1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * Copyright 2012 ADARA Networks, Inc. 4 * 5 * Portions of this software were developed by Robert N. M. Watson under 6 * contract to ADARA Networks, Inc. 7 * 8 * Permission to use, copy, modify, and distribute this software and 9 * its documentation for any purpose and without fee is hereby 10 * granted, provided that both the above copyright notice and this 11 * permission notice appear in all copies, that both the above 12 * copyright notice and this permission notice appear in all 13 * supporting documentation, and that the name of M.I.T. not be used 14 * in advertising or publicity pertaining to distribution of the 15 * software without specific, written prior permission. M.I.T. makes 16 * no representations about the suitability of this software for any 17 * purpose. It is provided "as is" without express or implied 18 * warranty. 19 * 20 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 21 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 22 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 23 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 24 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 27 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 36 * This is sort of sneaky in the implementation, since 37 * we need to pretend to be enough of an Ethernet implementation 38 * to make arp work. The way we do this is by telling everyone 39 * that we are an Ethernet, and then catch the packets that 40 * ether_output() sends to us via if_transmit(), rewrite them for 41 * use by the real outgoing interface, and ask it to send them. 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_inet.h" 48 #include "opt_vlan.h" 49 50 #include <sys/param.h> 51 #include <sys/eventhandler.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/module.h> 57 #include <sys/rmlock.h> 58 #include <sys/priv.h> 59 #include <sys/queue.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/sysctl.h> 63 #include <sys/systm.h> 64 #include <sys/sx.h> 65 66 #include <net/bpf.h> 67 #include <net/ethernet.h> 68 #include <net/if.h> 69 #include <net/if_var.h> 70 #include <net/if_clone.h> 71 #include <net/if_dl.h> 72 #include <net/if_types.h> 73 #include <net/if_vlan_var.h> 74 #include <net/vnet.h> 75 76 #ifdef INET 77 #include <netinet/in.h> 78 #include <netinet/if_ether.h> 79 #endif 80 81 #define VLAN_DEF_HWIDTH 4 82 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 83 84 #define UP_AND_RUNNING(ifp) \ 85 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 86 87 LIST_HEAD(ifvlanhead, ifvlan); 88 89 struct ifvlantrunk { 90 struct ifnet *parent; /* parent interface of this trunk */ 91 struct rmlock lock; 92 #ifdef VLAN_ARRAY 93 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 94 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 95 #else 96 struct ifvlanhead *hash; /* dynamic hash-list table */ 97 uint16_t hmask; 98 uint16_t hwidth; 99 #endif 100 int refcnt; 101 }; 102 103 struct vlan_mc_entry { 104 struct sockaddr_dl mc_addr; 105 SLIST_ENTRY(vlan_mc_entry) mc_entries; 106 }; 107 108 struct ifvlan { 109 struct ifvlantrunk *ifv_trunk; 110 struct ifnet *ifv_ifp; 111 #define TRUNK(ifv) ((ifv)->ifv_trunk) 112 #define PARENT(ifv) ((ifv)->ifv_trunk->parent) 113 void *ifv_cookie; 114 int ifv_pflags; /* special flags we have set on parent */ 115 struct ifv_linkmib { 116 int ifvm_encaplen; /* encapsulation length */ 117 int ifvm_mtufudge; /* MTU fudged by this much */ 118 int ifvm_mintu; /* min transmission unit */ 119 uint16_t ifvm_proto; /* encapsulation ethertype */ 120 uint16_t ifvm_tag; /* tag to apply on packets leaving if */ 121 uint16_t ifvm_vid; /* VLAN ID */ 122 uint8_t ifvm_pcp; /* Priority Code Point (PCP). */ 123 } ifv_mib; 124 SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 125 #ifndef VLAN_ARRAY 126 LIST_ENTRY(ifvlan) ifv_list; 127 #endif 128 }; 129 #define ifv_proto ifv_mib.ifvm_proto 130 #define ifv_tag ifv_mib.ifvm_tag 131 #define ifv_vid ifv_mib.ifvm_vid 132 #define ifv_pcp ifv_mib.ifvm_pcp 133 #define ifv_encaplen ifv_mib.ifvm_encaplen 134 #define ifv_mtufudge ifv_mib.ifvm_mtufudge 135 #define ifv_mintu ifv_mib.ifvm_mintu 136 137 /* Special flags we should propagate to parent. */ 138 static struct { 139 int flag; 140 int (*func)(struct ifnet *, int); 141 } vlan_pflags[] = { 142 {IFF_PROMISC, ifpromisc}, 143 {IFF_ALLMULTI, if_allmulti}, 144 {0, NULL} 145 }; 146 147 SYSCTL_DECL(_net_link); 148 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, 149 "IEEE 802.1Q VLAN"); 150 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, 151 "for consistency"); 152 153 static VNET_DEFINE(int, soft_pad); 154 #define V_soft_pad VNET(soft_pad) 155 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET, 156 &VNET_NAME(soft_pad), 0, "pad short frames before tagging"); 157 158 /* 159 * For now, make preserving PCP via an mbuf tag optional, as it increases 160 * per-packet memory allocations and frees. In the future, it would be 161 * preferable to reuse ether_vtag for this, or similar. 162 */ 163 static int vlan_mtag_pcp = 0; 164 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, &vlan_mtag_pcp, 0, 165 "Retain VLAN PCP information as packets are passed up the stack"); 166 167 static const char vlanname[] = "vlan"; 168 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); 169 170 static eventhandler_tag ifdetach_tag; 171 static eventhandler_tag iflladdr_tag; 172 173 /* 174 * We have a global mutex, that is used to serialize configuration 175 * changes and isn't used in normal packet delivery. 176 * 177 * We also have a per-trunk rmlock(9), that is locked shared on packet 178 * processing and exclusive when configuration is changed. 179 * 180 * The VLAN_ARRAY substitutes the dynamic hash with a static array 181 * with 4096 entries. In theory this can give a boost in processing, 182 * however on practice it does not. Probably this is because array 183 * is too big to fit into CPU cache. 184 */ 185 static struct sx ifv_lock; 186 #define VLAN_LOCK_INIT() sx_init(&ifv_lock, "vlan_global") 187 #define VLAN_LOCK_DESTROY() sx_destroy(&ifv_lock) 188 #define VLAN_LOCK_ASSERT() sx_assert(&ifv_lock, SA_LOCKED) 189 #define VLAN_LOCK() sx_xlock(&ifv_lock) 190 #define VLAN_UNLOCK() sx_xunlock(&ifv_lock) 191 #define TRUNK_LOCK_INIT(trunk) rm_init(&(trunk)->lock, vlanname) 192 #define TRUNK_LOCK_DESTROY(trunk) rm_destroy(&(trunk)->lock) 193 #define TRUNK_LOCK(trunk) rm_wlock(&(trunk)->lock) 194 #define TRUNK_UNLOCK(trunk) rm_wunlock(&(trunk)->lock) 195 #define TRUNK_LOCK_ASSERT(trunk) rm_assert(&(trunk)->lock, RA_WLOCKED) 196 #define TRUNK_RLOCK(trunk) rm_rlock(&(trunk)->lock, &tracker) 197 #define TRUNK_RUNLOCK(trunk) rm_runlock(&(trunk)->lock, &tracker) 198 #define TRUNK_LOCK_RASSERT(trunk) rm_assert(&(trunk)->lock, RA_RLOCKED) 199 #define TRUNK_LOCK_READER struct rm_priotracker tracker 200 201 #ifndef VLAN_ARRAY 202 static void vlan_inithash(struct ifvlantrunk *trunk); 203 static void vlan_freehash(struct ifvlantrunk *trunk); 204 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 205 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 206 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 207 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 208 uint16_t vid); 209 #endif 210 static void trunk_destroy(struct ifvlantrunk *trunk); 211 212 static void vlan_init(void *foo); 213 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 214 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 215 static void vlan_qflush(struct ifnet *ifp); 216 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 217 int (*func)(struct ifnet *, int)); 218 static int vlan_setflags(struct ifnet *ifp, int status); 219 static int vlan_setmulti(struct ifnet *ifp); 220 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); 221 static void vlan_unconfig(struct ifnet *ifp); 222 static void vlan_unconfig_locked(struct ifnet *ifp, int departing); 223 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag); 224 static void vlan_link_state(struct ifnet *ifp); 225 static void vlan_capabilities(struct ifvlan *ifv); 226 static void vlan_trunk_capabilities(struct ifnet *ifp); 227 228 static struct ifnet *vlan_clone_match_ethervid(const char *, int *); 229 static int vlan_clone_match(struct if_clone *, const char *); 230 static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); 231 static int vlan_clone_destroy(struct if_clone *, struct ifnet *); 232 233 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 234 static void vlan_iflladdr(void *arg, struct ifnet *ifp); 235 236 static struct if_clone *vlan_cloner; 237 238 #ifdef VIMAGE 239 static VNET_DEFINE(struct if_clone *, vlan_cloner); 240 #define V_vlan_cloner VNET(vlan_cloner) 241 #endif 242 243 #ifndef VLAN_ARRAY 244 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 245 246 static void 247 vlan_inithash(struct ifvlantrunk *trunk) 248 { 249 int i, n; 250 251 /* 252 * The trunk must not be locked here since we call malloc(M_WAITOK). 253 * It is OK in case this function is called before the trunk struct 254 * gets hooked up and becomes visible from other threads. 255 */ 256 257 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 258 ("%s: hash already initialized", __func__)); 259 260 trunk->hwidth = VLAN_DEF_HWIDTH; 261 n = 1 << trunk->hwidth; 262 trunk->hmask = n - 1; 263 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 264 for (i = 0; i < n; i++) 265 LIST_INIT(&trunk->hash[i]); 266 } 267 268 static void 269 vlan_freehash(struct ifvlantrunk *trunk) 270 { 271 #ifdef INVARIANTS 272 int i; 273 274 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 275 for (i = 0; i < (1 << trunk->hwidth); i++) 276 KASSERT(LIST_EMPTY(&trunk->hash[i]), 277 ("%s: hash table not empty", __func__)); 278 #endif 279 free(trunk->hash, M_VLAN); 280 trunk->hash = NULL; 281 trunk->hwidth = trunk->hmask = 0; 282 } 283 284 static int 285 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 286 { 287 int i, b; 288 struct ifvlan *ifv2; 289 290 TRUNK_LOCK_ASSERT(trunk); 291 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 292 293 b = 1 << trunk->hwidth; 294 i = HASH(ifv->ifv_vid, trunk->hmask); 295 LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 296 if (ifv->ifv_vid == ifv2->ifv_vid) 297 return (EEXIST); 298 299 /* 300 * Grow the hash when the number of vlans exceeds half of the number of 301 * hash buckets squared. This will make the average linked-list length 302 * buckets/2. 303 */ 304 if (trunk->refcnt > (b * b) / 2) { 305 vlan_growhash(trunk, 1); 306 i = HASH(ifv->ifv_vid, trunk->hmask); 307 } 308 LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 309 trunk->refcnt++; 310 311 return (0); 312 } 313 314 static int 315 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 316 { 317 int i, b; 318 struct ifvlan *ifv2; 319 320 TRUNK_LOCK_ASSERT(trunk); 321 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 322 323 b = 1 << trunk->hwidth; 324 i = HASH(ifv->ifv_vid, trunk->hmask); 325 LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 326 if (ifv2 == ifv) { 327 trunk->refcnt--; 328 LIST_REMOVE(ifv2, ifv_list); 329 if (trunk->refcnt < (b * b) / 2) 330 vlan_growhash(trunk, -1); 331 return (0); 332 } 333 334 panic("%s: vlan not found\n", __func__); 335 return (ENOENT); /*NOTREACHED*/ 336 } 337 338 /* 339 * Grow the hash larger or smaller if memory permits. 340 */ 341 static void 342 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 343 { 344 struct ifvlan *ifv; 345 struct ifvlanhead *hash2; 346 int hwidth2, i, j, n, n2; 347 348 TRUNK_LOCK_ASSERT(trunk); 349 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 350 351 if (howmuch == 0) { 352 /* Harmless yet obvious coding error */ 353 printf("%s: howmuch is 0\n", __func__); 354 return; 355 } 356 357 hwidth2 = trunk->hwidth + howmuch; 358 n = 1 << trunk->hwidth; 359 n2 = 1 << hwidth2; 360 /* Do not shrink the table below the default */ 361 if (hwidth2 < VLAN_DEF_HWIDTH) 362 return; 363 364 /* M_NOWAIT because we're called with trunk mutex held */ 365 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT); 366 if (hash2 == NULL) { 367 printf("%s: out of memory -- hash size not changed\n", 368 __func__); 369 return; /* We can live with the old hash table */ 370 } 371 for (j = 0; j < n2; j++) 372 LIST_INIT(&hash2[j]); 373 for (i = 0; i < n; i++) 374 while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) { 375 LIST_REMOVE(ifv, ifv_list); 376 j = HASH(ifv->ifv_vid, n2 - 1); 377 LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 378 } 379 free(trunk->hash, M_VLAN); 380 trunk->hash = hash2; 381 trunk->hwidth = hwidth2; 382 trunk->hmask = n2 - 1; 383 384 if (bootverbose) 385 if_printf(trunk->parent, 386 "VLAN hash table resized from %d to %d buckets\n", n, n2); 387 } 388 389 static __inline struct ifvlan * 390 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 391 { 392 struct ifvlan *ifv; 393 394 TRUNK_LOCK_RASSERT(trunk); 395 396 LIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) 397 if (ifv->ifv_vid == vid) 398 return (ifv); 399 return (NULL); 400 } 401 402 #if 0 403 /* Debugging code to view the hashtables. */ 404 static void 405 vlan_dumphash(struct ifvlantrunk *trunk) 406 { 407 int i; 408 struct ifvlan *ifv; 409 410 for (i = 0; i < (1 << trunk->hwidth); i++) { 411 printf("%d: ", i); 412 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 413 printf("%s ", ifv->ifv_ifp->if_xname); 414 printf("\n"); 415 } 416 } 417 #endif /* 0 */ 418 #else 419 420 static __inline struct ifvlan * 421 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 422 { 423 424 return trunk->vlans[vid]; 425 } 426 427 static __inline int 428 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 429 { 430 431 if (trunk->vlans[ifv->ifv_vid] != NULL) 432 return EEXIST; 433 trunk->vlans[ifv->ifv_vid] = ifv; 434 trunk->refcnt++; 435 436 return (0); 437 } 438 439 static __inline int 440 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 441 { 442 443 trunk->vlans[ifv->ifv_vid] = NULL; 444 trunk->refcnt--; 445 446 return (0); 447 } 448 449 static __inline void 450 vlan_freehash(struct ifvlantrunk *trunk) 451 { 452 } 453 454 static __inline void 455 vlan_inithash(struct ifvlantrunk *trunk) 456 { 457 } 458 459 #endif /* !VLAN_ARRAY */ 460 461 static void 462 trunk_destroy(struct ifvlantrunk *trunk) 463 { 464 VLAN_LOCK_ASSERT(); 465 466 TRUNK_LOCK(trunk); 467 vlan_freehash(trunk); 468 trunk->parent->if_vlantrunk = NULL; 469 TRUNK_UNLOCK(trunk); 470 TRUNK_LOCK_DESTROY(trunk); 471 free(trunk, M_VLAN); 472 } 473 474 /* 475 * Program our multicast filter. What we're actually doing is 476 * programming the multicast filter of the parent. This has the 477 * side effect of causing the parent interface to receive multicast 478 * traffic that it doesn't really want, which ends up being discarded 479 * later by the upper protocol layers. Unfortunately, there's no way 480 * to avoid this: there really is only one physical interface. 481 */ 482 static int 483 vlan_setmulti(struct ifnet *ifp) 484 { 485 struct ifnet *ifp_p; 486 struct ifmultiaddr *ifma; 487 struct ifvlan *sc; 488 struct vlan_mc_entry *mc; 489 int error; 490 491 /* Find the parent. */ 492 sc = ifp->if_softc; 493 TRUNK_LOCK_ASSERT(TRUNK(sc)); 494 ifp_p = PARENT(sc); 495 496 CURVNET_SET_QUIET(ifp_p->if_vnet); 497 498 /* First, remove any existing filter entries. */ 499 while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 500 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 501 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); 502 free(mc, M_VLAN); 503 } 504 505 /* Now program new ones. */ 506 IF_ADDR_WLOCK(ifp); 507 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 508 if (ifma->ifma_addr->sa_family != AF_LINK) 509 continue; 510 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 511 if (mc == NULL) { 512 IF_ADDR_WUNLOCK(ifp); 513 return (ENOMEM); 514 } 515 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); 516 mc->mc_addr.sdl_index = ifp_p->if_index; 517 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 518 } 519 IF_ADDR_WUNLOCK(ifp); 520 SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { 521 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, 522 NULL); 523 if (error) 524 return (error); 525 } 526 527 CURVNET_RESTORE(); 528 return (0); 529 } 530 531 /* 532 * A handler for parent interface link layer address changes. 533 * If the parent interface link layer address is changed we 534 * should also change it on all children vlans. 535 */ 536 static void 537 vlan_iflladdr(void *arg __unused, struct ifnet *ifp) 538 { 539 struct ifvlan *ifv; 540 #ifndef VLAN_ARRAY 541 struct ifvlan *next; 542 #endif 543 int i; 544 545 /* 546 * Check if it's a trunk interface first of all 547 * to avoid needless locking. 548 */ 549 if (ifp->if_vlantrunk == NULL) 550 return; 551 552 VLAN_LOCK(); 553 /* 554 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. 555 */ 556 #ifdef VLAN_ARRAY 557 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 558 if ((ifv = ifp->if_vlantrunk->vlans[i])) { 559 #else /* VLAN_ARRAY */ 560 for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++) 561 LIST_FOREACH_SAFE(ifv, &ifp->if_vlantrunk->hash[i], ifv_list, next) { 562 #endif /* VLAN_ARRAY */ 563 VLAN_UNLOCK(); 564 if_setlladdr(ifv->ifv_ifp, IF_LLADDR(ifp), 565 ifp->if_addrlen); 566 VLAN_LOCK(); 567 } 568 VLAN_UNLOCK(); 569 570 } 571 572 /* 573 * A handler for network interface departure events. 574 * Track departure of trunks here so that we don't access invalid 575 * pointers or whatever if a trunk is ripped from under us, e.g., 576 * by ejecting its hot-plug card. However, if an ifnet is simply 577 * being renamed, then there's no need to tear down the state. 578 */ 579 static void 580 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 581 { 582 struct ifvlan *ifv; 583 int i; 584 585 /* 586 * Check if it's a trunk interface first of all 587 * to avoid needless locking. 588 */ 589 if (ifp->if_vlantrunk == NULL) 590 return; 591 592 /* If the ifnet is just being renamed, don't do anything. */ 593 if (ifp->if_flags & IFF_RENAMING) 594 return; 595 596 VLAN_LOCK(); 597 /* 598 * OK, it's a trunk. Loop over and detach all vlan's on it. 599 * Check trunk pointer after each vlan_unconfig() as it will 600 * free it and set to NULL after the last vlan was detached. 601 */ 602 #ifdef VLAN_ARRAY 603 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 604 if ((ifv = ifp->if_vlantrunk->vlans[i])) { 605 vlan_unconfig_locked(ifv->ifv_ifp, 1); 606 if (ifp->if_vlantrunk == NULL) 607 break; 608 } 609 #else /* VLAN_ARRAY */ 610 restart: 611 for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++) 612 if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) { 613 vlan_unconfig_locked(ifv->ifv_ifp, 1); 614 if (ifp->if_vlantrunk) 615 goto restart; /* trunk->hwidth can change */ 616 else 617 break; 618 } 619 #endif /* VLAN_ARRAY */ 620 /* Trunk should have been destroyed in vlan_unconfig(). */ 621 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 622 VLAN_UNLOCK(); 623 } 624 625 /* 626 * Return the trunk device for a virtual interface. 627 */ 628 static struct ifnet * 629 vlan_trunkdev(struct ifnet *ifp) 630 { 631 struct ifvlan *ifv; 632 633 if (ifp->if_type != IFT_L2VLAN) 634 return (NULL); 635 ifv = ifp->if_softc; 636 ifp = NULL; 637 VLAN_LOCK(); 638 if (ifv->ifv_trunk) 639 ifp = PARENT(ifv); 640 VLAN_UNLOCK(); 641 return (ifp); 642 } 643 644 /* 645 * Return the 12-bit VLAN VID for this interface, for use by external 646 * components such as Infiniband. 647 * 648 * XXXRW: Note that the function name here is historical; it should be named 649 * vlan_vid(). 650 */ 651 static int 652 vlan_tag(struct ifnet *ifp, uint16_t *vidp) 653 { 654 struct ifvlan *ifv; 655 656 if (ifp->if_type != IFT_L2VLAN) 657 return (EINVAL); 658 ifv = ifp->if_softc; 659 *vidp = ifv->ifv_vid; 660 return (0); 661 } 662 663 /* 664 * Return a driver specific cookie for this interface. Synchronization 665 * with setcookie must be provided by the driver. 666 */ 667 static void * 668 vlan_cookie(struct ifnet *ifp) 669 { 670 struct ifvlan *ifv; 671 672 if (ifp->if_type != IFT_L2VLAN) 673 return (NULL); 674 ifv = ifp->if_softc; 675 return (ifv->ifv_cookie); 676 } 677 678 /* 679 * Store a cookie in our softc that drivers can use to store driver 680 * private per-instance data in. 681 */ 682 static int 683 vlan_setcookie(struct ifnet *ifp, void *cookie) 684 { 685 struct ifvlan *ifv; 686 687 if (ifp->if_type != IFT_L2VLAN) 688 return (EINVAL); 689 ifv = ifp->if_softc; 690 ifv->ifv_cookie = cookie; 691 return (0); 692 } 693 694 /* 695 * Return the vlan device present at the specific VID. 696 */ 697 static struct ifnet * 698 vlan_devat(struct ifnet *ifp, uint16_t vid) 699 { 700 struct ifvlantrunk *trunk; 701 struct ifvlan *ifv; 702 TRUNK_LOCK_READER; 703 704 trunk = ifp->if_vlantrunk; 705 if (trunk == NULL) 706 return (NULL); 707 ifp = NULL; 708 TRUNK_RLOCK(trunk); 709 ifv = vlan_gethash(trunk, vid); 710 if (ifv) 711 ifp = ifv->ifv_ifp; 712 TRUNK_RUNLOCK(trunk); 713 return (ifp); 714 } 715 716 /* 717 * Recalculate the cached VLAN tag exposed via the MIB. 718 */ 719 static void 720 vlan_tag_recalculate(struct ifvlan *ifv) 721 { 722 723 ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0); 724 } 725 726 /* 727 * VLAN support can be loaded as a module. The only place in the 728 * system that's intimately aware of this is ether_input. We hook 729 * into this code through vlan_input_p which is defined there and 730 * set here. No one else in the system should be aware of this so 731 * we use an explicit reference here. 732 */ 733 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 734 735 /* For if_link_state_change() eyes only... */ 736 extern void (*vlan_link_state_p)(struct ifnet *); 737 738 static int 739 vlan_modevent(module_t mod, int type, void *data) 740 { 741 742 switch (type) { 743 case MOD_LOAD: 744 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 745 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 746 if (ifdetach_tag == NULL) 747 return (ENOMEM); 748 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, 749 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 750 if (iflladdr_tag == NULL) 751 return (ENOMEM); 752 VLAN_LOCK_INIT(); 753 vlan_input_p = vlan_input; 754 vlan_link_state_p = vlan_link_state; 755 vlan_trunk_cap_p = vlan_trunk_capabilities; 756 vlan_trunkdev_p = vlan_trunkdev; 757 vlan_cookie_p = vlan_cookie; 758 vlan_setcookie_p = vlan_setcookie; 759 vlan_tag_p = vlan_tag; 760 vlan_devat_p = vlan_devat; 761 #ifndef VIMAGE 762 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 763 vlan_clone_create, vlan_clone_destroy); 764 #endif 765 if (bootverbose) 766 printf("vlan: initialized, using " 767 #ifdef VLAN_ARRAY 768 "full-size arrays" 769 #else 770 "hash tables with chaining" 771 #endif 772 773 "\n"); 774 break; 775 case MOD_UNLOAD: 776 #ifndef VIMAGE 777 if_clone_detach(vlan_cloner); 778 #endif 779 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 780 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); 781 vlan_input_p = NULL; 782 vlan_link_state_p = NULL; 783 vlan_trunk_cap_p = NULL; 784 vlan_trunkdev_p = NULL; 785 vlan_tag_p = NULL; 786 vlan_cookie_p = NULL; 787 vlan_setcookie_p = NULL; 788 vlan_devat_p = NULL; 789 VLAN_LOCK_DESTROY(); 790 if (bootverbose) 791 printf("vlan: unloaded\n"); 792 break; 793 default: 794 return (EOPNOTSUPP); 795 } 796 return (0); 797 } 798 799 static moduledata_t vlan_mod = { 800 "if_vlan", 801 vlan_modevent, 802 0 803 }; 804 805 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 806 MODULE_VERSION(if_vlan, 3); 807 808 #ifdef VIMAGE 809 static void 810 vnet_vlan_init(const void *unused __unused) 811 { 812 813 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 814 vlan_clone_create, vlan_clone_destroy); 815 V_vlan_cloner = vlan_cloner; 816 } 817 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 818 vnet_vlan_init, NULL); 819 820 static void 821 vnet_vlan_uninit(const void *unused __unused) 822 { 823 824 if_clone_detach(V_vlan_cloner); 825 } 826 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, 827 vnet_vlan_uninit, NULL); 828 #endif 829 830 /* 831 * Check for <etherif>.<vlan> style interface names. 832 */ 833 static struct ifnet * 834 vlan_clone_match_ethervid(const char *name, int *vidp) 835 { 836 char ifname[IFNAMSIZ]; 837 char *cp; 838 struct ifnet *ifp; 839 int vid; 840 841 strlcpy(ifname, name, IFNAMSIZ); 842 if ((cp = strchr(ifname, '.')) == NULL) 843 return (NULL); 844 *cp = '\0'; 845 if ((ifp = ifunit(ifname)) == NULL) 846 return (NULL); 847 /* Parse VID. */ 848 if (*++cp == '\0') 849 return (NULL); 850 vid = 0; 851 for(; *cp >= '0' && *cp <= '9'; cp++) 852 vid = (vid * 10) + (*cp - '0'); 853 if (*cp != '\0') 854 return (NULL); 855 if (vidp != NULL) 856 *vidp = vid; 857 858 return (ifp); 859 } 860 861 static int 862 vlan_clone_match(struct if_clone *ifc, const char *name) 863 { 864 const char *cp; 865 866 if (vlan_clone_match_ethervid(name, NULL) != NULL) 867 return (1); 868 869 if (strncmp(vlanname, name, strlen(vlanname)) != 0) 870 return (0); 871 for (cp = name + 4; *cp != '\0'; cp++) { 872 if (*cp < '0' || *cp > '9') 873 return (0); 874 } 875 876 return (1); 877 } 878 879 static int 880 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) 881 { 882 char *dp; 883 int wildcard; 884 int unit; 885 int error; 886 int vid; 887 int ethertag; 888 struct ifvlan *ifv; 889 struct ifnet *ifp; 890 struct ifnet *p; 891 struct ifaddr *ifa; 892 struct sockaddr_dl *sdl; 893 struct vlanreq vlr; 894 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 895 896 /* 897 * There are 3 (ugh) ways to specify the cloned device: 898 * o pass a parameter block with the clone request. 899 * o specify parameters in the text of the clone device name 900 * o specify no parameters and get an unattached device that 901 * must be configured separately. 902 * The first technique is preferred; the latter two are 903 * supported for backwards compatibility. 904 * 905 * XXXRW: Note historic use of the word "tag" here. New ioctls may be 906 * called for. 907 */ 908 if (params) { 909 error = copyin(params, &vlr, sizeof(vlr)); 910 if (error) 911 return error; 912 p = ifunit(vlr.vlr_parent); 913 if (p == NULL) 914 return (ENXIO); 915 error = ifc_name2unit(name, &unit); 916 if (error != 0) 917 return (error); 918 919 ethertag = 1; 920 vid = vlr.vlr_tag; 921 wildcard = (unit < 0); 922 } else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) { 923 ethertag = 1; 924 unit = -1; 925 wildcard = 0; 926 } else { 927 ethertag = 0; 928 929 error = ifc_name2unit(name, &unit); 930 if (error != 0) 931 return (error); 932 933 wildcard = (unit < 0); 934 } 935 936 error = ifc_alloc_unit(ifc, &unit); 937 if (error != 0) 938 return (error); 939 940 /* In the wildcard case, we need to update the name. */ 941 if (wildcard) { 942 for (dp = name; *dp != '\0'; dp++); 943 if (snprintf(dp, len - (dp-name), "%d", unit) > 944 len - (dp-name) - 1) { 945 panic("%s: interface name too long", __func__); 946 } 947 } 948 949 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 950 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 951 if (ifp == NULL) { 952 ifc_free_unit(ifc, unit); 953 free(ifv, M_VLAN); 954 return (ENOSPC); 955 } 956 SLIST_INIT(&ifv->vlan_mc_listhead); 957 ifp->if_softc = ifv; 958 /* 959 * Set the name manually rather than using if_initname because 960 * we don't conform to the default naming convention for interfaces. 961 */ 962 strlcpy(ifp->if_xname, name, IFNAMSIZ); 963 ifp->if_dname = vlanname; 964 ifp->if_dunit = unit; 965 /* NB: flags are not set here */ 966 ifp->if_linkmib = &ifv->ifv_mib; 967 ifp->if_linkmiblen = sizeof(ifv->ifv_mib); 968 /* NB: mtu is not set here */ 969 970 ifp->if_init = vlan_init; 971 ifp->if_transmit = vlan_transmit; 972 ifp->if_qflush = vlan_qflush; 973 ifp->if_ioctl = vlan_ioctl; 974 ifp->if_flags = VLAN_IFFLAGS; 975 ether_ifattach(ifp, eaddr); 976 /* Now undo some of the damage... */ 977 ifp->if_baudrate = 0; 978 ifp->if_type = IFT_L2VLAN; 979 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 980 ifa = ifp->if_addr; 981 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 982 sdl->sdl_type = IFT_L2VLAN; 983 984 if (ethertag) { 985 error = vlan_config(ifv, p, vid); 986 if (error != 0) { 987 /* 988 * Since we've partially failed, we need to back 989 * out all the way, otherwise userland could get 990 * confused. Thus, we destroy the interface. 991 */ 992 ether_ifdetach(ifp); 993 vlan_unconfig(ifp); 994 if_free(ifp); 995 ifc_free_unit(ifc, unit); 996 free(ifv, M_VLAN); 997 998 return (error); 999 } 1000 1001 /* Update flags on the parent, if necessary. */ 1002 vlan_setflags(ifp, 1); 1003 } 1004 1005 return (0); 1006 } 1007 1008 static int 1009 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) 1010 { 1011 struct ifvlan *ifv = ifp->if_softc; 1012 int unit = ifp->if_dunit; 1013 1014 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 1015 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 1016 if_free(ifp); 1017 free(ifv, M_VLAN); 1018 ifc_free_unit(ifc, unit); 1019 1020 return (0); 1021 } 1022 1023 /* 1024 * The ifp->if_init entry point for vlan(4) is a no-op. 1025 */ 1026 static void 1027 vlan_init(void *foo __unused) 1028 { 1029 } 1030 1031 /* 1032 * The if_transmit method for vlan(4) interface. 1033 */ 1034 static int 1035 vlan_transmit(struct ifnet *ifp, struct mbuf *m) 1036 { 1037 struct ifvlan *ifv; 1038 struct ifnet *p; 1039 struct m_tag *mtag; 1040 uint16_t tag; 1041 int error, len, mcast; 1042 1043 ifv = ifp->if_softc; 1044 p = PARENT(ifv); 1045 len = m->m_pkthdr.len; 1046 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; 1047 1048 BPF_MTAP(ifp, m); 1049 1050 /* 1051 * Do not run parent's if_transmit() if the parent is not up, 1052 * or parent's driver will cause a system crash. 1053 */ 1054 if (!UP_AND_RUNNING(p)) { 1055 m_freem(m); 1056 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1057 return (ENETDOWN); 1058 } 1059 1060 /* 1061 * Pad the frame to the minimum size allowed if told to. 1062 * This option is in accord with IEEE Std 802.1Q, 2003 Ed., 1063 * paragraph C.4.4.3.b. It can help to work around buggy 1064 * bridges that violate paragraph C.4.4.3.a from the same 1065 * document, i.e., fail to pad short frames after untagging. 1066 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but 1067 * untagging it will produce a 62-byte frame, which is a runt 1068 * and requires padding. There are VLAN-enabled network 1069 * devices that just discard such runts instead or mishandle 1070 * them somehow. 1071 */ 1072 if (V_soft_pad && p->if_type == IFT_ETHER) { 1073 static char pad[8]; /* just zeros */ 1074 int n; 1075 1076 for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len; 1077 n > 0; n -= sizeof(pad)) 1078 if (!m_append(m, min(n, sizeof(pad)), pad)) 1079 break; 1080 1081 if (n > 0) { 1082 if_printf(ifp, "cannot pad short frame\n"); 1083 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1084 m_freem(m); 1085 return (0); 1086 } 1087 } 1088 1089 /* 1090 * If underlying interface can do VLAN tag insertion itself, 1091 * just pass the packet along. However, we need some way to 1092 * tell the interface where the packet came from so that it 1093 * knows how to find the VLAN tag to use, so we attach a 1094 * packet tag that holds it. 1095 */ 1096 if (vlan_mtag_pcp && (mtag = m_tag_locate(m, MTAG_8021Q, 1097 MTAG_8021Q_PCP_OUT, NULL)) != NULL) 1098 tag = EVL_MAKETAG(ifv->ifv_vid, *(uint8_t *)(mtag + 1), 0); 1099 else 1100 tag = ifv->ifv_tag; 1101 if (p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1102 m->m_pkthdr.ether_vtag = tag; 1103 m->m_flags |= M_VLANTAG; 1104 } else { 1105 m = ether_vlanencap(m, tag); 1106 if (m == NULL) { 1107 if_printf(ifp, "unable to prepend VLAN header\n"); 1108 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1109 return (0); 1110 } 1111 } 1112 1113 /* 1114 * Send it, precisely as ether_output() would have. 1115 */ 1116 error = (p->if_transmit)(p, m); 1117 if (error == 0) { 1118 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1119 if_inc_counter(ifp, IFCOUNTER_OBYTES, len); 1120 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); 1121 } else 1122 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1123 return (error); 1124 } 1125 1126 /* 1127 * The ifp->if_qflush entry point for vlan(4) is a no-op. 1128 */ 1129 static void 1130 vlan_qflush(struct ifnet *ifp __unused) 1131 { 1132 } 1133 1134 static void 1135 vlan_input(struct ifnet *ifp, struct mbuf *m) 1136 { 1137 struct ifvlantrunk *trunk = ifp->if_vlantrunk; 1138 struct ifvlan *ifv; 1139 TRUNK_LOCK_READER; 1140 struct m_tag *mtag; 1141 uint16_t vid, tag; 1142 1143 KASSERT(trunk != NULL, ("%s: no trunk", __func__)); 1144 1145 if (m->m_flags & M_VLANTAG) { 1146 /* 1147 * Packet is tagged, but m contains a normal 1148 * Ethernet frame; the tag is stored out-of-band. 1149 */ 1150 tag = m->m_pkthdr.ether_vtag; 1151 m->m_flags &= ~M_VLANTAG; 1152 } else { 1153 struct ether_vlan_header *evl; 1154 1155 /* 1156 * Packet is tagged in-band as specified by 802.1q. 1157 */ 1158 switch (ifp->if_type) { 1159 case IFT_ETHER: 1160 if (m->m_len < sizeof(*evl) && 1161 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1162 if_printf(ifp, "cannot pullup VLAN header\n"); 1163 return; 1164 } 1165 evl = mtod(m, struct ether_vlan_header *); 1166 tag = ntohs(evl->evl_tag); 1167 1168 /* 1169 * Remove the 802.1q header by copying the Ethernet 1170 * addresses over it and adjusting the beginning of 1171 * the data in the mbuf. The encapsulated Ethernet 1172 * type field is already in place. 1173 */ 1174 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 1175 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1176 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1177 break; 1178 1179 default: 1180 #ifdef INVARIANTS 1181 panic("%s: %s has unsupported if_type %u", 1182 __func__, ifp->if_xname, ifp->if_type); 1183 #endif 1184 m_freem(m); 1185 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1186 return; 1187 } 1188 } 1189 1190 vid = EVL_VLANOFTAG(tag); 1191 1192 TRUNK_RLOCK(trunk); 1193 ifv = vlan_gethash(trunk, vid); 1194 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 1195 TRUNK_RUNLOCK(trunk); 1196 m_freem(m); 1197 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1198 return; 1199 } 1200 TRUNK_RUNLOCK(trunk); 1201 1202 if (vlan_mtag_pcp) { 1203 /* 1204 * While uncommon, it is possible that we will find a 802.1q 1205 * packet encapsulated inside another packet that also had an 1206 * 802.1q header. For example, ethernet tunneled over IPSEC 1207 * arriving over ethernet. In that case, we replace the 1208 * existing 802.1q PCP m_tag value. 1209 */ 1210 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 1211 if (mtag == NULL) { 1212 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, 1213 sizeof(uint8_t), M_NOWAIT); 1214 if (mtag == NULL) { 1215 m_freem(m); 1216 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1217 return; 1218 } 1219 m_tag_prepend(m, mtag); 1220 } 1221 *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); 1222 } 1223 1224 m->m_pkthdr.rcvif = ifv->ifv_ifp; 1225 if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); 1226 1227 /* Pass it back through the parent's input routine. */ 1228 (*ifp->if_input)(ifv->ifv_ifp, m); 1229 } 1230 1231 static int 1232 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid) 1233 { 1234 struct ifvlantrunk *trunk; 1235 struct ifnet *ifp; 1236 int error = 0; 1237 1238 /* 1239 * We can handle non-ethernet hardware types as long as 1240 * they handle the tagging and headers themselves. 1241 */ 1242 if (p->if_type != IFT_ETHER && 1243 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1244 return (EPROTONOSUPPORT); 1245 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 1246 return (EPROTONOSUPPORT); 1247 /* 1248 * Don't let the caller set up a VLAN VID with 1249 * anything except VLID bits. 1250 * VID numbers 0x0 and 0xFFF are reserved. 1251 */ 1252 if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) 1253 return (EINVAL); 1254 if (ifv->ifv_trunk) 1255 return (EBUSY); 1256 1257 if (p->if_vlantrunk == NULL) { 1258 trunk = malloc(sizeof(struct ifvlantrunk), 1259 M_VLAN, M_WAITOK | M_ZERO); 1260 vlan_inithash(trunk); 1261 VLAN_LOCK(); 1262 if (p->if_vlantrunk != NULL) { 1263 /* A race that is very unlikely to be hit. */ 1264 vlan_freehash(trunk); 1265 free(trunk, M_VLAN); 1266 goto exists; 1267 } 1268 TRUNK_LOCK_INIT(trunk); 1269 TRUNK_LOCK(trunk); 1270 p->if_vlantrunk = trunk; 1271 trunk->parent = p; 1272 } else { 1273 VLAN_LOCK(); 1274 exists: 1275 trunk = p->if_vlantrunk; 1276 TRUNK_LOCK(trunk); 1277 } 1278 1279 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ 1280 ifv->ifv_pcp = 0; /* Default: best effort delivery. */ 1281 vlan_tag_recalculate(ifv); 1282 error = vlan_inshash(trunk, ifv); 1283 if (error) 1284 goto done; 1285 ifv->ifv_proto = ETHERTYPE_VLAN; 1286 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1287 ifv->ifv_mintu = ETHERMIN; 1288 ifv->ifv_pflags = 0; 1289 1290 /* 1291 * If the parent supports the VLAN_MTU capability, 1292 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1293 * use it. 1294 */ 1295 if (p->if_capenable & IFCAP_VLAN_MTU) { 1296 /* 1297 * No need to fudge the MTU since the parent can 1298 * handle extended frames. 1299 */ 1300 ifv->ifv_mtufudge = 0; 1301 } else { 1302 /* 1303 * Fudge the MTU by the encapsulation size. This 1304 * makes us incompatible with strictly compliant 1305 * 802.1Q implementations, but allows us to use 1306 * the feature with other NetBSD implementations, 1307 * which might still be useful. 1308 */ 1309 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1310 } 1311 1312 ifv->ifv_trunk = trunk; 1313 ifp = ifv->ifv_ifp; 1314 /* 1315 * Initialize fields from our parent. This duplicates some 1316 * work with ether_ifattach() but allows for non-ethernet 1317 * interfaces to also work. 1318 */ 1319 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1320 ifp->if_baudrate = p->if_baudrate; 1321 ifp->if_output = p->if_output; 1322 ifp->if_input = p->if_input; 1323 ifp->if_resolvemulti = p->if_resolvemulti; 1324 ifp->if_addrlen = p->if_addrlen; 1325 ifp->if_broadcastaddr = p->if_broadcastaddr; 1326 1327 /* 1328 * Copy only a selected subset of flags from the parent. 1329 * Other flags are none of our business. 1330 */ 1331 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1332 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1333 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1334 #undef VLAN_COPY_FLAGS 1335 1336 ifp->if_link_state = p->if_link_state; 1337 1338 vlan_capabilities(ifv); 1339 1340 /* 1341 * Set up our interface address to reflect the underlying 1342 * physical interface's. 1343 */ 1344 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); 1345 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = 1346 p->if_addrlen; 1347 1348 /* 1349 * Configure multicast addresses that may already be 1350 * joined on the vlan device. 1351 */ 1352 (void)vlan_setmulti(ifp); /* XXX: VLAN lock held */ 1353 1354 /* We are ready for operation now. */ 1355 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1356 done: 1357 TRUNK_UNLOCK(trunk); 1358 if (error == 0) 1359 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); 1360 VLAN_UNLOCK(); 1361 1362 return (error); 1363 } 1364 1365 static void 1366 vlan_unconfig(struct ifnet *ifp) 1367 { 1368 1369 VLAN_LOCK(); 1370 vlan_unconfig_locked(ifp, 0); 1371 VLAN_UNLOCK(); 1372 } 1373 1374 static void 1375 vlan_unconfig_locked(struct ifnet *ifp, int departing) 1376 { 1377 struct ifvlantrunk *trunk; 1378 struct vlan_mc_entry *mc; 1379 struct ifvlan *ifv; 1380 struct ifnet *parent; 1381 int error; 1382 1383 VLAN_LOCK_ASSERT(); 1384 1385 ifv = ifp->if_softc; 1386 trunk = ifv->ifv_trunk; 1387 parent = NULL; 1388 1389 if (trunk != NULL) { 1390 1391 TRUNK_LOCK(trunk); 1392 parent = trunk->parent; 1393 1394 /* 1395 * Since the interface is being unconfigured, we need to 1396 * empty the list of multicast groups that we may have joined 1397 * while we were alive from the parent's list. 1398 */ 1399 while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1400 /* 1401 * If the parent interface is being detached, 1402 * all its multicast addresses have already 1403 * been removed. Warn about errors if 1404 * if_delmulti() does fail, but don't abort as 1405 * all callers expect vlan destruction to 1406 * succeed. 1407 */ 1408 if (!departing) { 1409 error = if_delmulti(parent, 1410 (struct sockaddr *)&mc->mc_addr); 1411 if (error) 1412 if_printf(ifp, 1413 "Failed to delete multicast address from parent: %d\n", 1414 error); 1415 } 1416 SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1417 free(mc, M_VLAN); 1418 } 1419 1420 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1421 vlan_remhash(trunk, ifv); 1422 ifv->ifv_trunk = NULL; 1423 1424 /* 1425 * Check if we were the last. 1426 */ 1427 if (trunk->refcnt == 0) { 1428 parent->if_vlantrunk = NULL; 1429 /* 1430 * XXXGL: If some ithread has already entered 1431 * vlan_input() and is now blocked on the trunk 1432 * lock, then it should preempt us right after 1433 * unlock and finish its work. Then we will acquire 1434 * lock again in trunk_destroy(). 1435 */ 1436 TRUNK_UNLOCK(trunk); 1437 trunk_destroy(trunk); 1438 } else 1439 TRUNK_UNLOCK(trunk); 1440 } 1441 1442 /* Disconnect from parent. */ 1443 if (ifv->ifv_pflags) 1444 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1445 ifp->if_mtu = ETHERMTU; 1446 ifp->if_link_state = LINK_STATE_UNKNOWN; 1447 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1448 1449 /* 1450 * Only dispatch an event if vlan was 1451 * attached, otherwise there is nothing 1452 * to cleanup anyway. 1453 */ 1454 if (parent != NULL) 1455 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); 1456 } 1457 1458 /* Handle a reference counted flag that should be set on the parent as well */ 1459 static int 1460 vlan_setflag(struct ifnet *ifp, int flag, int status, 1461 int (*func)(struct ifnet *, int)) 1462 { 1463 struct ifvlan *ifv; 1464 int error; 1465 1466 /* XXX VLAN_LOCK_ASSERT(); */ 1467 1468 ifv = ifp->if_softc; 1469 status = status ? (ifp->if_flags & flag) : 0; 1470 /* Now "status" contains the flag value or 0 */ 1471 1472 /* 1473 * See if recorded parent's status is different from what 1474 * we want it to be. If it is, flip it. We record parent's 1475 * status in ifv_pflags so that we won't clear parent's flag 1476 * we haven't set. In fact, we don't clear or set parent's 1477 * flags directly, but get or release references to them. 1478 * That's why we can be sure that recorded flags still are 1479 * in accord with actual parent's flags. 1480 */ 1481 if (status != (ifv->ifv_pflags & flag)) { 1482 error = (*func)(PARENT(ifv), status); 1483 if (error) 1484 return (error); 1485 ifv->ifv_pflags &= ~flag; 1486 ifv->ifv_pflags |= status; 1487 } 1488 return (0); 1489 } 1490 1491 /* 1492 * Handle IFF_* flags that require certain changes on the parent: 1493 * if "status" is true, update parent's flags respective to our if_flags; 1494 * if "status" is false, forcedly clear the flags set on parent. 1495 */ 1496 static int 1497 vlan_setflags(struct ifnet *ifp, int status) 1498 { 1499 int error, i; 1500 1501 for (i = 0; vlan_pflags[i].flag; i++) { 1502 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1503 status, vlan_pflags[i].func); 1504 if (error) 1505 return (error); 1506 } 1507 return (0); 1508 } 1509 1510 /* Inform all vlans that their parent has changed link state */ 1511 static void 1512 vlan_link_state(struct ifnet *ifp) 1513 { 1514 struct ifvlantrunk *trunk = ifp->if_vlantrunk; 1515 struct ifvlan *ifv; 1516 int i; 1517 1518 TRUNK_LOCK(trunk); 1519 #ifdef VLAN_ARRAY 1520 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 1521 if (trunk->vlans[i] != NULL) { 1522 ifv = trunk->vlans[i]; 1523 #else 1524 for (i = 0; i < (1 << trunk->hwidth); i++) 1525 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) { 1526 #endif 1527 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 1528 if_link_state_change(ifv->ifv_ifp, 1529 trunk->parent->if_link_state); 1530 } 1531 TRUNK_UNLOCK(trunk); 1532 } 1533 1534 static void 1535 vlan_capabilities(struct ifvlan *ifv) 1536 { 1537 struct ifnet *p = PARENT(ifv); 1538 struct ifnet *ifp = ifv->ifv_ifp; 1539 struct ifnet_hw_tsomax hw_tsomax; 1540 1541 TRUNK_LOCK_ASSERT(TRUNK(ifv)); 1542 1543 /* 1544 * If the parent interface can do checksum offloading 1545 * on VLANs, then propagate its hardware-assisted 1546 * checksumming flags. Also assert that checksum 1547 * offloading requires hardware VLAN tagging. 1548 */ 1549 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1550 ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM; 1551 1552 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 1553 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1554 ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM; 1555 ifp->if_hwassist = p->if_hwassist & (CSUM_IP | CSUM_TCP | 1556 CSUM_UDP | CSUM_SCTP); 1557 } else { 1558 ifp->if_capenable = 0; 1559 ifp->if_hwassist = 0; 1560 } 1561 /* 1562 * If the parent interface can do TSO on VLANs then 1563 * propagate the hardware-assisted flag. TSO on VLANs 1564 * does not necessarily require hardware VLAN tagging. 1565 */ 1566 memset(&hw_tsomax, 0, sizeof(hw_tsomax)); 1567 if_hw_tsomax_common(p, &hw_tsomax); 1568 if_hw_tsomax_update(ifp, &hw_tsomax); 1569 if (p->if_capabilities & IFCAP_VLAN_HWTSO) 1570 ifp->if_capabilities |= p->if_capabilities & IFCAP_TSO; 1571 if (p->if_capenable & IFCAP_VLAN_HWTSO) { 1572 ifp->if_capenable |= p->if_capenable & IFCAP_TSO; 1573 ifp->if_hwassist |= p->if_hwassist & CSUM_TSO; 1574 } else { 1575 ifp->if_capenable &= ~(p->if_capenable & IFCAP_TSO); 1576 ifp->if_hwassist &= ~(p->if_hwassist & CSUM_TSO); 1577 } 1578 1579 /* 1580 * If the parent interface can offload TCP connections over VLANs then 1581 * propagate its TOE capability to the VLAN interface. 1582 * 1583 * All TOE drivers in the tree today can deal with VLANs. If this 1584 * changes then IFCAP_VLAN_TOE should be promoted to a full capability 1585 * with its own bit. 1586 */ 1587 #define IFCAP_VLAN_TOE IFCAP_TOE 1588 if (p->if_capabilities & IFCAP_VLAN_TOE) 1589 ifp->if_capabilities |= p->if_capabilities & IFCAP_TOE; 1590 if (p->if_capenable & IFCAP_VLAN_TOE) { 1591 TOEDEV(ifp) = TOEDEV(p); 1592 ifp->if_capenable |= p->if_capenable & IFCAP_TOE; 1593 } 1594 } 1595 1596 static void 1597 vlan_trunk_capabilities(struct ifnet *ifp) 1598 { 1599 struct ifvlantrunk *trunk = ifp->if_vlantrunk; 1600 struct ifvlan *ifv; 1601 int i; 1602 1603 TRUNK_LOCK(trunk); 1604 #ifdef VLAN_ARRAY 1605 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 1606 if (trunk->vlans[i] != NULL) { 1607 ifv = trunk->vlans[i]; 1608 #else 1609 for (i = 0; i < (1 << trunk->hwidth); i++) { 1610 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 1611 #endif 1612 vlan_capabilities(ifv); 1613 } 1614 TRUNK_UNLOCK(trunk); 1615 } 1616 1617 static int 1618 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1619 { 1620 struct ifnet *p; 1621 struct ifreq *ifr; 1622 struct ifaddr *ifa; 1623 struct ifvlan *ifv; 1624 struct ifvlantrunk *trunk; 1625 struct vlanreq vlr; 1626 int error = 0; 1627 1628 ifr = (struct ifreq *)data; 1629 ifa = (struct ifaddr *) data; 1630 ifv = ifp->if_softc; 1631 1632 switch (cmd) { 1633 case SIOCSIFADDR: 1634 ifp->if_flags |= IFF_UP; 1635 #ifdef INET 1636 if (ifa->ifa_addr->sa_family == AF_INET) 1637 arp_ifinit(ifp, ifa); 1638 #endif 1639 break; 1640 case SIOCGIFADDR: 1641 { 1642 struct sockaddr *sa; 1643 1644 sa = (struct sockaddr *)&ifr->ifr_data; 1645 bcopy(IF_LLADDR(ifp), sa->sa_data, ifp->if_addrlen); 1646 } 1647 break; 1648 case SIOCGIFMEDIA: 1649 VLAN_LOCK(); 1650 if (TRUNK(ifv) != NULL) { 1651 p = PARENT(ifv); 1652 VLAN_UNLOCK(); 1653 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); 1654 /* Limit the result to the parent's current config. */ 1655 if (error == 0) { 1656 struct ifmediareq *ifmr; 1657 1658 ifmr = (struct ifmediareq *)data; 1659 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 1660 ifmr->ifm_count = 1; 1661 error = copyout(&ifmr->ifm_current, 1662 ifmr->ifm_ulist, 1663 sizeof(int)); 1664 } 1665 } 1666 } else { 1667 VLAN_UNLOCK(); 1668 error = EINVAL; 1669 } 1670 break; 1671 1672 case SIOCSIFMEDIA: 1673 error = EINVAL; 1674 break; 1675 1676 case SIOCSIFMTU: 1677 /* 1678 * Set the interface MTU. 1679 */ 1680 VLAN_LOCK(); 1681 if (TRUNK(ifv) != NULL) { 1682 if (ifr->ifr_mtu > 1683 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 1684 ifr->ifr_mtu < 1685 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 1686 error = EINVAL; 1687 else 1688 ifp->if_mtu = ifr->ifr_mtu; 1689 } else 1690 error = EINVAL; 1691 VLAN_UNLOCK(); 1692 break; 1693 1694 case SIOCSETVLAN: 1695 #ifdef VIMAGE 1696 /* 1697 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN 1698 * interface to be delegated to a jail without allowing the 1699 * jail to change what underlying interface/VID it is 1700 * associated with. We are not entirely convinced that this 1701 * is the right way to accomplish that policy goal. 1702 */ 1703 if (ifp->if_vnet != ifp->if_home_vnet) { 1704 error = EPERM; 1705 break; 1706 } 1707 #endif 1708 error = copyin(ifr->ifr_data, &vlr, sizeof(vlr)); 1709 if (error) 1710 break; 1711 if (vlr.vlr_parent[0] == '\0') { 1712 vlan_unconfig(ifp); 1713 break; 1714 } 1715 p = ifunit(vlr.vlr_parent); 1716 if (p == NULL) { 1717 error = ENOENT; 1718 break; 1719 } 1720 error = vlan_config(ifv, p, vlr.vlr_tag); 1721 if (error) 1722 break; 1723 1724 /* Update flags on the parent, if necessary. */ 1725 vlan_setflags(ifp, 1); 1726 break; 1727 1728 case SIOCGETVLAN: 1729 #ifdef VIMAGE 1730 if (ifp->if_vnet != ifp->if_home_vnet) { 1731 error = EPERM; 1732 break; 1733 } 1734 #endif 1735 bzero(&vlr, sizeof(vlr)); 1736 VLAN_LOCK(); 1737 if (TRUNK(ifv) != NULL) { 1738 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 1739 sizeof(vlr.vlr_parent)); 1740 vlr.vlr_tag = ifv->ifv_vid; 1741 } 1742 VLAN_UNLOCK(); 1743 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr)); 1744 break; 1745 1746 case SIOCSIFFLAGS: 1747 /* 1748 * We should propagate selected flags to the parent, 1749 * e.g., promiscuous mode. 1750 */ 1751 if (TRUNK(ifv) != NULL) 1752 error = vlan_setflags(ifp, 1); 1753 break; 1754 1755 case SIOCADDMULTI: 1756 case SIOCDELMULTI: 1757 /* 1758 * If we don't have a parent, just remember the membership for 1759 * when we do. 1760 */ 1761 trunk = TRUNK(ifv); 1762 if (trunk != NULL) { 1763 TRUNK_LOCK(trunk); 1764 error = vlan_setmulti(ifp); 1765 TRUNK_UNLOCK(trunk); 1766 } 1767 break; 1768 1769 case SIOCGVLANPCP: 1770 #ifdef VIMAGE 1771 if (ifp->if_vnet != ifp->if_home_vnet) { 1772 error = EPERM; 1773 break; 1774 } 1775 #endif 1776 ifr->ifr_vlan_pcp = ifv->ifv_pcp; 1777 break; 1778 1779 case SIOCSVLANPCP: 1780 #ifdef VIMAGE 1781 if (ifp->if_vnet != ifp->if_home_vnet) { 1782 error = EPERM; 1783 break; 1784 } 1785 #endif 1786 error = priv_check(curthread, PRIV_NET_SETVLANPCP); 1787 if (error) 1788 break; 1789 if (ifr->ifr_vlan_pcp > 7) { 1790 error = EINVAL; 1791 break; 1792 } 1793 ifv->ifv_pcp = ifr->ifr_vlan_pcp; 1794 vlan_tag_recalculate(ifv); 1795 break; 1796 1797 default: 1798 error = EINVAL; 1799 break; 1800 } 1801 1802 return (error); 1803 } 1804