1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * 4 * Permission to use, copy, modify, and distribute this software and 5 * its documentation for any purpose and without fee is hereby 6 * granted, provided that both the above copyright notice and this 7 * permission notice appear in all copies, that both the above 8 * copyright notice and this permission notice appear in all 9 * supporting documentation, and that the name of M.I.T. not be used 10 * in advertising or publicity pertaining to distribution of the 11 * software without specific, written prior permission. M.I.T. makes 12 * no representations about the suitability of this software for any 13 * purpose. It is provided "as is" without express or implied 14 * warranty. 15 * 16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 34 * Might be extended some day to also handle IEEE 802.1p priority 35 * tagging. This is sort of sneaky in the implementation, since 36 * we need to pretend to be enough of an Ethernet implementation 37 * to make arp work. The way we do this is by telling everyone 38 * that we are an Ethernet, and then catch the packets that 39 * ether_output() left on our output queue when it calls 40 * if_start(), rewrite them for use by the real outgoing interface, 41 * and ask it to send them. 42 */ 43 44 #include "opt_route.h" 45 #include "opt_vlan.h" 46 47 #include <sys/param.h> 48 #include <sys/kernel.h> 49 #include <sys/lock.h> 50 #include <sys/malloc.h> 51 #include <sys/mbuf.h> 52 #include <sys/module.h> 53 #include <sys/rwlock.h> 54 #include <sys/queue.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <sys/systm.h> 59 #include <sys/vimage.h> 60 61 #include <net/bpf.h> 62 #include <net/ethernet.h> 63 #include <net/if.h> 64 #include <net/if_clone.h> 65 #include <net/if_dl.h> 66 #include <net/if_types.h> 67 #include <net/if_vlan_var.h> 68 #include <net/route.h> 69 #include <net/vnet.h> 70 71 #define VLANNAME "vlan" 72 #define VLAN_DEF_HWIDTH 4 73 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 74 75 #define UP_AND_RUNNING(ifp) \ 76 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 77 78 LIST_HEAD(ifvlanhead, ifvlan); 79 80 struct ifvlantrunk { 81 struct ifnet *parent; /* parent interface of this trunk */ 82 struct rwlock rw; 83 #ifdef VLAN_ARRAY 84 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 85 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 86 #else 87 struct ifvlanhead *hash; /* dynamic hash-list table */ 88 uint16_t hmask; 89 uint16_t hwidth; 90 #endif 91 int refcnt; 92 }; 93 94 struct vlan_mc_entry { 95 struct ether_addr mc_addr; 96 SLIST_ENTRY(vlan_mc_entry) mc_entries; 97 }; 98 99 struct ifvlan { 100 struct ifvlantrunk *ifv_trunk; 101 struct ifnet *ifv_ifp; 102 #define TRUNK(ifv) ((ifv)->ifv_trunk) 103 #define PARENT(ifv) ((ifv)->ifv_trunk->parent) 104 int ifv_pflags; /* special flags we have set on parent */ 105 struct ifv_linkmib { 106 int ifvm_encaplen; /* encapsulation length */ 107 int ifvm_mtufudge; /* MTU fudged by this much */ 108 int ifvm_mintu; /* min transmission unit */ 109 uint16_t ifvm_proto; /* encapsulation ethertype */ 110 uint16_t ifvm_tag; /* tag to apply on packets leaving if */ 111 } ifv_mib; 112 SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 113 #ifndef VLAN_ARRAY 114 LIST_ENTRY(ifvlan) ifv_list; 115 #endif 116 }; 117 #define ifv_proto ifv_mib.ifvm_proto 118 #define ifv_tag ifv_mib.ifvm_tag 119 #define ifv_encaplen ifv_mib.ifvm_encaplen 120 #define ifv_mtufudge ifv_mib.ifvm_mtufudge 121 #define ifv_mintu ifv_mib.ifvm_mintu 122 123 /* Special flags we should propagate to parent. */ 124 static struct { 125 int flag; 126 int (*func)(struct ifnet *, int); 127 } vlan_pflags[] = { 128 {IFF_PROMISC, ifpromisc}, 129 {IFF_ALLMULTI, if_allmulti}, 130 {0, NULL} 131 }; 132 133 SYSCTL_DECL(_net_link); 134 SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN"); 135 SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency"); 136 137 static int soft_pad = 0; 138 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0, 139 "pad short frames before tagging"); 140 141 static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface"); 142 143 static eventhandler_tag ifdetach_tag; 144 145 /* 146 * We have a global mutex, that is used to serialize configuration 147 * changes and isn't used in normal packet delivery. 148 * 149 * We also have a per-trunk rwlock, that is locked shared on packet 150 * processing and exclusive when configuration is changed. 151 * 152 * The VLAN_ARRAY substitutes the dynamic hash with a static array 153 * with 4096 entries. In theory this can give a boost in processing, 154 * however on practice it does not. Probably this is because array 155 * is too big to fit into CPU cache. 156 */ 157 static struct mtx ifv_mtx; 158 #define VLAN_LOCK_INIT() mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF) 159 #define VLAN_LOCK_DESTROY() mtx_destroy(&ifv_mtx) 160 #define VLAN_LOCK_ASSERT() mtx_assert(&ifv_mtx, MA_OWNED) 161 #define VLAN_LOCK() mtx_lock(&ifv_mtx) 162 #define VLAN_UNLOCK() mtx_unlock(&ifv_mtx) 163 #define TRUNK_LOCK_INIT(trunk) rw_init(&(trunk)->rw, VLANNAME) 164 #define TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw) 165 #define TRUNK_LOCK(trunk) rw_wlock(&(trunk)->rw) 166 #define TRUNK_UNLOCK(trunk) rw_wunlock(&(trunk)->rw) 167 #define TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED) 168 #define TRUNK_RLOCK(trunk) rw_rlock(&(trunk)->rw) 169 #define TRUNK_RUNLOCK(trunk) rw_runlock(&(trunk)->rw) 170 #define TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED) 171 172 #ifndef VLAN_ARRAY 173 static void vlan_inithash(struct ifvlantrunk *trunk); 174 static void vlan_freehash(struct ifvlantrunk *trunk); 175 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 176 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 177 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 178 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 179 uint16_t tag); 180 #endif 181 static void trunk_destroy(struct ifvlantrunk *trunk); 182 183 static void vlan_start(struct ifnet *ifp); 184 static void vlan_init(void *foo); 185 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 186 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 187 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 188 int (*func)(struct ifnet *, int)); 189 static int vlan_setflags(struct ifnet *ifp, int status); 190 static int vlan_setmulti(struct ifnet *ifp); 191 static int vlan_unconfig(struct ifnet *ifp); 192 static int vlan_unconfig_locked(struct ifnet *ifp); 193 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag); 194 static void vlan_link_state(struct ifnet *ifp, int link); 195 static void vlan_capabilities(struct ifvlan *ifv); 196 static void vlan_trunk_capabilities(struct ifnet *ifp); 197 198 static struct ifnet *vlan_clone_match_ethertag(struct if_clone *, 199 const char *, int *); 200 static int vlan_clone_match(struct if_clone *, const char *); 201 static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); 202 static int vlan_clone_destroy(struct if_clone *, struct ifnet *); 203 204 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 205 206 static struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL, 207 IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy); 208 209 #ifndef VLAN_ARRAY 210 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 211 212 static void 213 vlan_inithash(struct ifvlantrunk *trunk) 214 { 215 int i, n; 216 217 /* 218 * The trunk must not be locked here since we call malloc(M_WAITOK). 219 * It is OK in case this function is called before the trunk struct 220 * gets hooked up and becomes visible from other threads. 221 */ 222 223 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 224 ("%s: hash already initialized", __func__)); 225 226 trunk->hwidth = VLAN_DEF_HWIDTH; 227 n = 1 << trunk->hwidth; 228 trunk->hmask = n - 1; 229 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 230 for (i = 0; i < n; i++) 231 LIST_INIT(&trunk->hash[i]); 232 } 233 234 static void 235 vlan_freehash(struct ifvlantrunk *trunk) 236 { 237 #ifdef INVARIANTS 238 int i; 239 240 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 241 for (i = 0; i < (1 << trunk->hwidth); i++) 242 KASSERT(LIST_EMPTY(&trunk->hash[i]), 243 ("%s: hash table not empty", __func__)); 244 #endif 245 free(trunk->hash, M_VLAN); 246 trunk->hash = NULL; 247 trunk->hwidth = trunk->hmask = 0; 248 } 249 250 static int 251 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 252 { 253 int i, b; 254 struct ifvlan *ifv2; 255 256 TRUNK_LOCK_ASSERT(trunk); 257 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 258 259 b = 1 << trunk->hwidth; 260 i = HASH(ifv->ifv_tag, trunk->hmask); 261 LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 262 if (ifv->ifv_tag == ifv2->ifv_tag) 263 return (EEXIST); 264 265 /* 266 * Grow the hash when the number of vlans exceeds half of the number of 267 * hash buckets squared. This will make the average linked-list length 268 * buckets/2. 269 */ 270 if (trunk->refcnt > (b * b) / 2) { 271 vlan_growhash(trunk, 1); 272 i = HASH(ifv->ifv_tag, trunk->hmask); 273 } 274 LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 275 trunk->refcnt++; 276 277 return (0); 278 } 279 280 static int 281 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 282 { 283 int i, b; 284 struct ifvlan *ifv2; 285 286 TRUNK_LOCK_ASSERT(trunk); 287 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 288 289 b = 1 << trunk->hwidth; 290 i = HASH(ifv->ifv_tag, trunk->hmask); 291 LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 292 if (ifv2 == ifv) { 293 trunk->refcnt--; 294 LIST_REMOVE(ifv2, ifv_list); 295 if (trunk->refcnt < (b * b) / 2) 296 vlan_growhash(trunk, -1); 297 return (0); 298 } 299 300 panic("%s: vlan not found\n", __func__); 301 return (ENOENT); /*NOTREACHED*/ 302 } 303 304 /* 305 * Grow the hash larger or smaller if memory permits. 306 */ 307 static void 308 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 309 { 310 struct ifvlan *ifv; 311 struct ifvlanhead *hash2; 312 int hwidth2, i, j, n, n2; 313 314 TRUNK_LOCK_ASSERT(trunk); 315 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 316 317 if (howmuch == 0) { 318 /* Harmless yet obvious coding error */ 319 printf("%s: howmuch is 0\n", __func__); 320 return; 321 } 322 323 hwidth2 = trunk->hwidth + howmuch; 324 n = 1 << trunk->hwidth; 325 n2 = 1 << hwidth2; 326 /* Do not shrink the table below the default */ 327 if (hwidth2 < VLAN_DEF_HWIDTH) 328 return; 329 330 /* M_NOWAIT because we're called with trunk mutex held */ 331 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT); 332 if (hash2 == NULL) { 333 printf("%s: out of memory -- hash size not changed\n", 334 __func__); 335 return; /* We can live with the old hash table */ 336 } 337 for (j = 0; j < n2; j++) 338 LIST_INIT(&hash2[j]); 339 for (i = 0; i < n; i++) 340 while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) { 341 LIST_REMOVE(ifv, ifv_list); 342 j = HASH(ifv->ifv_tag, n2 - 1); 343 LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 344 } 345 free(trunk->hash, M_VLAN); 346 trunk->hash = hash2; 347 trunk->hwidth = hwidth2; 348 trunk->hmask = n2 - 1; 349 350 if (bootverbose) 351 if_printf(trunk->parent, 352 "VLAN hash table resized from %d to %d buckets\n", n, n2); 353 } 354 355 static __inline struct ifvlan * 356 vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag) 357 { 358 struct ifvlan *ifv; 359 360 TRUNK_LOCK_RASSERT(trunk); 361 362 LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list) 363 if (ifv->ifv_tag == tag) 364 return (ifv); 365 return (NULL); 366 } 367 368 #if 0 369 /* Debugging code to view the hashtables. */ 370 static void 371 vlan_dumphash(struct ifvlantrunk *trunk) 372 { 373 int i; 374 struct ifvlan *ifv; 375 376 for (i = 0; i < (1 << trunk->hwidth); i++) { 377 printf("%d: ", i); 378 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 379 printf("%s ", ifv->ifv_ifp->if_xname); 380 printf("\n"); 381 } 382 } 383 #endif /* 0 */ 384 #endif /* !VLAN_ARRAY */ 385 386 static void 387 trunk_destroy(struct ifvlantrunk *trunk) 388 { 389 VLAN_LOCK_ASSERT(); 390 391 TRUNK_LOCK(trunk); 392 #ifndef VLAN_ARRAY 393 vlan_freehash(trunk); 394 #endif 395 trunk->parent->if_vlantrunk = NULL; 396 TRUNK_UNLOCK(trunk); 397 TRUNK_LOCK_DESTROY(trunk); 398 free(trunk, M_VLAN); 399 } 400 401 /* 402 * Program our multicast filter. What we're actually doing is 403 * programming the multicast filter of the parent. This has the 404 * side effect of causing the parent interface to receive multicast 405 * traffic that it doesn't really want, which ends up being discarded 406 * later by the upper protocol layers. Unfortunately, there's no way 407 * to avoid this: there really is only one physical interface. 408 * 409 * XXX: There is a possible race here if more than one thread is 410 * modifying the multicast state of the vlan interface at the same time. 411 */ 412 static int 413 vlan_setmulti(struct ifnet *ifp) 414 { 415 struct ifnet *ifp_p; 416 struct ifmultiaddr *ifma, *rifma = NULL; 417 struct ifvlan *sc; 418 struct vlan_mc_entry *mc; 419 struct sockaddr_dl sdl; 420 int error; 421 422 /*VLAN_LOCK_ASSERT();*/ 423 424 /* Find the parent. */ 425 sc = ifp->if_softc; 426 ifp_p = PARENT(sc); 427 428 CURVNET_SET_QUIET(ifp_p->if_vnet); 429 430 bzero((char *)&sdl, sizeof(sdl)); 431 sdl.sdl_len = sizeof(sdl); 432 sdl.sdl_family = AF_LINK; 433 sdl.sdl_index = ifp_p->if_index; 434 sdl.sdl_type = IFT_ETHER; 435 sdl.sdl_alen = ETHER_ADDR_LEN; 436 437 /* First, remove any existing filter entries. */ 438 while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 439 bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN); 440 error = if_delmulti(ifp_p, (struct sockaddr *)&sdl); 441 if (error) 442 return (error); 443 SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 444 free(mc, M_VLAN); 445 } 446 447 /* Now program new ones. */ 448 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 449 if (ifma->ifma_addr->sa_family != AF_LINK) 450 continue; 451 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 452 if (mc == NULL) 453 return (ENOMEM); 454 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 455 (char *)&mc->mc_addr, ETHER_ADDR_LEN); 456 SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 457 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 458 LLADDR(&sdl), ETHER_ADDR_LEN); 459 error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma); 460 if (error) 461 return (error); 462 } 463 464 CURVNET_RESTORE(); 465 return (0); 466 } 467 468 /* 469 * A handler for network interface departure events. 470 * Track departure of trunks here so that we don't access invalid 471 * pointers or whatever if a trunk is ripped from under us, e.g., 472 * by ejecting its hot-plug card. 473 */ 474 static void 475 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 476 { 477 struct ifvlan *ifv; 478 int i; 479 480 /* 481 * Check if it's a trunk interface first of all 482 * to avoid needless locking. 483 */ 484 if (ifp->if_vlantrunk == NULL) 485 return; 486 487 VLAN_LOCK(); 488 /* 489 * OK, it's a trunk. Loop over and detach all vlan's on it. 490 * Check trunk pointer after each vlan_unconfig() as it will 491 * free it and set to NULL after the last vlan was detached. 492 */ 493 #ifdef VLAN_ARRAY 494 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 495 if ((ifv = ifp->if_vlantrunk->vlans[i])) { 496 vlan_unconfig_locked(ifv->ifv_ifp); 497 if (ifp->if_vlantrunk == NULL) 498 break; 499 } 500 #else /* VLAN_ARRAY */ 501 restart: 502 for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++) 503 if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) { 504 vlan_unconfig_locked(ifv->ifv_ifp); 505 if (ifp->if_vlantrunk) 506 goto restart; /* trunk->hwidth can change */ 507 else 508 break; 509 } 510 #endif /* VLAN_ARRAY */ 511 /* Trunk should have been destroyed in vlan_unconfig(). */ 512 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 513 VLAN_UNLOCK(); 514 } 515 516 /* 517 * VLAN support can be loaded as a module. The only place in the 518 * system that's intimately aware of this is ether_input. We hook 519 * into this code through vlan_input_p which is defined there and 520 * set here. Noone else in the system should be aware of this so 521 * we use an explicit reference here. 522 */ 523 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 524 525 /* For if_link_state_change() eyes only... */ 526 extern void (*vlan_link_state_p)(struct ifnet *, int); 527 528 static int 529 vlan_modevent(module_t mod, int type, void *data) 530 { 531 532 switch (type) { 533 case MOD_LOAD: 534 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 535 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 536 if (ifdetach_tag == NULL) 537 return (ENOMEM); 538 VLAN_LOCK_INIT(); 539 vlan_input_p = vlan_input; 540 vlan_link_state_p = vlan_link_state; 541 vlan_trunk_cap_p = vlan_trunk_capabilities; 542 if_clone_attach(&vlan_cloner); 543 if (bootverbose) 544 printf("vlan: initialized, using " 545 #ifdef VLAN_ARRAY 546 "full-size arrays" 547 #else 548 "hash tables with chaining" 549 #endif 550 551 "\n"); 552 break; 553 case MOD_UNLOAD: 554 if_clone_detach(&vlan_cloner); 555 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 556 vlan_input_p = NULL; 557 vlan_link_state_p = NULL; 558 vlan_trunk_cap_p = NULL; 559 VLAN_LOCK_DESTROY(); 560 if (bootverbose) 561 printf("vlan: unloaded\n"); 562 break; 563 default: 564 return (EOPNOTSUPP); 565 } 566 return (0); 567 } 568 569 static moduledata_t vlan_mod = { 570 "if_vlan", 571 vlan_modevent, 572 0 573 }; 574 575 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 576 MODULE_VERSION(if_vlan, 3); 577 MODULE_DEPEND(if_vlan, miibus, 1, 1, 1); 578 579 static struct ifnet * 580 vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag) 581 { 582 INIT_VNET_NET(curvnet); 583 const char *cp; 584 struct ifnet *ifp; 585 int t = 0; 586 587 /* Check for <etherif>.<vlan> style interface names. */ 588 IFNET_RLOCK(); 589 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 590 if (ifp->if_type != IFT_ETHER) 591 continue; 592 if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0) 593 continue; 594 cp = name + strlen(ifp->if_xname); 595 if (*cp != '.') 596 continue; 597 for(; *cp != '\0'; cp++) { 598 if (*cp < '0' || *cp > '9') 599 continue; 600 t = (t * 10) + (*cp - '0'); 601 } 602 if (tag != NULL) 603 *tag = t; 604 break; 605 } 606 IFNET_RUNLOCK(); 607 608 return (ifp); 609 } 610 611 static int 612 vlan_clone_match(struct if_clone *ifc, const char *name) 613 { 614 const char *cp; 615 616 if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL) 617 return (1); 618 619 if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0) 620 return (0); 621 for (cp = name + 4; *cp != '\0'; cp++) { 622 if (*cp < '0' || *cp > '9') 623 return (0); 624 } 625 626 return (1); 627 } 628 629 static int 630 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) 631 { 632 char *dp; 633 int wildcard; 634 int unit; 635 int error; 636 int tag; 637 int ethertag; 638 struct ifvlan *ifv; 639 struct ifnet *ifp; 640 struct ifnet *p; 641 struct vlanreq vlr; 642 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 643 644 /* 645 * There are 3 (ugh) ways to specify the cloned device: 646 * o pass a parameter block with the clone request. 647 * o specify parameters in the text of the clone device name 648 * o specify no parameters and get an unattached device that 649 * must be configured separately. 650 * The first technique is preferred; the latter two are 651 * supported for backwards compatibilty. 652 */ 653 if (params) { 654 error = copyin(params, &vlr, sizeof(vlr)); 655 if (error) 656 return error; 657 p = ifunit(vlr.vlr_parent); 658 if (p == NULL) 659 return ENXIO; 660 /* 661 * Don't let the caller set up a VLAN tag with 662 * anything except VLID bits. 663 */ 664 if (vlr.vlr_tag & ~EVL_VLID_MASK) 665 return (EINVAL); 666 error = ifc_name2unit(name, &unit); 667 if (error != 0) 668 return (error); 669 670 ethertag = 1; 671 tag = vlr.vlr_tag; 672 wildcard = (unit < 0); 673 } else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) { 674 ethertag = 1; 675 unit = -1; 676 wildcard = 0; 677 678 /* 679 * Don't let the caller set up a VLAN tag with 680 * anything except VLID bits. 681 */ 682 if (tag & ~EVL_VLID_MASK) 683 return (EINVAL); 684 } else { 685 ethertag = 0; 686 687 error = ifc_name2unit(name, &unit); 688 if (error != 0) 689 return (error); 690 691 wildcard = (unit < 0); 692 } 693 694 error = ifc_alloc_unit(ifc, &unit); 695 if (error != 0) 696 return (error); 697 698 /* In the wildcard case, we need to update the name. */ 699 if (wildcard) { 700 for (dp = name; *dp != '\0'; dp++); 701 if (snprintf(dp, len - (dp-name), "%d", unit) > 702 len - (dp-name) - 1) { 703 panic("%s: interface name too long", __func__); 704 } 705 } 706 707 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 708 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 709 if (ifp == NULL) { 710 ifc_free_unit(ifc, unit); 711 free(ifv, M_VLAN); 712 return (ENOSPC); 713 } 714 SLIST_INIT(&ifv->vlan_mc_listhead); 715 716 ifp->if_softc = ifv; 717 /* 718 * Set the name manually rather than using if_initname because 719 * we don't conform to the default naming convention for interfaces. 720 */ 721 strlcpy(ifp->if_xname, name, IFNAMSIZ); 722 ifp->if_dname = ifc->ifc_name; 723 ifp->if_dunit = unit; 724 /* NB: flags are not set here */ 725 ifp->if_linkmib = &ifv->ifv_mib; 726 ifp->if_linkmiblen = sizeof(ifv->ifv_mib); 727 /* NB: mtu is not set here */ 728 729 ifp->if_init = vlan_init; 730 ifp->if_start = vlan_start; 731 ifp->if_ioctl = vlan_ioctl; 732 ifp->if_snd.ifq_maxlen = ifqmaxlen; 733 ifp->if_flags = VLAN_IFFLAGS; 734 ether_ifattach(ifp, eaddr); 735 /* Now undo some of the damage... */ 736 ifp->if_baudrate = 0; 737 ifp->if_type = IFT_L2VLAN; 738 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 739 740 if (ethertag) { 741 error = vlan_config(ifv, p, tag); 742 if (error != 0) { 743 /* 744 * Since we've partialy failed, we need to back 745 * out all the way, otherwise userland could get 746 * confused. Thus, we destroy the interface. 747 */ 748 ether_ifdetach(ifp); 749 vlan_unconfig(ifp); 750 if_free_type(ifp, IFT_ETHER); 751 ifc_free_unit(ifc, unit); 752 free(ifv, M_VLAN); 753 754 return (error); 755 } 756 757 /* Update flags on the parent, if necessary. */ 758 vlan_setflags(ifp, 1); 759 } 760 761 return (0); 762 } 763 764 static int 765 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) 766 { 767 struct ifvlan *ifv = ifp->if_softc; 768 int unit = ifp->if_dunit; 769 770 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 771 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 772 if_free_type(ifp, IFT_ETHER); 773 free(ifv, M_VLAN); 774 ifc_free_unit(ifc, unit); 775 776 return (0); 777 } 778 779 /* 780 * The ifp->if_init entry point for vlan(4) is a no-op. 781 */ 782 static void 783 vlan_init(void *foo __unused) 784 { 785 } 786 787 /* 788 * The if_start method for vlan(4) interface. It doesn't 789 * raises the IFF_DRV_OACTIVE flag, since it is called 790 * only from IFQ_HANDOFF() macro in ether_output_frame(). 791 * If the interface queue is full, and vlan_start() is 792 * not called, the queue would never get emptied and 793 * interface would stall forever. 794 */ 795 static void 796 vlan_start(struct ifnet *ifp) 797 { 798 struct ifvlan *ifv; 799 struct ifnet *p; 800 struct mbuf *m; 801 int error; 802 803 ifv = ifp->if_softc; 804 p = PARENT(ifv); 805 806 for (;;) { 807 IF_DEQUEUE(&ifp->if_snd, m); 808 if (m == NULL) 809 break; 810 BPF_MTAP(ifp, m); 811 812 /* 813 * Do not run parent's if_start() if the parent is not up, 814 * or parent's driver will cause a system crash. 815 */ 816 if (!UP_AND_RUNNING(p)) { 817 m_freem(m); 818 ifp->if_collisions++; 819 continue; 820 } 821 822 /* 823 * Pad the frame to the minimum size allowed if told to. 824 * This option is in accord with IEEE Std 802.1Q, 2003 Ed., 825 * paragraph C.4.4.3.b. It can help to work around buggy 826 * bridges that violate paragraph C.4.4.3.a from the same 827 * document, i.e., fail to pad short frames after untagging. 828 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but 829 * untagging it will produce a 62-byte frame, which is a runt 830 * and requires padding. There are VLAN-enabled network 831 * devices that just discard such runts instead or mishandle 832 * them somehow. 833 */ 834 if (soft_pad) { 835 static char pad[8]; /* just zeros */ 836 int n; 837 838 for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len; 839 n > 0; n -= sizeof(pad)) 840 if (!m_append(m, min(n, sizeof(pad)), pad)) 841 break; 842 843 if (n > 0) { 844 if_printf(ifp, "cannot pad short frame\n"); 845 ifp->if_oerrors++; 846 m_freem(m); 847 continue; 848 } 849 } 850 851 /* 852 * If underlying interface can do VLAN tag insertion itself, 853 * just pass the packet along. However, we need some way to 854 * tell the interface where the packet came from so that it 855 * knows how to find the VLAN tag to use, so we attach a 856 * packet tag that holds it. 857 */ 858 if (p->if_capenable & IFCAP_VLAN_HWTAGGING) { 859 m->m_pkthdr.ether_vtag = ifv->ifv_tag; 860 m->m_flags |= M_VLANTAG; 861 } else { 862 m = ether_vlanencap(m, ifv->ifv_tag); 863 if (m == NULL) { 864 if_printf(ifp, 865 "unable to prepend VLAN header\n"); 866 ifp->if_oerrors++; 867 continue; 868 } 869 } 870 871 /* 872 * Send it, precisely as ether_output() would have. 873 * We are already running at splimp. 874 */ 875 error = (p->if_transmit)(p, m); 876 if (!error) 877 ifp->if_opackets++; 878 else 879 ifp->if_oerrors++; 880 } 881 } 882 883 static void 884 vlan_input(struct ifnet *ifp, struct mbuf *m) 885 { 886 struct ifvlantrunk *trunk = ifp->if_vlantrunk; 887 struct ifvlan *ifv; 888 uint16_t tag; 889 890 KASSERT(trunk != NULL, ("%s: no trunk", __func__)); 891 892 if (m->m_flags & M_VLANTAG) { 893 /* 894 * Packet is tagged, but m contains a normal 895 * Ethernet frame; the tag is stored out-of-band. 896 */ 897 tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag); 898 m->m_flags &= ~M_VLANTAG; 899 } else { 900 struct ether_vlan_header *evl; 901 902 /* 903 * Packet is tagged in-band as specified by 802.1q. 904 */ 905 switch (ifp->if_type) { 906 case IFT_ETHER: 907 if (m->m_len < sizeof(*evl) && 908 (m = m_pullup(m, sizeof(*evl))) == NULL) { 909 if_printf(ifp, "cannot pullup VLAN header\n"); 910 return; 911 } 912 evl = mtod(m, struct ether_vlan_header *); 913 tag = EVL_VLANOFTAG(ntohs(evl->evl_tag)); 914 915 /* 916 * Remove the 802.1q header by copying the Ethernet 917 * addresses over it and adjusting the beginning of 918 * the data in the mbuf. The encapsulated Ethernet 919 * type field is already in place. 920 */ 921 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 922 ETHER_HDR_LEN - ETHER_TYPE_LEN); 923 m_adj(m, ETHER_VLAN_ENCAP_LEN); 924 break; 925 926 default: 927 #ifdef INVARIANTS 928 panic("%s: %s has unsupported if_type %u", 929 __func__, ifp->if_xname, ifp->if_type); 930 #endif 931 m_freem(m); 932 ifp->if_noproto++; 933 return; 934 } 935 } 936 937 TRUNK_RLOCK(trunk); 938 #ifdef VLAN_ARRAY 939 ifv = trunk->vlans[tag]; 940 #else 941 ifv = vlan_gethash(trunk, tag); 942 #endif 943 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 944 TRUNK_RUNLOCK(trunk); 945 m_freem(m); 946 ifp->if_noproto++; 947 return; 948 } 949 TRUNK_RUNLOCK(trunk); 950 951 m->m_pkthdr.rcvif = ifv->ifv_ifp; 952 ifv->ifv_ifp->if_ipackets++; 953 954 /* Pass it back through the parent's input routine. */ 955 (*ifp->if_input)(ifv->ifv_ifp, m); 956 } 957 958 static int 959 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag) 960 { 961 struct ifvlantrunk *trunk; 962 struct ifnet *ifp; 963 int error = 0; 964 965 /* VID numbers 0x0 and 0xFFF are reserved */ 966 if (tag == 0 || tag == 0xFFF) 967 return (EINVAL); 968 if (p->if_type != IFT_ETHER) 969 return (EPROTONOSUPPORT); 970 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 971 return (EPROTONOSUPPORT); 972 if (ifv->ifv_trunk) 973 return (EBUSY); 974 975 if (p->if_vlantrunk == NULL) { 976 trunk = malloc(sizeof(struct ifvlantrunk), 977 M_VLAN, M_WAITOK | M_ZERO); 978 #ifndef VLAN_ARRAY 979 vlan_inithash(trunk); 980 #endif 981 VLAN_LOCK(); 982 if (p->if_vlantrunk != NULL) { 983 /* A race that that is very unlikely to be hit. */ 984 #ifndef VLAN_ARRAY 985 vlan_freehash(trunk); 986 #endif 987 free(trunk, M_VLAN); 988 goto exists; 989 } 990 TRUNK_LOCK_INIT(trunk); 991 TRUNK_LOCK(trunk); 992 p->if_vlantrunk = trunk; 993 trunk->parent = p; 994 } else { 995 VLAN_LOCK(); 996 exists: 997 trunk = p->if_vlantrunk; 998 TRUNK_LOCK(trunk); 999 } 1000 1001 ifv->ifv_tag = tag; /* must set this before vlan_inshash() */ 1002 #ifdef VLAN_ARRAY 1003 if (trunk->vlans[tag] != NULL) { 1004 error = EEXIST; 1005 goto done; 1006 } 1007 trunk->vlans[tag] = ifv; 1008 trunk->refcnt++; 1009 #else 1010 error = vlan_inshash(trunk, ifv); 1011 if (error) 1012 goto done; 1013 #endif 1014 ifv->ifv_proto = ETHERTYPE_VLAN; 1015 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1016 ifv->ifv_mintu = ETHERMIN; 1017 ifv->ifv_pflags = 0; 1018 1019 /* 1020 * If the parent supports the VLAN_MTU capability, 1021 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1022 * use it. 1023 */ 1024 if (p->if_capenable & IFCAP_VLAN_MTU) { 1025 /* 1026 * No need to fudge the MTU since the parent can 1027 * handle extended frames. 1028 */ 1029 ifv->ifv_mtufudge = 0; 1030 } else { 1031 /* 1032 * Fudge the MTU by the encapsulation size. This 1033 * makes us incompatible with strictly compliant 1034 * 802.1Q implementations, but allows us to use 1035 * the feature with other NetBSD implementations, 1036 * which might still be useful. 1037 */ 1038 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1039 } 1040 1041 ifv->ifv_trunk = trunk; 1042 ifp = ifv->ifv_ifp; 1043 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1044 ifp->if_baudrate = p->if_baudrate; 1045 /* 1046 * Copy only a selected subset of flags from the parent. 1047 * Other flags are none of our business. 1048 */ 1049 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1050 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1051 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1052 #undef VLAN_COPY_FLAGS 1053 1054 ifp->if_link_state = p->if_link_state; 1055 1056 vlan_capabilities(ifv); 1057 1058 /* 1059 * Set up our ``Ethernet address'' to reflect the underlying 1060 * physical interface's. 1061 */ 1062 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN); 1063 1064 /* 1065 * Configure multicast addresses that may already be 1066 * joined on the vlan device. 1067 */ 1068 (void)vlan_setmulti(ifp); /* XXX: VLAN lock held */ 1069 1070 /* We are ready for operation now. */ 1071 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1072 done: 1073 TRUNK_UNLOCK(trunk); 1074 if (error == 0) 1075 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag); 1076 VLAN_UNLOCK(); 1077 1078 return (error); 1079 } 1080 1081 static int 1082 vlan_unconfig(struct ifnet *ifp) 1083 { 1084 int ret; 1085 1086 VLAN_LOCK(); 1087 ret = vlan_unconfig_locked(ifp); 1088 VLAN_UNLOCK(); 1089 return (ret); 1090 } 1091 1092 static int 1093 vlan_unconfig_locked(struct ifnet *ifp) 1094 { 1095 struct ifvlantrunk *trunk; 1096 struct vlan_mc_entry *mc; 1097 struct ifvlan *ifv; 1098 struct ifnet *parent; 1099 int error; 1100 1101 VLAN_LOCK_ASSERT(); 1102 1103 ifv = ifp->if_softc; 1104 trunk = ifv->ifv_trunk; 1105 parent = NULL; 1106 1107 if (trunk != NULL) { 1108 struct sockaddr_dl sdl; 1109 1110 TRUNK_LOCK(trunk); 1111 parent = trunk->parent; 1112 1113 /* 1114 * Since the interface is being unconfigured, we need to 1115 * empty the list of multicast groups that we may have joined 1116 * while we were alive from the parent's list. 1117 */ 1118 bzero((char *)&sdl, sizeof(sdl)); 1119 sdl.sdl_len = sizeof(sdl); 1120 sdl.sdl_family = AF_LINK; 1121 sdl.sdl_index = parent->if_index; 1122 sdl.sdl_type = IFT_ETHER; 1123 sdl.sdl_alen = ETHER_ADDR_LEN; 1124 1125 while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1126 bcopy((char *)&mc->mc_addr, LLADDR(&sdl), 1127 ETHER_ADDR_LEN); 1128 error = if_delmulti(parent, (struct sockaddr *)&sdl); 1129 if (error) 1130 return (error); 1131 SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1132 free(mc, M_VLAN); 1133 } 1134 1135 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1136 #ifdef VLAN_ARRAY 1137 trunk->vlans[ifv->ifv_tag] = NULL; 1138 trunk->refcnt--; 1139 #else 1140 vlan_remhash(trunk, ifv); 1141 #endif 1142 ifv->ifv_trunk = NULL; 1143 1144 /* 1145 * Check if we were the last. 1146 */ 1147 if (trunk->refcnt == 0) { 1148 trunk->parent->if_vlantrunk = NULL; 1149 /* 1150 * XXXGL: If some ithread has already entered 1151 * vlan_input() and is now blocked on the trunk 1152 * lock, then it should preempt us right after 1153 * unlock and finish its work. Then we will acquire 1154 * lock again in trunk_destroy(). 1155 */ 1156 TRUNK_UNLOCK(trunk); 1157 trunk_destroy(trunk); 1158 } else 1159 TRUNK_UNLOCK(trunk); 1160 } 1161 1162 /* Disconnect from parent. */ 1163 if (ifv->ifv_pflags) 1164 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1165 ifp->if_mtu = ETHERMTU; 1166 ifp->if_link_state = LINK_STATE_UNKNOWN; 1167 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1168 1169 /* 1170 * Only dispatch an event if vlan was 1171 * attached, otherwise there is nothing 1172 * to cleanup anyway. 1173 */ 1174 if (parent != NULL) 1175 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag); 1176 1177 return (0); 1178 } 1179 1180 /* Handle a reference counted flag that should be set on the parent as well */ 1181 static int 1182 vlan_setflag(struct ifnet *ifp, int flag, int status, 1183 int (*func)(struct ifnet *, int)) 1184 { 1185 struct ifvlan *ifv; 1186 int error; 1187 1188 /* XXX VLAN_LOCK_ASSERT(); */ 1189 1190 ifv = ifp->if_softc; 1191 status = status ? (ifp->if_flags & flag) : 0; 1192 /* Now "status" contains the flag value or 0 */ 1193 1194 /* 1195 * See if recorded parent's status is different from what 1196 * we want it to be. If it is, flip it. We record parent's 1197 * status in ifv_pflags so that we won't clear parent's flag 1198 * we haven't set. In fact, we don't clear or set parent's 1199 * flags directly, but get or release references to them. 1200 * That's why we can be sure that recorded flags still are 1201 * in accord with actual parent's flags. 1202 */ 1203 if (status != (ifv->ifv_pflags & flag)) { 1204 error = (*func)(PARENT(ifv), status); 1205 if (error) 1206 return (error); 1207 ifv->ifv_pflags &= ~flag; 1208 ifv->ifv_pflags |= status; 1209 } 1210 return (0); 1211 } 1212 1213 /* 1214 * Handle IFF_* flags that require certain changes on the parent: 1215 * if "status" is true, update parent's flags respective to our if_flags; 1216 * if "status" is false, forcedly clear the flags set on parent. 1217 */ 1218 static int 1219 vlan_setflags(struct ifnet *ifp, int status) 1220 { 1221 int error, i; 1222 1223 for (i = 0; vlan_pflags[i].flag; i++) { 1224 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1225 status, vlan_pflags[i].func); 1226 if (error) 1227 return (error); 1228 } 1229 return (0); 1230 } 1231 1232 /* Inform all vlans that their parent has changed link state */ 1233 static void 1234 vlan_link_state(struct ifnet *ifp, int link) 1235 { 1236 struct ifvlantrunk *trunk = ifp->if_vlantrunk; 1237 struct ifvlan *ifv; 1238 int i; 1239 1240 TRUNK_LOCK(trunk); 1241 #ifdef VLAN_ARRAY 1242 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 1243 if (trunk->vlans[i] != NULL) { 1244 ifv = trunk->vlans[i]; 1245 #else 1246 for (i = 0; i < (1 << trunk->hwidth); i++) 1247 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) { 1248 #endif 1249 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 1250 if_link_state_change(ifv->ifv_ifp, 1251 trunk->parent->if_link_state); 1252 } 1253 TRUNK_UNLOCK(trunk); 1254 } 1255 1256 static void 1257 vlan_capabilities(struct ifvlan *ifv) 1258 { 1259 struct ifnet *p = PARENT(ifv); 1260 struct ifnet *ifp = ifv->ifv_ifp; 1261 1262 TRUNK_LOCK_ASSERT(TRUNK(ifv)); 1263 1264 /* 1265 * If the parent interface can do checksum offloading 1266 * on VLANs, then propagate its hardware-assisted 1267 * checksumming flags. Also assert that checksum 1268 * offloading requires hardware VLAN tagging. 1269 */ 1270 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1271 ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM; 1272 1273 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 1274 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1275 ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM; 1276 ifp->if_hwassist = p->if_hwassist; 1277 } else { 1278 ifp->if_capenable = 0; 1279 ifp->if_hwassist = 0; 1280 } 1281 } 1282 1283 static void 1284 vlan_trunk_capabilities(struct ifnet *ifp) 1285 { 1286 struct ifvlantrunk *trunk = ifp->if_vlantrunk; 1287 struct ifvlan *ifv; 1288 int i; 1289 1290 TRUNK_LOCK(trunk); 1291 #ifdef VLAN_ARRAY 1292 for (i = 0; i < VLAN_ARRAY_SIZE; i++) 1293 if (trunk->vlans[i] != NULL) { 1294 ifv = trunk->vlans[i]; 1295 #else 1296 for (i = 0; i < (1 << trunk->hwidth); i++) { 1297 LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 1298 #endif 1299 vlan_capabilities(ifv); 1300 } 1301 TRUNK_UNLOCK(trunk); 1302 } 1303 1304 static int 1305 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1306 { 1307 struct ifnet *p; 1308 struct ifreq *ifr; 1309 struct ifvlan *ifv; 1310 struct vlanreq vlr; 1311 int error = 0; 1312 1313 ifr = (struct ifreq *)data; 1314 ifv = ifp->if_softc; 1315 1316 switch (cmd) { 1317 case SIOCGIFMEDIA: 1318 VLAN_LOCK(); 1319 if (TRUNK(ifv) != NULL) { 1320 error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv), 1321 SIOCGIFMEDIA, data); 1322 VLAN_UNLOCK(); 1323 /* Limit the result to the parent's current config. */ 1324 if (error == 0) { 1325 struct ifmediareq *ifmr; 1326 1327 ifmr = (struct ifmediareq *)data; 1328 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 1329 ifmr->ifm_count = 1; 1330 error = copyout(&ifmr->ifm_current, 1331 ifmr->ifm_ulist, 1332 sizeof(int)); 1333 } 1334 } 1335 } else { 1336 VLAN_UNLOCK(); 1337 error = EINVAL; 1338 } 1339 break; 1340 1341 case SIOCSIFMEDIA: 1342 error = EINVAL; 1343 break; 1344 1345 case SIOCSIFMTU: 1346 /* 1347 * Set the interface MTU. 1348 */ 1349 VLAN_LOCK(); 1350 if (TRUNK(ifv) != NULL) { 1351 if (ifr->ifr_mtu > 1352 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 1353 ifr->ifr_mtu < 1354 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 1355 error = EINVAL; 1356 else 1357 ifp->if_mtu = ifr->ifr_mtu; 1358 } else 1359 error = EINVAL; 1360 VLAN_UNLOCK(); 1361 break; 1362 1363 case SIOCSETVLAN: 1364 error = copyin(ifr->ifr_data, &vlr, sizeof(vlr)); 1365 if (error) 1366 break; 1367 if (vlr.vlr_parent[0] == '\0') { 1368 vlan_unconfig(ifp); 1369 break; 1370 } 1371 p = ifunit(vlr.vlr_parent); 1372 if (p == 0) { 1373 error = ENOENT; 1374 break; 1375 } 1376 /* 1377 * Don't let the caller set up a VLAN tag with 1378 * anything except VLID bits. 1379 */ 1380 if (vlr.vlr_tag & ~EVL_VLID_MASK) { 1381 error = EINVAL; 1382 break; 1383 } 1384 error = vlan_config(ifv, p, vlr.vlr_tag); 1385 if (error) 1386 break; 1387 1388 /* Update flags on the parent, if necessary. */ 1389 vlan_setflags(ifp, 1); 1390 break; 1391 1392 case SIOCGETVLAN: 1393 bzero(&vlr, sizeof(vlr)); 1394 VLAN_LOCK(); 1395 if (TRUNK(ifv) != NULL) { 1396 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 1397 sizeof(vlr.vlr_parent)); 1398 vlr.vlr_tag = ifv->ifv_tag; 1399 } 1400 VLAN_UNLOCK(); 1401 error = copyout(&vlr, ifr->ifr_data, sizeof(vlr)); 1402 break; 1403 1404 case SIOCSIFFLAGS: 1405 /* 1406 * We should propagate selected flags to the parent, 1407 * e.g., promiscuous mode. 1408 */ 1409 if (TRUNK(ifv) != NULL) 1410 error = vlan_setflags(ifp, 1); 1411 break; 1412 1413 case SIOCADDMULTI: 1414 case SIOCDELMULTI: 1415 /* 1416 * If we don't have a parent, just remember the membership for 1417 * when we do. 1418 */ 1419 if (TRUNK(ifv) != NULL) 1420 error = vlan_setmulti(ifp); 1421 break; 1422 1423 default: 1424 error = ether_ioctl(ifp, cmd, data); 1425 } 1426 1427 return (error); 1428 } 1429