xref: /freebsd/sys/net/if_vlan.c (revision 50dad48bb740a8e56d185d9e8c165e0758f46e25)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
32  * Might be extended some day to also handle IEEE 802.1p priority
33  * tagging.  This is sort of sneaky in the implementation, since
34  * we need to pretend to be enough of an Ethernet implementation
35  * to make arp work.  The way we do this is by telling everyone
36  * that we are an Ethernet, and then catch the packets that
37  * ether_output() left on our output queue when it calls
38  * if_start(), rewrite them for use by the real outgoing interface,
39  * and ask it to send them.
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_vlan.h"
46 
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/module.h>
53 #include <sys/rwlock.h>
54 #include <sys/queue.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 
60 #include <net/bpf.h>
61 #include <net/ethernet.h>
62 #include <net/if.h>
63 #include <net/if_clone.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_vlan_var.h>
67 #include <net/vnet.h>
68 
69 #define VLANNAME	"vlan"
70 #define	VLAN_DEF_HWIDTH	4
71 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
72 
73 #define	UP_AND_RUNNING(ifp) \
74     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
75 
76 LIST_HEAD(ifvlanhead, ifvlan);
77 
78 struct ifvlantrunk {
79 	struct	ifnet   *parent;	/* parent interface of this trunk */
80 	struct	rwlock	rw;
81 #ifdef VLAN_ARRAY
82 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
83 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
84 #else
85 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
86 	uint16_t	hmask;
87 	uint16_t	hwidth;
88 #endif
89 	int		refcnt;
90 };
91 
92 struct vlan_mc_entry {
93 	struct ether_addr		mc_addr;
94 	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
95 };
96 
97 struct	ifvlan {
98 	struct	ifvlantrunk *ifv_trunk;
99 	struct	ifnet *ifv_ifp;
100 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
101 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
102 	int	ifv_pflags;	/* special flags we have set on parent */
103 	struct	ifv_linkmib {
104 		int	ifvm_encaplen;	/* encapsulation length */
105 		int	ifvm_mtufudge;	/* MTU fudged by this much */
106 		int	ifvm_mintu;	/* min transmission unit */
107 		uint16_t ifvm_proto;	/* encapsulation ethertype */
108 		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
109 	}	ifv_mib;
110 	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
111 #ifndef VLAN_ARRAY
112 	LIST_ENTRY(ifvlan) ifv_list;
113 #endif
114 };
115 #define	ifv_proto	ifv_mib.ifvm_proto
116 #define	ifv_tag		ifv_mib.ifvm_tag
117 #define	ifv_encaplen	ifv_mib.ifvm_encaplen
118 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
119 #define	ifv_mintu	ifv_mib.ifvm_mintu
120 
121 /* Special flags we should propagate to parent. */
122 static struct {
123 	int flag;
124 	int (*func)(struct ifnet *, int);
125 } vlan_pflags[] = {
126 	{IFF_PROMISC, ifpromisc},
127 	{IFF_ALLMULTI, if_allmulti},
128 	{0, NULL}
129 };
130 
131 SYSCTL_DECL(_net_link);
132 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
133 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
134 
135 static int soft_pad = 0;
136 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
137 	   "pad short frames before tagging");
138 
139 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
140 
141 static eventhandler_tag ifdetach_tag;
142 static eventhandler_tag iflladdr_tag;
143 
144 /*
145  * We have a global mutex, that is used to serialize configuration
146  * changes and isn't used in normal packet delivery.
147  *
148  * We also have a per-trunk rwlock, that is locked shared on packet
149  * processing and exclusive when configuration is changed.
150  *
151  * The VLAN_ARRAY substitutes the dynamic hash with a static array
152  * with 4096 entries. In theory this can give a boost in processing,
153  * however on practice it does not. Probably this is because array
154  * is too big to fit into CPU cache.
155  */
156 static struct mtx ifv_mtx;
157 #define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
158 #define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
159 #define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
160 #define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
161 #define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
162 #define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
163 #define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
164 #define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
165 #define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
166 #define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
167 #define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
168 #define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
169 #define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
170 
171 #ifndef VLAN_ARRAY
172 static	void vlan_inithash(struct ifvlantrunk *trunk);
173 static	void vlan_freehash(struct ifvlantrunk *trunk);
174 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
175 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
176 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
177 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
178 	uint16_t tag);
179 #endif
180 static	void trunk_destroy(struct ifvlantrunk *trunk);
181 
182 static	void vlan_start(struct ifnet *ifp);
183 static	void vlan_init(void *foo);
184 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
185 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
186 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
187     int (*func)(struct ifnet *, int));
188 static	int vlan_setflags(struct ifnet *ifp, int status);
189 static	int vlan_setmulti(struct ifnet *ifp);
190 static	void vlan_unconfig(struct ifnet *ifp);
191 static	void vlan_unconfig_locked(struct ifnet *ifp);
192 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
193 static	void vlan_link_state(struct ifnet *ifp);
194 static	void vlan_capabilities(struct ifvlan *ifv);
195 static	void vlan_trunk_capabilities(struct ifnet *ifp);
196 
197 static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
198     const char *, int *);
199 static	int vlan_clone_match(struct if_clone *, const char *);
200 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
201 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
202 
203 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
204 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
205 
206 static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
207     IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
208 
209 #ifdef VIMAGE
210 static VNET_DEFINE(struct if_clone, vlan_cloner);
211 #define	V_vlan_cloner	VNET(vlan_cloner)
212 #endif
213 
214 #ifndef VLAN_ARRAY
215 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
216 
217 static void
218 vlan_inithash(struct ifvlantrunk *trunk)
219 {
220 	int i, n;
221 
222 	/*
223 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
224 	 * It is OK in case this function is called before the trunk struct
225 	 * gets hooked up and becomes visible from other threads.
226 	 */
227 
228 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
229 	    ("%s: hash already initialized", __func__));
230 
231 	trunk->hwidth = VLAN_DEF_HWIDTH;
232 	n = 1 << trunk->hwidth;
233 	trunk->hmask = n - 1;
234 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
235 	for (i = 0; i < n; i++)
236 		LIST_INIT(&trunk->hash[i]);
237 }
238 
239 static void
240 vlan_freehash(struct ifvlantrunk *trunk)
241 {
242 #ifdef INVARIANTS
243 	int i;
244 
245 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
246 	for (i = 0; i < (1 << trunk->hwidth); i++)
247 		KASSERT(LIST_EMPTY(&trunk->hash[i]),
248 		    ("%s: hash table not empty", __func__));
249 #endif
250 	free(trunk->hash, M_VLAN);
251 	trunk->hash = NULL;
252 	trunk->hwidth = trunk->hmask = 0;
253 }
254 
255 static int
256 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
257 {
258 	int i, b;
259 	struct ifvlan *ifv2;
260 
261 	TRUNK_LOCK_ASSERT(trunk);
262 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
263 
264 	b = 1 << trunk->hwidth;
265 	i = HASH(ifv->ifv_tag, trunk->hmask);
266 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
267 		if (ifv->ifv_tag == ifv2->ifv_tag)
268 			return (EEXIST);
269 
270 	/*
271 	 * Grow the hash when the number of vlans exceeds half of the number of
272 	 * hash buckets squared. This will make the average linked-list length
273 	 * buckets/2.
274 	 */
275 	if (trunk->refcnt > (b * b) / 2) {
276 		vlan_growhash(trunk, 1);
277 		i = HASH(ifv->ifv_tag, trunk->hmask);
278 	}
279 	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
280 	trunk->refcnt++;
281 
282 	return (0);
283 }
284 
285 static int
286 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
287 {
288 	int i, b;
289 	struct ifvlan *ifv2;
290 
291 	TRUNK_LOCK_ASSERT(trunk);
292 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
293 
294 	b = 1 << trunk->hwidth;
295 	i = HASH(ifv->ifv_tag, trunk->hmask);
296 	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
297 		if (ifv2 == ifv) {
298 			trunk->refcnt--;
299 			LIST_REMOVE(ifv2, ifv_list);
300 			if (trunk->refcnt < (b * b) / 2)
301 				vlan_growhash(trunk, -1);
302 			return (0);
303 		}
304 
305 	panic("%s: vlan not found\n", __func__);
306 	return (ENOENT); /*NOTREACHED*/
307 }
308 
309 /*
310  * Grow the hash larger or smaller if memory permits.
311  */
312 static void
313 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
314 {
315 	struct ifvlan *ifv;
316 	struct ifvlanhead *hash2;
317 	int hwidth2, i, j, n, n2;
318 
319 	TRUNK_LOCK_ASSERT(trunk);
320 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
321 
322 	if (howmuch == 0) {
323 		/* Harmless yet obvious coding error */
324 		printf("%s: howmuch is 0\n", __func__);
325 		return;
326 	}
327 
328 	hwidth2 = trunk->hwidth + howmuch;
329 	n = 1 << trunk->hwidth;
330 	n2 = 1 << hwidth2;
331 	/* Do not shrink the table below the default */
332 	if (hwidth2 < VLAN_DEF_HWIDTH)
333 		return;
334 
335 	/* M_NOWAIT because we're called with trunk mutex held */
336 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
337 	if (hash2 == NULL) {
338 		printf("%s: out of memory -- hash size not changed\n",
339 		    __func__);
340 		return;		/* We can live with the old hash table */
341 	}
342 	for (j = 0; j < n2; j++)
343 		LIST_INIT(&hash2[j]);
344 	for (i = 0; i < n; i++)
345 		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
346 			LIST_REMOVE(ifv, ifv_list);
347 			j = HASH(ifv->ifv_tag, n2 - 1);
348 			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
349 		}
350 	free(trunk->hash, M_VLAN);
351 	trunk->hash = hash2;
352 	trunk->hwidth = hwidth2;
353 	trunk->hmask = n2 - 1;
354 
355 	if (bootverbose)
356 		if_printf(trunk->parent,
357 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
358 }
359 
360 static __inline struct ifvlan *
361 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
362 {
363 	struct ifvlan *ifv;
364 
365 	TRUNK_LOCK_RASSERT(trunk);
366 
367 	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
368 		if (ifv->ifv_tag == tag)
369 			return (ifv);
370 	return (NULL);
371 }
372 
373 #if 0
374 /* Debugging code to view the hashtables. */
375 static void
376 vlan_dumphash(struct ifvlantrunk *trunk)
377 {
378 	int i;
379 	struct ifvlan *ifv;
380 
381 	for (i = 0; i < (1 << trunk->hwidth); i++) {
382 		printf("%d: ", i);
383 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
384 			printf("%s ", ifv->ifv_ifp->if_xname);
385 		printf("\n");
386 	}
387 }
388 #endif /* 0 */
389 #endif /* !VLAN_ARRAY */
390 
391 static void
392 trunk_destroy(struct ifvlantrunk *trunk)
393 {
394 	VLAN_LOCK_ASSERT();
395 
396 	TRUNK_LOCK(trunk);
397 #ifndef VLAN_ARRAY
398 	vlan_freehash(trunk);
399 #endif
400 	trunk->parent->if_vlantrunk = NULL;
401 	TRUNK_UNLOCK(trunk);
402 	TRUNK_LOCK_DESTROY(trunk);
403 	free(trunk, M_VLAN);
404 }
405 
406 /*
407  * Program our multicast filter. What we're actually doing is
408  * programming the multicast filter of the parent. This has the
409  * side effect of causing the parent interface to receive multicast
410  * traffic that it doesn't really want, which ends up being discarded
411  * later by the upper protocol layers. Unfortunately, there's no way
412  * to avoid this: there really is only one physical interface.
413  *
414  * XXX: There is a possible race here if more than one thread is
415  *      modifying the multicast state of the vlan interface at the same time.
416  */
417 static int
418 vlan_setmulti(struct ifnet *ifp)
419 {
420 	struct ifnet		*ifp_p;
421 	struct ifmultiaddr	*ifma, *rifma = NULL;
422 	struct ifvlan		*sc;
423 	struct vlan_mc_entry	*mc;
424 	struct sockaddr_dl	sdl;
425 	int			error;
426 
427 	/*VLAN_LOCK_ASSERT();*/
428 
429 	/* Find the parent. */
430 	sc = ifp->if_softc;
431 	ifp_p = PARENT(sc);
432 
433 	CURVNET_SET_QUIET(ifp_p->if_vnet);
434 
435 	bzero((char *)&sdl, sizeof(sdl));
436 	sdl.sdl_len = sizeof(sdl);
437 	sdl.sdl_family = AF_LINK;
438 	sdl.sdl_index = ifp_p->if_index;
439 	sdl.sdl_type = IFT_ETHER;
440 	sdl.sdl_alen = ETHER_ADDR_LEN;
441 
442 	/* First, remove any existing filter entries. */
443 	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
444 		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
445 		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
446 		if (error)
447 			return (error);
448 		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
449 		free(mc, M_VLAN);
450 	}
451 
452 	/* Now program new ones. */
453 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
454 		if (ifma->ifma_addr->sa_family != AF_LINK)
455 			continue;
456 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
457 		if (mc == NULL)
458 			return (ENOMEM);
459 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
460 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
461 		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
462 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
463 		    LLADDR(&sdl), ETHER_ADDR_LEN);
464 		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
465 		if (error)
466 			return (error);
467 	}
468 
469 	CURVNET_RESTORE();
470 	return (0);
471 }
472 
473 /*
474  * A handler for parent interface link layer address changes.
475  * If the parent interface link layer address is changed we
476  * should also change it on all children vlans.
477  */
478 static void
479 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
480 {
481 	struct ifvlan *ifv;
482 #ifndef VLAN_ARRAY
483 	struct ifvlan *next;
484 #endif
485 	int i;
486 
487 	/*
488 	 * Check if it's a trunk interface first of all
489 	 * to avoid needless locking.
490 	 */
491 	if (ifp->if_vlantrunk == NULL)
492 		return;
493 
494 	VLAN_LOCK();
495 	/*
496 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
497 	 */
498 #ifdef VLAN_ARRAY
499 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
500 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
501 #else /* VLAN_ARRAY */
502 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
503 		LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) {
504 #endif /* VLAN_ARRAY */
505 			VLAN_UNLOCK();
506 			if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp), ETHER_ADDR_LEN);
507 			VLAN_LOCK();
508 		}
509 	VLAN_UNLOCK();
510 
511 }
512 
513 /*
514  * A handler for network interface departure events.
515  * Track departure of trunks here so that we don't access invalid
516  * pointers or whatever if a trunk is ripped from under us, e.g.,
517  * by ejecting its hot-plug card.  However, if an ifnet is simply
518  * being renamed, then there's no need to tear down the state.
519  */
520 static void
521 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
522 {
523 	struct ifvlan *ifv;
524 	int i;
525 
526 	/*
527 	 * Check if it's a trunk interface first of all
528 	 * to avoid needless locking.
529 	 */
530 	if (ifp->if_vlantrunk == NULL)
531 		return;
532 
533 	/* If the ifnet is just being renamed, don't do anything. */
534 	if (ifp->if_flags & IFF_RENAMING)
535 		return;
536 
537 	VLAN_LOCK();
538 	/*
539 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
540 	 * Check trunk pointer after each vlan_unconfig() as it will
541 	 * free it and set to NULL after the last vlan was detached.
542 	 */
543 #ifdef VLAN_ARRAY
544 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
545 		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
546 			vlan_unconfig_locked(ifv->ifv_ifp);
547 			if (ifp->if_vlantrunk == NULL)
548 				break;
549 		}
550 #else /* VLAN_ARRAY */
551 restart:
552 	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
553 		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
554 			vlan_unconfig_locked(ifv->ifv_ifp);
555 			if (ifp->if_vlantrunk)
556 				goto restart;	/* trunk->hwidth can change */
557 			else
558 				break;
559 		}
560 #endif /* VLAN_ARRAY */
561 	/* Trunk should have been destroyed in vlan_unconfig(). */
562 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
563 	VLAN_UNLOCK();
564 }
565 
566 /*
567  * VLAN support can be loaded as a module.  The only place in the
568  * system that's intimately aware of this is ether_input.  We hook
569  * into this code through vlan_input_p which is defined there and
570  * set here.  Noone else in the system should be aware of this so
571  * we use an explicit reference here.
572  */
573 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
574 
575 /* For if_link_state_change() eyes only... */
576 extern	void (*vlan_link_state_p)(struct ifnet *);
577 
578 static int
579 vlan_modevent(module_t mod, int type, void *data)
580 {
581 
582 	switch (type) {
583 	case MOD_LOAD:
584 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
585 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
586 		if (ifdetach_tag == NULL)
587 			return (ENOMEM);
588 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
589 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
590 		if (iflladdr_tag == NULL)
591 			return (ENOMEM);
592 		VLAN_LOCK_INIT();
593 		vlan_input_p = vlan_input;
594 		vlan_link_state_p = vlan_link_state;
595 		vlan_trunk_cap_p = vlan_trunk_capabilities;
596 #ifndef VIMAGE
597 		if_clone_attach(&vlan_cloner);
598 #endif
599 		if (bootverbose)
600 			printf("vlan: initialized, using "
601 #ifdef VLAN_ARRAY
602 			       "full-size arrays"
603 #else
604 			       "hash tables with chaining"
605 #endif
606 
607 			       "\n");
608 		break;
609 	case MOD_UNLOAD:
610 #ifndef VIMAGE
611 		if_clone_detach(&vlan_cloner);
612 #endif
613 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
614 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
615 		vlan_input_p = NULL;
616 		vlan_link_state_p = NULL;
617 		vlan_trunk_cap_p = NULL;
618 		VLAN_LOCK_DESTROY();
619 		if (bootverbose)
620 			printf("vlan: unloaded\n");
621 		break;
622 	default:
623 		return (EOPNOTSUPP);
624 	}
625 	return (0);
626 }
627 
628 static moduledata_t vlan_mod = {
629 	"if_vlan",
630 	vlan_modevent,
631 	0
632 };
633 
634 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
635 MODULE_VERSION(if_vlan, 3);
636 
637 #ifdef VIMAGE
638 static void
639 vnet_vlan_init(const void *unused __unused)
640 {
641 
642 	V_vlan_cloner = vlan_cloner;
643 	if_clone_attach(&V_vlan_cloner);
644 }
645 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
646     vnet_vlan_init, NULL);
647 
648 static void
649 vnet_vlan_uninit(const void *unused __unused)
650 {
651 
652 	if_clone_detach(&V_vlan_cloner);
653 }
654 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
655     vnet_vlan_uninit, NULL);
656 #endif
657 
658 static struct ifnet *
659 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
660 {
661 	const char *cp;
662 	struct ifnet *ifp;
663 	int t;
664 
665 	/* Check for <etherif>.<vlan> style interface names. */
666 	IFNET_RLOCK_NOSLEEP();
667 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
668 		if (ifp->if_type != IFT_ETHER)
669 			continue;
670 		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
671 			continue;
672 		cp = name + strlen(ifp->if_xname);
673 		if (*cp++ != '.')
674 			continue;
675 		if (*cp == '\0')
676 			continue;
677 		t = 0;
678 		for(; *cp >= '0' && *cp <= '9'; cp++)
679 			t = (t * 10) + (*cp - '0');
680 		if (*cp != '\0')
681 			continue;
682 		if (tag != NULL)
683 			*tag = t;
684 		break;
685 	}
686 	IFNET_RUNLOCK_NOSLEEP();
687 
688 	return (ifp);
689 }
690 
691 static int
692 vlan_clone_match(struct if_clone *ifc, const char *name)
693 {
694 	const char *cp;
695 
696 	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
697 		return (1);
698 
699 	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
700 		return (0);
701 	for (cp = name + 4; *cp != '\0'; cp++) {
702 		if (*cp < '0' || *cp > '9')
703 			return (0);
704 	}
705 
706 	return (1);
707 }
708 
709 static int
710 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
711 {
712 	char *dp;
713 	int wildcard;
714 	int unit;
715 	int error;
716 	int tag;
717 	int ethertag;
718 	struct ifvlan *ifv;
719 	struct ifnet *ifp;
720 	struct ifnet *p;
721 	struct ifaddr *ifa;
722 	struct sockaddr_dl *sdl;
723 	struct vlanreq vlr;
724 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
725 
726 	/*
727 	 * There are 3 (ugh) ways to specify the cloned device:
728 	 * o pass a parameter block with the clone request.
729 	 * o specify parameters in the text of the clone device name
730 	 * o specify no parameters and get an unattached device that
731 	 *   must be configured separately.
732 	 * The first technique is preferred; the latter two are
733 	 * supported for backwards compatibilty.
734 	 */
735 	if (params) {
736 		error = copyin(params, &vlr, sizeof(vlr));
737 		if (error)
738 			return error;
739 		p = ifunit(vlr.vlr_parent);
740 		if (p == NULL)
741 			return ENXIO;
742 		/*
743 		 * Don't let the caller set up a VLAN tag with
744 		 * anything except VLID bits.
745 		 */
746 		if (vlr.vlr_tag & ~EVL_VLID_MASK)
747 			return (EINVAL);
748 		error = ifc_name2unit(name, &unit);
749 		if (error != 0)
750 			return (error);
751 
752 		ethertag = 1;
753 		tag = vlr.vlr_tag;
754 		wildcard = (unit < 0);
755 	} else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
756 		ethertag = 1;
757 		unit = -1;
758 		wildcard = 0;
759 
760 		/*
761 		 * Don't let the caller set up a VLAN tag with
762 		 * anything except VLID bits.
763 		 */
764 		if (tag & ~EVL_VLID_MASK)
765 			return (EINVAL);
766 	} else {
767 		ethertag = 0;
768 
769 		error = ifc_name2unit(name, &unit);
770 		if (error != 0)
771 			return (error);
772 
773 		wildcard = (unit < 0);
774 	}
775 
776 	error = ifc_alloc_unit(ifc, &unit);
777 	if (error != 0)
778 		return (error);
779 
780 	/* In the wildcard case, we need to update the name. */
781 	if (wildcard) {
782 		for (dp = name; *dp != '\0'; dp++);
783 		if (snprintf(dp, len - (dp-name), "%d", unit) >
784 		    len - (dp-name) - 1) {
785 			panic("%s: interface name too long", __func__);
786 		}
787 	}
788 
789 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
790 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
791 	if (ifp == NULL) {
792 		ifc_free_unit(ifc, unit);
793 		free(ifv, M_VLAN);
794 		return (ENOSPC);
795 	}
796 	SLIST_INIT(&ifv->vlan_mc_listhead);
797 
798 	ifp->if_softc = ifv;
799 	/*
800 	 * Set the name manually rather than using if_initname because
801 	 * we don't conform to the default naming convention for interfaces.
802 	 */
803 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
804 	ifp->if_dname = ifc->ifc_name;
805 	ifp->if_dunit = unit;
806 	/* NB: flags are not set here */
807 	ifp->if_linkmib = &ifv->ifv_mib;
808 	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
809 	/* NB: mtu is not set here */
810 
811 	ifp->if_init = vlan_init;
812 	ifp->if_start = vlan_start;
813 	ifp->if_ioctl = vlan_ioctl;
814 	ifp->if_snd.ifq_maxlen = ifqmaxlen;
815 	ifp->if_flags = VLAN_IFFLAGS;
816 	ether_ifattach(ifp, eaddr);
817 	/* Now undo some of the damage... */
818 	ifp->if_baudrate = 0;
819 	ifp->if_type = IFT_L2VLAN;
820 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
821 	ifa = ifp->if_addr;
822 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
823 	sdl->sdl_type = IFT_L2VLAN;
824 
825 	if (ethertag) {
826 		error = vlan_config(ifv, p, tag);
827 		if (error != 0) {
828 			/*
829 			 * Since we've partialy failed, we need to back
830 			 * out all the way, otherwise userland could get
831 			 * confused.  Thus, we destroy the interface.
832 			 */
833 			ether_ifdetach(ifp);
834 			vlan_unconfig(ifp);
835 			if_free_type(ifp, IFT_ETHER);
836 			ifc_free_unit(ifc, unit);
837 			free(ifv, M_VLAN);
838 
839 			return (error);
840 		}
841 
842 		/* Update flags on the parent, if necessary. */
843 		vlan_setflags(ifp, 1);
844 	}
845 
846 	return (0);
847 }
848 
849 static int
850 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
851 {
852 	struct ifvlan *ifv = ifp->if_softc;
853 	int unit = ifp->if_dunit;
854 
855 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
856 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
857 	if_free_type(ifp, IFT_ETHER);
858 	free(ifv, M_VLAN);
859 	ifc_free_unit(ifc, unit);
860 
861 	return (0);
862 }
863 
864 /*
865  * The ifp->if_init entry point for vlan(4) is a no-op.
866  */
867 static void
868 vlan_init(void *foo __unused)
869 {
870 }
871 
872 /*
873  * The if_start method for vlan(4) interface. It doesn't
874  * raises the IFF_DRV_OACTIVE flag, since it is called
875  * only from IFQ_HANDOFF() macro in ether_output_frame().
876  * If the interface queue is full, and vlan_start() is
877  * not called, the queue would never get emptied and
878  * interface would stall forever.
879  */
880 static void
881 vlan_start(struct ifnet *ifp)
882 {
883 	struct ifvlan *ifv;
884 	struct ifnet *p;
885 	struct mbuf *m;
886 	int error;
887 
888 	ifv = ifp->if_softc;
889 	p = PARENT(ifv);
890 
891 	for (;;) {
892 		IF_DEQUEUE(&ifp->if_snd, m);
893 		if (m == NULL)
894 			break;
895 		BPF_MTAP(ifp, m);
896 
897 		/*
898 		 * Do not run parent's if_start() if the parent is not up,
899 		 * or parent's driver will cause a system crash.
900 		 */
901 		if (!UP_AND_RUNNING(p)) {
902 			m_freem(m);
903 			ifp->if_collisions++;
904 			continue;
905 		}
906 
907 		/*
908 		 * Pad the frame to the minimum size allowed if told to.
909 		 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
910 		 * paragraph C.4.4.3.b.  It can help to work around buggy
911 		 * bridges that violate paragraph C.4.4.3.a from the same
912 		 * document, i.e., fail to pad short frames after untagging.
913 		 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
914 		 * untagging it will produce a 62-byte frame, which is a runt
915 		 * and requires padding.  There are VLAN-enabled network
916 		 * devices that just discard such runts instead or mishandle
917 		 * them somehow.
918 		 */
919 		if (soft_pad) {
920 			static char pad[8];	/* just zeros */
921 			int n;
922 
923 			for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
924 			     n > 0; n -= sizeof(pad))
925 				if (!m_append(m, min(n, sizeof(pad)), pad))
926 					break;
927 
928 			if (n > 0) {
929 				if_printf(ifp, "cannot pad short frame\n");
930 				ifp->if_oerrors++;
931 				m_freem(m);
932 				continue;
933 			}
934 		}
935 
936 		/*
937 		 * If underlying interface can do VLAN tag insertion itself,
938 		 * just pass the packet along. However, we need some way to
939 		 * tell the interface where the packet came from so that it
940 		 * knows how to find the VLAN tag to use, so we attach a
941 		 * packet tag that holds it.
942 		 */
943 		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
944 			m->m_pkthdr.ether_vtag = ifv->ifv_tag;
945 			m->m_flags |= M_VLANTAG;
946 		} else {
947 			m = ether_vlanencap(m, ifv->ifv_tag);
948 			if (m == NULL) {
949 				if_printf(ifp,
950 				    "unable to prepend VLAN header\n");
951 				ifp->if_oerrors++;
952 				continue;
953 			}
954 		}
955 
956 		/*
957 		 * Send it, precisely as ether_output() would have.
958 		 * We are already running at splimp.
959 		 */
960 		error = (p->if_transmit)(p, m);
961 		if (!error)
962 			ifp->if_opackets++;
963 		else
964 			ifp->if_oerrors++;
965 	}
966 }
967 
968 static void
969 vlan_input(struct ifnet *ifp, struct mbuf *m)
970 {
971 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
972 	struct ifvlan *ifv;
973 	uint16_t tag;
974 
975 	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
976 
977 	if (m->m_flags & M_VLANTAG) {
978 		/*
979 		 * Packet is tagged, but m contains a normal
980 		 * Ethernet frame; the tag is stored out-of-band.
981 		 */
982 		tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
983 		m->m_flags &= ~M_VLANTAG;
984 	} else {
985 		struct ether_vlan_header *evl;
986 
987 		/*
988 		 * Packet is tagged in-band as specified by 802.1q.
989 		 */
990 		switch (ifp->if_type) {
991 		case IFT_ETHER:
992 			if (m->m_len < sizeof(*evl) &&
993 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
994 				if_printf(ifp, "cannot pullup VLAN header\n");
995 				return;
996 			}
997 			evl = mtod(m, struct ether_vlan_header *);
998 			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
999 
1000 			/*
1001 			 * Remove the 802.1q header by copying the Ethernet
1002 			 * addresses over it and adjusting the beginning of
1003 			 * the data in the mbuf.  The encapsulated Ethernet
1004 			 * type field is already in place.
1005 			 */
1006 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1007 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1008 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1009 			break;
1010 
1011 		default:
1012 #ifdef INVARIANTS
1013 			panic("%s: %s has unsupported if_type %u",
1014 			      __func__, ifp->if_xname, ifp->if_type);
1015 #endif
1016 			m_freem(m);
1017 			ifp->if_noproto++;
1018 			return;
1019 		}
1020 	}
1021 
1022 	TRUNK_RLOCK(trunk);
1023 #ifdef VLAN_ARRAY
1024 	ifv = trunk->vlans[tag];
1025 #else
1026 	ifv = vlan_gethash(trunk, tag);
1027 #endif
1028 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1029 		TRUNK_RUNLOCK(trunk);
1030 		m_freem(m);
1031 		ifp->if_noproto++;
1032 		return;
1033 	}
1034 	TRUNK_RUNLOCK(trunk);
1035 
1036 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1037 	ifv->ifv_ifp->if_ipackets++;
1038 
1039 	/* Pass it back through the parent's input routine. */
1040 	(*ifp->if_input)(ifv->ifv_ifp, m);
1041 }
1042 
1043 static int
1044 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
1045 {
1046 	struct ifvlantrunk *trunk;
1047 	struct ifnet *ifp;
1048 	int error = 0;
1049 
1050 	/* VID numbers 0x0 and 0xFFF are reserved */
1051 	if (tag == 0 || tag == 0xFFF)
1052 		return (EINVAL);
1053 	if (p->if_type != IFT_ETHER)
1054 		return (EPROTONOSUPPORT);
1055 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1056 		return (EPROTONOSUPPORT);
1057 	if (ifv->ifv_trunk)
1058 		return (EBUSY);
1059 
1060 	if (p->if_vlantrunk == NULL) {
1061 		trunk = malloc(sizeof(struct ifvlantrunk),
1062 		    M_VLAN, M_WAITOK | M_ZERO);
1063 #ifndef VLAN_ARRAY
1064 		vlan_inithash(trunk);
1065 #endif
1066 		VLAN_LOCK();
1067 		if (p->if_vlantrunk != NULL) {
1068 			/* A race that that is very unlikely to be hit. */
1069 #ifndef VLAN_ARRAY
1070 			vlan_freehash(trunk);
1071 #endif
1072 			free(trunk, M_VLAN);
1073 			goto exists;
1074 		}
1075 		TRUNK_LOCK_INIT(trunk);
1076 		TRUNK_LOCK(trunk);
1077 		p->if_vlantrunk = trunk;
1078 		trunk->parent = p;
1079 	} else {
1080 		VLAN_LOCK();
1081 exists:
1082 		trunk = p->if_vlantrunk;
1083 		TRUNK_LOCK(trunk);
1084 	}
1085 
1086 	ifv->ifv_tag = tag;	/* must set this before vlan_inshash() */
1087 #ifdef VLAN_ARRAY
1088 	if (trunk->vlans[tag] != NULL) {
1089 		error = EEXIST;
1090 		goto done;
1091 	}
1092 	trunk->vlans[tag] = ifv;
1093 	trunk->refcnt++;
1094 #else
1095 	error = vlan_inshash(trunk, ifv);
1096 	if (error)
1097 		goto done;
1098 #endif
1099 	ifv->ifv_proto = ETHERTYPE_VLAN;
1100 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1101 	ifv->ifv_mintu = ETHERMIN;
1102 	ifv->ifv_pflags = 0;
1103 
1104 	/*
1105 	 * If the parent supports the VLAN_MTU capability,
1106 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1107 	 * use it.
1108 	 */
1109 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1110 		/*
1111 		 * No need to fudge the MTU since the parent can
1112 		 * handle extended frames.
1113 		 */
1114 		ifv->ifv_mtufudge = 0;
1115 	} else {
1116 		/*
1117 		 * Fudge the MTU by the encapsulation size.  This
1118 		 * makes us incompatible with strictly compliant
1119 		 * 802.1Q implementations, but allows us to use
1120 		 * the feature with other NetBSD implementations,
1121 		 * which might still be useful.
1122 		 */
1123 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1124 	}
1125 
1126 	ifv->ifv_trunk = trunk;
1127 	ifp = ifv->ifv_ifp;
1128 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1129 	ifp->if_baudrate = p->if_baudrate;
1130 	/*
1131 	 * Copy only a selected subset of flags from the parent.
1132 	 * Other flags are none of our business.
1133 	 */
1134 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1135 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1136 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1137 #undef VLAN_COPY_FLAGS
1138 
1139 	ifp->if_link_state = p->if_link_state;
1140 
1141 	vlan_capabilities(ifv);
1142 
1143 	/*
1144 	 * Set up our ``Ethernet address'' to reflect the underlying
1145 	 * physical interface's.
1146 	 */
1147 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
1148 
1149 	/*
1150 	 * Configure multicast addresses that may already be
1151 	 * joined on the vlan device.
1152 	 */
1153 	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1154 
1155 	/* We are ready for operation now. */
1156 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1157 done:
1158 	TRUNK_UNLOCK(trunk);
1159 	if (error == 0)
1160 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag);
1161 	VLAN_UNLOCK();
1162 
1163 	return (error);
1164 }
1165 
1166 static void
1167 vlan_unconfig(struct ifnet *ifp)
1168 {
1169 
1170 	VLAN_LOCK();
1171 	vlan_unconfig_locked(ifp);
1172 	VLAN_UNLOCK();
1173 }
1174 
1175 static void
1176 vlan_unconfig_locked(struct ifnet *ifp)
1177 {
1178 	struct ifvlantrunk *trunk;
1179 	struct vlan_mc_entry *mc;
1180 	struct ifvlan *ifv;
1181 	struct ifnet  *parent;
1182 
1183 	VLAN_LOCK_ASSERT();
1184 
1185 	ifv = ifp->if_softc;
1186 	trunk = ifv->ifv_trunk;
1187 	parent = NULL;
1188 
1189 	if (trunk != NULL) {
1190 		struct sockaddr_dl sdl;
1191 
1192 		TRUNK_LOCK(trunk);
1193 		parent = trunk->parent;
1194 
1195 		/*
1196 		 * Since the interface is being unconfigured, we need to
1197 		 * empty the list of multicast groups that we may have joined
1198 		 * while we were alive from the parent's list.
1199 		 */
1200 		bzero((char *)&sdl, sizeof(sdl));
1201 		sdl.sdl_len = sizeof(sdl);
1202 		sdl.sdl_family = AF_LINK;
1203 		sdl.sdl_index = parent->if_index;
1204 		sdl.sdl_type = IFT_ETHER;
1205 		sdl.sdl_alen = ETHER_ADDR_LEN;
1206 
1207 		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1208 			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1209 			    ETHER_ADDR_LEN);
1210 
1211 			/*
1212 			 * This may fail if the parent interface is
1213 			 * being detached.  Regardless, we should do a
1214 			 * best effort to free this interface as much
1215 			 * as possible as all callers expect vlan
1216 			 * destruction to succeed.
1217 			 */
1218 			(void)if_delmulti(parent, (struct sockaddr *)&sdl);
1219 			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1220 			free(mc, M_VLAN);
1221 		}
1222 
1223 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1224 #ifdef VLAN_ARRAY
1225 		trunk->vlans[ifv->ifv_tag] = NULL;
1226 		trunk->refcnt--;
1227 #else
1228 		vlan_remhash(trunk, ifv);
1229 #endif
1230 		ifv->ifv_trunk = NULL;
1231 
1232 		/*
1233 		 * Check if we were the last.
1234 		 */
1235 		if (trunk->refcnt == 0) {
1236 			trunk->parent->if_vlantrunk = NULL;
1237 			/*
1238 			 * XXXGL: If some ithread has already entered
1239 			 * vlan_input() and is now blocked on the trunk
1240 			 * lock, then it should preempt us right after
1241 			 * unlock and finish its work. Then we will acquire
1242 			 * lock again in trunk_destroy().
1243 			 */
1244 			TRUNK_UNLOCK(trunk);
1245 			trunk_destroy(trunk);
1246 		} else
1247 			TRUNK_UNLOCK(trunk);
1248 	}
1249 
1250 	/* Disconnect from parent. */
1251 	if (ifv->ifv_pflags)
1252 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1253 	ifp->if_mtu = ETHERMTU;
1254 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1255 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1256 
1257 	/*
1258 	 * Only dispatch an event if vlan was
1259 	 * attached, otherwise there is nothing
1260 	 * to cleanup anyway.
1261 	 */
1262 	if (parent != NULL)
1263 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag);
1264 }
1265 
1266 /* Handle a reference counted flag that should be set on the parent as well */
1267 static int
1268 vlan_setflag(struct ifnet *ifp, int flag, int status,
1269 	     int (*func)(struct ifnet *, int))
1270 {
1271 	struct ifvlan *ifv;
1272 	int error;
1273 
1274 	/* XXX VLAN_LOCK_ASSERT(); */
1275 
1276 	ifv = ifp->if_softc;
1277 	status = status ? (ifp->if_flags & flag) : 0;
1278 	/* Now "status" contains the flag value or 0 */
1279 
1280 	/*
1281 	 * See if recorded parent's status is different from what
1282 	 * we want it to be.  If it is, flip it.  We record parent's
1283 	 * status in ifv_pflags so that we won't clear parent's flag
1284 	 * we haven't set.  In fact, we don't clear or set parent's
1285 	 * flags directly, but get or release references to them.
1286 	 * That's why we can be sure that recorded flags still are
1287 	 * in accord with actual parent's flags.
1288 	 */
1289 	if (status != (ifv->ifv_pflags & flag)) {
1290 		error = (*func)(PARENT(ifv), status);
1291 		if (error)
1292 			return (error);
1293 		ifv->ifv_pflags &= ~flag;
1294 		ifv->ifv_pflags |= status;
1295 	}
1296 	return (0);
1297 }
1298 
1299 /*
1300  * Handle IFF_* flags that require certain changes on the parent:
1301  * if "status" is true, update parent's flags respective to our if_flags;
1302  * if "status" is false, forcedly clear the flags set on parent.
1303  */
1304 static int
1305 vlan_setflags(struct ifnet *ifp, int status)
1306 {
1307 	int error, i;
1308 
1309 	for (i = 0; vlan_pflags[i].flag; i++) {
1310 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1311 				     status, vlan_pflags[i].func);
1312 		if (error)
1313 			return (error);
1314 	}
1315 	return (0);
1316 }
1317 
1318 /* Inform all vlans that their parent has changed link state */
1319 static void
1320 vlan_link_state(struct ifnet *ifp)
1321 {
1322 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1323 	struct ifvlan *ifv;
1324 	int i;
1325 
1326 	TRUNK_LOCK(trunk);
1327 #ifdef VLAN_ARRAY
1328 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1329 		if (trunk->vlans[i] != NULL) {
1330 			ifv = trunk->vlans[i];
1331 #else
1332 	for (i = 0; i < (1 << trunk->hwidth); i++)
1333 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1334 #endif
1335 			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1336 			if_link_state_change(ifv->ifv_ifp,
1337 			    trunk->parent->if_link_state);
1338 		}
1339 	TRUNK_UNLOCK(trunk);
1340 }
1341 
1342 static void
1343 vlan_capabilities(struct ifvlan *ifv)
1344 {
1345 	struct ifnet *p = PARENT(ifv);
1346 	struct ifnet *ifp = ifv->ifv_ifp;
1347 
1348 	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1349 
1350 	/*
1351 	 * If the parent interface can do checksum offloading
1352 	 * on VLANs, then propagate its hardware-assisted
1353 	 * checksumming flags. Also assert that checksum
1354 	 * offloading requires hardware VLAN tagging.
1355 	 */
1356 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1357 		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1358 
1359 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1360 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1361 		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1362 		ifp->if_hwassist = p->if_hwassist & (CSUM_IP | CSUM_TCP |
1363 		    CSUM_UDP | CSUM_SCTP | CSUM_IP_FRAGS | CSUM_FRAGMENT);
1364 	} else {
1365 		ifp->if_capenable = 0;
1366 		ifp->if_hwassist = 0;
1367 	}
1368 	/*
1369 	 * If the parent interface can do TSO on VLANs then
1370 	 * propagate the hardware-assisted flag. TSO on VLANs
1371 	 * does not necessarily require hardware VLAN tagging.
1372 	 */
1373 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1374 		ifp->if_capabilities |= p->if_capabilities & IFCAP_TSO;
1375 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1376 		ifp->if_capenable |= p->if_capenable & IFCAP_TSO;
1377 		ifp->if_hwassist |= p->if_hwassist & CSUM_TSO;
1378 	} else {
1379 		ifp->if_capenable &= ~(p->if_capenable & IFCAP_TSO);
1380 		ifp->if_hwassist &= ~(p->if_hwassist & CSUM_TSO);
1381 	}
1382 }
1383 
1384 static void
1385 vlan_trunk_capabilities(struct ifnet *ifp)
1386 {
1387 	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1388 	struct ifvlan *ifv;
1389 	int i;
1390 
1391 	TRUNK_LOCK(trunk);
1392 #ifdef VLAN_ARRAY
1393 	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1394 		if (trunk->vlans[i] != NULL) {
1395 			ifv = trunk->vlans[i];
1396 #else
1397 	for (i = 0; i < (1 << trunk->hwidth); i++) {
1398 		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1399 #endif
1400 			vlan_capabilities(ifv);
1401 	}
1402 	TRUNK_UNLOCK(trunk);
1403 }
1404 
1405 static int
1406 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1407 {
1408 	struct ifnet *p;
1409 	struct ifreq *ifr;
1410 	struct ifvlan *ifv;
1411 	struct vlanreq vlr;
1412 	int error = 0;
1413 
1414 	ifr = (struct ifreq *)data;
1415 	ifv = ifp->if_softc;
1416 
1417 	switch (cmd) {
1418 	case SIOCGIFMEDIA:
1419 		VLAN_LOCK();
1420 		if (TRUNK(ifv) != NULL) {
1421 			p = PARENT(ifv);
1422 			VLAN_UNLOCK();
1423 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1424 			/* Limit the result to the parent's current config. */
1425 			if (error == 0) {
1426 				struct ifmediareq *ifmr;
1427 
1428 				ifmr = (struct ifmediareq *)data;
1429 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1430 					ifmr->ifm_count = 1;
1431 					error = copyout(&ifmr->ifm_current,
1432 						ifmr->ifm_ulist,
1433 						sizeof(int));
1434 				}
1435 			}
1436 		} else {
1437 			VLAN_UNLOCK();
1438 			error = EINVAL;
1439 		}
1440 		break;
1441 
1442 	case SIOCSIFMEDIA:
1443 		error = EINVAL;
1444 		break;
1445 
1446 	case SIOCSIFMTU:
1447 		/*
1448 		 * Set the interface MTU.
1449 		 */
1450 		VLAN_LOCK();
1451 		if (TRUNK(ifv) != NULL) {
1452 			if (ifr->ifr_mtu >
1453 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1454 			    ifr->ifr_mtu <
1455 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1456 				error = EINVAL;
1457 			else
1458 				ifp->if_mtu = ifr->ifr_mtu;
1459 		} else
1460 			error = EINVAL;
1461 		VLAN_UNLOCK();
1462 		break;
1463 
1464 	case SIOCSETVLAN:
1465 #ifdef VIMAGE
1466 		if (ifp->if_vnet != ifp->if_home_vnet) {
1467 			error = EPERM;
1468 			break;
1469 		}
1470 #endif
1471 		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1472 		if (error)
1473 			break;
1474 		if (vlr.vlr_parent[0] == '\0') {
1475 			vlan_unconfig(ifp);
1476 			break;
1477 		}
1478 		p = ifunit(vlr.vlr_parent);
1479 		if (p == NULL) {
1480 			error = ENOENT;
1481 			break;
1482 		}
1483 		/*
1484 		 * Don't let the caller set up a VLAN tag with
1485 		 * anything except VLID bits.
1486 		 */
1487 		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1488 			error = EINVAL;
1489 			break;
1490 		}
1491 		error = vlan_config(ifv, p, vlr.vlr_tag);
1492 		if (error)
1493 			break;
1494 
1495 		/* Update flags on the parent, if necessary. */
1496 		vlan_setflags(ifp, 1);
1497 		break;
1498 
1499 	case SIOCGETVLAN:
1500 #ifdef VIMAGE
1501 		if (ifp->if_vnet != ifp->if_home_vnet) {
1502 			error = EPERM;
1503 			break;
1504 		}
1505 #endif
1506 		bzero(&vlr, sizeof(vlr));
1507 		VLAN_LOCK();
1508 		if (TRUNK(ifv) != NULL) {
1509 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1510 			    sizeof(vlr.vlr_parent));
1511 			vlr.vlr_tag = ifv->ifv_tag;
1512 		}
1513 		VLAN_UNLOCK();
1514 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1515 		break;
1516 
1517 	case SIOCSIFFLAGS:
1518 		/*
1519 		 * We should propagate selected flags to the parent,
1520 		 * e.g., promiscuous mode.
1521 		 */
1522 		if (TRUNK(ifv) != NULL)
1523 			error = vlan_setflags(ifp, 1);
1524 		break;
1525 
1526 	case SIOCADDMULTI:
1527 	case SIOCDELMULTI:
1528 		/*
1529 		 * If we don't have a parent, just remember the membership for
1530 		 * when we do.
1531 		 */
1532 		if (TRUNK(ifv) != NULL)
1533 			error = vlan_setmulti(ifp);
1534 		break;
1535 
1536 	default:
1537 		error = ether_ioctl(ifp, cmd, data);
1538 	}
1539 
1540 	return (error);
1541 }
1542