xref: /freebsd/sys/net/if_vlan.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
32  * Might be extended some day to also handle IEEE 802.1p priority
33  * tagging.  This is sort of sneaky in the implementation, since
34  * we need to pretend to be enough of an Ethernet implementation
35  * to make arp work.  The way we do this is by telling everyone
36  * that we are an Ethernet, and then catch the packets that
37  * ether_output() sends to us via if_transmit(), rewrite them for
38  * use by the real outgoing interface, and ask it to send them.
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_vlan.h"
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/module.h>
52 #include <sys/rwlock.h>
53 #include <sys/queue.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <sys/systm.h>
58 #include <sys/sx.h>
59 
60 #include <net/bpf.h>
61 #include <net/ethernet.h>
62 #include <net/if.h>
63 #include <net/if_clone.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_vlan_var.h>
67 #include <net/vnet.h>
68 
69 #define VLANNAME	"vlan"
70 #define	VLAN_DEF_HWIDTH	4
71 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
72 
73 #define	UP_AND_RUNNING(ifp) \
74     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
75 
76 LIST_HEAD(ifvlanhead, ifvlan);
77 
78 struct ifvlantrunk {
79 	struct	ifnet   *parent;	/* parent interface of this trunk */
80 	struct	rwlock	rw;
81 #ifdef VLAN_ARRAY
82 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
83 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
84 #else
85 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
86 	uint16_t	hmask;
87 	uint16_t	hwidth;
88 #endif
89 	int		refcnt;
90 };
91 
92 struct vlan_mc_entry {
93 	struct sockaddr_dl		mc_addr;
94 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
95 };
96 
97 struct	ifvlan {
98 	struct	ifvlantrunk *ifv_trunk;
99 	struct	ifnet *ifv_ifp;
100 	void	*ifv_cookie;
101 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
102 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
103 	int	ifv_pflags;	/* special flags we have set on parent */
104 	struct	ifv_linkmib {
105 		int	ifvm_encaplen;	/* encapsulation length */
106 		int	ifvm_mtufudge;	/* MTU fudged by this much */
107 		int	ifvm_mintu;	/* min transmission unit */
108 		uint16_t ifvm_proto;	/* encapsulation ethertype */
109 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
110 	}	ifv_mib;
111 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
112 #ifndef VLAN_ARRAY
113 	LIST_ENTRY(ifvlan) ifv_list;
114 #endif
115 };
116 #define	ifv_proto	ifv_mib.ifvm_proto
117 #define	ifv_vid		ifv_mib.ifvm_tag
118 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
119 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
120 #define	ifv_mintu	ifv_mib.ifvm_mintu
121 
122 /* Special flags we should propagate to parent. */
123 static struct {
124 	int flag;
125 	int (*func)(struct ifnet *, int);
126 } vlan_pflags[] = {
127 	{IFF_PROMISC, ifpromisc},
128 	{IFF_ALLMULTI, if_allmulti},
129 	{0, NULL}
130 };
131 
132 SYSCTL_DECL(_net_link);
133 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0,
134     "IEEE 802.1Q VLAN");
135 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0,
136     "for consistency");
137 
138 static int soft_pad = 0;
139 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
140 	   "pad short frames before tagging");
141 
142 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
143 
144 static eventhandler_tag ifdetach_tag;
145 static eventhandler_tag iflladdr_tag;
146 
147 /*
148  * We have a global mutex, that is used to serialize configuration
149  * changes and isn't used in normal packet delivery.
150  *
151  * We also have a per-trunk rwlock, that is locked shared on packet
152  * processing and exclusive when configuration is changed.
153  *
154  * The VLAN_ARRAY substitutes the dynamic hash with a static array
155  * with 4096 entries. In theory this can give a boost in processing,
156  * however on practice it does not. Probably this is because array
157  * is too big to fit into CPU cache.
158  */
159 static struct sx ifv_lock;
160 #define	VLAN_LOCK_INIT()	sx_init(&ifv_lock, "vlan_global")
161 #define	VLAN_LOCK_DESTROY()	sx_destroy(&ifv_lock)
162 #define	VLAN_LOCK_ASSERT()	sx_assert(&ifv_lock, SA_LOCKED)
163 #define	VLAN_LOCK()		sx_xlock(&ifv_lock)
164 #define	VLAN_UNLOCK()		sx_xunlock(&ifv_lock)
165 #define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
166 #define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
167 #define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
168 #define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
169 #define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
170 #define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
171 #define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
172 #define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
173 
174 #ifndef VLAN_ARRAY
175 static	void vlan_inithash(struct ifvlantrunk *trunk);
176 static	void vlan_freehash(struct ifvlantrunk *trunk);
177 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
178 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
179 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
180 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
181 	uint16_t vid);
182 #endif
183 static	void trunk_destroy(struct ifvlantrunk *trunk);
184 
185 static	void vlan_init(void *foo);
186 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
187 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
188 static	void vlan_qflush(struct ifnet *ifp);
189 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
190     int (*func)(struct ifnet *, int));
191 static	int vlan_setflags(struct ifnet *ifp, int status);
192 static	int vlan_setmulti(struct ifnet *ifp);
193 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
194 static	void vlan_unconfig(struct ifnet *ifp);
195 static	void vlan_unconfig_locked(struct ifnet *ifp);
196 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
197 static	void vlan_link_state(struct ifnet *ifp);
198 static	void vlan_capabilities(struct ifvlan *ifv);
199 static	void vlan_trunk_capabilities(struct ifnet *ifp);
200 
201 static	struct ifnet *vlan_clone_match_ethervid(struct if_clone *,
202     const char *, int *);
203 static	int vlan_clone_match(struct if_clone *, const char *);
204 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
205 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
206 
207 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
208 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
209 
210 static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
211     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
212 
213 #ifdef VIMAGE
214 static VNET_DEFINE(struct if_clone, vlan_cloner);
215 #define	V_vlan_cloner	VNET(vlan_cloner)
216 #endif
217 
218 #ifndef VLAN_ARRAY
219 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
220 
221 static void
222 vlan_inithash(struct ifvlantrunk *trunk)
223 {
224 	int i, n;
225 
226 	/*
227 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
228 	 * It is OK in case this function is called before the trunk struct
229 	 * gets hooked up and becomes visible from other threads.
230 	 */
231 
232 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
233 	    ("%s: hash already initialized", __func__));
234 
235 	trunk->hwidth = VLAN_DEF_HWIDTH;
236 	n = 1 << trunk->hwidth;
237 	trunk->hmask = n - 1;
238 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
239 	for (i = 0; i < n; i++)
240 		LIST_INIT(&trunk->hash[i]);
241 }
242 
243 static void
244 vlan_freehash(struct ifvlantrunk *trunk)
245 {
246 #ifdef INVARIANTS
247 	int i;
248 
249 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
250 	for (i = 0; i < (1 << trunk->hwidth); i++)
251 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
252 		    ("%s: hash table not empty", __func__));
253 #endif
254 	free(trunk->hash, M_VLAN);
255 	trunk->hash = NULL;
256 	trunk->hwidth = trunk->hmask = 0;
257 }
258 
259 static int
260 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
261 {
262 	int i, b;
263 	struct ifvlan *ifv2;
264 
265 	TRUNK_LOCK_ASSERT(trunk);
266 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
267 
268 	b = 1 << trunk->hwidth;
269 	i = HASH(ifv->ifv_vid, trunk->hmask);
270 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
271 		if (ifv->ifv_vid == ifv2->ifv_vid)
272 			return (EEXIST);
273 
274 	/*
275 	 * Grow the hash when the number of vlans exceeds half of the number of
276 	 * hash buckets squared. This will make the average linked-list length
277 	 * buckets/2.
278 	 */
279 	if (trunk->refcnt > (b * b) / 2) {
280 		vlan_growhash(trunk, 1);
281 		i = HASH(ifv->ifv_vid, trunk->hmask);
282 	}
283 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
284 	trunk->refcnt++;
285 
286 	return (0);
287 }
288 
289 static int
290 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
291 {
292 	int i, b;
293 	struct ifvlan *ifv2;
294 
295 	TRUNK_LOCK_ASSERT(trunk);
296 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
297 
298 	b = 1 << trunk->hwidth;
299 	i = HASH(ifv->ifv_vid, trunk->hmask);
300 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
301 		if (ifv2 == ifv) {
302 			trunk->refcnt--;
303 			LIST_REMOVE(ifv2, ifv_list);
304 			if (trunk->refcnt < (b * b) / 2)
305 				vlan_growhash(trunk, -1);
306 			return (0);
307 		}
308 
309 	panic("%s: vlan not found\n", __func__);
310 	return (ENOENT); /*NOTREACHED*/
311 }
312 
313 /*
314  * Grow the hash larger or smaller if memory permits.
315  */
316 static void
317 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
318 {
319 	struct ifvlan *ifv;
320 	struct ifvlanhead *hash2;
321 	int hwidth2, i, j, n, n2;
322 
323 	TRUNK_LOCK_ASSERT(trunk);
324 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
325 
326 	if (howmuch == 0) {
327 		/* Harmless yet obvious coding error */
328 		printf("%s: howmuch is 0\n", __func__);
329 		return;
330 	}
331 
332 	hwidth2 = trunk->hwidth + howmuch;
333 	n = 1 << trunk->hwidth;
334 	n2 = 1 << hwidth2;
335 	/* Do not shrink the table below the default */
336 	if (hwidth2 < VLAN_DEF_HWIDTH)
337 		return;
338 
339 	/* M_NOWAIT because we're called with trunk mutex held */
340 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
341 	if (hash2 == NULL) {
342 		printf("%s: out of memory -- hash size not changed\n",
343 		    __func__);
344 		return;		/* We can live with the old hash table */
345 	}
346 	for (j = 0; j < n2; j++)
347 		LIST_INIT(&hash2[j]);
348 	for (i = 0; i < n; i++)
349 		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
350 			LIST_REMOVE(ifv, ifv_list);
351 			j = HASH(ifv->ifv_vid, n2 - 1);
352 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
353 		}
354 	free(trunk->hash, M_VLAN);
355 	trunk->hash = hash2;
356 	trunk->hwidth = hwidth2;
357 	trunk->hmask = n2 - 1;
358 
359 	if (bootverbose)
360 		if_printf(trunk->parent,
361 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
362 }
363 
364 static __inline struct ifvlan *
365 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
366 {
367 	struct ifvlan *ifv;
368 
369 	TRUNK_LOCK_RASSERT(trunk);
370 
371 	LIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
372 		if (ifv->ifv_vid == vid)
373 			return (ifv);
374 	return (NULL);
375 }
376 
377 #if 0
378 /* Debugging code to view the hashtables. */
379 static void
380 vlan_dumphash(struct ifvlantrunk *trunk)
381 {
382 	int i;
383 	struct ifvlan *ifv;
384 
385 	for (i = 0; i < (1 << trunk->hwidth); i++) {
386 		printf("%d: ", i);
387 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
388 			printf("%s ", ifv->ifv_ifp->if_xname);
389 		printf("\n");
390 	}
391 }
392 #endif /* 0 */
393 #else
394 
395 static __inline struct ifvlan *
396 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
397 {
398 
399 	return trunk->vlans[vid];
400 }
401 
402 static __inline int
403 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
404 {
405 
406 	if (trunk->vlans[ifv->ifv_vid] != NULL)
407 		return EEXIST;
408 	trunk->vlans[ifv->ifv_vid] = ifv;
409 	trunk->refcnt++;
410 
411 	return (0);
412 }
413 
414 static __inline int
415 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
416 {
417 
418 	trunk->vlans[ifv->ifv_vid] = NULL;
419 	trunk->refcnt--;
420 
421 	return (0);
422 }
423 
424 static __inline void
425 vlan_freehash(struct ifvlantrunk *trunk)
426 {
427 }
428 
429 static __inline void
430 vlan_inithash(struct ifvlantrunk *trunk)
431 {
432 }
433 
434 #endif /* !VLAN_ARRAY */
435 
436 static void
437 trunk_destroy(struct ifvlantrunk *trunk)
438 {
439 	VLAN_LOCK_ASSERT();
440 
441 	TRUNK_LOCK(trunk);
442 	vlan_freehash(trunk);
443 	trunk->parent->if_vlantrunk = NULL;
444 	TRUNK_UNLOCK(trunk);
445 	TRUNK_LOCK_DESTROY(trunk);
446 	free(trunk, M_VLAN);
447 }
448 
449 /*
450  * Program our multicast filter. What we're actually doing is
451  * programming the multicast filter of the parent. This has the
452  * side effect of causing the parent interface to receive multicast
453  * traffic that it doesn't really want, which ends up being discarded
454  * later by the upper protocol layers. Unfortunately, there's no way
455  * to avoid this: there really is only one physical interface.
456  *
457  * XXX: There is a possible race here if more than one thread is
458  *      modifying the multicast state of the vlan interface at the same time.
459  */
460 static int
461 vlan_setmulti(struct ifnet *ifp)
462 {
463 	struct ifnet		*ifp_p;
464 	struct ifmultiaddr	*ifma, *rifma = NULL;
465 	struct ifvlan		*sc;
466 	struct vlan_mc_entry	*mc;
467 	int			error;
468 
469 	/*VLAN_LOCK_ASSERT();*/
470 
471 	/* Find the parent. */
472 	sc = ifp->if_softc;
473 	ifp_p = PARENT(sc);
474 
475 	CURVNET_SET_QUIET(ifp_p->if_vnet);
476 
477 	/* First, remove any existing filter entries. */
478 	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
479 		error = if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
480 		if (error)
481 			return (error);
482 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
483 		free(mc, M_VLAN);
484 	}
485 
486 	/* Now program new ones. */
487 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
488 		if (ifma->ifma_addr->sa_family != AF_LINK)
489 			continue;
490 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
491 		if (mc == NULL)
492 			return (ENOMEM);
493 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
494 		mc->mc_addr.sdl_index = ifp_p->if_index;
495 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
496 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
497 		    &rifma);
498 		if (error)
499 			return (error);
500 	}
501 
502 	CURVNET_RESTORE();
503 	return (0);
504 }
505 
506 /*
507  * A handler for parent interface link layer address changes.
508  * If the parent interface link layer address is changed we
509  * should also change it on all children vlans.
510  */
511 static void
512 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
513 {
514 	struct ifvlan *ifv;
515 #ifndef VLAN_ARRAY
516 	struct ifvlan *next;
517 #endif
518 	int i;
519 
520 	/*
521 	 * Check if it's a trunk interface first of all
522 	 * to avoid needless locking.
523 	 */
524 	if (ifp->if_vlantrunk == NULL)
525 		return;
526 
527 	VLAN_LOCK();
528 	/*
529 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
530 	 */
531 #ifdef VLAN_ARRAY
532 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
533 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
534 #else /* VLAN_ARRAY */
535 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
536 		LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) {
537 #endif /* VLAN_ARRAY */
538 			VLAN_UNLOCK();
539 			if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp),
540 			    ifp->if_addrlen);
541 			VLAN_LOCK();
542 		}
543 	VLAN_UNLOCK();
544 
545 }
546 
547 /*
548  * A handler for network interface departure events.
549  * Track departure of trunks here so that we don't access invalid
550  * pointers or whatever if a trunk is ripped from under us, e.g.,
551  * by ejecting its hot-plug card.  However, if an ifnet is simply
552  * being renamed, then there's no need to tear down the state.
553  */
554 static void
555 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
556 {
557 	struct ifvlan *ifv;
558 	int i;
559 
560 	/*
561 	 * Check if it's a trunk interface first of all
562 	 * to avoid needless locking.
563 	 */
564 	if (ifp->if_vlantrunk == NULL)
565 		return;
566 
567 	/* If the ifnet is just being renamed, don't do anything. */
568 	if (ifp->if_flags & IFF_RENAMING)
569 		return;
570 
571 	VLAN_LOCK();
572 	/*
573 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
574 	 * Check trunk pointer after each vlan_unconfig() as it will
575 	 * free it and set to NULL after the last vlan was detached.
576 	 */
577 #ifdef VLAN_ARRAY
578 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
579 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
580 			vlan_unconfig_locked(ifv->ifv_ifp);
581 			if (ifp->if_vlantrunk == NULL)
582 				break;
583 		}
584 #else /* VLAN_ARRAY */
585 restart:
586 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
587 		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
588 			vlan_unconfig_locked(ifv->ifv_ifp);
589 			if (ifp->if_vlantrunk)
590 				goto restart;	/* trunk->hwidth can change */
591 			else
592 				break;
593 		}
594 #endif /* VLAN_ARRAY */
595 	/* Trunk should have been destroyed in vlan_unconfig(). */
596 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
597 	VLAN_UNLOCK();
598 }
599 
600 /*
601  * Return the trunk device for a virtual interface.
602  */
603 static struct ifnet  *
604 vlan_trunkdev(struct ifnet *ifp)
605 {
606 	struct ifvlan *ifv;
607 
608 	if (ifp->if_type != IFT_L2VLAN)
609 		return (NULL);
610 	ifv = ifp->if_softc;
611 	ifp = NULL;
612 	VLAN_LOCK();
613 	if (ifv->ifv_trunk)
614 		ifp = PARENT(ifv);
615 	VLAN_UNLOCK();
616 	return (ifp);
617 }
618 
619 /*
620  * Return the 12-bit VLAN VID for this interface, for use by external
621  * components such as Infiniband.
622  *
623  * XXXRW: Note that the function name here is historical; it should be named
624  * vlan_vid().
625  */
626 static int
627 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
628 {
629 	struct ifvlan *ifv;
630 
631 	if (ifp->if_type != IFT_L2VLAN)
632 		return (EINVAL);
633 	ifv = ifp->if_softc;
634 	*vidp = ifv->ifv_vid;
635 	return (0);
636 }
637 
638 /*
639  * Return a driver specific cookie for this interface.  Synchronization
640  * with setcookie must be provided by the driver.
641  */
642 static void *
643 vlan_cookie(struct ifnet *ifp)
644 {
645 	struct ifvlan *ifv;
646 
647 	if (ifp->if_type != IFT_L2VLAN)
648 		return (NULL);
649 	ifv = ifp->if_softc;
650 	return (ifv->ifv_cookie);
651 }
652 
653 /*
654  * Store a cookie in our softc that drivers can use to store driver
655  * private per-instance data in.
656  */
657 static int
658 vlan_setcookie(struct ifnet *ifp, void *cookie)
659 {
660 	struct ifvlan *ifv;
661 
662 	if (ifp->if_type != IFT_L2VLAN)
663 		return (EINVAL);
664 	ifv = ifp->if_softc;
665 	ifv->ifv_cookie = cookie;
666 	return (0);
667 }
668 
669 /*
670  * Return the vlan device present at the specific VID.
671  */
672 static struct ifnet *
673 vlan_devat(struct ifnet *ifp, uint16_t vid)
674 {
675 	struct ifvlantrunk *trunk;
676 	struct ifvlan *ifv;
677 
678 	trunk = ifp->if_vlantrunk;
679 	if (trunk == NULL)
680 		return (NULL);
681 	ifp = NULL;
682 	TRUNK_RLOCK(trunk);
683 	ifv = vlan_gethash(trunk, vid);
684 	if (ifv)
685 		ifp = ifv->ifv_ifp;
686 	TRUNK_RUNLOCK(trunk);
687 	return (ifp);
688 }
689 
690 /*
691  * VLAN support can be loaded as a module.  The only place in the
692  * system that's intimately aware of this is ether_input.  We hook
693  * into this code through vlan_input_p which is defined there and
694  * set here.  Noone else in the system should be aware of this so
695  * we use an explicit reference here.
696  */
697 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
698 
699 /* For if_link_state_change() eyes only... */
700 extern	void (*vlan_link_state_p)(struct ifnet *);
701 
702 static int
703 vlan_modevent(module_t mod, int type, void *data)
704 {
705 
706 	switch (type) {
707 	case MOD_LOAD:
708 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
709 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
710 		if (ifdetach_tag == NULL)
711 			return (ENOMEM);
712 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
713 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
714 		if (iflladdr_tag == NULL)
715 			return (ENOMEM);
716 		VLAN_LOCK_INIT();
717 		vlan_input_p = vlan_input;
718 		vlan_link_state_p = vlan_link_state;
719 		vlan_trunk_cap_p = vlan_trunk_capabilities;
720 		vlan_trunkdev_p = vlan_trunkdev;
721 		vlan_cookie_p = vlan_cookie;
722 		vlan_setcookie_p = vlan_setcookie;
723 		vlan_tag_p = vlan_tag;
724 		vlan_devat_p = vlan_devat;
725 #ifndef VIMAGE
726 		if_clone_attach(&vlan_cloner);
727 #endif
728 		if (bootverbose)
729 			printf("vlan: initialized, using "
730 #ifdef VLAN_ARRAY
731 			       "full-size arrays"
732 #else
733 			       "hash tables with chaining"
734 #endif
735 
736 			       "\n");
737 		break;
738 	case MOD_UNLOAD:
739 #ifndef VIMAGE
740 		if_clone_detach(&vlan_cloner);
741 #endif
742 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
743 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
744 		vlan_input_p = NULL;
745 		vlan_link_state_p = NULL;
746 		vlan_trunk_cap_p = NULL;
747 		vlan_trunkdev_p = NULL;
748 		vlan_tag_p = NULL;
749 		vlan_cookie_p = vlan_cookie;
750 		vlan_setcookie_p = vlan_setcookie;
751 		vlan_devat_p = NULL;
752 		VLAN_LOCK_DESTROY();
753 		if (bootverbose)
754 			printf("vlan: unloaded\n");
755 		break;
756 	default:
757 		return (EOPNOTSUPP);
758 	}
759 	return (0);
760 }
761 
762 static moduledata_t vlan_mod = {
763 	"if_vlan",
764 	vlan_modevent,
765 	0
766 };
767 
768 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
769 MODULE_VERSION(if_vlan, 3);
770 
771 #ifdef VIMAGE
772 static void
773 vnet_vlan_init(const void *unused __unused)
774 {
775 
776 	V_vlan_cloner = vlan_cloner;
777 	if_clone_attach(&V_vlan_cloner);
778 }
779 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
780     vnet_vlan_init, NULL);
781 
782 static void
783 vnet_vlan_uninit(const void *unused __unused)
784 {
785 
786 	if_clone_detach(&V_vlan_cloner);
787 }
788 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
789     vnet_vlan_uninit, NULL);
790 #endif
791 
792 static struct ifnet *
793 vlan_clone_match_ethervid(struct if_clone *ifc, const char *name, int *vidp)
794 {
795 	const char *cp;
796 	struct ifnet *ifp;
797 	int vid;
798 
799 	/* Check for <etherif>.<vlan> style interface names. */
800 	IFNET_RLOCK_NOSLEEP();
801 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
802 		/*
803 		 * We can handle non-ethernet hardware types as long as
804 		 * they handle the tagging and headers themselves.
805 		 */
806 		if (ifp->if_type != IFT_ETHER &&
807 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
808 			continue;
809 		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
810 			continue;
811 		cp = name + strlen(ifp->if_xname);
812 		if (*cp++ != '.')
813 			continue;
814 		if (*cp == '\0')
815 			continue;
816 		vid = 0;
817 		for(; *cp >= '0' && *cp <= '9'; cp++)
818 			vid = (vid * 10) + (*cp - '0');
819 		if (*cp != '\0')
820 			continue;
821 		if (vidp != NULL)
822 			*vidp = vid;
823 		break;
824 	}
825 	IFNET_RUNLOCK_NOSLEEP();
826 
827 	return (ifp);
828 }
829 
830 static int
831 vlan_clone_match(struct if_clone *ifc, const char *name)
832 {
833 	const char *cp;
834 
835 	if (vlan_clone_match_ethervid(ifc, name, NULL) != NULL)
836 		return (1);
837 
838 	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
839 		return (0);
840 	for (cp = name + 4; *cp != '\0'; cp++) {
841 		if (*cp < '0' || *cp > '9')
842 			return (0);
843 	}
844 
845 	return (1);
846 }
847 
848 static int
849 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
850 {
851 	char *dp;
852 	int wildcard;
853 	int unit;
854 	int error;
855 	int vid;
856 	int ethertag;
857 	struct ifvlan *ifv;
858 	struct ifnet *ifp;
859 	struct ifnet *p;
860 	struct ifaddr *ifa;
861 	struct sockaddr_dl *sdl;
862 	struct vlanreq vlr;
863 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
864 
865 	/*
866 	 * There are 3 (ugh) ways to specify the cloned device:
867 	 * o pass a parameter block with the clone request.
868 	 * o specify parameters in the text of the clone device name
869 	 * o specify no parameters and get an unattached device that
870 	 *   must be configured separately.
871 	 * The first technique is preferred; the latter two are
872 	 * supported for backwards compatibilty.
873 	 *
874 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
875 	 * called for.
876 	 */
877 	if (params) {
878 		error = copyin(params, &vlr, sizeof(vlr));
879 		if (error)
880 			return error;
881 		p = ifunit(vlr.vlr_parent);
882 		if (p == NULL)
883 			return ENXIO;
884 		/*
885 		 * Don't let the caller set up a VLAN VID with
886 		 * anything except VLID bits.
887 		 */
888 		if (vlr.vlr_tag & ~EVL_VLID_MASK)
889 			return (EINVAL);
890 		error = ifc_name2unit(name, &unit);
891 		if (error != 0)
892 			return (error);
893 
894 		ethertag = 1;
895 		vid = vlr.vlr_tag;
896 		wildcard = (unit < 0);
897 	} else if ((p = vlan_clone_match_ethervid(ifc, name, &vid)) != NULL) {
898 		ethertag = 1;
899 		unit = -1;
900 		wildcard = 0;
901 
902 		/*
903 		 * Don't let the caller set up a VLAN VID with
904 		 * anything except VLID bits.
905 		 */
906 		if (vid & ~EVL_VLID_MASK)
907 			return (EINVAL);
908 	} else {
909 		ethertag = 0;
910 
911 		error = ifc_name2unit(name, &unit);
912 		if (error != 0)
913 			return (error);
914 
915 		wildcard = (unit < 0);
916 	}
917 
918 	error = ifc_alloc_unit(ifc, &unit);
919 	if (error != 0)
920 		return (error);
921 
922 	/* In the wildcard case, we need to update the name. */
923 	if (wildcard) {
924 		for (dp = name; *dp != '\0'; dp++);
925 		if (snprintf(dp, len - (dp-name), "%d", unit) >
926 		    len - (dp-name) - 1) {
927 			panic("%s: interface name too long", __func__);
928 		}
929 	}
930 
931 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
932 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
933 	if (ifp == NULL) {
934 		ifc_free_unit(ifc, unit);
935 		free(ifv, M_VLAN);
936 		return (ENOSPC);
937 	}
938 	SLIST_INIT(&ifv->vlan_mc_listhead);
939 
940 	ifp->if_softc = ifv;
941 	/*
942 	 * Set the name manually rather than using if_initname because
943 	 * we don't conform to the default naming convention for interfaces.
944 	 */
945 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
946 	ifp->if_dname = ifc->ifc_name;
947 	ifp->if_dunit = unit;
948 	/* NB: flags are not set here */
949 	ifp->if_linkmib = &ifv->ifv_mib;
950 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
951 	/* NB: mtu is not set here */
952 
953 	ifp->if_init = vlan_init;
954 	ifp->if_transmit = vlan_transmit;
955 	ifp->if_qflush = vlan_qflush;
956 	ifp->if_ioctl = vlan_ioctl;
957 	ifp->if_flags = VLAN_IFFLAGS;
958 	ether_ifattach(ifp, eaddr);
959 	/* Now undo some of the damage... */
960 	ifp->if_baudrate = 0;
961 	ifp->if_type = IFT_L2VLAN;
962 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
963 	ifa = ifp->if_addr;
964 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
965 	sdl->sdl_type = IFT_L2VLAN;
966 
967 	if (ethertag) {
968 		error = vlan_config(ifv, p, vid);
969 		if (error != 0) {
970 			/*
971 			 * Since we've partialy failed, we need to back
972 			 * out all the way, otherwise userland could get
973 			 * confused.  Thus, we destroy the interface.
974 			 */
975 			ether_ifdetach(ifp);
976 			vlan_unconfig(ifp);
977 			if_free(ifp);
978 			ifc_free_unit(ifc, unit);
979 			free(ifv, M_VLAN);
980 
981 			return (error);
982 		}
983 
984 		/* Update flags on the parent, if necessary. */
985 		vlan_setflags(ifp, 1);
986 	}
987 
988 	return (0);
989 }
990 
991 static int
992 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
993 {
994 	struct ifvlan *ifv = ifp->if_softc;
995 	int unit = ifp->if_dunit;
996 
997 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
998 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
999 	if_free(ifp);
1000 	free(ifv, M_VLAN);
1001 	ifc_free_unit(ifc, unit);
1002 
1003 	return (0);
1004 }
1005 
1006 /*
1007  * The ifp->if_init entry point for vlan(4) is a no-op.
1008  */
1009 static void
1010 vlan_init(void *foo __unused)
1011 {
1012 }
1013 
1014 /*
1015  * The if_transmit method for vlan(4) interface.
1016  */
1017 static int
1018 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1019 {
1020 	struct ifvlan *ifv;
1021 	struct ifnet *p;
1022 	int error, len, mcast;
1023 
1024 	ifv = ifp->if_softc;
1025 	p = PARENT(ifv);
1026 	len = m->m_pkthdr.len;
1027 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1028 
1029 	BPF_MTAP(ifp, m);
1030 
1031 	/*
1032 	 * Do not run parent's if_transmit() if the parent is not up,
1033 	 * or parent's driver will cause a system crash.
1034 	 */
1035 	if (!UP_AND_RUNNING(p)) {
1036 		m_freem(m);
1037 		ifp->if_oerrors++;
1038 		return (0);
1039 	}
1040 
1041 	/*
1042 	 * Pad the frame to the minimum size allowed if told to.
1043 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1044 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1045 	 * bridges that violate paragraph C.4.4.3.a from the same
1046 	 * document, i.e., fail to pad short frames after untagging.
1047 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1048 	 * untagging it will produce a 62-byte frame, which is a runt
1049 	 * and requires padding.  There are VLAN-enabled network
1050 	 * devices that just discard such runts instead or mishandle
1051 	 * them somehow.
1052 	 */
1053 	if (soft_pad && p->if_type == IFT_ETHER) {
1054 		static char pad[8];	/* just zeros */
1055 		int n;
1056 
1057 		for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
1058 		     n > 0; n -= sizeof(pad))
1059 			if (!m_append(m, min(n, sizeof(pad)), pad))
1060 				break;
1061 
1062 		if (n > 0) {
1063 			if_printf(ifp, "cannot pad short frame\n");
1064 			ifp->if_oerrors++;
1065 			m_freem(m);
1066 			return (0);
1067 		}
1068 	}
1069 
1070 	/*
1071 	 * If underlying interface can do VLAN tag insertion itself,
1072 	 * just pass the packet along. However, we need some way to
1073 	 * tell the interface where the packet came from so that it
1074 	 * knows how to find the VLAN tag to use, so we attach a
1075 	 * packet tag that holds it.
1076 	 */
1077 	if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1078 		m->m_pkthdr.ether_vtag = ifv->ifv_vid;
1079 		m->m_flags |= M_VLANTAG;
1080 	} else {
1081 		m = ether_vlanencap(m, ifv->ifv_vid);
1082 		if (m == NULL) {
1083 			if_printf(ifp, "unable to prepend VLAN header\n");
1084 			ifp->if_oerrors++;
1085 			return (0);
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * Send it, precisely as ether_output() would have.
1091 	 */
1092 	error = (p->if_transmit)(p, m);
1093 	if (!error) {
1094 		ifp->if_opackets++;
1095 		ifp->if_omcasts += mcast;
1096 		ifp->if_obytes += len;
1097 	} else
1098 		ifp->if_oerrors++;
1099 	return (error);
1100 }
1101 
1102 /*
1103  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1104  */
1105 static void
1106 vlan_qflush(struct ifnet *ifp __unused)
1107 {
1108 }
1109 
1110 static void
1111 vlan_input(struct ifnet *ifp, struct mbuf *m)
1112 {
1113 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1114 	struct ifvlan *ifv;
1115 	uint16_t vid;
1116 
1117 	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
1118 
1119 	if (m->m_flags & M_VLANTAG) {
1120 		/*
1121 		 * Packet is tagged, but m contains a normal
1122 		 * Ethernet frame; the tag is stored out-of-band.
1123 		 */
1124 		vid = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
1125 		m->m_flags &= ~M_VLANTAG;
1126 	} else {
1127 		struct ether_vlan_header *evl;
1128 
1129 		/*
1130 		 * Packet is tagged in-band as specified by 802.1q.
1131 		 */
1132 		switch (ifp->if_type) {
1133 		case IFT_ETHER:
1134 			if (m->m_len < sizeof(*evl) &&
1135 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1136 				if_printf(ifp, "cannot pullup VLAN header\n");
1137 				return;
1138 			}
1139 			evl = mtod(m, struct ether_vlan_header *);
1140 			vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1141 
1142 			/*
1143 			 * Remove the 802.1q header by copying the Ethernet
1144 			 * addresses over it and adjusting the beginning of
1145 			 * the data in the mbuf.  The encapsulated Ethernet
1146 			 * type field is already in place.
1147 			 */
1148 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1149 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1150 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1151 			break;
1152 
1153 		default:
1154 #ifdef INVARIANTS
1155 			panic("%s: %s has unsupported if_type %u",
1156 			      __func__, ifp->if_xname, ifp->if_type);
1157 #endif
1158 			m_freem(m);
1159 			ifp->if_noproto++;
1160 			return;
1161 		}
1162 	}
1163 
1164 	TRUNK_RLOCK(trunk);
1165 	ifv = vlan_gethash(trunk, vid);
1166 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1167 		TRUNK_RUNLOCK(trunk);
1168 		m_freem(m);
1169 		ifp->if_noproto++;
1170 		return;
1171 	}
1172 	TRUNK_RUNLOCK(trunk);
1173 
1174 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1175 	ifv->ifv_ifp->if_ipackets++;
1176 
1177 	/* Pass it back through the parent's input routine. */
1178 	(*ifp->if_input)(ifv->ifv_ifp, m);
1179 }
1180 
1181 static int
1182 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid)
1183 {
1184 	struct ifvlantrunk *trunk;
1185 	struct ifnet *ifp;
1186 	int error = 0;
1187 
1188 	/* VID numbers 0x0 and 0xFFF are reserved */
1189 	if (vid == 0 || vid == 0xFFF)
1190 		return (EINVAL);
1191 	if (p->if_type != IFT_ETHER &&
1192 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1193 		return (EPROTONOSUPPORT);
1194 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1195 		return (EPROTONOSUPPORT);
1196 	if (ifv->ifv_trunk)
1197 		return (EBUSY);
1198 
1199 	if (p->if_vlantrunk == NULL) {
1200 		trunk = malloc(sizeof(struct ifvlantrunk),
1201 		    M_VLAN, M_WAITOK | M_ZERO);
1202 		vlan_inithash(trunk);
1203 		VLAN_LOCK();
1204 		if (p->if_vlantrunk != NULL) {
1205 			/* A race that that is very unlikely to be hit. */
1206 			vlan_freehash(trunk);
1207 			free(trunk, M_VLAN);
1208 			goto exists;
1209 		}
1210 		TRUNK_LOCK_INIT(trunk);
1211 		TRUNK_LOCK(trunk);
1212 		p->if_vlantrunk = trunk;
1213 		trunk->parent = p;
1214 	} else {
1215 		VLAN_LOCK();
1216 exists:
1217 		trunk = p->if_vlantrunk;
1218 		TRUNK_LOCK(trunk);
1219 	}
1220 
1221 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1222 	error = vlan_inshash(trunk, ifv);
1223 	if (error)
1224 		goto done;
1225 	ifv->ifv_proto = ETHERTYPE_VLAN;
1226 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1227 	ifv->ifv_mintu = ETHERMIN;
1228 	ifv->ifv_pflags = 0;
1229 
1230 	/*
1231 	 * If the parent supports the VLAN_MTU capability,
1232 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1233 	 * use it.
1234 	 */
1235 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1236 		/*
1237 		 * No need to fudge the MTU since the parent can
1238 		 * handle extended frames.
1239 		 */
1240 		ifv->ifv_mtufudge = 0;
1241 	} else {
1242 		/*
1243 		 * Fudge the MTU by the encapsulation size.  This
1244 		 * makes us incompatible with strictly compliant
1245 		 * 802.1Q implementations, but allows us to use
1246 		 * the feature with other NetBSD implementations,
1247 		 * which might still be useful.
1248 		 */
1249 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1250 	}
1251 
1252 	ifv->ifv_trunk = trunk;
1253 	ifp = ifv->ifv_ifp;
1254 	/*
1255 	 * Initialize fields from our parent.  This duplicates some
1256 	 * work with ether_ifattach() but allows for non-ethernet
1257 	 * interfaces to also work.
1258 	 */
1259 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1260 	ifp->if_baudrate = p->if_baudrate;
1261 	ifp->if_output = p->if_output;
1262 	ifp->if_input = p->if_input;
1263 	ifp->if_resolvemulti = p->if_resolvemulti;
1264 	ifp->if_addrlen = p->if_addrlen;
1265 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1266 
1267 	/*
1268 	 * Copy only a selected subset of flags from the parent.
1269 	 * Other flags are none of our business.
1270 	 */
1271 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1272 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1273 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1274 #undef VLAN_COPY_FLAGS
1275 
1276 	ifp->if_link_state = p->if_link_state;
1277 
1278 	vlan_capabilities(ifv);
1279 
1280 	/*
1281 	 * Set up our interface address to reflect the underlying
1282 	 * physical interface's.
1283 	 */
1284 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1285 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1286 	    p->if_addrlen;
1287 
1288 	/*
1289 	 * Configure multicast addresses that may already be
1290 	 * joined on the vlan device.
1291 	 */
1292 	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1293 
1294 	/* We are ready for operation now. */
1295 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1296 done:
1297 	TRUNK_UNLOCK(trunk);
1298 	if (error == 0)
1299 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1300 	VLAN_UNLOCK();
1301 
1302 	return (error);
1303 }
1304 
1305 static void
1306 vlan_unconfig(struct ifnet *ifp)
1307 {
1308 
1309 	VLAN_LOCK();
1310 	vlan_unconfig_locked(ifp);
1311 	VLAN_UNLOCK();
1312 }
1313 
1314 static void
1315 vlan_unconfig_locked(struct ifnet *ifp)
1316 {
1317 	struct ifvlantrunk *trunk;
1318 	struct vlan_mc_entry *mc;
1319 	struct ifvlan *ifv;
1320 	struct ifnet  *parent;
1321 
1322 	VLAN_LOCK_ASSERT();
1323 
1324 	ifv = ifp->if_softc;
1325 	trunk = ifv->ifv_trunk;
1326 	parent = NULL;
1327 
1328 	if (trunk != NULL) {
1329 
1330 		TRUNK_LOCK(trunk);
1331 		parent = trunk->parent;
1332 
1333 		/*
1334 		 * Since the interface is being unconfigured, we need to
1335 		 * empty the list of multicast groups that we may have joined
1336 		 * while we were alive from the parent's list.
1337 		 */
1338 		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1339 			/*
1340 			 * This may fail if the parent interface is
1341 			 * being detached.  Regardless, we should do a
1342 			 * best effort to free this interface as much
1343 			 * as possible as all callers expect vlan
1344 			 * destruction to succeed.
1345 			 */
1346 			(void)if_delmulti(parent,
1347 			    (struct sockaddr *)&mc->mc_addr);
1348 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1349 			free(mc, M_VLAN);
1350 		}
1351 
1352 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1353 		vlan_remhash(trunk, ifv);
1354 		ifv->ifv_trunk = NULL;
1355 
1356 		/*
1357 		 * Check if we were the last.
1358 		 */
1359 		if (trunk->refcnt == 0) {
1360 			trunk->parent->if_vlantrunk = NULL;
1361 			/*
1362 			 * XXXGL: If some ithread has already entered
1363 			 * vlan_input() and is now blocked on the trunk
1364 			 * lock, then it should preempt us right after
1365 			 * unlock and finish its work. Then we will acquire
1366 			 * lock again in trunk_destroy().
1367 			 */
1368 			TRUNK_UNLOCK(trunk);
1369 			trunk_destroy(trunk);
1370 		} else
1371 			TRUNK_UNLOCK(trunk);
1372 	}
1373 
1374 	/* Disconnect from parent. */
1375 	if (ifv->ifv_pflags)
1376 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1377 	ifp->if_mtu = ETHERMTU;
1378 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1379 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1380 
1381 	/*
1382 	 * Only dispatch an event if vlan was
1383 	 * attached, otherwise there is nothing
1384 	 * to cleanup anyway.
1385 	 */
1386 	if (parent != NULL)
1387 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1388 }
1389 
1390 /* Handle a reference counted flag that should be set on the parent as well */
1391 static int
1392 vlan_setflag(struct ifnet *ifp, int flag, int status,
1393 	     int (*func)(struct ifnet *, int))
1394 {
1395 	struct ifvlan *ifv;
1396 	int error;
1397 
1398 	/* XXX VLAN_LOCK_ASSERT(); */
1399 
1400 	ifv = ifp->if_softc;
1401 	status = status ? (ifp->if_flags & flag) : 0;
1402 	/* Now "status" contains the flag value or 0 */
1403 
1404 	/*
1405 	 * See if recorded parent's status is different from what
1406 	 * we want it to be.  If it is, flip it.  We record parent's
1407 	 * status in ifv_pflags so that we won't clear parent's flag
1408 	 * we haven't set.  In fact, we don't clear or set parent's
1409 	 * flags directly, but get or release references to them.
1410 	 * That's why we can be sure that recorded flags still are
1411 	 * in accord with actual parent's flags.
1412 	 */
1413 	if (status != (ifv->ifv_pflags & flag)) {
1414 		error = (*func)(PARENT(ifv), status);
1415 		if (error)
1416 			return (error);
1417 		ifv->ifv_pflags &= ~flag;
1418 		ifv->ifv_pflags |= status;
1419 	}
1420 	return (0);
1421 }
1422 
1423 /*
1424  * Handle IFF_* flags that require certain changes on the parent:
1425  * if "status" is true, update parent's flags respective to our if_flags;
1426  * if "status" is false, forcedly clear the flags set on parent.
1427  */
1428 static int
1429 vlan_setflags(struct ifnet *ifp, int status)
1430 {
1431 	int error, i;
1432 
1433 	for (i = 0; vlan_pflags[i].flag; i++) {
1434 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1435 				     status, vlan_pflags[i].func);
1436 		if (error)
1437 			return (error);
1438 	}
1439 	return (0);
1440 }
1441 
1442 /* Inform all vlans that their parent has changed link state */
1443 static void
1444 vlan_link_state(struct ifnet *ifp)
1445 {
1446 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1447 	struct ifvlan *ifv;
1448 	int i;
1449 
1450 	TRUNK_LOCK(trunk);
1451 #ifdef VLAN_ARRAY
1452 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1453 		if (trunk->vlans[i] != NULL) {
1454 			ifv = trunk->vlans[i];
1455 #else
1456 	for (i = 0; i < (1 << trunk->hwidth); i++)
1457 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1458 #endif
1459 			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1460 			if_link_state_change(ifv->ifv_ifp,
1461 			    trunk->parent->if_link_state);
1462 		}
1463 	TRUNK_UNLOCK(trunk);
1464 }
1465 
1466 static void
1467 vlan_capabilities(struct ifvlan *ifv)
1468 {
1469 	struct ifnet *p = PARENT(ifv);
1470 	struct ifnet *ifp = ifv->ifv_ifp;
1471 
1472 	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1473 
1474 	/*
1475 	 * If the parent interface can do checksum offloading
1476 	 * on VLANs, then propagate its hardware-assisted
1477 	 * checksumming flags. Also assert that checksum
1478 	 * offloading requires hardware VLAN tagging.
1479 	 */
1480 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1481 		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1482 
1483 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1484 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1485 		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1486 		ifp->if_hwassist = p->if_hwassist & (CSUM_IP | CSUM_TCP |
1487 		    CSUM_UDP | CSUM_SCTP | CSUM_IP_FRAGS | CSUM_FRAGMENT);
1488 	} else {
1489 		ifp->if_capenable = 0;
1490 		ifp->if_hwassist = 0;
1491 	}
1492 	/*
1493 	 * If the parent interface can do TSO on VLANs then
1494 	 * propagate the hardware-assisted flag. TSO on VLANs
1495 	 * does not necessarily require hardware VLAN tagging.
1496 	 */
1497 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1498 		ifp->if_capabilities |= p->if_capabilities & IFCAP_TSO;
1499 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1500 		ifp->if_capenable |= p->if_capenable & IFCAP_TSO;
1501 		ifp->if_hwassist |= p->if_hwassist & CSUM_TSO;
1502 	} else {
1503 		ifp->if_capenable &= ~(p->if_capenable & IFCAP_TSO);
1504 		ifp->if_hwassist &= ~(p->if_hwassist & CSUM_TSO);
1505 	}
1506 }
1507 
1508 static void
1509 vlan_trunk_capabilities(struct ifnet *ifp)
1510 {
1511 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1512 	struct ifvlan *ifv;
1513 	int i;
1514 
1515 	TRUNK_LOCK(trunk);
1516 #ifdef VLAN_ARRAY
1517 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1518 		if (trunk->vlans[i] != NULL) {
1519 			ifv = trunk->vlans[i];
1520 #else
1521 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1522 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1523 #endif
1524 			vlan_capabilities(ifv);
1525 	}
1526 	TRUNK_UNLOCK(trunk);
1527 }
1528 
1529 static int
1530 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1531 {
1532 	struct ifnet *p;
1533 	struct ifreq *ifr;
1534 	struct ifaddr *ifa;
1535 	struct ifvlan *ifv;
1536 	struct vlanreq vlr;
1537 	int error = 0;
1538 
1539 	ifr = (struct ifreq *)data;
1540 	ifa = (struct ifaddr *) data;
1541 	ifv = ifp->if_softc;
1542 
1543 	switch (cmd) {
1544 	case SIOCSIFADDR:
1545 		ifp->if_flags |= IFF_UP;
1546 #ifdef INET
1547 		if (ifa->ifa_addr->sa_family == AF_INET)
1548 			arp_ifinit(ifp, ifa);
1549 #endif
1550 		break;
1551 	case SIOCGIFADDR:
1552                 {
1553 			struct sockaddr *sa;
1554 
1555 			sa = (struct sockaddr *)&ifr->ifr_data;
1556 			bcopy(IF_LLADDR(ifp), sa->sa_data, ifp->if_addrlen);
1557                 }
1558 		break;
1559 	case SIOCGIFMEDIA:
1560 		VLAN_LOCK();
1561 		if (TRUNK(ifv) != NULL) {
1562 			p = PARENT(ifv);
1563 			VLAN_UNLOCK();
1564 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1565 			/* Limit the result to the parent's current config. */
1566 			if (error == 0) {
1567 				struct ifmediareq *ifmr;
1568 
1569 				ifmr = (struct ifmediareq *)data;
1570 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1571 					ifmr->ifm_count = 1;
1572 					error = copyout(&ifmr->ifm_current,
1573 						ifmr->ifm_ulist,
1574 						sizeof(int));
1575 				}
1576 			}
1577 		} else {
1578 			VLAN_UNLOCK();
1579 			error = EINVAL;
1580 		}
1581 		break;
1582 
1583 	case SIOCSIFMEDIA:
1584 		error = EINVAL;
1585 		break;
1586 
1587 	case SIOCSIFMTU:
1588 		/*
1589 		 * Set the interface MTU.
1590 		 */
1591 		VLAN_LOCK();
1592 		if (TRUNK(ifv) != NULL) {
1593 			if (ifr->ifr_mtu >
1594 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1595 			    ifr->ifr_mtu <
1596 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1597 				error = EINVAL;
1598 			else
1599 				ifp->if_mtu = ifr->ifr_mtu;
1600 		} else
1601 			error = EINVAL;
1602 		VLAN_UNLOCK();
1603 		break;
1604 
1605 	case SIOCSETVLAN:
1606 #ifdef VIMAGE
1607 		/*
1608 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1609 		 * interface to be delegated to a jail without allowing the
1610 		 * jail to change what underlying interface/VID it is
1611 		 * associated with.  We are not entirely convinced that this
1612 		 * is the right way to accomplish that policy goal.
1613 		 */
1614 		if (ifp->if_vnet != ifp->if_home_vnet) {
1615 			error = EPERM;
1616 			break;
1617 		}
1618 #endif
1619 		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1620 		if (error)
1621 			break;
1622 		if (vlr.vlr_parent[0] == '\0') {
1623 			vlan_unconfig(ifp);
1624 			break;
1625 		}
1626 		p = ifunit(vlr.vlr_parent);
1627 		if (p == NULL) {
1628 			error = ENOENT;
1629 			break;
1630 		}
1631 		/*
1632 		 * Don't let the caller set up a VLAN VID with
1633 		 * anything except VLID bits.
1634 		 */
1635 		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1636 			error = EINVAL;
1637 			break;
1638 		}
1639 		error = vlan_config(ifv, p, vlr.vlr_tag);
1640 		if (error)
1641 			break;
1642 
1643 		/* Update flags on the parent, if necessary. */
1644 		vlan_setflags(ifp, 1);
1645 		break;
1646 
1647 	case SIOCGETVLAN:
1648 #ifdef VIMAGE
1649 		if (ifp->if_vnet != ifp->if_home_vnet) {
1650 			error = EPERM;
1651 			break;
1652 		}
1653 #endif
1654 		bzero(&vlr, sizeof(vlr));
1655 		VLAN_LOCK();
1656 		if (TRUNK(ifv) != NULL) {
1657 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1658 			    sizeof(vlr.vlr_parent));
1659 			vlr.vlr_tag = ifv->ifv_vid;
1660 		}
1661 		VLAN_UNLOCK();
1662 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1663 		break;
1664 
1665 	case SIOCSIFFLAGS:
1666 		/*
1667 		 * We should propagate selected flags to the parent,
1668 		 * e.g., promiscuous mode.
1669 		 */
1670 		if (TRUNK(ifv) != NULL)
1671 			error = vlan_setflags(ifp, 1);
1672 		break;
1673 
1674 	case SIOCADDMULTI:
1675 	case SIOCDELMULTI:
1676 		/*
1677 		 * If we don't have a parent, just remember the membership for
1678 		 * when we do.
1679 		 */
1680 		if (TRUNK(ifv) != NULL)
1681 			error = vlan_setmulti(ifp);
1682 		break;
1683 
1684 	default:
1685 		error = EINVAL;
1686 		break;
1687 	}
1688 
1689 	return (error);
1690 }
1691