */
488 static void
489 vlan_dumphash(struct ifvlantrunk *trunk)
490 {
491 	int i;
492 	struct ifvlan *ifv;
493 
494 	for (i = 0; i < (1 << trunk->hwidth); i++) {
495 		printf("%d: ", i);
496 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
497 			printf("%s ", ifv->ifv_ifp->if_xname);
498 		printf("\n");
499 	}
500 }
501 #endif /* 0 */
502 #else
503 
504 static __inline struct ifvlan *
505 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
506 {
507 
508 	return trunk->vlans[vid];
509 }
510 
511 static __inline int
512 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
513 {
514 
515 	if (trunk->vlans[ifv->ifv_vid] != NULL)
516 		return EEXIST;
517 	trunk->vlans[ifv->ifv_vid] = ifv;
518 	trunk->refcnt++;
519 
520 	return (0);
521 }
522 
523 static __inline int
524 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
525 {
526 
527 	trunk->vlans[ifv->ifv_vid] = NULL;
528 	trunk->refcnt--;
529 
530 	return (0);
531 }
532 
533 static __inline void
534 vlan_freehash(struct ifvlantrunk *trunk)
535 {
536 }
537 
538 static __inline void
539 vlan_inithash(struct ifvlantrunk *trunk)
540 {
541 }
542 
543 #endif /* !VLAN_ARRAY */
544 
545 static void
546 trunk_destroy(struct ifvlantrunk *trunk)
547 {
548 	VLAN_XLOCK_ASSERT();
549 
550 	vlan_freehash(trunk);
551 	trunk->parent->if_vlantrunk = NULL;
552 	TRUNK_LOCK_DESTROY(trunk);
553 	if_rele(trunk->parent);
554 	free(trunk, M_VLAN);
555 }
556 
557 /*
558  * Program our multicast filter. What we're actually doing is
559  * programming the multicast filter of the parent. This has the
560  * side effect of causing the parent interface to receive multicast
561  * traffic that it doesn't really want, which ends up being discarded
562  * later by the upper protocol layers. Unfortunately, there's no way
563  * to avoid this: there really is only one physical interface.
564  */
565 static int
566 vlan_setmulti(struct ifnet *ifp)
567 {
568 	struct ifnet		*ifp_p;
569 	struct ifmultiaddr	*ifma;
570 	struct ifvlan		*sc;
571 	struct vlan_mc_entry	*mc;
572 	int			error;
573 
574 	VLAN_XLOCK_ASSERT();
575 
576 	/* Find the parent. */
577 	sc = ifp->if_softc;
578 	ifp_p = PARENT(sc);
579 
580 	CURVNET_SET_QUIET(ifp_p->if_vnet);
581 
582 	/* First, remove any existing filter entries. */
583 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
584 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
585 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
586 		epoch_call(net_epoch_preempt, &mc->mc_epoch_ctx, vlan_mc_free);
587 	}
588 
589 	/* Now program new ones. */
590 	IF_ADDR_WLOCK(ifp);
591 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
592 		if (ifma->ifma_addr->sa_family != AF_LINK)
593 			continue;
594 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
595 		if (mc == NULL) {
596 			IF_ADDR_WUNLOCK(ifp);
597 			return (ENOMEM);
598 		}
599 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
600 		mc->mc_addr.sdl_index = ifp_p->if_index;
601 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
602 	}
603 	IF_ADDR_WUNLOCK(ifp);
604 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
605 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
606 		    NULL);
607 		if (error)
608 			return (error);
609 	}
610 
611 	CURVNET_RESTORE();
612 	return (0);
613 }
614 
615 /*
616  * A handler for parent interface link layer address changes.
617  * If the parent interface link layer address is changed we
618  * should also change it on all children vlans.
619  */
620 static void
621 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
622 {
623 	struct epoch_tracker et;
624 	struct ifvlan *ifv;
625 	struct ifnet *ifv_ifp;
626 	struct ifvlantrunk *trunk;
627 	struct sockaddr_dl *sdl;
628 
629 	/* Need the epoch since this is run on taskqueue_swi. */
630 	NET_EPOCH_ENTER(et);
631 	trunk = ifp->if_vlantrunk;
632 	if (trunk == NULL) {
633 		NET_EPOCH_EXIT(et);
634 		return;
635 	}
636 
637 	/*
638 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
639 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
640 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
641 	 */
642 	TRUNK_WLOCK(trunk);
643 	VLAN_FOREACH(ifv, trunk) {
644 		/*
645 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
646 		 * to actually call if_setlladdr. if_setlladdr needs to
647 		 * be deferred to a taskqueue because it will call into
648 		 * the if_vlan ioctl path and try to acquire the global
649 		 * lock.
650 		 */
651 		ifv_ifp = ifv->ifv_ifp;
652 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
653 		    ifp->if_addrlen);
654 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
655 		sdl->sdl_alen = ifp->if_addrlen;
656 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
657 	}
658 	TRUNK_WUNLOCK(trunk);
659 	NET_EPOCH_EXIT(et);
660 }
661 
662 /*
663  * A handler for network interface departure events.
664  * Track departure of trunks here so that we don't access invalid
665  * pointers or whatever if a trunk is ripped from under us, e.g.,
666  * by ejecting its hot-plug card.  However, if an ifnet is simply
667  * being renamed, then there's no need to tear down the state.
668  */
669 static void
670 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
671 {
672 	struct ifvlan *ifv;
673 	struct ifvlantrunk *trunk;
674 
675 	/* If the ifnet is just being renamed, don't do anything. */
676 	if (ifp->if_flags & IFF_RENAMING)
677 		return;
678 	VLAN_XLOCK();
679 	trunk = ifp->if_vlantrunk;
680 	if (trunk == NULL) {
681 		VLAN_XUNLOCK();
682 		return;
683 	}
684 
685 	/*
686 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
687 	 * Check trunk pointer after each vlan_unconfig() as it will
688 	 * free it and set to NULL after the last vlan was detached.
689 	 */
690 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
691 	    ifp->if_vlantrunk == NULL)
692 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
693 
694 	/* Trunk should have been destroyed in vlan_unconfig(). */
695 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
696 	VLAN_XUNLOCK();
697 }
698 
699 /*
700  * Return the trunk device for a virtual interface.
701  */
702 static struct ifnet  *
703 vlan_trunkdev(struct ifnet *ifp)
704 {
705 	struct epoch_tracker et;
706 	struct ifvlan *ifv;
707 
708 	if (ifp->if_type != IFT_L2VLAN)
709 		return (NULL);
710 
711 	NET_EPOCH_ENTER(et);
712 	ifv = ifp->if_softc;
713 	ifp = NULL;
714 	if (ifv->ifv_trunk)
715 		ifp = PARENT(ifv);
716 	NET_EPOCH_EXIT(et);
717 	return (ifp);
718 }
719 
720 /*
721  * Return the 12-bit VLAN VID for this interface, for use by external
722  * components such as Infiniband.
723  *
724  * XXXRW: Note that the function name here is historical; it should be named
725  * vlan_vid().
726  */
727 static int
728 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
729 {
730 	struct ifvlan *ifv;
731 
732 	if (ifp->if_type != IFT_L2VLAN)
733 		return (EINVAL);
734 	ifv = ifp->if_softc;
735 	*vidp = ifv->ifv_vid;
736 	return (0);
737 }
738 
739 static int
740 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
741 {
742 	struct ifvlan *ifv;
743 
744 	if (ifp->if_type != IFT_L2VLAN)
745 		return (EINVAL);
746 	ifv = ifp->if_softc;
747 	*pcpp = ifv->ifv_pcp;
748 	return (0);
749 }
750 
751 /*
752  * Return a driver specific cookie for this interface.  Synchronization
753  * with setcookie must be provided by the driver.
754  */
755 static void *
756 vlan_cookie(struct ifnet *ifp)
757 {
758 	struct ifvlan *ifv;
759 
760 	if (ifp->if_type != IFT_L2VLAN)
761 		return (NULL);
762 	ifv = ifp->if_softc;
763 	return (ifv->ifv_cookie);
764 }
765 
766 /*
767  * Store a cookie in our softc that drivers can use to store driver
768  * private per-instance data in.
769  */
770 static int
771 vlan_setcookie(struct ifnet *ifp, void *cookie)
772 {
773 	struct ifvlan *ifv;
774 
775 	if (ifp->if_type != IFT_L2VLAN)
776 		return (EINVAL);
777 	ifv = ifp->if_softc;
778 	ifv->ifv_cookie = cookie;
779 	return (0);
780 }
781 
782 /*
783  * Return the vlan device present at the specific VID.
784  */
785 static struct ifnet *
786 vlan_devat(struct ifnet *ifp, uint16_t vid)
787 {
788 	struct epoch_tracker et;
789 	struct ifvlantrunk *trunk;
790 	struct ifvlan *ifv;
791 
792 	NET_EPOCH_ENTER(et);
793 	trunk = ifp->if_vlantrunk;
794 	if (trunk == NULL) {
795 		NET_EPOCH_EXIT(et);
796 		return (NULL);
797 	}
798 	ifp = NULL;
799 	ifv = vlan_gethash(trunk, vid);
800 	if (ifv)
801 		ifp = ifv->ifv_ifp;
802 	NET_EPOCH_EXIT(et);
803 	return (ifp);
804 }
805 
806 /*
807  * Recalculate the cached VLAN tag exposed via the MIB.
808  */
809 static void
810 vlan_tag_recalculate(struct ifvlan *ifv)
811 {
812 
813        ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0);
814 }
815 
816 /*
817  * VLAN support can be loaded as a module.  The only place in the
818  * system that's intimately aware of this is ether_input.  We hook
819  * into this code through vlan_input_p which is defined there and
820  * set here.  No one else in the system should be aware of this so
821  * we use an explicit reference here.
822  */
823 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
824 
825 /* For if_link_state_change() eyes only... */
826 extern	void (*vlan_link_state_p)(struct ifnet *);
827 
828 static int
829 vlan_modevent(module_t mod, int type, void *data)
830 {
831 
832 	switch (type) {
833 	case MOD_LOAD:
834 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
835 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
836 		if (ifdetach_tag == NULL)
837 			return (ENOMEM);
838 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
839 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
840 		if (iflladdr_tag == NULL)
841 			return (ENOMEM);
842 		VLAN_LOCKING_INIT();
843 		vlan_input_p = vlan_input;
844 		vlan_link_state_p = vlan_link_state;
845 		vlan_trunk_cap_p = vlan_trunk_capabilities;
846 		vlan_trunkdev_p = vlan_trunkdev;
847 		vlan_cookie_p = vlan_cookie;
848 		vlan_setcookie_p = vlan_setcookie;
849 		vlan_tag_p = vlan_tag;
850 		vlan_pcp_p = vlan_pcp;
851 		vlan_devat_p = vlan_devat;
852 #ifndef VIMAGE
853 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
854 		    vlan_clone_create, vlan_clone_destroy);
855 #endif
856 		if (bootverbose)
857 			printf("vlan: initialized, using "
858 #ifdef VLAN_ARRAY
859 			       "full-size arrays"
860 #else
861 			       "hash tables with chaining"
862 #endif
863 
864 			       "\n");
865 		break;
866 	case MOD_UNLOAD:
867 #ifndef VIMAGE
868 		if_clone_detach(vlan_cloner);
869 #endif
870 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
871 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
872 		vlan_input_p = NULL;
873 		vlan_link_state_p = NULL;
874 		vlan_trunk_cap_p = NULL;
875 		vlan_trunkdev_p = NULL;
876 		vlan_tag_p = NULL;
877 		vlan_cookie_p = NULL;
878 		vlan_setcookie_p = NULL;
879 		vlan_devat_p = NULL;
880 		VLAN_LOCKING_DESTROY();
881 		if (bootverbose)
882 			printf("vlan: unloaded\n");
883 		break;
884 	default:
885 		return (EOPNOTSUPP);
886 	}
887 	return (0);
888 }
889 
890 static moduledata_t vlan_mod = {
891 	"if_vlan",
892 	vlan_modevent,
893 	0
894 };
895 
896 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
897 MODULE_VERSION(if_vlan, 3);
898 
899 #ifdef VIMAGE
900 static void
901 vnet_vlan_init(const void *unused __unused)
902 {
903 
904 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
905 		    vlan_clone_create, vlan_clone_destroy);
906 	V_vlan_cloner = vlan_cloner;
907 }
908 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
909     vnet_vlan_init, NULL);
910 
911 static void
912 vnet_vlan_uninit(const void *unused __unused)
913 {
914 
915 	if_clone_detach(V_vlan_cloner);
916 }
917 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
918     vnet_vlan_uninit, NULL);
919 #endif
920 
921 /*
922  * Check for <etherif>.<vlan> style interface names.
923  */
924 static struct ifnet *
925 vlan_clone_match_ethervid(const char *name, int *vidp)
926 {
927 	char ifname[IFNAMSIZ];
928 	char *cp;
929 	struct ifnet *ifp;
930 	int vid;
931 
932 	strlcpy(ifname, name, IFNAMSIZ);
933 	if ((cp = strchr(ifname, '.')) == NULL)
934 		return (NULL);
935 	*cp = '\0';
936 	if ((ifp = ifunit_ref(ifname)) == NULL)
937 		return (NULL);
938 	/* Parse VID. */
939 	if (*++cp == '\0') {
940 		if_rele(ifp);
941 		return (NULL);
942 	}
943 	vid = 0;
944 	for(; *cp >= '0' && *cp <= '9'; cp++)
945 		vid = (vid * 10) + (*cp - '0');
946 	if (*cp != '\0') {
947 		if_rele(ifp);
948 		return (NULL);
949 	}
950 	if (vidp != NULL)
951 		*vidp = vid;
952 
953 	return (ifp);
954 }
955 
956 static int
957 vlan_clone_match(struct if_clone *ifc, const char *name)
958 {
959 	const char *cp;
960 
961 	if (vlan_clone_match_ethervid(name, NULL) != NULL)
962 		return (1);
963 
964 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
965 		return (0);
966 	for (cp = name + 4; *cp != '\0'; cp++) {
967 		if (*cp < '0' || *cp > '9')
968 			return (0);
969 	}
970 
971 	return (1);
972 }
973 
974 static int
975 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
976 {
977 	char *dp;
978 	int wildcard;
979 	int unit;
980 	int error;
981 	int vid;
982 	struct ifvlan *ifv;
983 	struct ifnet *ifp;
984 	struct ifnet *p;
985 	struct ifaddr *ifa;
986 	struct sockaddr_dl *sdl;
987 	struct vlanreq vlr;
988 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
989 
990 	/*
991 	 * There are 3 (ugh) ways to specify the cloned device:
992 	 * o pass a parameter block with the clone request.
993 	 * o specify parameters in the text of the clone device name
994 	 * o specify no parameters and get an unattached device that
995 	 *   must be configured separately.
996 	 * The first technique is preferred; the latter two are
997 	 * supported for backwards compatibility.
998 	 *
999 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1000 	 * called for.
1001 	 */
1002 	if (params) {
1003 		error = copyin(params, &vlr, sizeof(vlr));
1004 		if (error)
1005 			return error;
1006 		p = ifunit_ref(vlr.vlr_parent);
1007 		if (p == NULL)
1008 			return (ENXIO);
1009 		error = ifc_name2unit(name, &unit);
1010 		if (error != 0) {
1011 			if_rele(p);
1012 			return (error);
1013 		}
1014 		vid = vlr.vlr_tag;
1015 		wildcard = (unit < 0);
1016 	} else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) {
1017 		unit = -1;
1018 		wildcard = 0;
1019 	} else {
1020 		p = NULL;
1021 		error = ifc_name2unit(name, &unit);
1022 		if (error != 0)
1023 			return (error);
1024 
1025 		wildcard = (unit < 0);
1026 	}
1027 
1028 	error = ifc_alloc_unit(ifc, &unit);
1029 	if (error != 0) {
1030 		if (p != NULL)
1031 			if_rele(p);
1032 		return (error);
1033 	}
1034 
1035 	/* In the wildcard case, we need to update the name. */
1036 	if (wildcard) {
1037 		for (dp = name; *dp != '\0'; dp++);
1038 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1039 		    len - (dp-name) - 1) {
1040 			panic("%s: interface name too long", __func__);
1041 		}
1042 	}
1043 
1044 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1045 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1046 	if (ifp == NULL) {
1047 		ifc_free_unit(ifc, unit);
1048 		free(ifv, M_VLAN);
1049 		if (p != NULL)
1050 			if_rele(p);
1051 		return (ENOSPC);
1052 	}
1053 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1054 	ifp->if_softc = ifv;
1055 	/*
1056 	 * Set the name manually rather than using if_initname because
1057 	 * we don't conform to the default naming convention for interfaces.
1058 	 */
1059 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1060 	ifp->if_dname = vlanname;
1061 	ifp->if_dunit = unit;
1062 
1063 	ifp->if_init = vlan_init;
1064 	ifp->if_transmit = vlan_transmit;
1065 	ifp->if_qflush = vlan_qflush;
1066 	ifp->if_ioctl = vlan_ioctl;
1067 #ifdef RATELIMIT
1068 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1069 	ifp->if_snd_tag_modify = vlan_snd_tag_modify;
1070 	ifp->if_snd_tag_query = vlan_snd_tag_query;
1071 	ifp->if_snd_tag_free = vlan_snd_tag_free;
1072 #endif
1073 	ifp->if_flags = VLAN_IFFLAGS;
1074 	ether_ifattach(ifp, eaddr);
1075 	/* Now undo some of the damage... */
1076 	ifp->if_baudrate = 0;
1077 	ifp->if_type = IFT_L2VLAN;
1078 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1079 	ifa = ifp->if_addr;
1080 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1081 	sdl->sdl_type = IFT_L2VLAN;
1082 
1083 	if (p != NULL) {
1084 		error = vlan_config(ifv, p, vid);
1085 		if_rele(p);
1086 		if (error != 0) {
1087 			/*
1088 			 * Since we've partially failed, we need to back
1089 			 * out all the way, otherwise userland could get
1090 			 * confused.  Thus, we destroy the interface.
1091 			 */
1092 			ether_ifdetach(ifp);
1093 			vlan_unconfig(ifp);
1094 			if_free(ifp);
1095 			ifc_free_unit(ifc, unit);
1096 			free(ifv, M_VLAN);
1097 
1098 			return (error);
1099 		}
1100 	}
1101 
1102 	return (0);
1103 }
1104 
1105 static int
1106 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1107 {
1108 	struct ifvlan *ifv = ifp->if_softc;
1109 	int unit = ifp->if_dunit;
1110 
1111 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1112 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1113 	/*
1114 	 * We should have the only reference to the ifv now, so we can now
1115 	 * drain any remaining lladdr task before freeing the ifnet and the
1116 	 * ifvlan.
1117 	 */
1118 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1119 	NET_EPOCH_WAIT();
1120 	if_free(ifp);
1121 	free(ifv, M_VLAN);
1122 	ifc_free_unit(ifc, unit);
1123 
1124 	return (0);
1125 }
1126 
1127 /*
1128  * The ifp->if_init entry point for vlan(4) is a no-op.
1129  */
1130 static void
1131 vlan_init(void *foo __unused)
1132 {
1133 }
1134 
1135 /*
1136  * The if_transmit method for vlan(4) interface.
1137  */
1138 static int
1139 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1140 {
1141 	struct epoch_tracker et;
1142 	struct ifvlan *ifv;
1143 	struct ifnet *p;
1144 	int error, len, mcast;
1145 
1146 	NET_EPOCH_ENTER(et);
1147 	ifv = ifp->if_softc;
1148 	if (TRUNK(ifv) == NULL) {
1149 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1150 		NET_EPOCH_EXIT(et);
1151 		m_freem(m);
1152 		return (ENETDOWN);
1153 	}
1154 	p = PARENT(ifv);
1155 	len = m->m_pkthdr.len;
1156 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1157 
1158 	BPF_MTAP(ifp, m);
1159 
1160 #ifdef RATELIMIT
1161 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1162 		struct vlan_snd_tag *vst;
1163 		struct m_snd_tag *mst;
1164 
1165 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1166 		mst = m->m_pkthdr.snd_tag;
1167 		vst = mst_to_vst(mst);
1168 		if (vst->tag->ifp != p) {
1169 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1170 			NET_EPOCH_EXIT(et);
1171 			m_freem(m);
1172 			return (EAGAIN);
1173 		}
1174 
1175 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1176 		m_snd_tag_rele(mst);
1177 	}
1178 #endif
1179 
1180 	/*
1181 	 * Do not run parent's if_transmit() if the parent is not up,
1182 	 * or parent's driver will cause a system crash.
1183 	 */
1184 	if (!UP_AND_RUNNING(p)) {
1185 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1186 		NET_EPOCH_EXIT(et);
1187 		m_freem(m);
1188 		return (ENETDOWN);
1189 	}
1190 
1191 	if (!ether_8021q_frame(&m, ifp, p, ifv->ifv_vid, ifv->ifv_pcp)) {
1192 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1193 		NET_EPOCH_EXIT(et);
1194 		return (0);
1195 	}
1196 
1197 	/*
1198 	 * Send it, precisely as ether_output() would have.
1199 	 */
1200 	error = (p->if_transmit)(p, m);
1201 	if (error == 0) {
1202 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1203 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1204 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1205 	} else
1206 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1207 	NET_EPOCH_EXIT(et);
1208 	return (error);
1209 }
1210 
1211 /*
1212  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1213  */
1214 static void
1215 vlan_qflush(struct ifnet *ifp __unused)
1216 {
1217 }
1218 
1219 static void
1220 vlan_input(struct ifnet *ifp, struct mbuf *m)
1221 {
1222 	struct epoch_tracker et;
1223 	struct ifvlantrunk *trunk;
1224 	struct ifvlan *ifv;
1225 	struct m_tag *mtag;
1226 	uint16_t vid, tag;
1227 
1228 	NET_EPOCH_ENTER(et);
1229 	trunk = ifp->if_vlantrunk;
1230 	if (trunk == NULL) {
1231 		NET_EPOCH_EXIT(et);
1232 		m_freem(m);
1233 		return;
1234 	}
1235 
1236 	if (m->m_flags & M_VLANTAG) {
1237 		/*
1238 		 * Packet is tagged, but m contains a normal
1239 		 * Ethernet frame; the tag is stored out-of-band.
1240 		 */
1241 		tag = m->m_pkthdr.ether_vtag;
1242 		m->m_flags &= ~M_VLANTAG;
1243 	} else {
1244 		struct ether_vlan_header *evl;
1245 
1246 		/*
1247 		 * Packet is tagged in-band as specified by 802.1q.
1248 		 */
1249 		switch (ifp->if_type) {
1250 		case IFT_ETHER:
1251 			if (m->m_len < sizeof(*evl) &&
1252 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1253 				if_printf(ifp, "cannot pullup VLAN header\n");
1254 				NET_EPOCH_EXIT(et);
1255 				return;
1256 			}
1257 			evl = mtod(m, struct ether_vlan_header *);
1258 			tag = ntohs(evl->evl_tag);
1259 
1260 			/*
1261 			 * Remove the 802.1q header by copying the Ethernet
1262 			 * addresses over it and adjusting the beginning of
1263 			 * the data in the mbuf.  The encapsulated Ethernet
1264 			 * type field is already in place.
1265 			 */
1266 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1267 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1268 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1269 			break;
1270 
1271 		default:
1272 #ifdef INVARIANTS
1273 			panic("%s: %s has unsupported if_type %u",
1274 			      __func__, ifp->if_xname, ifp->if_type);
1275 #endif
1276 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1277 			NET_EPOCH_EXIT(et);
1278 			m_freem(m);
1279 			return;
1280 		}
1281 	}
1282 
1283 	vid = EVL_VLANOFTAG(tag);
1284 
1285 	ifv = vlan_gethash(trunk, vid);
1286 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1287 		NET_EPOCH_EXIT(et);
1288 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1289 		m_freem(m);
1290 		return;
1291 	}
1292 
1293 	if (vlan_mtag_pcp) {
1294 		/*
1295 		 * While uncommon, it is possible that we will find a 802.1q
1296 		 * packet encapsulated inside another packet that also had an
1297 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1298 		 * arriving over ethernet.  In that case, we replace the
1299 		 * existing 802.1q PCP m_tag value.
1300 		 */
1301 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1302 		if (mtag == NULL) {
1303 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1304 			    sizeof(uint8_t), M_NOWAIT);
1305 			if (mtag == NULL) {
1306 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1307 				NET_EPOCH_EXIT(et);
1308 				m_freem(m);
1309 				return;
1310 			}
1311 			m_tag_prepend(m, mtag);
1312 		}
1313 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1314 	}
1315 
1316 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1317 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1318 	NET_EPOCH_EXIT(et);
1319 
1320 	/* Pass it back through the parent's input routine. */
1321 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1322 }
1323 
1324 static void
1325 vlan_lladdr_fn(void *arg, int pending __unused)
1326 {
1327 	struct ifvlan *ifv;
1328 	struct ifnet *ifp;
1329 
1330 	ifv = (struct ifvlan *)arg;
1331 	ifp = ifv->ifv_ifp;
1332 
1333 	CURVNET_SET(ifp->if_vnet);
1334 
1335 	/* The ifv_ifp already has the lladdr copied in. */
1336 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1337 
1338 	CURVNET_RESTORE();
1339 }
1340 
1341 static int
1342 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid)
1343 {
1344 	struct epoch_tracker et;
1345 	struct ifvlantrunk *trunk;
1346 	struct ifnet *ifp;
1347 	int error = 0;
1348 
1349 	/*
1350 	 * We can handle non-ethernet hardware types as long as
1351 	 * they handle the tagging and headers themselves.
1352 	 */
1353 	if (p->if_type != IFT_ETHER &&
1354 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1355 		return (EPROTONOSUPPORT);
1356 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1357 		return (EPROTONOSUPPORT);
1358 	/*
1359 	 * Don't let the caller set up a VLAN VID with
1360 	 * anything except VLID bits.
1361 	 * VID numbers 0x0 and 0xFFF are reserved.
1362 	 */
1363 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1364 		return (EINVAL);
1365 	if (ifv->ifv_trunk)
1366 		return (EBUSY);
1367 
1368 	VLAN_XLOCK();
1369 	if (p->if_vlantrunk == NULL) {
1370 		trunk = malloc(sizeof(struct ifvlantrunk),
1371 		    M_VLAN, M_WAITOK | M_ZERO);
1372 		vlan_inithash(trunk);
1373 		TRUNK_LOCK_INIT(trunk);
1374 		TRUNK_WLOCK(trunk);
1375 		p->if_vlantrunk = trunk;
1376 		trunk->parent = p;
1377 		if_ref(trunk->parent);
1378 		TRUNK_WUNLOCK(trunk);
1379 	} else {
1380 		trunk = p->if_vlantrunk;
1381 	}
1382 
1383 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1384 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1385 	vlan_tag_recalculate(ifv);
1386 	error = vlan_inshash(trunk, ifv);
1387 	if (error)
1388 		goto done;
1389 	ifv->ifv_proto = ETHERTYPE_VLAN;
1390 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1391 	ifv->ifv_mintu = ETHERMIN;
1392 	ifv->ifv_pflags = 0;
1393 	ifv->ifv_capenable = -1;
1394 
1395 	/*
1396 	 * If the parent supports the VLAN_MTU capability,
1397 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1398 	 * use it.
1399 	 */
1400 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1401 		/*
1402 		 * No need to fudge the MTU since the parent can
1403 		 * handle extended frames.
1404 		 */
1405 		ifv->ifv_mtufudge = 0;
1406 	} else {
1407 		/*
1408 		 * Fudge the MTU by the encapsulation size.  This
1409 		 * makes us incompatible with strictly compliant
1410 		 * 802.1Q implementations, but allows us to use
1411 		 * the feature with other NetBSD implementations,
1412 		 * which might still be useful.
1413 		 */
1414 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1415 	}
1416 
1417 	ifv->ifv_trunk = trunk;
1418 	ifp = ifv->ifv_ifp;
1419 	/*
1420 	 * Initialize fields from our parent.  This duplicates some
1421 	 * work with ether_ifattach() but allows for non-ethernet
1422 	 * interfaces to also work.
1423 	 */
1424 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1425 	ifp->if_baudrate = p->if_baudrate;
1426 	ifp->if_output = p->if_output;
1427 	ifp->if_input = p->if_input;
1428 	ifp->if_resolvemulti = p->if_resolvemulti;
1429 	ifp->if_addrlen = p->if_addrlen;
1430 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1431 	ifp->if_pcp = ifv->ifv_pcp;
1432 
1433 	/*
1434 	 * Copy only a selected subset of flags from the parent.
1435 	 * Other flags are none of our business.
1436 	 */
1437 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1438 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1439 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1440 #undef VLAN_COPY_FLAGS
1441 
1442 	ifp->if_link_state = p->if_link_state;
1443 
1444 	NET_EPOCH_ENTER(et);
1445 	vlan_capabilities(ifv);
1446 	NET_EPOCH_EXIT(et);
1447 
1448 	/*
1449 	 * Set up our interface address to reflect the underlying
1450 	 * physical interface's.
1451 	 */
1452 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1453 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1454 	    p->if_addrlen;
1455 
1456 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1457 
1458 	/* We are ready for operation now. */
1459 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1460 
1461 	/* Update flags on the parent, if necessary. */
1462 	vlan_setflags(ifp, 1);
1463 
1464 	/*
1465 	 * Configure multicast addresses that may already be
1466 	 * joined on the vlan device.
1467 	 */
1468 	(void)vlan_setmulti(ifp);
1469 
1470 done:
1471 	if (error == 0)
1472 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1473 	VLAN_XUNLOCK();
1474 
1475 	return (error);
1476 }
1477 
1478 static void
1479 vlan_unconfig(struct ifnet *ifp)
1480 {
1481 
1482 	VLAN_XLOCK();
1483 	vlan_unconfig_locked(ifp, 0);
1484 	VLAN_XUNLOCK();
1485 }
1486 
1487 static void
1488 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1489 {
1490 	struct ifvlantrunk *trunk;
1491 	struct vlan_mc_entry *mc;
1492 	struct ifvlan *ifv;
1493 	struct ifnet  *parent;
1494 	int error;
1495 
1496 	VLAN_XLOCK_ASSERT();
1497 
1498 	ifv = ifp->if_softc;
1499 	trunk = ifv->ifv_trunk;
1500 	parent = NULL;
1501 
1502 	if (trunk != NULL) {
1503 		parent = trunk->parent;
1504 
1505 		/*
1506 		 * Since the interface is being unconfigured, we need to
1507 		 * empty the list of multicast groups that we may have joined
1508 		 * while we were alive from the parent's list.
1509 		 */
1510 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1511 			/*
1512 			 * If the parent interface is being detached,
1513 			 * all its multicast addresses have already
1514 			 * been removed.  Warn about errors if
1515 			 * if_delmulti() does fail, but don't abort as
1516 			 * all callers expect vlan destruction to
1517 			 * succeed.
1518 			 */
1519 			if (!departing) {
1520 				error = if_delmulti(parent,
1521 				    (struct sockaddr *)&mc->mc_addr);
1522 				if (error)
1523 					if_printf(ifp,
1524 		    "Failed to delete multicast address from parent: %d\n",
1525 					    error);
1526 			}
1527 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1528 			epoch_call(net_epoch_preempt, &mc->mc_epoch_ctx, vlan_mc_free);
1529 		}
1530 
1531 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1532 
1533 		vlan_remhash(trunk, ifv);
1534 		ifv->ifv_trunk = NULL;
1535 
1536 		/*
1537 		 * Check if we were the last.
1538 		 */
1539 		if (trunk->refcnt == 0) {
1540 			parent->if_vlantrunk = NULL;
1541 			NET_EPOCH_WAIT();
1542 			trunk_destroy(trunk);
1543 		}
1544 	}
1545 
1546 	/* Disconnect from parent. */
1547 	if (ifv->ifv_pflags)
1548 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1549 	ifp->if_mtu = ETHERMTU;
1550 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1551 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1552 
1553 	/*
1554 	 * Only dispatch an event if vlan was
1555 	 * attached, otherwise there is nothing
1556 	 * to cleanup anyway.
1557 	 */
1558 	if (parent != NULL)
1559 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1560 }
1561 
1562 /* Handle a reference counted flag that should be set on the parent as well */
1563 static int
1564 vlan_setflag(struct ifnet *ifp, int flag, int status,
1565 	     int (*func)(struct ifnet *, int))
1566 {
1567 	struct ifvlan *ifv;
1568 	int error;
1569 
1570 	VLAN_SXLOCK_ASSERT();
1571 
1572 	ifv = ifp->if_softc;
1573 	status = status ? (ifp->if_flags & flag) : 0;
1574 	/* Now "status" contains the flag value or 0 */
1575 
1576 	/*
1577 	 * See if recorded parent's status is different from what
1578 	 * we want it to be.  If it is, flip it.  We record parent's
1579 	 * status in ifv_pflags so that we won't clear parent's flag
1580 	 * we haven't set.  In fact, we don't clear or set parent's
1581 	 * flags directly, but get or release references to them.
1582 	 * That's why we can be sure that recorded flags still are
1583 	 * in accord with actual parent's flags.
1584 	 */
1585 	if (status != (ifv->ifv_pflags & flag)) {
1586 		error = (*func)(PARENT(ifv), status);
1587 		if (error)
1588 			return (error);
1589 		ifv->ifv_pflags &= ~flag;
1590 		ifv->ifv_pflags |= status;
1591 	}
1592 	return (0);
1593 }
1594 
1595 /*
1596  * Handle IFF_* flags that require certain changes on the parent:
1597  * if "status" is true, update parent's flags respective to our if_flags;
1598  * if "status" is false, forcedly clear the flags set on parent.
1599  */
1600 static int
1601 vlan_setflags(struct ifnet *ifp, int status)
1602 {
1603 	int error, i;
1604 
1605 	for (i = 0; vlan_pflags[i].flag; i++) {
1606 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1607 				     status, vlan_pflags[i].func);
1608 		if (error)
1609 			return (error);
1610 	}
1611 	return (0);
1612 }
1613 
1614 /* Inform all vlans that their parent has changed link state */
1615 static void
1616 vlan_link_state(struct ifnet *ifp)
1617 {
1618 	struct epoch_tracker et;
1619 	struct ifvlantrunk *trunk;
1620 	struct ifvlan *ifv;
1621 
1622 	/* Called from a taskqueue_swi task, so we cannot sleep. */
1623 	NET_EPOCH_ENTER(et);
1624 	trunk = ifp->if_vlantrunk;
1625 	if (trunk == NULL) {
1626 		NET_EPOCH_EXIT(et);
1627 		return;
1628 	}
1629 
1630 	TRUNK_WLOCK(trunk);
1631 	VLAN_FOREACH(ifv, trunk) {
1632 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1633 		if_link_state_change(ifv->ifv_ifp,
1634 		    trunk->parent->if_link_state);
1635 	}
1636 	TRUNK_WUNLOCK(trunk);
1637 	NET_EPOCH_EXIT(et);
1638 }
1639 
1640 static void
1641 vlan_capabilities(struct ifvlan *ifv)
1642 {
1643 	struct ifnet *p;
1644 	struct ifnet *ifp;
1645 	struct ifnet_hw_tsomax hw_tsomax;
1646 	int cap = 0, ena = 0, mena;
1647 	u_long hwa = 0;
1648 
1649 	VLAN_SXLOCK_ASSERT();
1650 	NET_EPOCH_ASSERT();
1651 	p = PARENT(ifv);
1652 	ifp = ifv->ifv_ifp;
1653 
1654 	/* Mask parent interface enabled capabilities disabled by user. */
1655 	mena = p->if_capenable & ifv->ifv_capenable;
1656 
1657 	/*
1658 	 * If the parent interface can do checksum offloading
1659 	 * on VLANs, then propagate its hardware-assisted
1660 	 * checksumming flags. Also assert that checksum
1661 	 * offloading requires hardware VLAN tagging.
1662 	 */
1663 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1664 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1665 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1666 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1667 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1668 		if (ena & IFCAP_TXCSUM)
1669 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1670 			    CSUM_UDP | CSUM_SCTP);
1671 		if (ena & IFCAP_TXCSUM_IPV6)
1672 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1673 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1674 	}
1675 
1676 	/*
1677 	 * If the parent interface can do TSO on VLANs then
1678 	 * propagate the hardware-assisted flag. TSO on VLANs
1679 	 * does not necessarily require hardware VLAN tagging.
1680 	 */
1681 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1682 	if_hw_tsomax_common(p, &hw_tsomax);
1683 	if_hw_tsomax_update(ifp, &hw_tsomax);
1684 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1685 		cap |= p->if_capabilities & IFCAP_TSO;
1686 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1687 		ena |= mena & IFCAP_TSO;
1688 		if (ena & IFCAP_TSO)
1689 			hwa |= p->if_hwassist & CSUM_TSO;
1690 	}
1691 
1692 	/*
1693 	 * If the parent interface can do LRO and checksum offloading on
1694 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1695 	 * cost nothing, while false negative may lead to some confusions.
1696 	 */
1697 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1698 		cap |= p->if_capabilities & IFCAP_LRO;
1699 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1700 		ena |= p->if_capenable & IFCAP_LRO;
1701 
1702 	/*
1703 	 * If the parent interface can offload TCP connections over VLANs then
1704 	 * propagate its TOE capability to the VLAN interface.
1705 	 *
1706 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1707 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1708 	 * with its own bit.
1709 	 */
1710 #define	IFCAP_VLAN_TOE IFCAP_TOE
1711 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1712 		cap |= p->if_capabilities & IFCAP_TOE;
1713 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1714 		TOEDEV(ifp) = TOEDEV(p);
1715 		ena |= mena & IFCAP_TOE;
1716 	}
1717 
1718 	/*
1719 	 * If the parent interface supports dynamic link state, so does the
1720 	 * VLAN interface.
1721 	 */
1722 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1723 	ena |= (mena & IFCAP_LINKSTATE);
1724 
1725 #ifdef RATELIMIT
1726 	/*
1727 	 * If the parent interface supports ratelimiting, so does the
1728 	 * VLAN interface.
1729 	 */
1730 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1731 	ena |= (mena & IFCAP_TXRTLMT);
1732 #endif
1733 
1734 	/*
1735 	 * If the parent interface supports unmapped mbufs, so does
1736 	 * the VLAN interface.  Note that this should be fine even for
1737 	 * interfaces that don't support hardware tagging as headers
1738 	 * are prepended in normal mbufs to unmapped mbufs holding
1739 	 * payload data.
1740 	 */
1741 	cap |= (p->if_capabilities & IFCAP_NOMAP);
1742 	ena |= (mena & IFCAP_NOMAP);
1743 
1744 	ifp->if_capabilities = cap;
1745 	ifp->if_capenable = ena;
1746 	ifp->if_hwassist = hwa;
1747 }
1748 
1749 static void
1750 vlan_trunk_capabilities(struct ifnet *ifp)
1751 {
1752 	struct epoch_tracker et;
1753 	struct ifvlantrunk *trunk;
1754 	struct ifvlan *ifv;
1755 
1756 	VLAN_SLOCK();
1757 	trunk = ifp->if_vlantrunk;
1758 	if (trunk == NULL) {
1759 		VLAN_SUNLOCK();
1760 		return;
1761 	}
1762 	NET_EPOCH_ENTER(et);
1763 	VLAN_FOREACH(ifv, trunk) {
1764 		vlan_capabilities(ifv);
1765 	}
1766 	NET_EPOCH_EXIT(et);
1767 	VLAN_SUNLOCK();
1768 }
1769 
1770 static int
1771 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1772 {
1773 	struct ifnet *p;
1774 	struct ifreq *ifr;
1775 	struct ifaddr *ifa;
1776 	struct ifvlan *ifv;
1777 	struct ifvlantrunk *trunk;
1778 	struct vlanreq vlr;
1779 	int error = 0;
1780 
1781 	ifr = (struct ifreq *)data;
1782 	ifa = (struct ifaddr *) data;
1783 	ifv = ifp->if_softc;
1784 
1785 	switch (cmd) {
1786 	case SIOCSIFADDR:
1787 		ifp->if_flags |= IFF_UP;
1788 #ifdef INET
1789 		if (ifa->ifa_addr->sa_family == AF_INET)
1790 			arp_ifinit(ifp, ifa);
1791 #endif
1792 		break;
1793 	case SIOCGIFADDR:
1794 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1795 		    ifp->if_addrlen);
1796 		break;
1797 	case SIOCGIFMEDIA:
1798 		VLAN_SLOCK();
1799 		if (TRUNK(ifv) != NULL) {
1800 			p = PARENT(ifv);
1801 			if_ref(p);
1802 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1803 			if_rele(p);
1804 			/* Limit the result to the parent's current config. */
1805 			if (error == 0) {
1806 				struct ifmediareq *ifmr;
1807 
1808 				ifmr = (struct ifmediareq *)data;
1809 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1810 					ifmr->ifm_count = 1;
1811 					error = copyout(&ifmr->ifm_current,
1812 						ifmr->ifm_ulist,
1813 						sizeof(int));
1814 				}
1815 			}
1816 		} else {
1817 			error = EINVAL;
1818 		}
1819 		VLAN_SUNLOCK();
1820 		break;
1821 
1822 	case SIOCSIFMEDIA:
1823 		error = EINVAL;
1824 		break;
1825 
1826 	case SIOCSIFMTU:
1827 		/*
1828 		 * Set the interface MTU.
1829 		 */
1830 		VLAN_SLOCK();
1831 		trunk = TRUNK(ifv);
1832 		if (trunk != NULL) {
1833 			TRUNK_WLOCK(trunk);
1834 			if (ifr->ifr_mtu >
1835 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1836 			    ifr->ifr_mtu <
1837 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1838 				error = EINVAL;
1839 			else
1840 				ifp->if_mtu = ifr->ifr_mtu;
1841 			TRUNK_WUNLOCK(trunk);
1842 		} else
1843 			error = EINVAL;
1844 		VLAN_SUNLOCK();
1845 		break;
1846 
1847 	case SIOCSETVLAN:
1848 #ifdef VIMAGE
1849 		/*
1850 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1851 		 * interface to be delegated to a jail without allowing the
1852 		 * jail to change what underlying interface/VID it is
1853 		 * associated with.  We are not entirely convinced that this
1854 		 * is the right way to accomplish that policy goal.
1855 		 */
1856 		if (ifp->if_vnet != ifp->if_home_vnet) {
1857 			error = EPERM;
1858 			break;
1859 		}
1860 #endif
1861 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
1862 		if (error)
1863 			break;
1864 		if (vlr.vlr_parent[0] == '\0') {
1865 			vlan_unconfig(ifp);
1866 			break;
1867 		}
1868 		p = ifunit_ref(vlr.vlr_parent);
1869 		if (p == NULL) {
1870 			error = ENOENT;
1871 			break;
1872 		}
1873 		error = vlan_config(ifv, p, vlr.vlr_tag);
1874 		if_rele(p);
1875 		break;
1876 
1877 	case SIOCGETVLAN:
1878 #ifdef VIMAGE
1879 		if (ifp->if_vnet != ifp->if_home_vnet) {
1880 			error = EPERM;
1881 			break;
1882 		}
1883 #endif
1884 		bzero(&vlr, sizeof(vlr));
1885 		VLAN_SLOCK();
1886 		if (TRUNK(ifv) != NULL) {
1887 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1888 			    sizeof(vlr.vlr_parent));
1889 			vlr.vlr_tag = ifv->ifv_vid;
1890 		}
1891 		VLAN_SUNLOCK();
1892 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
1893 		break;
1894 
1895 	case SIOCSIFFLAGS:
1896 		/*
1897 		 * We should propagate selected flags to the parent,
1898 		 * e.g., promiscuous mode.
1899 		 */
1900 		VLAN_XLOCK();
1901 		if (TRUNK(ifv) != NULL)
1902 			error = vlan_setflags(ifp, 1);
1903 		VLAN_XUNLOCK();
1904 		break;
1905 
1906 	case SIOCADDMULTI:
1907 	case SIOCDELMULTI:
1908 		/*
1909 		 * If we don't have a parent, just remember the membership for
1910 		 * when we do.
1911 		 *
1912 		 * XXX We need the rmlock here to avoid sleeping while
1913 		 * holding in6_multi_mtx.
1914 		 */
1915 		VLAN_XLOCK();
1916 		trunk = TRUNK(ifv);
1917 		if (trunk != NULL)
1918 			error = vlan_setmulti(ifp);
1919 		VLAN_XUNLOCK();
1920 
1921 		break;
1922 	case SIOCGVLANPCP:
1923 #ifdef VIMAGE
1924 		if (ifp->if_vnet != ifp->if_home_vnet) {
1925 			error = EPERM;
1926 			break;
1927 		}
1928 #endif
1929 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
1930 		break;
1931 
1932 	case SIOCSVLANPCP:
1933 #ifdef VIMAGE
1934 		if (ifp->if_vnet != ifp->if_home_vnet) {
1935 			error = EPERM;
1936 			break;
1937 		}
1938 #endif
1939 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
1940 		if (error)
1941 			break;
1942 		if (ifr->ifr_vlan_pcp > 7) {
1943 			error = EINVAL;
1944 			break;
1945 		}
1946 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
1947 		ifp->if_pcp = ifv->ifv_pcp;
1948 		vlan_tag_recalculate(ifv);
1949 		/* broadcast event about PCP change */
1950 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1951 		break;
1952 
1953 	case SIOCSIFCAP:
1954 		VLAN_SLOCK();
1955 		ifv->ifv_capenable = ifr->ifr_reqcap;
1956 		trunk = TRUNK(ifv);
1957 		if (trunk != NULL) {
1958 			struct epoch_tracker et;
1959 
1960 			NET_EPOCH_ENTER(et);
1961 			vlan_capabilities(ifv);
1962 			NET_EPOCH_EXIT(et);
1963 		}
1964 		VLAN_SUNLOCK();
1965 		break;
1966 
1967 	default:
1968 		error = EINVAL;
1969 		break;
1970 	}
1971 
1972 	return (error);
1973 }
1974 
1975 #ifdef RATELIMIT
1976 static int
1977 vlan_snd_tag_alloc(struct ifnet *ifp,
1978     union if_snd_tag_alloc_params *params,
1979     struct m_snd_tag **ppmt)
1980 {
1981 	struct epoch_tracker et;
1982 	struct vlan_snd_tag *vst;
1983 	struct ifvlan *ifv;
1984 	struct ifnet *parent;
1985 	int error;
1986 
1987 	NET_EPOCH_ENTER(et);
1988 	ifv = ifp->if_softc;
1989 	if (ifv->ifv_trunk != NULL)
1990 		parent = PARENT(ifv);
1991 	else
1992 		parent = NULL;
1993 	if (parent == NULL || parent->if_snd_tag_alloc == NULL) {
1994 		NET_EPOCH_EXIT(et);
1995 		return (EOPNOTSUPP);
1996 	}
1997 	if_ref(parent);
1998 	NET_EPOCH_EXIT(et);
1999 
2000 	vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2001 	if (vst == NULL) {
2002 		if_rele(parent);
2003 		return (ENOMEM);
2004 	}
2005 
2006 	error = parent->if_snd_tag_alloc(parent, params, &vst->tag);
2007 	if_rele(parent);
2008 	if (error) {
2009 		free(vst, M_VLAN);
2010 		return (error);
2011 	}
2012 
2013 	m_snd_tag_init(&vst->com, ifp);
2014 
2015 	*ppmt = &vst->com;
2016 	return (0);
2017 }
2018 
2019 static int
2020 vlan_snd_tag_modify(struct m_snd_tag *mst,
2021     union if_snd_tag_modify_params *params)
2022 {
2023 	struct vlan_snd_tag *vst;
2024 
2025 	vst = mst_to_vst(mst);
2026 	return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params));
2027 }
2028 
2029 static int
2030 vlan_snd_tag_query(struct m_snd_tag *mst,
2031     union if_snd_tag_query_params *params)
2032 {
2033 	struct vlan_snd_tag *vst;
2034 
2035 	vst = mst_to_vst(mst);
2036 	return (vst->tag->ifp->if_snd_tag_query(vst->tag, params));
2037 }
2038 
2039 static void
2040 vlan_snd_tag_free(struct m_snd_tag *mst)
2041 {
2042 	struct vlan_snd_tag *vst;
2043 
2044 	vst = mst_to_vst(mst);
2045 	m_snd_tag_rele(vst->tag);
2046 	free(vst, M_VLAN);
2047 }
2048 #endif
2049