1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * Copyright 2012 ADARA Networks, Inc. 4 * Copyright 2017 Dell EMC Isilon 5 * 6 * Portions of this software were developed by Robert N. M. Watson under 7 * contract to ADARA Networks, Inc. 8 * 9 * Permission to use, copy, modify, and distribute this software and 10 * its documentation for any purpose and without fee is hereby 11 * granted, provided that both the above copyright notice and this 12 * permission notice appear in all copies, that both the above 13 * copyright notice and this permission notice appear in all 14 * supporting documentation, and that the name of M.I.T. not be used 15 * in advertising or publicity pertaining to distribution of the 16 * software without specific, written prior permission. M.I.T. makes 17 * no representations about the suitability of this software for any 18 * purpose. It is provided "as is" without express or implied 19 * warranty. 20 * 21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 37 * This is sort of sneaky in the implementation, since 38 * we need to pretend to be enough of an Ethernet implementation 39 * to make arp work. The way we do this is by telling everyone 40 * that we are an Ethernet, and then catch the packets that 41 * ether_output() sends to us via if_transmit(), rewrite them for 42 * use by the real outgoing interface, and ask it to send them. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_inet.h" 49 #include "opt_inet6.h" 50 #include "opt_kern_tls.h" 51 #include "opt_vlan.h" 52 #include "opt_ratelimit.h" 53 54 #include <sys/param.h> 55 #include <sys/eventhandler.h> 56 #include <sys/kernel.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mbuf.h> 60 #include <sys/module.h> 61 #include <sys/rmlock.h> 62 #include <sys/priv.h> 63 #include <sys/queue.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/sysctl.h> 67 #include <sys/systm.h> 68 #include <sys/sx.h> 69 #include <sys/taskqueue.h> 70 71 #include <net/bpf.h> 72 #include <net/ethernet.h> 73 #include <net/if.h> 74 #include <net/if_var.h> 75 #include <net/if_private.h> 76 #include <net/if_clone.h> 77 #include <net/if_dl.h> 78 #include <net/if_types.h> 79 #include <net/if_vlan_var.h> 80 #include <net/route.h> 81 #include <net/vnet.h> 82 83 #ifdef INET 84 #include <netinet/in.h> 85 #include <netinet/if_ether.h> 86 #endif 87 88 #ifdef INET6 89 /* 90 * XXX: declare here to avoid to include many inet6 related files.. 91 * should be more generalized? 92 */ 93 extern void nd6_setmtu(struct ifnet *); 94 #endif 95 96 #define VLAN_DEF_HWIDTH 4 97 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 98 99 #define UP_AND_RUNNING(ifp) \ 100 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 101 102 CK_SLIST_HEAD(ifvlanhead, ifvlan); 103 104 struct ifvlantrunk { 105 struct ifnet *parent; /* parent interface of this trunk */ 106 struct mtx lock; 107 #ifdef VLAN_ARRAY 108 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 109 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 110 #else 111 struct ifvlanhead *hash; /* dynamic hash-list table */ 112 uint16_t hmask; 113 uint16_t hwidth; 114 #endif 115 int refcnt; 116 }; 117 118 #if defined(KERN_TLS) || defined(RATELIMIT) 119 struct vlan_snd_tag { 120 struct m_snd_tag com; 121 struct m_snd_tag *tag; 122 }; 123 124 static inline struct vlan_snd_tag * 125 mst_to_vst(struct m_snd_tag *mst) 126 { 127 128 return (__containerof(mst, struct vlan_snd_tag, com)); 129 } 130 #endif 131 132 /* 133 * This macro provides a facility to iterate over every vlan on a trunk with 134 * the assumption that none will be added/removed during iteration. 135 */ 136 #ifdef VLAN_ARRAY 137 #define VLAN_FOREACH(_ifv, _trunk) \ 138 size_t _i; \ 139 for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ 140 if (((_ifv) = (_trunk)->vlans[_i]) != NULL) 141 #else /* VLAN_ARRAY */ 142 #define VLAN_FOREACH(_ifv, _trunk) \ 143 struct ifvlan *_next; \ 144 size_t _i; \ 145 for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ 146 CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) 147 #endif /* VLAN_ARRAY */ 148 149 /* 150 * This macro provides a facility to iterate over every vlan on a trunk while 151 * also modifying the number of vlans on the trunk. The iteration continues 152 * until some condition is met or there are no more vlans on the trunk. 153 */ 154 #ifdef VLAN_ARRAY 155 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ 156 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 157 size_t _i; \ 158 for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ 159 if (((_ifv) = (_trunk)->vlans[_i])) 160 #else /* VLAN_ARRAY */ 161 /* 162 * The hash table case is more complicated. We allow for the hash table to be 163 * modified (i.e. vlans removed) while we are iterating over it. To allow for 164 * this we must restart the iteration every time we "touch" something during 165 * the iteration, since removal will resize the hash table and invalidate our 166 * current position. If acting on the touched element causes the trunk to be 167 * emptied, then iteration also stops. 168 */ 169 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 170 size_t _i; \ 171 bool _touch = false; \ 172 for (_i = 0; \ 173 !(_cond) && _i < (1 << (_trunk)->hwidth); \ 174 _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ 175 if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ 176 (_touch = true)) 177 #endif /* VLAN_ARRAY */ 178 179 struct vlan_mc_entry { 180 struct sockaddr_dl mc_addr; 181 CK_SLIST_ENTRY(vlan_mc_entry) mc_entries; 182 struct epoch_context mc_epoch_ctx; 183 }; 184 185 struct ifvlan { 186 struct ifvlantrunk *ifv_trunk; 187 struct ifnet *ifv_ifp; 188 #define TRUNK(ifv) ((ifv)->ifv_trunk) 189 #define PARENT(ifv) (TRUNK(ifv)->parent) 190 void *ifv_cookie; 191 int ifv_pflags; /* special flags we have set on parent */ 192 int ifv_capenable; 193 int ifv_encaplen; /* encapsulation length */ 194 int ifv_mtufudge; /* MTU fudged by this much */ 195 int ifv_mintu; /* min transmission unit */ 196 struct ether_8021q_tag ifv_qtag; 197 #define ifv_proto ifv_qtag.proto 198 #define ifv_vid ifv_qtag.vid 199 #define ifv_pcp ifv_qtag.pcp 200 struct task lladdr_task; 201 CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 202 #ifndef VLAN_ARRAY 203 CK_SLIST_ENTRY(ifvlan) ifv_list; 204 #endif 205 }; 206 207 /* Special flags we should propagate to parent. */ 208 static struct { 209 int flag; 210 int (*func)(struct ifnet *, int); 211 } vlan_pflags[] = { 212 {IFF_PROMISC, ifpromisc}, 213 {IFF_ALLMULTI, if_allmulti}, 214 {0, NULL} 215 }; 216 217 VNET_DECLARE(int, vlan_mtag_pcp); 218 #define V_vlan_mtag_pcp VNET(vlan_mtag_pcp) 219 220 static const char vlanname[] = "vlan"; 221 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); 222 223 static eventhandler_tag ifdetach_tag; 224 static eventhandler_tag iflladdr_tag; 225 static eventhandler_tag ifevent_tag; 226 227 /* 228 * if_vlan uses two module-level synchronizations primitives to allow concurrent 229 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed 230 * while they are being used for tx/rx. To accomplish this in a way that has 231 * acceptable performance and cooperation with other parts of the network stack 232 * there is a non-sleepable epoch(9) and an sx(9). 233 * 234 * The performance-sensitive paths that warrant using the epoch(9) are 235 * vlan_transmit and vlan_input. Both have to check for the vlan interface's 236 * existence using if_vlantrunk, and being in the network tx/rx paths the use 237 * of an epoch(9) gives a measureable improvement in performance. 238 * 239 * The reason for having an sx(9) is mostly because there are still areas that 240 * must be sleepable and also have safe concurrent access to a vlan interface. 241 * Since the sx(9) exists, it is used by default in most paths unless sleeping 242 * is not permitted, or if it is not clear whether sleeping is permitted. 243 * 244 */ 245 #define _VLAN_SX_ID ifv_sx 246 247 static struct sx _VLAN_SX_ID; 248 249 #define VLAN_LOCKING_INIT() \ 250 sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE) 251 252 #define VLAN_LOCKING_DESTROY() \ 253 sx_destroy(&_VLAN_SX_ID) 254 255 #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) 256 #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) 257 #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) 258 #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) 259 #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) 260 #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) 261 #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) 262 263 /* 264 * We also have a per-trunk mutex that should be acquired when changing 265 * its state. 266 */ 267 #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF) 268 #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock) 269 #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock) 270 #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock) 271 #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED); 272 273 /* 274 * The VLAN_ARRAY substitutes the dynamic hash with a static array 275 * with 4096 entries. In theory this can give a boost in processing, 276 * however in practice it does not. Probably this is because the array 277 * is too big to fit into CPU cache. 278 */ 279 #ifndef VLAN_ARRAY 280 static void vlan_inithash(struct ifvlantrunk *trunk); 281 static void vlan_freehash(struct ifvlantrunk *trunk); 282 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 283 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 284 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 285 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 286 uint16_t vid); 287 #endif 288 static void trunk_destroy(struct ifvlantrunk *trunk); 289 290 static void vlan_init(void *foo); 291 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 292 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 293 #if defined(KERN_TLS) || defined(RATELIMIT) 294 static int vlan_snd_tag_alloc(struct ifnet *, 295 union if_snd_tag_alloc_params *, struct m_snd_tag **); 296 static int vlan_snd_tag_modify(struct m_snd_tag *, 297 union if_snd_tag_modify_params *); 298 static int vlan_snd_tag_query(struct m_snd_tag *, 299 union if_snd_tag_query_params *); 300 static void vlan_snd_tag_free(struct m_snd_tag *); 301 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *); 302 static void vlan_ratelimit_query(struct ifnet *, 303 struct if_ratelimit_query_results *); 304 #endif 305 static void vlan_qflush(struct ifnet *ifp); 306 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 307 int (*func)(struct ifnet *, int)); 308 static int vlan_setflags(struct ifnet *ifp, int status); 309 static int vlan_setmulti(struct ifnet *ifp); 310 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); 311 #ifdef ALTQ 312 static void vlan_altq_start(struct ifnet *ifp); 313 static int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m); 314 #endif 315 static int vlan_output(struct ifnet *ifp, struct mbuf *m, 316 const struct sockaddr *dst, struct route *ro); 317 static void vlan_unconfig(struct ifnet *ifp); 318 static void vlan_unconfig_locked(struct ifnet *ifp, int departing); 319 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag, 320 uint16_t proto); 321 static void vlan_link_state(struct ifnet *ifp); 322 static void vlan_capabilities(struct ifvlan *ifv); 323 static void vlan_trunk_capabilities(struct ifnet *ifp); 324 325 static struct ifnet *vlan_clone_match_ethervid(const char *, int *); 326 static int vlan_clone_match(struct if_clone *, const char *); 327 static int vlan_clone_create(struct if_clone *, char *, size_t, 328 struct ifc_data *, struct ifnet **); 329 static int vlan_clone_destroy(struct if_clone *, struct ifnet *, uint32_t); 330 331 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 332 static void vlan_iflladdr(void *arg, struct ifnet *ifp); 333 static void vlan_ifevent(void *arg, struct ifnet *ifp, int event); 334 335 static void vlan_lladdr_fn(void *arg, int pending); 336 337 static struct if_clone *vlan_cloner; 338 339 #ifdef VIMAGE 340 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); 341 #define V_vlan_cloner VNET(vlan_cloner) 342 #endif 343 344 #ifdef RATELIMIT 345 static const struct if_snd_tag_sw vlan_snd_tag_ul_sw = { 346 .snd_tag_modify = vlan_snd_tag_modify, 347 .snd_tag_query = vlan_snd_tag_query, 348 .snd_tag_free = vlan_snd_tag_free, 349 .next_snd_tag = vlan_next_snd_tag, 350 .type = IF_SND_TAG_TYPE_UNLIMITED 351 }; 352 353 static const struct if_snd_tag_sw vlan_snd_tag_rl_sw = { 354 .snd_tag_modify = vlan_snd_tag_modify, 355 .snd_tag_query = vlan_snd_tag_query, 356 .snd_tag_free = vlan_snd_tag_free, 357 .next_snd_tag = vlan_next_snd_tag, 358 .type = IF_SND_TAG_TYPE_RATE_LIMIT 359 }; 360 #endif 361 362 #ifdef KERN_TLS 363 static const struct if_snd_tag_sw vlan_snd_tag_tls_sw = { 364 .snd_tag_modify = vlan_snd_tag_modify, 365 .snd_tag_query = vlan_snd_tag_query, 366 .snd_tag_free = vlan_snd_tag_free, 367 .next_snd_tag = vlan_next_snd_tag, 368 .type = IF_SND_TAG_TYPE_TLS 369 }; 370 371 #ifdef RATELIMIT 372 static const struct if_snd_tag_sw vlan_snd_tag_tls_rl_sw = { 373 .snd_tag_modify = vlan_snd_tag_modify, 374 .snd_tag_query = vlan_snd_tag_query, 375 .snd_tag_free = vlan_snd_tag_free, 376 .next_snd_tag = vlan_next_snd_tag, 377 .type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT 378 }; 379 #endif 380 #endif 381 382 static void 383 vlan_mc_free(struct epoch_context *ctx) 384 { 385 struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx); 386 free(mc, M_VLAN); 387 } 388 389 #ifndef VLAN_ARRAY 390 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 391 392 static void 393 vlan_inithash(struct ifvlantrunk *trunk) 394 { 395 int i, n; 396 397 /* 398 * The trunk must not be locked here since we call malloc(M_WAITOK). 399 * It is OK in case this function is called before the trunk struct 400 * gets hooked up and becomes visible from other threads. 401 */ 402 403 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 404 ("%s: hash already initialized", __func__)); 405 406 trunk->hwidth = VLAN_DEF_HWIDTH; 407 n = 1 << trunk->hwidth; 408 trunk->hmask = n - 1; 409 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 410 for (i = 0; i < n; i++) 411 CK_SLIST_INIT(&trunk->hash[i]); 412 } 413 414 static void 415 vlan_freehash(struct ifvlantrunk *trunk) 416 { 417 #ifdef INVARIANTS 418 int i; 419 420 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 421 for (i = 0; i < (1 << trunk->hwidth); i++) 422 KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]), 423 ("%s: hash table not empty", __func__)); 424 #endif 425 free(trunk->hash, M_VLAN); 426 trunk->hash = NULL; 427 trunk->hwidth = trunk->hmask = 0; 428 } 429 430 static int 431 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 432 { 433 int i, b; 434 struct ifvlan *ifv2; 435 436 VLAN_XLOCK_ASSERT(); 437 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 438 439 b = 1 << trunk->hwidth; 440 i = HASH(ifv->ifv_vid, trunk->hmask); 441 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 442 if (ifv->ifv_vid == ifv2->ifv_vid) 443 return (EEXIST); 444 445 /* 446 * Grow the hash when the number of vlans exceeds half of the number of 447 * hash buckets squared. This will make the average linked-list length 448 * buckets/2. 449 */ 450 if (trunk->refcnt > (b * b) / 2) { 451 vlan_growhash(trunk, 1); 452 i = HASH(ifv->ifv_vid, trunk->hmask); 453 } 454 CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 455 trunk->refcnt++; 456 457 return (0); 458 } 459 460 static int 461 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 462 { 463 int i, b; 464 struct ifvlan *ifv2; 465 466 VLAN_XLOCK_ASSERT(); 467 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 468 469 b = 1 << (trunk->hwidth - 1); 470 i = HASH(ifv->ifv_vid, trunk->hmask); 471 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 472 if (ifv2 == ifv) { 473 trunk->refcnt--; 474 CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list); 475 if (trunk->refcnt < (b * b) / 2) 476 vlan_growhash(trunk, -1); 477 return (0); 478 } 479 480 panic("%s: vlan not found\n", __func__); 481 return (ENOENT); /*NOTREACHED*/ 482 } 483 484 /* 485 * Grow the hash larger or smaller if memory permits. 486 */ 487 static void 488 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 489 { 490 struct ifvlan *ifv; 491 struct ifvlanhead *hash2; 492 int hwidth2, i, j, n, n2; 493 494 VLAN_XLOCK_ASSERT(); 495 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 496 497 if (howmuch == 0) { 498 /* Harmless yet obvious coding error */ 499 printf("%s: howmuch is 0\n", __func__); 500 return; 501 } 502 503 hwidth2 = trunk->hwidth + howmuch; 504 n = 1 << trunk->hwidth; 505 n2 = 1 << hwidth2; 506 /* Do not shrink the table below the default */ 507 if (hwidth2 < VLAN_DEF_HWIDTH) 508 return; 509 510 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK); 511 if (hash2 == NULL) { 512 printf("%s: out of memory -- hash size not changed\n", 513 __func__); 514 return; /* We can live with the old hash table */ 515 } 516 for (j = 0; j < n2; j++) 517 CK_SLIST_INIT(&hash2[j]); 518 for (i = 0; i < n; i++) 519 while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) { 520 CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list); 521 j = HASH(ifv->ifv_vid, n2 - 1); 522 CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 523 } 524 NET_EPOCH_WAIT(); 525 free(trunk->hash, M_VLAN); 526 trunk->hash = hash2; 527 trunk->hwidth = hwidth2; 528 trunk->hmask = n2 - 1; 529 530 if (bootverbose) 531 if_printf(trunk->parent, 532 "VLAN hash table resized from %d to %d buckets\n", n, n2); 533 } 534 535 static __inline struct ifvlan * 536 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 537 { 538 struct ifvlan *ifv; 539 540 NET_EPOCH_ASSERT(); 541 542 CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) 543 if (ifv->ifv_vid == vid) 544 return (ifv); 545 return (NULL); 546 } 547 548 #if 0 549 /* Debugging code to view the hashtables. */ 550 static void 551 vlan_dumphash(struct ifvlantrunk *trunk) 552 { 553 int i; 554 struct ifvlan *ifv; 555 556 for (i = 0; i < (1 << trunk->hwidth); i++) { 557 printf("%d: ", i); 558 CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 559 printf("%s ", ifv->ifv_ifp->if_xname); 560 printf("\n"); 561 } 562 } 563 #endif /* 0 */ 564 #else 565 566 static __inline struct ifvlan * 567 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 568 { 569 570 return trunk->vlans[vid]; 571 } 572 573 static __inline int 574 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 575 { 576 577 if (trunk->vlans[ifv->ifv_vid] != NULL) 578 return EEXIST; 579 trunk->vlans[ifv->ifv_vid] = ifv; 580 trunk->refcnt++; 581 582 return (0); 583 } 584 585 static __inline int 586 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 587 { 588 589 trunk->vlans[ifv->ifv_vid] = NULL; 590 trunk->refcnt--; 591 592 return (0); 593 } 594 595 static __inline void 596 vlan_freehash(struct ifvlantrunk *trunk) 597 { 598 } 599 600 static __inline void 601 vlan_inithash(struct ifvlantrunk *trunk) 602 { 603 } 604 605 #endif /* !VLAN_ARRAY */ 606 607 static void 608 trunk_destroy(struct ifvlantrunk *trunk) 609 { 610 VLAN_XLOCK_ASSERT(); 611 612 vlan_freehash(trunk); 613 trunk->parent->if_vlantrunk = NULL; 614 TRUNK_LOCK_DESTROY(trunk); 615 if_rele(trunk->parent); 616 free(trunk, M_VLAN); 617 } 618 619 /* 620 * Program our multicast filter. What we're actually doing is 621 * programming the multicast filter of the parent. This has the 622 * side effect of causing the parent interface to receive multicast 623 * traffic that it doesn't really want, which ends up being discarded 624 * later by the upper protocol layers. Unfortunately, there's no way 625 * to avoid this: there really is only one physical interface. 626 */ 627 static int 628 vlan_setmulti(struct ifnet *ifp) 629 { 630 struct ifnet *ifp_p; 631 struct ifmultiaddr *ifma; 632 struct ifvlan *sc; 633 struct vlan_mc_entry *mc; 634 int error; 635 636 VLAN_XLOCK_ASSERT(); 637 638 /* Find the parent. */ 639 sc = ifp->if_softc; 640 ifp_p = PARENT(sc); 641 642 CURVNET_SET_QUIET(ifp_p->if_vnet); 643 644 /* First, remove any existing filter entries. */ 645 while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 646 CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 647 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); 648 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 649 } 650 651 /* Now program new ones. */ 652 IF_ADDR_WLOCK(ifp); 653 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 654 if (ifma->ifma_addr->sa_family != AF_LINK) 655 continue; 656 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 657 if (mc == NULL) { 658 IF_ADDR_WUNLOCK(ifp); 659 CURVNET_RESTORE(); 660 return (ENOMEM); 661 } 662 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); 663 mc->mc_addr.sdl_index = ifp_p->if_index; 664 CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 665 } 666 IF_ADDR_WUNLOCK(ifp); 667 CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { 668 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, 669 NULL); 670 if (error) { 671 CURVNET_RESTORE(); 672 return (error); 673 } 674 } 675 676 CURVNET_RESTORE(); 677 return (0); 678 } 679 680 /* 681 * A handler for interface ifnet events. 682 */ 683 static void 684 vlan_ifevent(void *arg __unused, struct ifnet *ifp, int event) 685 { 686 struct epoch_tracker et; 687 struct ifvlan *ifv; 688 struct ifvlantrunk *trunk; 689 690 if (event != IFNET_EVENT_UPDATE_BAUDRATE) 691 return; 692 693 NET_EPOCH_ENTER(et); 694 trunk = ifp->if_vlantrunk; 695 if (trunk == NULL) { 696 NET_EPOCH_EXIT(et); 697 return; 698 } 699 700 TRUNK_WLOCK(trunk); 701 VLAN_FOREACH(ifv, trunk) { 702 ifv->ifv_ifp->if_baudrate = ifp->if_baudrate; 703 } 704 TRUNK_WUNLOCK(trunk); 705 NET_EPOCH_EXIT(et); 706 } 707 708 /* 709 * A handler for parent interface link layer address changes. 710 * If the parent interface link layer address is changed we 711 * should also change it on all children vlans. 712 */ 713 static void 714 vlan_iflladdr(void *arg __unused, struct ifnet *ifp) 715 { 716 struct epoch_tracker et; 717 struct ifvlan *ifv; 718 struct ifnet *ifv_ifp; 719 struct ifvlantrunk *trunk; 720 struct sockaddr_dl *sdl; 721 722 /* Need the epoch since this is run on taskqueue_swi. */ 723 NET_EPOCH_ENTER(et); 724 trunk = ifp->if_vlantrunk; 725 if (trunk == NULL) { 726 NET_EPOCH_EXIT(et); 727 return; 728 } 729 730 /* 731 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. 732 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR 733 * ioctl calls on the parent garbling the lladdr of the child vlan. 734 */ 735 TRUNK_WLOCK(trunk); 736 VLAN_FOREACH(ifv, trunk) { 737 /* 738 * Copy new new lladdr into the ifv_ifp, enqueue a task 739 * to actually call if_setlladdr. if_setlladdr needs to 740 * be deferred to a taskqueue because it will call into 741 * the if_vlan ioctl path and try to acquire the global 742 * lock. 743 */ 744 ifv_ifp = ifv->ifv_ifp; 745 bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), 746 ifp->if_addrlen); 747 sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; 748 sdl->sdl_alen = ifp->if_addrlen; 749 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 750 } 751 TRUNK_WUNLOCK(trunk); 752 NET_EPOCH_EXIT(et); 753 } 754 755 /* 756 * A handler for network interface departure events. 757 * Track departure of trunks here so that we don't access invalid 758 * pointers or whatever if a trunk is ripped from under us, e.g., 759 * by ejecting its hot-plug card. However, if an ifnet is simply 760 * being renamed, then there's no need to tear down the state. 761 */ 762 static void 763 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 764 { 765 struct ifvlan *ifv; 766 struct ifvlantrunk *trunk; 767 768 /* If the ifnet is just being renamed, don't do anything. */ 769 if (ifp->if_flags & IFF_RENAMING) 770 return; 771 VLAN_XLOCK(); 772 trunk = ifp->if_vlantrunk; 773 if (trunk == NULL) { 774 VLAN_XUNLOCK(); 775 return; 776 } 777 778 /* 779 * OK, it's a trunk. Loop over and detach all vlan's on it. 780 * Check trunk pointer after each vlan_unconfig() as it will 781 * free it and set to NULL after the last vlan was detached. 782 */ 783 VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, 784 ifp->if_vlantrunk == NULL) 785 vlan_unconfig_locked(ifv->ifv_ifp, 1); 786 787 /* Trunk should have been destroyed in vlan_unconfig(). */ 788 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 789 VLAN_XUNLOCK(); 790 } 791 792 /* 793 * Return the trunk device for a virtual interface. 794 */ 795 static struct ifnet * 796 vlan_trunkdev(struct ifnet *ifp) 797 { 798 struct ifvlan *ifv; 799 800 NET_EPOCH_ASSERT(); 801 802 if (ifp->if_type != IFT_L2VLAN) 803 return (NULL); 804 805 ifv = ifp->if_softc; 806 ifp = NULL; 807 if (ifv->ifv_trunk) 808 ifp = PARENT(ifv); 809 return (ifp); 810 } 811 812 /* 813 * Return the 12-bit VLAN VID for this interface, for use by external 814 * components such as Infiniband. 815 * 816 * XXXRW: Note that the function name here is historical; it should be named 817 * vlan_vid(). 818 */ 819 static int 820 vlan_tag(struct ifnet *ifp, uint16_t *vidp) 821 { 822 struct ifvlan *ifv; 823 824 if (ifp->if_type != IFT_L2VLAN) 825 return (EINVAL); 826 ifv = ifp->if_softc; 827 *vidp = ifv->ifv_vid; 828 return (0); 829 } 830 831 static int 832 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp) 833 { 834 struct ifvlan *ifv; 835 836 if (ifp->if_type != IFT_L2VLAN) 837 return (EINVAL); 838 ifv = ifp->if_softc; 839 *pcpp = ifv->ifv_pcp; 840 return (0); 841 } 842 843 /* 844 * Return a driver specific cookie for this interface. Synchronization 845 * with setcookie must be provided by the driver. 846 */ 847 static void * 848 vlan_cookie(struct ifnet *ifp) 849 { 850 struct ifvlan *ifv; 851 852 if (ifp->if_type != IFT_L2VLAN) 853 return (NULL); 854 ifv = ifp->if_softc; 855 return (ifv->ifv_cookie); 856 } 857 858 /* 859 * Store a cookie in our softc that drivers can use to store driver 860 * private per-instance data in. 861 */ 862 static int 863 vlan_setcookie(struct ifnet *ifp, void *cookie) 864 { 865 struct ifvlan *ifv; 866 867 if (ifp->if_type != IFT_L2VLAN) 868 return (EINVAL); 869 ifv = ifp->if_softc; 870 ifv->ifv_cookie = cookie; 871 return (0); 872 } 873 874 /* 875 * Return the vlan device present at the specific VID. 876 */ 877 static struct ifnet * 878 vlan_devat(struct ifnet *ifp, uint16_t vid) 879 { 880 struct ifvlantrunk *trunk; 881 struct ifvlan *ifv; 882 883 NET_EPOCH_ASSERT(); 884 885 trunk = ifp->if_vlantrunk; 886 if (trunk == NULL) 887 return (NULL); 888 ifp = NULL; 889 ifv = vlan_gethash(trunk, vid); 890 if (ifv) 891 ifp = ifv->ifv_ifp; 892 return (ifp); 893 } 894 895 /* 896 * VLAN support can be loaded as a module. The only place in the 897 * system that's intimately aware of this is ether_input. We hook 898 * into this code through vlan_input_p which is defined there and 899 * set here. No one else in the system should be aware of this so 900 * we use an explicit reference here. 901 */ 902 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 903 904 /* For if_link_state_change() eyes only... */ 905 extern void (*vlan_link_state_p)(struct ifnet *); 906 907 static struct if_clone_addreq vlan_addreq = { 908 .match_f = vlan_clone_match, 909 .create_f = vlan_clone_create, 910 .destroy_f = vlan_clone_destroy, 911 }; 912 913 static int 914 vlan_modevent(module_t mod, int type, void *data) 915 { 916 917 switch (type) { 918 case MOD_LOAD: 919 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 920 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 921 if (ifdetach_tag == NULL) 922 return (ENOMEM); 923 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, 924 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 925 if (iflladdr_tag == NULL) 926 return (ENOMEM); 927 ifevent_tag = EVENTHANDLER_REGISTER(ifnet_event, 928 vlan_ifevent, NULL, EVENTHANDLER_PRI_ANY); 929 if (ifevent_tag == NULL) 930 return (ENOMEM); 931 VLAN_LOCKING_INIT(); 932 vlan_input_p = vlan_input; 933 vlan_link_state_p = vlan_link_state; 934 vlan_trunk_cap_p = vlan_trunk_capabilities; 935 vlan_trunkdev_p = vlan_trunkdev; 936 vlan_cookie_p = vlan_cookie; 937 vlan_setcookie_p = vlan_setcookie; 938 vlan_tag_p = vlan_tag; 939 vlan_pcp_p = vlan_pcp; 940 vlan_devat_p = vlan_devat; 941 #ifndef VIMAGE 942 vlan_cloner = ifc_attach_cloner(vlanname, &vlan_addreq); 943 #endif 944 if (bootverbose) 945 printf("vlan: initialized, using " 946 #ifdef VLAN_ARRAY 947 "full-size arrays" 948 #else 949 "hash tables with chaining" 950 #endif 951 952 "\n"); 953 break; 954 case MOD_UNLOAD: 955 #ifndef VIMAGE 956 ifc_detach_cloner(vlan_cloner); 957 #endif 958 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 959 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); 960 EVENTHANDLER_DEREGISTER(ifnet_event, ifevent_tag); 961 vlan_input_p = NULL; 962 vlan_link_state_p = NULL; 963 vlan_trunk_cap_p = NULL; 964 vlan_trunkdev_p = NULL; 965 vlan_tag_p = NULL; 966 vlan_cookie_p = NULL; 967 vlan_setcookie_p = NULL; 968 vlan_devat_p = NULL; 969 VLAN_LOCKING_DESTROY(); 970 if (bootverbose) 971 printf("vlan: unloaded\n"); 972 break; 973 default: 974 return (EOPNOTSUPP); 975 } 976 return (0); 977 } 978 979 static moduledata_t vlan_mod = { 980 "if_vlan", 981 vlan_modevent, 982 0 983 }; 984 985 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 986 MODULE_VERSION(if_vlan, 3); 987 988 #ifdef VIMAGE 989 static void 990 vnet_vlan_init(const void *unused __unused) 991 { 992 vlan_cloner = ifc_attach_cloner(vlanname, &vlan_addreq); 993 V_vlan_cloner = vlan_cloner; 994 } 995 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 996 vnet_vlan_init, NULL); 997 998 static void 999 vnet_vlan_uninit(const void *unused __unused) 1000 { 1001 1002 ifc_detach_cloner(V_vlan_cloner); 1003 } 1004 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, 1005 vnet_vlan_uninit, NULL); 1006 #endif 1007 1008 /* 1009 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names. 1010 */ 1011 static struct ifnet * 1012 vlan_clone_match_ethervid(const char *name, int *vidp) 1013 { 1014 char ifname[IFNAMSIZ]; 1015 char *cp; 1016 struct ifnet *ifp; 1017 int vid; 1018 1019 strlcpy(ifname, name, IFNAMSIZ); 1020 if ((cp = strrchr(ifname, '.')) == NULL) 1021 return (NULL); 1022 *cp = '\0'; 1023 if ((ifp = ifunit_ref(ifname)) == NULL) 1024 return (NULL); 1025 /* Parse VID. */ 1026 if (*++cp == '\0') { 1027 if_rele(ifp); 1028 return (NULL); 1029 } 1030 vid = 0; 1031 for(; *cp >= '0' && *cp <= '9'; cp++) 1032 vid = (vid * 10) + (*cp - '0'); 1033 if (*cp != '\0') { 1034 if_rele(ifp); 1035 return (NULL); 1036 } 1037 if (vidp != NULL) 1038 *vidp = vid; 1039 1040 return (ifp); 1041 } 1042 1043 static int 1044 vlan_clone_match(struct if_clone *ifc, const char *name) 1045 { 1046 struct ifnet *ifp; 1047 const char *cp; 1048 1049 ifp = vlan_clone_match_ethervid(name, NULL); 1050 if (ifp != NULL) { 1051 if_rele(ifp); 1052 return (1); 1053 } 1054 1055 if (strncmp(vlanname, name, strlen(vlanname)) != 0) 1056 return (0); 1057 for (cp = name + 4; *cp != '\0'; cp++) { 1058 if (*cp < '0' || *cp > '9') 1059 return (0); 1060 } 1061 1062 return (1); 1063 } 1064 1065 static int 1066 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, 1067 struct ifc_data *ifd, struct ifnet **ifpp) 1068 { 1069 char *dp; 1070 bool wildcard = false; 1071 bool subinterface = false; 1072 int unit; 1073 int error; 1074 int vid = 0; 1075 uint16_t proto = ETHERTYPE_VLAN; 1076 struct ifvlan *ifv; 1077 struct ifnet *ifp; 1078 struct ifnet *p = NULL; 1079 struct ifaddr *ifa; 1080 struct sockaddr_dl *sdl; 1081 struct vlanreq vlr; 1082 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 1083 1084 1085 /* 1086 * There are three ways to specify the cloned device: 1087 * o pass a parameter block with the clone request. 1088 * o specify parameters in the text of the clone device name 1089 * o specify no parameters and get an unattached device that 1090 * must be configured separately. 1091 * The first technique is preferred; the latter two are supported 1092 * for backwards compatibility. 1093 * 1094 * XXXRW: Note historic use of the word "tag" here. New ioctls may be 1095 * called for. 1096 */ 1097 1098 if (ifd->params != NULL) { 1099 error = ifc_copyin(ifd, &vlr, sizeof(vlr)); 1100 if (error) 1101 return error; 1102 vid = vlr.vlr_tag; 1103 proto = vlr.vlr_proto; 1104 1105 #ifdef COMPAT_FREEBSD12 1106 if (proto == 0) 1107 proto = ETHERTYPE_VLAN; 1108 #endif 1109 p = ifunit_ref(vlr.vlr_parent); 1110 if (p == NULL) 1111 return (ENXIO); 1112 } 1113 1114 if ((error = ifc_name2unit(name, &unit)) == 0) { 1115 1116 /* 1117 * vlanX interface. Set wildcard to true if the unit number 1118 * is not fixed (-1) 1119 */ 1120 wildcard = (unit < 0); 1121 } else { 1122 struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid); 1123 if (p_tmp != NULL) { 1124 error = 0; 1125 subinterface = true; 1126 unit = IF_DUNIT_NONE; 1127 wildcard = false; 1128 if (p != NULL) { 1129 if_rele(p_tmp); 1130 if (p != p_tmp) 1131 error = EINVAL; 1132 } else 1133 p = p_tmp; 1134 } else 1135 error = ENXIO; 1136 } 1137 1138 if (error != 0) { 1139 if (p != NULL) 1140 if_rele(p); 1141 return (error); 1142 } 1143 1144 if (!subinterface) { 1145 /* vlanX interface, mark X as busy or allocate new unit # */ 1146 error = ifc_alloc_unit(ifc, &unit); 1147 if (error != 0) { 1148 if (p != NULL) 1149 if_rele(p); 1150 return (error); 1151 } 1152 } 1153 1154 /* In the wildcard case, we need to update the name. */ 1155 if (wildcard) { 1156 for (dp = name; *dp != '\0'; dp++); 1157 if (snprintf(dp, len - (dp-name), "%d", unit) > 1158 len - (dp-name) - 1) { 1159 panic("%s: interface name too long", __func__); 1160 } 1161 } 1162 1163 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 1164 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 1165 if (ifp == NULL) { 1166 if (!subinterface) 1167 ifc_free_unit(ifc, unit); 1168 free(ifv, M_VLAN); 1169 if (p != NULL) 1170 if_rele(p); 1171 return (ENOSPC); 1172 } 1173 CK_SLIST_INIT(&ifv->vlan_mc_listhead); 1174 ifp->if_softc = ifv; 1175 /* 1176 * Set the name manually rather than using if_initname because 1177 * we don't conform to the default naming convention for interfaces. 1178 */ 1179 strlcpy(ifp->if_xname, name, IFNAMSIZ); 1180 ifp->if_dname = vlanname; 1181 ifp->if_dunit = unit; 1182 1183 ifp->if_init = vlan_init; 1184 #ifdef ALTQ 1185 ifp->if_start = vlan_altq_start; 1186 ifp->if_transmit = vlan_altq_transmit; 1187 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 1188 ifp->if_snd.ifq_drv_maxlen = 0; 1189 IFQ_SET_READY(&ifp->if_snd); 1190 #else 1191 ifp->if_transmit = vlan_transmit; 1192 #endif 1193 ifp->if_qflush = vlan_qflush; 1194 ifp->if_ioctl = vlan_ioctl; 1195 #if defined(KERN_TLS) || defined(RATELIMIT) 1196 ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; 1197 ifp->if_ratelimit_query = vlan_ratelimit_query; 1198 #endif 1199 ifp->if_flags = VLAN_IFFLAGS; 1200 ether_ifattach(ifp, eaddr); 1201 /* Now undo some of the damage... */ 1202 ifp->if_baudrate = 0; 1203 ifp->if_type = IFT_L2VLAN; 1204 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 1205 ifa = ifp->if_addr; 1206 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1207 sdl->sdl_type = IFT_L2VLAN; 1208 1209 if (p != NULL) { 1210 error = vlan_config(ifv, p, vid, proto); 1211 if_rele(p); 1212 if (error != 0) { 1213 /* 1214 * Since we've partially failed, we need to back 1215 * out all the way, otherwise userland could get 1216 * confused. Thus, we destroy the interface. 1217 */ 1218 ether_ifdetach(ifp); 1219 vlan_unconfig(ifp); 1220 if_free(ifp); 1221 if (!subinterface) 1222 ifc_free_unit(ifc, unit); 1223 free(ifv, M_VLAN); 1224 1225 return (error); 1226 } 1227 } 1228 *ifpp = ifp; 1229 1230 return (0); 1231 } 1232 1233 static int 1234 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags) 1235 { 1236 struct ifvlan *ifv = ifp->if_softc; 1237 int unit = ifp->if_dunit; 1238 1239 if (ifp->if_vlantrunk) 1240 return (EBUSY); 1241 1242 #ifdef ALTQ 1243 IFQ_PURGE(&ifp->if_snd); 1244 #endif 1245 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 1246 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 1247 /* 1248 * We should have the only reference to the ifv now, so we can now 1249 * drain any remaining lladdr task before freeing the ifnet and the 1250 * ifvlan. 1251 */ 1252 taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); 1253 NET_EPOCH_WAIT(); 1254 if_free(ifp); 1255 free(ifv, M_VLAN); 1256 if (unit != IF_DUNIT_NONE) 1257 ifc_free_unit(ifc, unit); 1258 1259 return (0); 1260 } 1261 1262 /* 1263 * The ifp->if_init entry point for vlan(4) is a no-op. 1264 */ 1265 static void 1266 vlan_init(void *foo __unused) 1267 { 1268 } 1269 1270 /* 1271 * The if_transmit method for vlan(4) interface. 1272 */ 1273 static int 1274 vlan_transmit(struct ifnet *ifp, struct mbuf *m) 1275 { 1276 struct ifvlan *ifv; 1277 struct ifnet *p; 1278 int error, len, mcast; 1279 1280 NET_EPOCH_ASSERT(); 1281 1282 ifv = ifp->if_softc; 1283 if (TRUNK(ifv) == NULL) { 1284 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1285 m_freem(m); 1286 return (ENETDOWN); 1287 } 1288 p = PARENT(ifv); 1289 len = m->m_pkthdr.len; 1290 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; 1291 1292 BPF_MTAP(ifp, m); 1293 1294 #if defined(KERN_TLS) || defined(RATELIMIT) 1295 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1296 struct vlan_snd_tag *vst; 1297 struct m_snd_tag *mst; 1298 1299 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 1300 mst = m->m_pkthdr.snd_tag; 1301 vst = mst_to_vst(mst); 1302 if (vst->tag->ifp != p) { 1303 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1304 m_freem(m); 1305 return (EAGAIN); 1306 } 1307 1308 m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag); 1309 m_snd_tag_rele(mst); 1310 } 1311 #endif 1312 1313 /* 1314 * Do not run parent's if_transmit() if the parent is not up, 1315 * or parent's driver will cause a system crash. 1316 */ 1317 if (!UP_AND_RUNNING(p)) { 1318 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1319 m_freem(m); 1320 return (ENETDOWN); 1321 } 1322 1323 if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) { 1324 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1325 return (0); 1326 } 1327 1328 /* 1329 * Send it, precisely as ether_output() would have. 1330 */ 1331 error = (p->if_transmit)(p, m); 1332 if (error == 0) { 1333 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1334 if_inc_counter(ifp, IFCOUNTER_OBYTES, len); 1335 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); 1336 } else 1337 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1338 return (error); 1339 } 1340 1341 static int 1342 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, 1343 struct route *ro) 1344 { 1345 struct ifvlan *ifv; 1346 struct ifnet *p; 1347 1348 NET_EPOCH_ASSERT(); 1349 1350 /* 1351 * Find the first non-VLAN parent interface. 1352 */ 1353 ifv = ifp->if_softc; 1354 do { 1355 if (TRUNK(ifv) == NULL) { 1356 m_freem(m); 1357 return (ENETDOWN); 1358 } 1359 p = PARENT(ifv); 1360 ifv = p->if_softc; 1361 } while (p->if_type == IFT_L2VLAN); 1362 1363 return p->if_output(ifp, m, dst, ro); 1364 } 1365 1366 #ifdef ALTQ 1367 static void 1368 vlan_altq_start(if_t ifp) 1369 { 1370 struct ifaltq *ifq = &ifp->if_snd; 1371 struct mbuf *m; 1372 1373 IFQ_LOCK(ifq); 1374 IFQ_DEQUEUE_NOLOCK(ifq, m); 1375 while (m != NULL) { 1376 vlan_transmit(ifp, m); 1377 IFQ_DEQUEUE_NOLOCK(ifq, m); 1378 } 1379 IFQ_UNLOCK(ifq); 1380 } 1381 1382 static int 1383 vlan_altq_transmit(if_t ifp, struct mbuf *m) 1384 { 1385 int err; 1386 1387 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 1388 IFQ_ENQUEUE(&ifp->if_snd, m, err); 1389 if (err == 0) 1390 vlan_altq_start(ifp); 1391 } else 1392 err = vlan_transmit(ifp, m); 1393 1394 return (err); 1395 } 1396 #endif /* ALTQ */ 1397 1398 /* 1399 * The ifp->if_qflush entry point for vlan(4) is a no-op. 1400 */ 1401 static void 1402 vlan_qflush(struct ifnet *ifp __unused) 1403 { 1404 } 1405 1406 static void 1407 vlan_input(struct ifnet *ifp, struct mbuf *m) 1408 { 1409 struct ifvlantrunk *trunk; 1410 struct ifvlan *ifv; 1411 struct m_tag *mtag; 1412 uint16_t vid, tag; 1413 1414 NET_EPOCH_ASSERT(); 1415 1416 trunk = ifp->if_vlantrunk; 1417 if (trunk == NULL) { 1418 m_freem(m); 1419 return; 1420 } 1421 1422 if (m->m_flags & M_VLANTAG) { 1423 /* 1424 * Packet is tagged, but m contains a normal 1425 * Ethernet frame; the tag is stored out-of-band. 1426 */ 1427 tag = m->m_pkthdr.ether_vtag; 1428 m->m_flags &= ~M_VLANTAG; 1429 } else { 1430 struct ether_vlan_header *evl; 1431 1432 /* 1433 * Packet is tagged in-band as specified by 802.1q. 1434 */ 1435 switch (ifp->if_type) { 1436 case IFT_ETHER: 1437 if (m->m_len < sizeof(*evl) && 1438 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1439 if_printf(ifp, "cannot pullup VLAN header\n"); 1440 return; 1441 } 1442 evl = mtod(m, struct ether_vlan_header *); 1443 tag = ntohs(evl->evl_tag); 1444 1445 /* 1446 * Remove the 802.1q header by copying the Ethernet 1447 * addresses over it and adjusting the beginning of 1448 * the data in the mbuf. The encapsulated Ethernet 1449 * type field is already in place. 1450 */ 1451 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 1452 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1453 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1454 break; 1455 1456 default: 1457 #ifdef INVARIANTS 1458 panic("%s: %s has unsupported if_type %u", 1459 __func__, ifp->if_xname, ifp->if_type); 1460 #endif 1461 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1462 m_freem(m); 1463 return; 1464 } 1465 } 1466 1467 vid = EVL_VLANOFTAG(tag); 1468 1469 ifv = vlan_gethash(trunk, vid); 1470 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 1471 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1472 m_freem(m); 1473 return; 1474 } 1475 1476 if (V_vlan_mtag_pcp) { 1477 /* 1478 * While uncommon, it is possible that we will find a 802.1q 1479 * packet encapsulated inside another packet that also had an 1480 * 802.1q header. For example, ethernet tunneled over IPSEC 1481 * arriving over ethernet. In that case, we replace the 1482 * existing 802.1q PCP m_tag value. 1483 */ 1484 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 1485 if (mtag == NULL) { 1486 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, 1487 sizeof(uint8_t), M_NOWAIT); 1488 if (mtag == NULL) { 1489 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1490 m_freem(m); 1491 return; 1492 } 1493 m_tag_prepend(m, mtag); 1494 } 1495 *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); 1496 } 1497 1498 m->m_pkthdr.rcvif = ifv->ifv_ifp; 1499 if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); 1500 1501 /* Pass it back through the parent's input routine. */ 1502 (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); 1503 } 1504 1505 static void 1506 vlan_lladdr_fn(void *arg, int pending __unused) 1507 { 1508 struct ifvlan *ifv; 1509 struct ifnet *ifp; 1510 1511 ifv = (struct ifvlan *)arg; 1512 ifp = ifv->ifv_ifp; 1513 1514 CURVNET_SET(ifp->if_vnet); 1515 1516 /* The ifv_ifp already has the lladdr copied in. */ 1517 if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); 1518 1519 CURVNET_RESTORE(); 1520 } 1521 1522 static int 1523 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid, 1524 uint16_t proto) 1525 { 1526 struct epoch_tracker et; 1527 struct ifvlantrunk *trunk; 1528 struct ifnet *ifp; 1529 int error = 0; 1530 1531 /* 1532 * We can handle non-ethernet hardware types as long as 1533 * they handle the tagging and headers themselves. 1534 */ 1535 if (p->if_type != IFT_ETHER && 1536 p->if_type != IFT_L2VLAN && 1537 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1538 return (EPROTONOSUPPORT); 1539 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 1540 return (EPROTONOSUPPORT); 1541 /* 1542 * Don't let the caller set up a VLAN VID with 1543 * anything except VLID bits. 1544 * VID numbers 0x0 and 0xFFF are reserved. 1545 */ 1546 if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) 1547 return (EINVAL); 1548 if (ifv->ifv_trunk) { 1549 trunk = ifv->ifv_trunk; 1550 if (trunk->parent != p) 1551 return (EBUSY); 1552 1553 VLAN_XLOCK(); 1554 1555 ifv->ifv_proto = proto; 1556 1557 if (ifv->ifv_vid != vid) { 1558 /* Re-hash */ 1559 vlan_remhash(trunk, ifv); 1560 ifv->ifv_vid = vid; 1561 error = vlan_inshash(trunk, ifv); 1562 } 1563 /* Will unlock */ 1564 goto done; 1565 } 1566 1567 VLAN_XLOCK(); 1568 if (p->if_vlantrunk == NULL) { 1569 trunk = malloc(sizeof(struct ifvlantrunk), 1570 M_VLAN, M_WAITOK | M_ZERO); 1571 vlan_inithash(trunk); 1572 TRUNK_LOCK_INIT(trunk); 1573 TRUNK_WLOCK(trunk); 1574 p->if_vlantrunk = trunk; 1575 trunk->parent = p; 1576 if_ref(trunk->parent); 1577 TRUNK_WUNLOCK(trunk); 1578 } else { 1579 trunk = p->if_vlantrunk; 1580 } 1581 1582 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ 1583 ifv->ifv_pcp = 0; /* Default: best effort delivery. */ 1584 error = vlan_inshash(trunk, ifv); 1585 if (error) 1586 goto done; 1587 ifv->ifv_proto = proto; 1588 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1589 ifv->ifv_mintu = ETHERMIN; 1590 ifv->ifv_pflags = 0; 1591 ifv->ifv_capenable = -1; 1592 1593 /* 1594 * If the parent supports the VLAN_MTU capability, 1595 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1596 * use it. 1597 */ 1598 if (p->if_capenable & IFCAP_VLAN_MTU) { 1599 /* 1600 * No need to fudge the MTU since the parent can 1601 * handle extended frames. 1602 */ 1603 ifv->ifv_mtufudge = 0; 1604 } else { 1605 /* 1606 * Fudge the MTU by the encapsulation size. This 1607 * makes us incompatible with strictly compliant 1608 * 802.1Q implementations, but allows us to use 1609 * the feature with other NetBSD implementations, 1610 * which might still be useful. 1611 */ 1612 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1613 } 1614 1615 ifv->ifv_trunk = trunk; 1616 ifp = ifv->ifv_ifp; 1617 /* 1618 * Initialize fields from our parent. This duplicates some 1619 * work with ether_ifattach() but allows for non-ethernet 1620 * interfaces to also work. 1621 */ 1622 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1623 ifp->if_baudrate = p->if_baudrate; 1624 ifp->if_input = p->if_input; 1625 ifp->if_resolvemulti = p->if_resolvemulti; 1626 ifp->if_addrlen = p->if_addrlen; 1627 ifp->if_broadcastaddr = p->if_broadcastaddr; 1628 ifp->if_pcp = ifv->ifv_pcp; 1629 1630 /* 1631 * We wrap the parent's if_output using vlan_output to ensure that it 1632 * can't become stale. 1633 */ 1634 ifp->if_output = vlan_output; 1635 1636 /* 1637 * Copy only a selected subset of flags from the parent. 1638 * Other flags are none of our business. 1639 */ 1640 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1641 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1642 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1643 #undef VLAN_COPY_FLAGS 1644 1645 ifp->if_link_state = p->if_link_state; 1646 1647 NET_EPOCH_ENTER(et); 1648 vlan_capabilities(ifv); 1649 NET_EPOCH_EXIT(et); 1650 1651 /* 1652 * Set up our interface address to reflect the underlying 1653 * physical interface's. 1654 */ 1655 TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); 1656 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = 1657 p->if_addrlen; 1658 1659 /* 1660 * Do not schedule link address update if it was the same 1661 * as previous parent's. This helps avoid updating for each 1662 * associated llentry. 1663 */ 1664 if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) { 1665 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); 1666 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 1667 } 1668 1669 /* We are ready for operation now. */ 1670 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1671 1672 /* Update flags on the parent, if necessary. */ 1673 vlan_setflags(ifp, 1); 1674 1675 /* 1676 * Configure multicast addresses that may already be 1677 * joined on the vlan device. 1678 */ 1679 (void)vlan_setmulti(ifp); 1680 1681 done: 1682 if (error == 0) 1683 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); 1684 VLAN_XUNLOCK(); 1685 1686 return (error); 1687 } 1688 1689 static void 1690 vlan_unconfig(struct ifnet *ifp) 1691 { 1692 1693 VLAN_XLOCK(); 1694 vlan_unconfig_locked(ifp, 0); 1695 VLAN_XUNLOCK(); 1696 } 1697 1698 static void 1699 vlan_unconfig_locked(struct ifnet *ifp, int departing) 1700 { 1701 struct ifvlantrunk *trunk; 1702 struct vlan_mc_entry *mc; 1703 struct ifvlan *ifv; 1704 struct ifnet *parent; 1705 int error; 1706 1707 VLAN_XLOCK_ASSERT(); 1708 1709 ifv = ifp->if_softc; 1710 trunk = ifv->ifv_trunk; 1711 parent = NULL; 1712 1713 if (trunk != NULL) { 1714 parent = trunk->parent; 1715 1716 /* 1717 * Since the interface is being unconfigured, we need to 1718 * empty the list of multicast groups that we may have joined 1719 * while we were alive from the parent's list. 1720 */ 1721 while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1722 /* 1723 * If the parent interface is being detached, 1724 * all its multicast addresses have already 1725 * been removed. Warn about errors if 1726 * if_delmulti() does fail, but don't abort as 1727 * all callers expect vlan destruction to 1728 * succeed. 1729 */ 1730 if (!departing) { 1731 error = if_delmulti(parent, 1732 (struct sockaddr *)&mc->mc_addr); 1733 if (error) 1734 if_printf(ifp, 1735 "Failed to delete multicast address from parent: %d\n", 1736 error); 1737 } 1738 CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1739 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 1740 } 1741 1742 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1743 1744 vlan_remhash(trunk, ifv); 1745 ifv->ifv_trunk = NULL; 1746 1747 /* 1748 * Check if we were the last. 1749 */ 1750 if (trunk->refcnt == 0) { 1751 parent->if_vlantrunk = NULL; 1752 NET_EPOCH_WAIT(); 1753 trunk_destroy(trunk); 1754 } 1755 } 1756 1757 /* Disconnect from parent. */ 1758 if (ifv->ifv_pflags) 1759 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1760 ifp->if_mtu = ETHERMTU; 1761 ifp->if_link_state = LINK_STATE_UNKNOWN; 1762 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1763 1764 /* 1765 * Only dispatch an event if vlan was 1766 * attached, otherwise there is nothing 1767 * to cleanup anyway. 1768 */ 1769 if (parent != NULL) 1770 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); 1771 } 1772 1773 /* Handle a reference counted flag that should be set on the parent as well */ 1774 static int 1775 vlan_setflag(struct ifnet *ifp, int flag, int status, 1776 int (*func)(struct ifnet *, int)) 1777 { 1778 struct ifvlan *ifv; 1779 int error; 1780 1781 VLAN_SXLOCK_ASSERT(); 1782 1783 ifv = ifp->if_softc; 1784 status = status ? (ifp->if_flags & flag) : 0; 1785 /* Now "status" contains the flag value or 0 */ 1786 1787 /* 1788 * See if recorded parent's status is different from what 1789 * we want it to be. If it is, flip it. We record parent's 1790 * status in ifv_pflags so that we won't clear parent's flag 1791 * we haven't set. In fact, we don't clear or set parent's 1792 * flags directly, but get or release references to them. 1793 * That's why we can be sure that recorded flags still are 1794 * in accord with actual parent's flags. 1795 */ 1796 if (status != (ifv->ifv_pflags & flag)) { 1797 error = (*func)(PARENT(ifv), status); 1798 if (error) 1799 return (error); 1800 ifv->ifv_pflags &= ~flag; 1801 ifv->ifv_pflags |= status; 1802 } 1803 return (0); 1804 } 1805 1806 /* 1807 * Handle IFF_* flags that require certain changes on the parent: 1808 * if "status" is true, update parent's flags respective to our if_flags; 1809 * if "status" is false, forcedly clear the flags set on parent. 1810 */ 1811 static int 1812 vlan_setflags(struct ifnet *ifp, int status) 1813 { 1814 int error, i; 1815 1816 for (i = 0; vlan_pflags[i].flag; i++) { 1817 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1818 status, vlan_pflags[i].func); 1819 if (error) 1820 return (error); 1821 } 1822 return (0); 1823 } 1824 1825 /* Inform all vlans that their parent has changed link state */ 1826 static void 1827 vlan_link_state(struct ifnet *ifp) 1828 { 1829 struct epoch_tracker et; 1830 struct ifvlantrunk *trunk; 1831 struct ifvlan *ifv; 1832 1833 NET_EPOCH_ENTER(et); 1834 trunk = ifp->if_vlantrunk; 1835 if (trunk == NULL) { 1836 NET_EPOCH_EXIT(et); 1837 return; 1838 } 1839 1840 TRUNK_WLOCK(trunk); 1841 VLAN_FOREACH(ifv, trunk) { 1842 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 1843 if_link_state_change(ifv->ifv_ifp, 1844 trunk->parent->if_link_state); 1845 } 1846 TRUNK_WUNLOCK(trunk); 1847 NET_EPOCH_EXIT(et); 1848 } 1849 1850 static void 1851 vlan_capabilities(struct ifvlan *ifv) 1852 { 1853 struct ifnet *p; 1854 struct ifnet *ifp; 1855 struct ifnet_hw_tsomax hw_tsomax; 1856 int cap = 0, ena = 0, mena; 1857 u_long hwa = 0; 1858 1859 NET_EPOCH_ASSERT(); 1860 VLAN_SXLOCK_ASSERT(); 1861 1862 p = PARENT(ifv); 1863 ifp = ifv->ifv_ifp; 1864 1865 /* Mask parent interface enabled capabilities disabled by user. */ 1866 mena = p->if_capenable & ifv->ifv_capenable; 1867 1868 /* 1869 * If the parent interface can do checksum offloading 1870 * on VLANs, then propagate its hardware-assisted 1871 * checksumming flags. Also assert that checksum 1872 * offloading requires hardware VLAN tagging. 1873 */ 1874 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1875 cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1876 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 1877 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1878 ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1879 if (ena & IFCAP_TXCSUM) 1880 hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | 1881 CSUM_UDP | CSUM_SCTP); 1882 if (ena & IFCAP_TXCSUM_IPV6) 1883 hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | 1884 CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); 1885 } 1886 1887 /* 1888 * If the parent interface can do TSO on VLANs then 1889 * propagate the hardware-assisted flag. TSO on VLANs 1890 * does not necessarily require hardware VLAN tagging. 1891 */ 1892 memset(&hw_tsomax, 0, sizeof(hw_tsomax)); 1893 if_hw_tsomax_common(p, &hw_tsomax); 1894 if_hw_tsomax_update(ifp, &hw_tsomax); 1895 if (p->if_capabilities & IFCAP_VLAN_HWTSO) 1896 cap |= p->if_capabilities & IFCAP_TSO; 1897 if (p->if_capenable & IFCAP_VLAN_HWTSO) { 1898 ena |= mena & IFCAP_TSO; 1899 if (ena & IFCAP_TSO) 1900 hwa |= p->if_hwassist & CSUM_TSO; 1901 } 1902 1903 /* 1904 * If the parent interface can do LRO and checksum offloading on 1905 * VLANs, then guess it may do LRO on VLANs. False positive here 1906 * cost nothing, while false negative may lead to some confusions. 1907 */ 1908 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1909 cap |= p->if_capabilities & IFCAP_LRO; 1910 if (p->if_capenable & IFCAP_VLAN_HWCSUM) 1911 ena |= p->if_capenable & IFCAP_LRO; 1912 1913 /* 1914 * If the parent interface can offload TCP connections over VLANs then 1915 * propagate its TOE capability to the VLAN interface. 1916 * 1917 * All TOE drivers in the tree today can deal with VLANs. If this 1918 * changes then IFCAP_VLAN_TOE should be promoted to a full capability 1919 * with its own bit. 1920 */ 1921 #define IFCAP_VLAN_TOE IFCAP_TOE 1922 if (p->if_capabilities & IFCAP_VLAN_TOE) 1923 cap |= p->if_capabilities & IFCAP_TOE; 1924 if (p->if_capenable & IFCAP_VLAN_TOE) { 1925 SETTOEDEV(ifp, TOEDEV(p)); 1926 ena |= mena & IFCAP_TOE; 1927 } 1928 1929 /* 1930 * If the parent interface supports dynamic link state, so does the 1931 * VLAN interface. 1932 */ 1933 cap |= (p->if_capabilities & IFCAP_LINKSTATE); 1934 ena |= (mena & IFCAP_LINKSTATE); 1935 1936 #ifdef RATELIMIT 1937 /* 1938 * If the parent interface supports ratelimiting, so does the 1939 * VLAN interface. 1940 */ 1941 cap |= (p->if_capabilities & IFCAP_TXRTLMT); 1942 ena |= (mena & IFCAP_TXRTLMT); 1943 #endif 1944 1945 /* 1946 * If the parent interface supports unmapped mbufs, so does 1947 * the VLAN interface. Note that this should be fine even for 1948 * interfaces that don't support hardware tagging as headers 1949 * are prepended in normal mbufs to unmapped mbufs holding 1950 * payload data. 1951 */ 1952 cap |= (p->if_capabilities & IFCAP_MEXTPG); 1953 ena |= (mena & IFCAP_MEXTPG); 1954 1955 /* 1956 * If the parent interface can offload encryption and segmentation 1957 * of TLS records over TCP, propagate it's capability to the VLAN 1958 * interface. 1959 * 1960 * All TLS drivers in the tree today can deal with VLANs. If 1961 * this ever changes, then a new IFCAP_VLAN_TXTLS can be 1962 * defined. 1963 */ 1964 if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1965 cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1966 if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1967 ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1968 1969 ifp->if_capabilities = cap; 1970 ifp->if_capenable = ena; 1971 ifp->if_hwassist = hwa; 1972 } 1973 1974 static void 1975 vlan_trunk_capabilities(struct ifnet *ifp) 1976 { 1977 struct epoch_tracker et; 1978 struct ifvlantrunk *trunk; 1979 struct ifvlan *ifv; 1980 1981 VLAN_SLOCK(); 1982 trunk = ifp->if_vlantrunk; 1983 if (trunk == NULL) { 1984 VLAN_SUNLOCK(); 1985 return; 1986 } 1987 NET_EPOCH_ENTER(et); 1988 VLAN_FOREACH(ifv, trunk) 1989 vlan_capabilities(ifv); 1990 NET_EPOCH_EXIT(et); 1991 VLAN_SUNLOCK(); 1992 } 1993 1994 static int 1995 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1996 { 1997 struct ifnet *p; 1998 struct ifreq *ifr; 1999 #ifdef INET 2000 struct ifaddr *ifa; 2001 #endif 2002 struct ifvlan *ifv; 2003 struct ifvlantrunk *trunk; 2004 struct vlanreq vlr; 2005 int error = 0, oldmtu; 2006 2007 ifr = (struct ifreq *)data; 2008 #ifdef INET 2009 ifa = (struct ifaddr *) data; 2010 #endif 2011 ifv = ifp->if_softc; 2012 2013 switch (cmd) { 2014 case SIOCSIFADDR: 2015 ifp->if_flags |= IFF_UP; 2016 #ifdef INET 2017 if (ifa->ifa_addr->sa_family == AF_INET) 2018 arp_ifinit(ifp, ifa); 2019 #endif 2020 break; 2021 case SIOCGIFADDR: 2022 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 2023 ifp->if_addrlen); 2024 break; 2025 case SIOCGIFMEDIA: 2026 VLAN_SLOCK(); 2027 if (TRUNK(ifv) != NULL) { 2028 p = PARENT(ifv); 2029 if_ref(p); 2030 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); 2031 if_rele(p); 2032 /* Limit the result to the parent's current config. */ 2033 if (error == 0) { 2034 struct ifmediareq *ifmr; 2035 2036 ifmr = (struct ifmediareq *)data; 2037 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 2038 ifmr->ifm_count = 1; 2039 error = copyout(&ifmr->ifm_current, 2040 ifmr->ifm_ulist, 2041 sizeof(int)); 2042 } 2043 } 2044 } else { 2045 error = EINVAL; 2046 } 2047 VLAN_SUNLOCK(); 2048 break; 2049 2050 case SIOCSIFMEDIA: 2051 error = EINVAL; 2052 break; 2053 2054 case SIOCSIFMTU: 2055 /* 2056 * Set the interface MTU. 2057 */ 2058 VLAN_SLOCK(); 2059 trunk = TRUNK(ifv); 2060 if (trunk != NULL) { 2061 TRUNK_WLOCK(trunk); 2062 if (ifr->ifr_mtu > 2063 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 2064 ifr->ifr_mtu < 2065 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 2066 error = EINVAL; 2067 else 2068 ifp->if_mtu = ifr->ifr_mtu; 2069 TRUNK_WUNLOCK(trunk); 2070 } else 2071 error = EINVAL; 2072 VLAN_SUNLOCK(); 2073 break; 2074 2075 case SIOCSETVLAN: 2076 #ifdef VIMAGE 2077 /* 2078 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN 2079 * interface to be delegated to a jail without allowing the 2080 * jail to change what underlying interface/VID it is 2081 * associated with. We are not entirely convinced that this 2082 * is the right way to accomplish that policy goal. 2083 */ 2084 if (ifp->if_vnet != ifp->if_home_vnet) { 2085 error = EPERM; 2086 break; 2087 } 2088 #endif 2089 error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); 2090 if (error) 2091 break; 2092 if (vlr.vlr_parent[0] == '\0') { 2093 vlan_unconfig(ifp); 2094 break; 2095 } 2096 p = ifunit_ref(vlr.vlr_parent); 2097 if (p == NULL) { 2098 error = ENOENT; 2099 break; 2100 } 2101 #ifdef COMPAT_FREEBSD12 2102 if (vlr.vlr_proto == 0) 2103 vlr.vlr_proto = ETHERTYPE_VLAN; 2104 #endif 2105 oldmtu = ifp->if_mtu; 2106 error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto); 2107 if_rele(p); 2108 2109 /* 2110 * VLAN MTU may change during addition of the vlandev. 2111 * If it did, do network layer specific procedure. 2112 */ 2113 if (ifp->if_mtu != oldmtu) { 2114 #ifdef INET6 2115 nd6_setmtu(ifp); 2116 #endif 2117 rt_updatemtu(ifp); 2118 } 2119 break; 2120 2121 case SIOCGETVLAN: 2122 #ifdef VIMAGE 2123 if (ifp->if_vnet != ifp->if_home_vnet) { 2124 error = EPERM; 2125 break; 2126 } 2127 #endif 2128 bzero(&vlr, sizeof(vlr)); 2129 VLAN_SLOCK(); 2130 if (TRUNK(ifv) != NULL) { 2131 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 2132 sizeof(vlr.vlr_parent)); 2133 vlr.vlr_tag = ifv->ifv_vid; 2134 vlr.vlr_proto = ifv->ifv_proto; 2135 } 2136 VLAN_SUNLOCK(); 2137 error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); 2138 break; 2139 2140 case SIOCSIFFLAGS: 2141 /* 2142 * We should propagate selected flags to the parent, 2143 * e.g., promiscuous mode. 2144 */ 2145 VLAN_XLOCK(); 2146 if (TRUNK(ifv) != NULL) 2147 error = vlan_setflags(ifp, 1); 2148 VLAN_XUNLOCK(); 2149 break; 2150 2151 case SIOCADDMULTI: 2152 case SIOCDELMULTI: 2153 /* 2154 * If we don't have a parent, just remember the membership for 2155 * when we do. 2156 * 2157 * XXX We need the rmlock here to avoid sleeping while 2158 * holding in6_multi_mtx. 2159 */ 2160 VLAN_XLOCK(); 2161 trunk = TRUNK(ifv); 2162 if (trunk != NULL) 2163 error = vlan_setmulti(ifp); 2164 VLAN_XUNLOCK(); 2165 2166 break; 2167 case SIOCGVLANPCP: 2168 #ifdef VIMAGE 2169 if (ifp->if_vnet != ifp->if_home_vnet) { 2170 error = EPERM; 2171 break; 2172 } 2173 #endif 2174 ifr->ifr_vlan_pcp = ifv->ifv_pcp; 2175 break; 2176 2177 case SIOCSVLANPCP: 2178 #ifdef VIMAGE 2179 if (ifp->if_vnet != ifp->if_home_vnet) { 2180 error = EPERM; 2181 break; 2182 } 2183 #endif 2184 error = priv_check(curthread, PRIV_NET_SETVLANPCP); 2185 if (error) 2186 break; 2187 if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) { 2188 error = EINVAL; 2189 break; 2190 } 2191 ifv->ifv_pcp = ifr->ifr_vlan_pcp; 2192 ifp->if_pcp = ifv->ifv_pcp; 2193 /* broadcast event about PCP change */ 2194 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 2195 break; 2196 2197 case SIOCSIFCAP: 2198 VLAN_SLOCK(); 2199 ifv->ifv_capenable = ifr->ifr_reqcap; 2200 trunk = TRUNK(ifv); 2201 if (trunk != NULL) { 2202 struct epoch_tracker et; 2203 2204 NET_EPOCH_ENTER(et); 2205 vlan_capabilities(ifv); 2206 NET_EPOCH_EXIT(et); 2207 } 2208 VLAN_SUNLOCK(); 2209 break; 2210 2211 default: 2212 error = EINVAL; 2213 break; 2214 } 2215 2216 return (error); 2217 } 2218 2219 #if defined(KERN_TLS) || defined(RATELIMIT) 2220 static int 2221 vlan_snd_tag_alloc(struct ifnet *ifp, 2222 union if_snd_tag_alloc_params *params, 2223 struct m_snd_tag **ppmt) 2224 { 2225 struct epoch_tracker et; 2226 const struct if_snd_tag_sw *sw; 2227 struct vlan_snd_tag *vst; 2228 struct ifvlan *ifv; 2229 struct ifnet *parent; 2230 struct m_snd_tag *mst; 2231 int error; 2232 2233 NET_EPOCH_ENTER(et); 2234 ifv = ifp->if_softc; 2235 2236 switch (params->hdr.type) { 2237 #ifdef RATELIMIT 2238 case IF_SND_TAG_TYPE_UNLIMITED: 2239 sw = &vlan_snd_tag_ul_sw; 2240 break; 2241 case IF_SND_TAG_TYPE_RATE_LIMIT: 2242 sw = &vlan_snd_tag_rl_sw; 2243 break; 2244 #endif 2245 #ifdef KERN_TLS 2246 case IF_SND_TAG_TYPE_TLS: 2247 sw = &vlan_snd_tag_tls_sw; 2248 break; 2249 case IF_SND_TAG_TYPE_TLS_RX: 2250 sw = NULL; 2251 if (params->tls_rx.vlan_id != 0) 2252 goto failure; 2253 params->tls_rx.vlan_id = ifv->ifv_vid; 2254 break; 2255 #ifdef RATELIMIT 2256 case IF_SND_TAG_TYPE_TLS_RATE_LIMIT: 2257 sw = &vlan_snd_tag_tls_rl_sw; 2258 break; 2259 #endif 2260 #endif 2261 default: 2262 goto failure; 2263 } 2264 2265 if (ifv->ifv_trunk != NULL) 2266 parent = PARENT(ifv); 2267 else 2268 parent = NULL; 2269 if (parent == NULL) 2270 goto failure; 2271 if_ref(parent); 2272 NET_EPOCH_EXIT(et); 2273 2274 if (sw != NULL) { 2275 vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT); 2276 if (vst == NULL) { 2277 if_rele(parent); 2278 return (ENOMEM); 2279 } 2280 } else 2281 vst = NULL; 2282 2283 error = m_snd_tag_alloc(parent, params, &mst); 2284 if_rele(parent); 2285 if (error) { 2286 free(vst, M_VLAN); 2287 return (error); 2288 } 2289 2290 if (sw != NULL) { 2291 m_snd_tag_init(&vst->com, ifp, sw); 2292 vst->tag = mst; 2293 2294 *ppmt = &vst->com; 2295 } else 2296 *ppmt = mst; 2297 2298 return (0); 2299 failure: 2300 NET_EPOCH_EXIT(et); 2301 return (EOPNOTSUPP); 2302 } 2303 2304 static struct m_snd_tag * 2305 vlan_next_snd_tag(struct m_snd_tag *mst) 2306 { 2307 struct vlan_snd_tag *vst; 2308 2309 vst = mst_to_vst(mst); 2310 return (vst->tag); 2311 } 2312 2313 static int 2314 vlan_snd_tag_modify(struct m_snd_tag *mst, 2315 union if_snd_tag_modify_params *params) 2316 { 2317 struct vlan_snd_tag *vst; 2318 2319 vst = mst_to_vst(mst); 2320 return (vst->tag->sw->snd_tag_modify(vst->tag, params)); 2321 } 2322 2323 static int 2324 vlan_snd_tag_query(struct m_snd_tag *mst, 2325 union if_snd_tag_query_params *params) 2326 { 2327 struct vlan_snd_tag *vst; 2328 2329 vst = mst_to_vst(mst); 2330 return (vst->tag->sw->snd_tag_query(vst->tag, params)); 2331 } 2332 2333 static void 2334 vlan_snd_tag_free(struct m_snd_tag *mst) 2335 { 2336 struct vlan_snd_tag *vst; 2337 2338 vst = mst_to_vst(mst); 2339 m_snd_tag_rele(vst->tag); 2340 free(vst, M_VLAN); 2341 } 2342 2343 static void 2344 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q) 2345 { 2346 /* 2347 * For vlan, we have an indirect 2348 * interface. The caller needs to 2349 * get a ratelimit tag on the actual 2350 * interface the flow will go on. 2351 */ 2352 q->rate_table = NULL; 2353 q->flags = RT_IS_INDIRECT; 2354 q->max_flows = 0; 2355 q->number_of_rates = 0; 2356 } 2357 2358 #endif 2359