1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * Copyright 2012 ADARA Networks, Inc. 4 * Copyright 2017 Dell EMC Isilon 5 * 6 * Portions of this software were developed by Robert N. M. Watson under 7 * contract to ADARA Networks, Inc. 8 * 9 * Permission to use, copy, modify, and distribute this software and 10 * its documentation for any purpose and without fee is hereby 11 * granted, provided that both the above copyright notice and this 12 * permission notice appear in all copies, that both the above 13 * copyright notice and this permission notice appear in all 14 * supporting documentation, and that the name of M.I.T. not be used 15 * in advertising or publicity pertaining to distribution of the 16 * software without specific, written prior permission. M.I.T. makes 17 * no representations about the suitability of this software for any 18 * purpose. It is provided "as is" without express or implied 19 * warranty. 20 * 21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 37 * This is sort of sneaky in the implementation, since 38 * we need to pretend to be enough of an Ethernet implementation 39 * to make arp work. The way we do this is by telling everyone 40 * that we are an Ethernet, and then catch the packets that 41 * ether_output() sends to us via if_transmit(), rewrite them for 42 * use by the real outgoing interface, and ask it to send them. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_inet.h" 49 #include "opt_inet6.h" 50 #include "opt_kern_tls.h" 51 #include "opt_vlan.h" 52 #include "opt_ratelimit.h" 53 54 #include <sys/param.h> 55 #include <sys/eventhandler.h> 56 #include <sys/kernel.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mbuf.h> 60 #include <sys/module.h> 61 #include <sys/rmlock.h> 62 #include <sys/priv.h> 63 #include <sys/queue.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/sysctl.h> 67 #include <sys/systm.h> 68 #include <sys/sx.h> 69 #include <sys/taskqueue.h> 70 71 #include <net/bpf.h> 72 #include <net/ethernet.h> 73 #include <net/if.h> 74 #include <net/if_var.h> 75 #include <net/if_clone.h> 76 #include <net/if_dl.h> 77 #include <net/if_types.h> 78 #include <net/if_vlan_var.h> 79 #include <net/route.h> 80 #include <net/vnet.h> 81 82 #ifdef INET 83 #include <netinet/in.h> 84 #include <netinet/if_ether.h> 85 #endif 86 87 #ifdef INET6 88 /* 89 * XXX: declare here to avoid to include many inet6 related files.. 90 * should be more generalized? 91 */ 92 extern void nd6_setmtu(struct ifnet *); 93 #endif 94 95 #define VLAN_DEF_HWIDTH 4 96 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 97 98 #define UP_AND_RUNNING(ifp) \ 99 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 100 101 CK_SLIST_HEAD(ifvlanhead, ifvlan); 102 103 struct ifvlantrunk { 104 struct ifnet *parent; /* parent interface of this trunk */ 105 struct mtx lock; 106 #ifdef VLAN_ARRAY 107 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 108 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 109 #else 110 struct ifvlanhead *hash; /* dynamic hash-list table */ 111 uint16_t hmask; 112 uint16_t hwidth; 113 #endif 114 int refcnt; 115 }; 116 117 #if defined(KERN_TLS) || defined(RATELIMIT) 118 struct vlan_snd_tag { 119 struct m_snd_tag com; 120 struct m_snd_tag *tag; 121 }; 122 123 static inline struct vlan_snd_tag * 124 mst_to_vst(struct m_snd_tag *mst) 125 { 126 127 return (__containerof(mst, struct vlan_snd_tag, com)); 128 } 129 #endif 130 131 /* 132 * This macro provides a facility to iterate over every vlan on a trunk with 133 * the assumption that none will be added/removed during iteration. 134 */ 135 #ifdef VLAN_ARRAY 136 #define VLAN_FOREACH(_ifv, _trunk) \ 137 size_t _i; \ 138 for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ 139 if (((_ifv) = (_trunk)->vlans[_i]) != NULL) 140 #else /* VLAN_ARRAY */ 141 #define VLAN_FOREACH(_ifv, _trunk) \ 142 struct ifvlan *_next; \ 143 size_t _i; \ 144 for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ 145 CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) 146 #endif /* VLAN_ARRAY */ 147 148 /* 149 * This macro provides a facility to iterate over every vlan on a trunk while 150 * also modifying the number of vlans on the trunk. The iteration continues 151 * until some condition is met or there are no more vlans on the trunk. 152 */ 153 #ifdef VLAN_ARRAY 154 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ 155 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 156 size_t _i; \ 157 for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ 158 if (((_ifv) = (_trunk)->vlans[_i])) 159 #else /* VLAN_ARRAY */ 160 /* 161 * The hash table case is more complicated. We allow for the hash table to be 162 * modified (i.e. vlans removed) while we are iterating over it. To allow for 163 * this we must restart the iteration every time we "touch" something during 164 * the iteration, since removal will resize the hash table and invalidate our 165 * current position. If acting on the touched element causes the trunk to be 166 * emptied, then iteration also stops. 167 */ 168 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 169 size_t _i; \ 170 bool _touch = false; \ 171 for (_i = 0; \ 172 !(_cond) && _i < (1 << (_trunk)->hwidth); \ 173 _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ 174 if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ 175 (_touch = true)) 176 #endif /* VLAN_ARRAY */ 177 178 struct vlan_mc_entry { 179 struct sockaddr_dl mc_addr; 180 CK_SLIST_ENTRY(vlan_mc_entry) mc_entries; 181 struct epoch_context mc_epoch_ctx; 182 }; 183 184 struct ifvlan { 185 struct ifvlantrunk *ifv_trunk; 186 struct ifnet *ifv_ifp; 187 #define TRUNK(ifv) ((ifv)->ifv_trunk) 188 #define PARENT(ifv) (TRUNK(ifv)->parent) 189 void *ifv_cookie; 190 int ifv_pflags; /* special flags we have set on parent */ 191 int ifv_capenable; 192 int ifv_encaplen; /* encapsulation length */ 193 int ifv_mtufudge; /* MTU fudged by this much */ 194 int ifv_mintu; /* min transmission unit */ 195 struct ether_8021q_tag ifv_qtag; 196 #define ifv_proto ifv_qtag.proto 197 #define ifv_vid ifv_qtag.vid 198 #define ifv_pcp ifv_qtag.pcp 199 struct task lladdr_task; 200 CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 201 #ifndef VLAN_ARRAY 202 CK_SLIST_ENTRY(ifvlan) ifv_list; 203 #endif 204 }; 205 206 /* Special flags we should propagate to parent. */ 207 static struct { 208 int flag; 209 int (*func)(struct ifnet *, int); 210 } vlan_pflags[] = { 211 {IFF_PROMISC, ifpromisc}, 212 {IFF_ALLMULTI, if_allmulti}, 213 {0, NULL} 214 }; 215 216 extern int vlan_mtag_pcp; 217 218 static const char vlanname[] = "vlan"; 219 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); 220 221 static eventhandler_tag ifdetach_tag; 222 static eventhandler_tag iflladdr_tag; 223 224 /* 225 * if_vlan uses two module-level synchronizations primitives to allow concurrent 226 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed 227 * while they are being used for tx/rx. To accomplish this in a way that has 228 * acceptable performance and cooperation with other parts of the network stack 229 * there is a non-sleepable epoch(9) and an sx(9). 230 * 231 * The performance-sensitive paths that warrant using the epoch(9) are 232 * vlan_transmit and vlan_input. Both have to check for the vlan interface's 233 * existence using if_vlantrunk, and being in the network tx/rx paths the use 234 * of an epoch(9) gives a measureable improvement in performance. 235 * 236 * The reason for having an sx(9) is mostly because there are still areas that 237 * must be sleepable and also have safe concurrent access to a vlan interface. 238 * Since the sx(9) exists, it is used by default in most paths unless sleeping 239 * is not permitted, or if it is not clear whether sleeping is permitted. 240 * 241 */ 242 #define _VLAN_SX_ID ifv_sx 243 244 static struct sx _VLAN_SX_ID; 245 246 #define VLAN_LOCKING_INIT() \ 247 sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE) 248 249 #define VLAN_LOCKING_DESTROY() \ 250 sx_destroy(&_VLAN_SX_ID) 251 252 #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) 253 #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) 254 #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) 255 #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) 256 #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) 257 #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) 258 #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) 259 260 /* 261 * We also have a per-trunk mutex that should be acquired when changing 262 * its state. 263 */ 264 #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF) 265 #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock) 266 #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock) 267 #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock) 268 #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED); 269 270 /* 271 * The VLAN_ARRAY substitutes the dynamic hash with a static array 272 * with 4096 entries. In theory this can give a boost in processing, 273 * however in practice it does not. Probably this is because the array 274 * is too big to fit into CPU cache. 275 */ 276 #ifndef VLAN_ARRAY 277 static void vlan_inithash(struct ifvlantrunk *trunk); 278 static void vlan_freehash(struct ifvlantrunk *trunk); 279 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 280 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 281 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 282 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 283 uint16_t vid); 284 #endif 285 static void trunk_destroy(struct ifvlantrunk *trunk); 286 287 static void vlan_init(void *foo); 288 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 289 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 290 #if defined(KERN_TLS) || defined(RATELIMIT) 291 static int vlan_snd_tag_alloc(struct ifnet *, 292 union if_snd_tag_alloc_params *, struct m_snd_tag **); 293 static int vlan_snd_tag_modify(struct m_snd_tag *, 294 union if_snd_tag_modify_params *); 295 static int vlan_snd_tag_query(struct m_snd_tag *, 296 union if_snd_tag_query_params *); 297 static void vlan_snd_tag_free(struct m_snd_tag *); 298 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *); 299 static void vlan_ratelimit_query(struct ifnet *, 300 struct if_ratelimit_query_results *); 301 #endif 302 static void vlan_qflush(struct ifnet *ifp); 303 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 304 int (*func)(struct ifnet *, int)); 305 static int vlan_setflags(struct ifnet *ifp, int status); 306 static int vlan_setmulti(struct ifnet *ifp); 307 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); 308 static int vlan_output(struct ifnet *ifp, struct mbuf *m, 309 const struct sockaddr *dst, struct route *ro); 310 static void vlan_unconfig(struct ifnet *ifp); 311 static void vlan_unconfig_locked(struct ifnet *ifp, int departing); 312 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag, 313 uint16_t proto); 314 static void vlan_link_state(struct ifnet *ifp); 315 static void vlan_capabilities(struct ifvlan *ifv); 316 static void vlan_trunk_capabilities(struct ifnet *ifp); 317 318 static struct ifnet *vlan_clone_match_ethervid(const char *, int *); 319 static int vlan_clone_match(struct if_clone *, const char *); 320 static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); 321 static int vlan_clone_destroy(struct if_clone *, struct ifnet *); 322 323 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 324 static void vlan_iflladdr(void *arg, struct ifnet *ifp); 325 326 static void vlan_lladdr_fn(void *arg, int pending); 327 328 static struct if_clone *vlan_cloner; 329 330 #ifdef VIMAGE 331 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); 332 #define V_vlan_cloner VNET(vlan_cloner) 333 #endif 334 335 static void 336 vlan_mc_free(struct epoch_context *ctx) 337 { 338 struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx); 339 free(mc, M_VLAN); 340 } 341 342 #ifndef VLAN_ARRAY 343 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 344 345 static void 346 vlan_inithash(struct ifvlantrunk *trunk) 347 { 348 int i, n; 349 350 /* 351 * The trunk must not be locked here since we call malloc(M_WAITOK). 352 * It is OK in case this function is called before the trunk struct 353 * gets hooked up and becomes visible from other threads. 354 */ 355 356 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 357 ("%s: hash already initialized", __func__)); 358 359 trunk->hwidth = VLAN_DEF_HWIDTH; 360 n = 1 << trunk->hwidth; 361 trunk->hmask = n - 1; 362 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 363 for (i = 0; i < n; i++) 364 CK_SLIST_INIT(&trunk->hash[i]); 365 } 366 367 static void 368 vlan_freehash(struct ifvlantrunk *trunk) 369 { 370 #ifdef INVARIANTS 371 int i; 372 373 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 374 for (i = 0; i < (1 << trunk->hwidth); i++) 375 KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]), 376 ("%s: hash table not empty", __func__)); 377 #endif 378 free(trunk->hash, M_VLAN); 379 trunk->hash = NULL; 380 trunk->hwidth = trunk->hmask = 0; 381 } 382 383 static int 384 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 385 { 386 int i, b; 387 struct ifvlan *ifv2; 388 389 VLAN_XLOCK_ASSERT(); 390 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 391 392 b = 1 << trunk->hwidth; 393 i = HASH(ifv->ifv_vid, trunk->hmask); 394 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 395 if (ifv->ifv_vid == ifv2->ifv_vid) 396 return (EEXIST); 397 398 /* 399 * Grow the hash when the number of vlans exceeds half of the number of 400 * hash buckets squared. This will make the average linked-list length 401 * buckets/2. 402 */ 403 if (trunk->refcnt > (b * b) / 2) { 404 vlan_growhash(trunk, 1); 405 i = HASH(ifv->ifv_vid, trunk->hmask); 406 } 407 CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 408 trunk->refcnt++; 409 410 return (0); 411 } 412 413 static int 414 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 415 { 416 int i, b; 417 struct ifvlan *ifv2; 418 419 VLAN_XLOCK_ASSERT(); 420 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 421 422 b = 1 << trunk->hwidth; 423 i = HASH(ifv->ifv_vid, trunk->hmask); 424 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 425 if (ifv2 == ifv) { 426 trunk->refcnt--; 427 CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list); 428 if (trunk->refcnt < (b * b) / 2) 429 vlan_growhash(trunk, -1); 430 return (0); 431 } 432 433 panic("%s: vlan not found\n", __func__); 434 return (ENOENT); /*NOTREACHED*/ 435 } 436 437 /* 438 * Grow the hash larger or smaller if memory permits. 439 */ 440 static void 441 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 442 { 443 struct ifvlan *ifv; 444 struct ifvlanhead *hash2; 445 int hwidth2, i, j, n, n2; 446 447 VLAN_XLOCK_ASSERT(); 448 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 449 450 if (howmuch == 0) { 451 /* Harmless yet obvious coding error */ 452 printf("%s: howmuch is 0\n", __func__); 453 return; 454 } 455 456 hwidth2 = trunk->hwidth + howmuch; 457 n = 1 << trunk->hwidth; 458 n2 = 1 << hwidth2; 459 /* Do not shrink the table below the default */ 460 if (hwidth2 < VLAN_DEF_HWIDTH) 461 return; 462 463 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK); 464 if (hash2 == NULL) { 465 printf("%s: out of memory -- hash size not changed\n", 466 __func__); 467 return; /* We can live with the old hash table */ 468 } 469 for (j = 0; j < n2; j++) 470 CK_SLIST_INIT(&hash2[j]); 471 for (i = 0; i < n; i++) 472 while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) { 473 CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list); 474 j = HASH(ifv->ifv_vid, n2 - 1); 475 CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 476 } 477 NET_EPOCH_WAIT(); 478 free(trunk->hash, M_VLAN); 479 trunk->hash = hash2; 480 trunk->hwidth = hwidth2; 481 trunk->hmask = n2 - 1; 482 483 if (bootverbose) 484 if_printf(trunk->parent, 485 "VLAN hash table resized from %d to %d buckets\n", n, n2); 486 } 487 488 static __inline struct ifvlan * 489 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 490 { 491 struct ifvlan *ifv; 492 493 NET_EPOCH_ASSERT(); 494 495 CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) 496 if (ifv->ifv_vid == vid) 497 return (ifv); 498 return (NULL); 499 } 500 501 #if 0 502 /* Debugging code to view the hashtables. */ 503 static void 504 vlan_dumphash(struct ifvlantrunk *trunk) 505 { 506 int i; 507 struct ifvlan *ifv; 508 509 for (i = 0; i < (1 << trunk->hwidth); i++) { 510 printf("%d: ", i); 511 CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 512 printf("%s ", ifv->ifv_ifp->if_xname); 513 printf("\n"); 514 } 515 } 516 #endif /* 0 */ 517 #else 518 519 static __inline struct ifvlan * 520 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 521 { 522 523 return trunk->vlans[vid]; 524 } 525 526 static __inline int 527 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 528 { 529 530 if (trunk->vlans[ifv->ifv_vid] != NULL) 531 return EEXIST; 532 trunk->vlans[ifv->ifv_vid] = ifv; 533 trunk->refcnt++; 534 535 return (0); 536 } 537 538 static __inline int 539 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 540 { 541 542 trunk->vlans[ifv->ifv_vid] = NULL; 543 trunk->refcnt--; 544 545 return (0); 546 } 547 548 static __inline void 549 vlan_freehash(struct ifvlantrunk *trunk) 550 { 551 } 552 553 static __inline void 554 vlan_inithash(struct ifvlantrunk *trunk) 555 { 556 } 557 558 #endif /* !VLAN_ARRAY */ 559 560 static void 561 trunk_destroy(struct ifvlantrunk *trunk) 562 { 563 VLAN_XLOCK_ASSERT(); 564 565 vlan_freehash(trunk); 566 trunk->parent->if_vlantrunk = NULL; 567 TRUNK_LOCK_DESTROY(trunk); 568 if_rele(trunk->parent); 569 free(trunk, M_VLAN); 570 } 571 572 /* 573 * Program our multicast filter. What we're actually doing is 574 * programming the multicast filter of the parent. This has the 575 * side effect of causing the parent interface to receive multicast 576 * traffic that it doesn't really want, which ends up being discarded 577 * later by the upper protocol layers. Unfortunately, there's no way 578 * to avoid this: there really is only one physical interface. 579 */ 580 static int 581 vlan_setmulti(struct ifnet *ifp) 582 { 583 struct ifnet *ifp_p; 584 struct ifmultiaddr *ifma; 585 struct ifvlan *sc; 586 struct vlan_mc_entry *mc; 587 int error; 588 589 VLAN_XLOCK_ASSERT(); 590 591 /* Find the parent. */ 592 sc = ifp->if_softc; 593 ifp_p = PARENT(sc); 594 595 CURVNET_SET_QUIET(ifp_p->if_vnet); 596 597 /* First, remove any existing filter entries. */ 598 while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 599 CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 600 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); 601 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 602 } 603 604 /* Now program new ones. */ 605 IF_ADDR_WLOCK(ifp); 606 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 607 if (ifma->ifma_addr->sa_family != AF_LINK) 608 continue; 609 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 610 if (mc == NULL) { 611 IF_ADDR_WUNLOCK(ifp); 612 CURVNET_RESTORE(); 613 return (ENOMEM); 614 } 615 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); 616 mc->mc_addr.sdl_index = ifp_p->if_index; 617 CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 618 } 619 IF_ADDR_WUNLOCK(ifp); 620 CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { 621 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, 622 NULL); 623 if (error) { 624 CURVNET_RESTORE(); 625 return (error); 626 } 627 } 628 629 CURVNET_RESTORE(); 630 return (0); 631 } 632 633 /* 634 * A handler for parent interface link layer address changes. 635 * If the parent interface link layer address is changed we 636 * should also change it on all children vlans. 637 */ 638 static void 639 vlan_iflladdr(void *arg __unused, struct ifnet *ifp) 640 { 641 struct epoch_tracker et; 642 struct ifvlan *ifv; 643 struct ifnet *ifv_ifp; 644 struct ifvlantrunk *trunk; 645 struct sockaddr_dl *sdl; 646 647 /* Need the epoch since this is run on taskqueue_swi. */ 648 NET_EPOCH_ENTER(et); 649 trunk = ifp->if_vlantrunk; 650 if (trunk == NULL) { 651 NET_EPOCH_EXIT(et); 652 return; 653 } 654 655 /* 656 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. 657 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR 658 * ioctl calls on the parent garbling the lladdr of the child vlan. 659 */ 660 TRUNK_WLOCK(trunk); 661 VLAN_FOREACH(ifv, trunk) { 662 /* 663 * Copy new new lladdr into the ifv_ifp, enqueue a task 664 * to actually call if_setlladdr. if_setlladdr needs to 665 * be deferred to a taskqueue because it will call into 666 * the if_vlan ioctl path and try to acquire the global 667 * lock. 668 */ 669 ifv_ifp = ifv->ifv_ifp; 670 bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), 671 ifp->if_addrlen); 672 sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; 673 sdl->sdl_alen = ifp->if_addrlen; 674 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 675 } 676 TRUNK_WUNLOCK(trunk); 677 NET_EPOCH_EXIT(et); 678 } 679 680 /* 681 * A handler for network interface departure events. 682 * Track departure of trunks here so that we don't access invalid 683 * pointers or whatever if a trunk is ripped from under us, e.g., 684 * by ejecting its hot-plug card. However, if an ifnet is simply 685 * being renamed, then there's no need to tear down the state. 686 */ 687 static void 688 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 689 { 690 struct ifvlan *ifv; 691 struct ifvlantrunk *trunk; 692 693 /* If the ifnet is just being renamed, don't do anything. */ 694 if (ifp->if_flags & IFF_RENAMING) 695 return; 696 VLAN_XLOCK(); 697 trunk = ifp->if_vlantrunk; 698 if (trunk == NULL) { 699 VLAN_XUNLOCK(); 700 return; 701 } 702 703 /* 704 * OK, it's a trunk. Loop over and detach all vlan's on it. 705 * Check trunk pointer after each vlan_unconfig() as it will 706 * free it and set to NULL after the last vlan was detached. 707 */ 708 VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, 709 ifp->if_vlantrunk == NULL) 710 vlan_unconfig_locked(ifv->ifv_ifp, 1); 711 712 /* Trunk should have been destroyed in vlan_unconfig(). */ 713 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 714 VLAN_XUNLOCK(); 715 } 716 717 /* 718 * Return the trunk device for a virtual interface. 719 */ 720 static struct ifnet * 721 vlan_trunkdev(struct ifnet *ifp) 722 { 723 struct ifvlan *ifv; 724 725 NET_EPOCH_ASSERT(); 726 727 if (ifp->if_type != IFT_L2VLAN) 728 return (NULL); 729 730 ifv = ifp->if_softc; 731 ifp = NULL; 732 if (ifv->ifv_trunk) 733 ifp = PARENT(ifv); 734 return (ifp); 735 } 736 737 /* 738 * Return the 12-bit VLAN VID for this interface, for use by external 739 * components such as Infiniband. 740 * 741 * XXXRW: Note that the function name here is historical; it should be named 742 * vlan_vid(). 743 */ 744 static int 745 vlan_tag(struct ifnet *ifp, uint16_t *vidp) 746 { 747 struct ifvlan *ifv; 748 749 if (ifp->if_type != IFT_L2VLAN) 750 return (EINVAL); 751 ifv = ifp->if_softc; 752 *vidp = ifv->ifv_vid; 753 return (0); 754 } 755 756 static int 757 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp) 758 { 759 struct ifvlan *ifv; 760 761 if (ifp->if_type != IFT_L2VLAN) 762 return (EINVAL); 763 ifv = ifp->if_softc; 764 *pcpp = ifv->ifv_pcp; 765 return (0); 766 } 767 768 /* 769 * Return a driver specific cookie for this interface. Synchronization 770 * with setcookie must be provided by the driver. 771 */ 772 static void * 773 vlan_cookie(struct ifnet *ifp) 774 { 775 struct ifvlan *ifv; 776 777 if (ifp->if_type != IFT_L2VLAN) 778 return (NULL); 779 ifv = ifp->if_softc; 780 return (ifv->ifv_cookie); 781 } 782 783 /* 784 * Store a cookie in our softc that drivers can use to store driver 785 * private per-instance data in. 786 */ 787 static int 788 vlan_setcookie(struct ifnet *ifp, void *cookie) 789 { 790 struct ifvlan *ifv; 791 792 if (ifp->if_type != IFT_L2VLAN) 793 return (EINVAL); 794 ifv = ifp->if_softc; 795 ifv->ifv_cookie = cookie; 796 return (0); 797 } 798 799 /* 800 * Return the vlan device present at the specific VID. 801 */ 802 static struct ifnet * 803 vlan_devat(struct ifnet *ifp, uint16_t vid) 804 { 805 struct ifvlantrunk *trunk; 806 struct ifvlan *ifv; 807 808 NET_EPOCH_ASSERT(); 809 810 trunk = ifp->if_vlantrunk; 811 if (trunk == NULL) 812 return (NULL); 813 ifp = NULL; 814 ifv = vlan_gethash(trunk, vid); 815 if (ifv) 816 ifp = ifv->ifv_ifp; 817 return (ifp); 818 } 819 820 /* 821 * VLAN support can be loaded as a module. The only place in the 822 * system that's intimately aware of this is ether_input. We hook 823 * into this code through vlan_input_p which is defined there and 824 * set here. No one else in the system should be aware of this so 825 * we use an explicit reference here. 826 */ 827 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 828 829 /* For if_link_state_change() eyes only... */ 830 extern void (*vlan_link_state_p)(struct ifnet *); 831 832 static int 833 vlan_modevent(module_t mod, int type, void *data) 834 { 835 836 switch (type) { 837 case MOD_LOAD: 838 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 839 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 840 if (ifdetach_tag == NULL) 841 return (ENOMEM); 842 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, 843 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 844 if (iflladdr_tag == NULL) 845 return (ENOMEM); 846 VLAN_LOCKING_INIT(); 847 vlan_input_p = vlan_input; 848 vlan_link_state_p = vlan_link_state; 849 vlan_trunk_cap_p = vlan_trunk_capabilities; 850 vlan_trunkdev_p = vlan_trunkdev; 851 vlan_cookie_p = vlan_cookie; 852 vlan_setcookie_p = vlan_setcookie; 853 vlan_tag_p = vlan_tag; 854 vlan_pcp_p = vlan_pcp; 855 vlan_devat_p = vlan_devat; 856 #ifndef VIMAGE 857 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 858 vlan_clone_create, vlan_clone_destroy); 859 #endif 860 if (bootverbose) 861 printf("vlan: initialized, using " 862 #ifdef VLAN_ARRAY 863 "full-size arrays" 864 #else 865 "hash tables with chaining" 866 #endif 867 868 "\n"); 869 break; 870 case MOD_UNLOAD: 871 #ifndef VIMAGE 872 if_clone_detach(vlan_cloner); 873 #endif 874 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 875 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); 876 vlan_input_p = NULL; 877 vlan_link_state_p = NULL; 878 vlan_trunk_cap_p = NULL; 879 vlan_trunkdev_p = NULL; 880 vlan_tag_p = NULL; 881 vlan_cookie_p = NULL; 882 vlan_setcookie_p = NULL; 883 vlan_devat_p = NULL; 884 VLAN_LOCKING_DESTROY(); 885 if (bootverbose) 886 printf("vlan: unloaded\n"); 887 break; 888 default: 889 return (EOPNOTSUPP); 890 } 891 return (0); 892 } 893 894 static moduledata_t vlan_mod = { 895 "if_vlan", 896 vlan_modevent, 897 0 898 }; 899 900 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 901 MODULE_VERSION(if_vlan, 3); 902 903 #ifdef VIMAGE 904 static void 905 vnet_vlan_init(const void *unused __unused) 906 { 907 908 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 909 vlan_clone_create, vlan_clone_destroy); 910 V_vlan_cloner = vlan_cloner; 911 } 912 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 913 vnet_vlan_init, NULL); 914 915 static void 916 vnet_vlan_uninit(const void *unused __unused) 917 { 918 919 if_clone_detach(V_vlan_cloner); 920 } 921 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, 922 vnet_vlan_uninit, NULL); 923 #endif 924 925 /* 926 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names. 927 */ 928 static struct ifnet * 929 vlan_clone_match_ethervid(const char *name, int *vidp) 930 { 931 char ifname[IFNAMSIZ]; 932 char *cp; 933 struct ifnet *ifp; 934 int vid; 935 936 strlcpy(ifname, name, IFNAMSIZ); 937 if ((cp = strrchr(ifname, '.')) == NULL) 938 return (NULL); 939 *cp = '\0'; 940 if ((ifp = ifunit_ref(ifname)) == NULL) 941 return (NULL); 942 /* Parse VID. */ 943 if (*++cp == '\0') { 944 if_rele(ifp); 945 return (NULL); 946 } 947 vid = 0; 948 for(; *cp >= '0' && *cp <= '9'; cp++) 949 vid = (vid * 10) + (*cp - '0'); 950 if (*cp != '\0') { 951 if_rele(ifp); 952 return (NULL); 953 } 954 if (vidp != NULL) 955 *vidp = vid; 956 957 return (ifp); 958 } 959 960 static int 961 vlan_clone_match(struct if_clone *ifc, const char *name) 962 { 963 struct ifnet *ifp; 964 const char *cp; 965 966 ifp = vlan_clone_match_ethervid(name, NULL); 967 if (ifp != NULL) { 968 if_rele(ifp); 969 return (1); 970 } 971 972 if (strncmp(vlanname, name, strlen(vlanname)) != 0) 973 return (0); 974 for (cp = name + 4; *cp != '\0'; cp++) { 975 if (*cp < '0' || *cp > '9') 976 return (0); 977 } 978 979 return (1); 980 } 981 982 static int 983 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) 984 { 985 char *dp; 986 bool wildcard = false; 987 bool subinterface = false; 988 int unit; 989 int error; 990 int vid = 0; 991 uint16_t proto = ETHERTYPE_VLAN; 992 struct ifvlan *ifv; 993 struct ifnet *ifp; 994 struct ifnet *p = NULL; 995 struct ifaddr *ifa; 996 struct sockaddr_dl *sdl; 997 struct vlanreq vlr; 998 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 999 1000 1001 /* 1002 * There are three ways to specify the cloned device: 1003 * o pass a parameter block with the clone request. 1004 * o specify parameters in the text of the clone device name 1005 * o specify no parameters and get an unattached device that 1006 * must be configured separately. 1007 * The first technique is preferred; the latter two are supported 1008 * for backwards compatibility. 1009 * 1010 * XXXRW: Note historic use of the word "tag" here. New ioctls may be 1011 * called for. 1012 */ 1013 1014 if (params) { 1015 error = copyin(params, &vlr, sizeof(vlr)); 1016 if (error) 1017 return error; 1018 vid = vlr.vlr_tag; 1019 proto = vlr.vlr_proto; 1020 1021 #ifdef COMPAT_FREEBSD12 1022 if (proto == 0) 1023 proto = ETHERTYPE_VLAN; 1024 #endif 1025 p = ifunit_ref(vlr.vlr_parent); 1026 if (p == NULL) 1027 return (ENXIO); 1028 } 1029 1030 if ((error = ifc_name2unit(name, &unit)) == 0) { 1031 1032 /* 1033 * vlanX interface. Set wildcard to true if the unit number 1034 * is not fixed (-1) 1035 */ 1036 wildcard = (unit < 0); 1037 } else { 1038 struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid); 1039 if (p_tmp != NULL) { 1040 error = 0; 1041 subinterface = true; 1042 unit = IF_DUNIT_NONE; 1043 wildcard = false; 1044 if (p != NULL) { 1045 if_rele(p_tmp); 1046 if (p != p_tmp) 1047 error = EINVAL; 1048 } else 1049 p = p_tmp; 1050 } else 1051 error = ENXIO; 1052 } 1053 1054 if (error != 0) { 1055 if (p != NULL) 1056 if_rele(p); 1057 return (error); 1058 } 1059 1060 if (!subinterface) { 1061 /* vlanX interface, mark X as busy or allocate new unit # */ 1062 error = ifc_alloc_unit(ifc, &unit); 1063 if (error != 0) { 1064 if (p != NULL) 1065 if_rele(p); 1066 return (error); 1067 } 1068 } 1069 1070 /* In the wildcard case, we need to update the name. */ 1071 if (wildcard) { 1072 for (dp = name; *dp != '\0'; dp++); 1073 if (snprintf(dp, len - (dp-name), "%d", unit) > 1074 len - (dp-name) - 1) { 1075 panic("%s: interface name too long", __func__); 1076 } 1077 } 1078 1079 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 1080 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 1081 if (ifp == NULL) { 1082 if (!subinterface) 1083 ifc_free_unit(ifc, unit); 1084 free(ifv, M_VLAN); 1085 if (p != NULL) 1086 if_rele(p); 1087 return (ENOSPC); 1088 } 1089 CK_SLIST_INIT(&ifv->vlan_mc_listhead); 1090 ifp->if_softc = ifv; 1091 /* 1092 * Set the name manually rather than using if_initname because 1093 * we don't conform to the default naming convention for interfaces. 1094 */ 1095 strlcpy(ifp->if_xname, name, IFNAMSIZ); 1096 ifp->if_dname = vlanname; 1097 ifp->if_dunit = unit; 1098 1099 ifp->if_init = vlan_init; 1100 ifp->if_transmit = vlan_transmit; 1101 ifp->if_qflush = vlan_qflush; 1102 ifp->if_ioctl = vlan_ioctl; 1103 #if defined(KERN_TLS) || defined(RATELIMIT) 1104 ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; 1105 ifp->if_snd_tag_modify = vlan_snd_tag_modify; 1106 ifp->if_snd_tag_query = vlan_snd_tag_query; 1107 ifp->if_snd_tag_free = vlan_snd_tag_free; 1108 ifp->if_next_snd_tag = vlan_next_snd_tag; 1109 ifp->if_ratelimit_query = vlan_ratelimit_query; 1110 #endif 1111 ifp->if_flags = VLAN_IFFLAGS; 1112 ether_ifattach(ifp, eaddr); 1113 /* Now undo some of the damage... */ 1114 ifp->if_baudrate = 0; 1115 ifp->if_type = IFT_L2VLAN; 1116 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 1117 ifa = ifp->if_addr; 1118 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1119 sdl->sdl_type = IFT_L2VLAN; 1120 1121 if (p != NULL) { 1122 error = vlan_config(ifv, p, vid, proto); 1123 if_rele(p); 1124 if (error != 0) { 1125 /* 1126 * Since we've partially failed, we need to back 1127 * out all the way, otherwise userland could get 1128 * confused. Thus, we destroy the interface. 1129 */ 1130 ether_ifdetach(ifp); 1131 vlan_unconfig(ifp); 1132 if_free(ifp); 1133 if (!subinterface) 1134 ifc_free_unit(ifc, unit); 1135 free(ifv, M_VLAN); 1136 1137 return (error); 1138 } 1139 } 1140 1141 return (0); 1142 } 1143 1144 static int 1145 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) 1146 { 1147 struct ifvlan *ifv = ifp->if_softc; 1148 int unit = ifp->if_dunit; 1149 1150 if (ifp->if_vlantrunk) 1151 return (EBUSY); 1152 1153 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 1154 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 1155 /* 1156 * We should have the only reference to the ifv now, so we can now 1157 * drain any remaining lladdr task before freeing the ifnet and the 1158 * ifvlan. 1159 */ 1160 taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); 1161 NET_EPOCH_WAIT(); 1162 if_free(ifp); 1163 free(ifv, M_VLAN); 1164 if (unit != IF_DUNIT_NONE) 1165 ifc_free_unit(ifc, unit); 1166 1167 return (0); 1168 } 1169 1170 /* 1171 * The ifp->if_init entry point for vlan(4) is a no-op. 1172 */ 1173 static void 1174 vlan_init(void *foo __unused) 1175 { 1176 } 1177 1178 /* 1179 * The if_transmit method for vlan(4) interface. 1180 */ 1181 static int 1182 vlan_transmit(struct ifnet *ifp, struct mbuf *m) 1183 { 1184 struct ifvlan *ifv; 1185 struct ifnet *p; 1186 int error, len, mcast; 1187 1188 NET_EPOCH_ASSERT(); 1189 1190 ifv = ifp->if_softc; 1191 if (TRUNK(ifv) == NULL) { 1192 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1193 m_freem(m); 1194 return (ENETDOWN); 1195 } 1196 p = PARENT(ifv); 1197 len = m->m_pkthdr.len; 1198 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; 1199 1200 BPF_MTAP(ifp, m); 1201 1202 #if defined(KERN_TLS) || defined(RATELIMIT) 1203 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1204 struct vlan_snd_tag *vst; 1205 struct m_snd_tag *mst; 1206 1207 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 1208 mst = m->m_pkthdr.snd_tag; 1209 vst = mst_to_vst(mst); 1210 if (vst->tag->ifp != p) { 1211 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1212 m_freem(m); 1213 return (EAGAIN); 1214 } 1215 1216 m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag); 1217 m_snd_tag_rele(mst); 1218 } 1219 #endif 1220 1221 /* 1222 * Do not run parent's if_transmit() if the parent is not up, 1223 * or parent's driver will cause a system crash. 1224 */ 1225 if (!UP_AND_RUNNING(p)) { 1226 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1227 m_freem(m); 1228 return (ENETDOWN); 1229 } 1230 1231 if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) { 1232 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1233 return (0); 1234 } 1235 1236 /* 1237 * Send it, precisely as ether_output() would have. 1238 */ 1239 error = (p->if_transmit)(p, m); 1240 if (error == 0) { 1241 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1242 if_inc_counter(ifp, IFCOUNTER_OBYTES, len); 1243 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); 1244 } else 1245 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1246 return (error); 1247 } 1248 1249 static int 1250 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, 1251 struct route *ro) 1252 { 1253 struct ifvlan *ifv; 1254 struct ifnet *p; 1255 1256 NET_EPOCH_ASSERT(); 1257 1258 /* 1259 * Find the first non-VLAN parent interface. 1260 */ 1261 ifv = ifp->if_softc; 1262 do { 1263 if (TRUNK(ifv) == NULL) { 1264 m_freem(m); 1265 return (ENETDOWN); 1266 } 1267 p = PARENT(ifv); 1268 ifv = p->if_softc; 1269 } while (p->if_type == IFT_L2VLAN); 1270 1271 return p->if_output(ifp, m, dst, ro); 1272 } 1273 1274 /* 1275 * The ifp->if_qflush entry point for vlan(4) is a no-op. 1276 */ 1277 static void 1278 vlan_qflush(struct ifnet *ifp __unused) 1279 { 1280 } 1281 1282 static void 1283 vlan_input(struct ifnet *ifp, struct mbuf *m) 1284 { 1285 struct ifvlantrunk *trunk; 1286 struct ifvlan *ifv; 1287 struct m_tag *mtag; 1288 uint16_t vid, tag; 1289 1290 NET_EPOCH_ASSERT(); 1291 1292 trunk = ifp->if_vlantrunk; 1293 if (trunk == NULL) { 1294 m_freem(m); 1295 return; 1296 } 1297 1298 if (m->m_flags & M_VLANTAG) { 1299 /* 1300 * Packet is tagged, but m contains a normal 1301 * Ethernet frame; the tag is stored out-of-band. 1302 */ 1303 tag = m->m_pkthdr.ether_vtag; 1304 m->m_flags &= ~M_VLANTAG; 1305 } else { 1306 struct ether_vlan_header *evl; 1307 1308 /* 1309 * Packet is tagged in-band as specified by 802.1q. 1310 */ 1311 switch (ifp->if_type) { 1312 case IFT_ETHER: 1313 if (m->m_len < sizeof(*evl) && 1314 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1315 if_printf(ifp, "cannot pullup VLAN header\n"); 1316 return; 1317 } 1318 evl = mtod(m, struct ether_vlan_header *); 1319 tag = ntohs(evl->evl_tag); 1320 1321 /* 1322 * Remove the 802.1q header by copying the Ethernet 1323 * addresses over it and adjusting the beginning of 1324 * the data in the mbuf. The encapsulated Ethernet 1325 * type field is already in place. 1326 */ 1327 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 1328 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1329 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1330 break; 1331 1332 default: 1333 #ifdef INVARIANTS 1334 panic("%s: %s has unsupported if_type %u", 1335 __func__, ifp->if_xname, ifp->if_type); 1336 #endif 1337 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1338 m_freem(m); 1339 return; 1340 } 1341 } 1342 1343 vid = EVL_VLANOFTAG(tag); 1344 1345 ifv = vlan_gethash(trunk, vid); 1346 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 1347 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1348 m_freem(m); 1349 return; 1350 } 1351 1352 if (vlan_mtag_pcp) { 1353 /* 1354 * While uncommon, it is possible that we will find a 802.1q 1355 * packet encapsulated inside another packet that also had an 1356 * 802.1q header. For example, ethernet tunneled over IPSEC 1357 * arriving over ethernet. In that case, we replace the 1358 * existing 802.1q PCP m_tag value. 1359 */ 1360 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 1361 if (mtag == NULL) { 1362 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, 1363 sizeof(uint8_t), M_NOWAIT); 1364 if (mtag == NULL) { 1365 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1366 m_freem(m); 1367 return; 1368 } 1369 m_tag_prepend(m, mtag); 1370 } 1371 *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); 1372 } 1373 1374 m->m_pkthdr.rcvif = ifv->ifv_ifp; 1375 if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); 1376 1377 /* Pass it back through the parent's input routine. */ 1378 (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); 1379 } 1380 1381 static void 1382 vlan_lladdr_fn(void *arg, int pending __unused) 1383 { 1384 struct ifvlan *ifv; 1385 struct ifnet *ifp; 1386 1387 ifv = (struct ifvlan *)arg; 1388 ifp = ifv->ifv_ifp; 1389 1390 CURVNET_SET(ifp->if_vnet); 1391 1392 /* The ifv_ifp already has the lladdr copied in. */ 1393 if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); 1394 1395 CURVNET_RESTORE(); 1396 } 1397 1398 static int 1399 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid, 1400 uint16_t proto) 1401 { 1402 struct epoch_tracker et; 1403 struct ifvlantrunk *trunk; 1404 struct ifnet *ifp; 1405 int error = 0; 1406 1407 /* 1408 * We can handle non-ethernet hardware types as long as 1409 * they handle the tagging and headers themselves. 1410 */ 1411 if (p->if_type != IFT_ETHER && 1412 p->if_type != IFT_L2VLAN && 1413 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1414 return (EPROTONOSUPPORT); 1415 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 1416 return (EPROTONOSUPPORT); 1417 /* 1418 * Don't let the caller set up a VLAN VID with 1419 * anything except VLID bits. 1420 * VID numbers 0x0 and 0xFFF are reserved. 1421 */ 1422 if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) 1423 return (EINVAL); 1424 if (ifv->ifv_trunk) 1425 return (EBUSY); 1426 1427 VLAN_XLOCK(); 1428 if (p->if_vlantrunk == NULL) { 1429 trunk = malloc(sizeof(struct ifvlantrunk), 1430 M_VLAN, M_WAITOK | M_ZERO); 1431 vlan_inithash(trunk); 1432 TRUNK_LOCK_INIT(trunk); 1433 TRUNK_WLOCK(trunk); 1434 p->if_vlantrunk = trunk; 1435 trunk->parent = p; 1436 if_ref(trunk->parent); 1437 TRUNK_WUNLOCK(trunk); 1438 } else { 1439 trunk = p->if_vlantrunk; 1440 } 1441 1442 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ 1443 ifv->ifv_pcp = 0; /* Default: best effort delivery. */ 1444 error = vlan_inshash(trunk, ifv); 1445 if (error) 1446 goto done; 1447 ifv->ifv_proto = proto; 1448 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1449 ifv->ifv_mintu = ETHERMIN; 1450 ifv->ifv_pflags = 0; 1451 ifv->ifv_capenable = -1; 1452 1453 /* 1454 * If the parent supports the VLAN_MTU capability, 1455 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1456 * use it. 1457 */ 1458 if (p->if_capenable & IFCAP_VLAN_MTU) { 1459 /* 1460 * No need to fudge the MTU since the parent can 1461 * handle extended frames. 1462 */ 1463 ifv->ifv_mtufudge = 0; 1464 } else { 1465 /* 1466 * Fudge the MTU by the encapsulation size. This 1467 * makes us incompatible with strictly compliant 1468 * 802.1Q implementations, but allows us to use 1469 * the feature with other NetBSD implementations, 1470 * which might still be useful. 1471 */ 1472 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1473 } 1474 1475 ifv->ifv_trunk = trunk; 1476 ifp = ifv->ifv_ifp; 1477 /* 1478 * Initialize fields from our parent. This duplicates some 1479 * work with ether_ifattach() but allows for non-ethernet 1480 * interfaces to also work. 1481 */ 1482 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1483 ifp->if_baudrate = p->if_baudrate; 1484 ifp->if_input = p->if_input; 1485 ifp->if_resolvemulti = p->if_resolvemulti; 1486 ifp->if_addrlen = p->if_addrlen; 1487 ifp->if_broadcastaddr = p->if_broadcastaddr; 1488 ifp->if_pcp = ifv->ifv_pcp; 1489 1490 /* 1491 * We wrap the parent's if_output using vlan_output to ensure that it 1492 * can't become stale. 1493 */ 1494 ifp->if_output = vlan_output; 1495 1496 /* 1497 * Copy only a selected subset of flags from the parent. 1498 * Other flags are none of our business. 1499 */ 1500 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1501 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1502 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1503 #undef VLAN_COPY_FLAGS 1504 1505 ifp->if_link_state = p->if_link_state; 1506 1507 NET_EPOCH_ENTER(et); 1508 vlan_capabilities(ifv); 1509 NET_EPOCH_EXIT(et); 1510 1511 /* 1512 * Set up our interface address to reflect the underlying 1513 * physical interface's. 1514 */ 1515 TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); 1516 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = 1517 p->if_addrlen; 1518 1519 /* 1520 * Do not schedule link address update if it was the same 1521 * as previous parent's. This helps avoid updating for each 1522 * associated llentry. 1523 */ 1524 if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) { 1525 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); 1526 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 1527 } 1528 1529 /* We are ready for operation now. */ 1530 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1531 1532 /* Update flags on the parent, if necessary. */ 1533 vlan_setflags(ifp, 1); 1534 1535 /* 1536 * Configure multicast addresses that may already be 1537 * joined on the vlan device. 1538 */ 1539 (void)vlan_setmulti(ifp); 1540 1541 done: 1542 if (error == 0) 1543 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); 1544 VLAN_XUNLOCK(); 1545 1546 return (error); 1547 } 1548 1549 static void 1550 vlan_unconfig(struct ifnet *ifp) 1551 { 1552 1553 VLAN_XLOCK(); 1554 vlan_unconfig_locked(ifp, 0); 1555 VLAN_XUNLOCK(); 1556 } 1557 1558 static void 1559 vlan_unconfig_locked(struct ifnet *ifp, int departing) 1560 { 1561 struct ifvlantrunk *trunk; 1562 struct vlan_mc_entry *mc; 1563 struct ifvlan *ifv; 1564 struct ifnet *parent; 1565 int error; 1566 1567 VLAN_XLOCK_ASSERT(); 1568 1569 ifv = ifp->if_softc; 1570 trunk = ifv->ifv_trunk; 1571 parent = NULL; 1572 1573 if (trunk != NULL) { 1574 parent = trunk->parent; 1575 1576 /* 1577 * Since the interface is being unconfigured, we need to 1578 * empty the list of multicast groups that we may have joined 1579 * while we were alive from the parent's list. 1580 */ 1581 while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1582 /* 1583 * If the parent interface is being detached, 1584 * all its multicast addresses have already 1585 * been removed. Warn about errors if 1586 * if_delmulti() does fail, but don't abort as 1587 * all callers expect vlan destruction to 1588 * succeed. 1589 */ 1590 if (!departing) { 1591 error = if_delmulti(parent, 1592 (struct sockaddr *)&mc->mc_addr); 1593 if (error) 1594 if_printf(ifp, 1595 "Failed to delete multicast address from parent: %d\n", 1596 error); 1597 } 1598 CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1599 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 1600 } 1601 1602 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1603 1604 vlan_remhash(trunk, ifv); 1605 ifv->ifv_trunk = NULL; 1606 1607 /* 1608 * Check if we were the last. 1609 */ 1610 if (trunk->refcnt == 0) { 1611 parent->if_vlantrunk = NULL; 1612 NET_EPOCH_WAIT(); 1613 trunk_destroy(trunk); 1614 } 1615 } 1616 1617 /* Disconnect from parent. */ 1618 if (ifv->ifv_pflags) 1619 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1620 ifp->if_mtu = ETHERMTU; 1621 ifp->if_link_state = LINK_STATE_UNKNOWN; 1622 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1623 1624 /* 1625 * Only dispatch an event if vlan was 1626 * attached, otherwise there is nothing 1627 * to cleanup anyway. 1628 */ 1629 if (parent != NULL) 1630 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); 1631 } 1632 1633 /* Handle a reference counted flag that should be set on the parent as well */ 1634 static int 1635 vlan_setflag(struct ifnet *ifp, int flag, int status, 1636 int (*func)(struct ifnet *, int)) 1637 { 1638 struct ifvlan *ifv; 1639 int error; 1640 1641 VLAN_SXLOCK_ASSERT(); 1642 1643 ifv = ifp->if_softc; 1644 status = status ? (ifp->if_flags & flag) : 0; 1645 /* Now "status" contains the flag value or 0 */ 1646 1647 /* 1648 * See if recorded parent's status is different from what 1649 * we want it to be. If it is, flip it. We record parent's 1650 * status in ifv_pflags so that we won't clear parent's flag 1651 * we haven't set. In fact, we don't clear or set parent's 1652 * flags directly, but get or release references to them. 1653 * That's why we can be sure that recorded flags still are 1654 * in accord with actual parent's flags. 1655 */ 1656 if (status != (ifv->ifv_pflags & flag)) { 1657 error = (*func)(PARENT(ifv), status); 1658 if (error) 1659 return (error); 1660 ifv->ifv_pflags &= ~flag; 1661 ifv->ifv_pflags |= status; 1662 } 1663 return (0); 1664 } 1665 1666 /* 1667 * Handle IFF_* flags that require certain changes on the parent: 1668 * if "status" is true, update parent's flags respective to our if_flags; 1669 * if "status" is false, forcedly clear the flags set on parent. 1670 */ 1671 static int 1672 vlan_setflags(struct ifnet *ifp, int status) 1673 { 1674 int error, i; 1675 1676 for (i = 0; vlan_pflags[i].flag; i++) { 1677 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1678 status, vlan_pflags[i].func); 1679 if (error) 1680 return (error); 1681 } 1682 return (0); 1683 } 1684 1685 /* Inform all vlans that their parent has changed link state */ 1686 static void 1687 vlan_link_state(struct ifnet *ifp) 1688 { 1689 struct epoch_tracker et; 1690 struct ifvlantrunk *trunk; 1691 struct ifvlan *ifv; 1692 1693 NET_EPOCH_ENTER(et); 1694 trunk = ifp->if_vlantrunk; 1695 if (trunk == NULL) { 1696 NET_EPOCH_EXIT(et); 1697 return; 1698 } 1699 1700 TRUNK_WLOCK(trunk); 1701 VLAN_FOREACH(ifv, trunk) { 1702 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 1703 if_link_state_change(ifv->ifv_ifp, 1704 trunk->parent->if_link_state); 1705 } 1706 TRUNK_WUNLOCK(trunk); 1707 NET_EPOCH_EXIT(et); 1708 } 1709 1710 static void 1711 vlan_capabilities(struct ifvlan *ifv) 1712 { 1713 struct ifnet *p; 1714 struct ifnet *ifp; 1715 struct ifnet_hw_tsomax hw_tsomax; 1716 int cap = 0, ena = 0, mena; 1717 u_long hwa = 0; 1718 1719 NET_EPOCH_ASSERT(); 1720 VLAN_SXLOCK_ASSERT(); 1721 1722 p = PARENT(ifv); 1723 ifp = ifv->ifv_ifp; 1724 1725 /* Mask parent interface enabled capabilities disabled by user. */ 1726 mena = p->if_capenable & ifv->ifv_capenable; 1727 1728 /* 1729 * If the parent interface can do checksum offloading 1730 * on VLANs, then propagate its hardware-assisted 1731 * checksumming flags. Also assert that checksum 1732 * offloading requires hardware VLAN tagging. 1733 */ 1734 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1735 cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1736 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 1737 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1738 ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1739 if (ena & IFCAP_TXCSUM) 1740 hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | 1741 CSUM_UDP | CSUM_SCTP); 1742 if (ena & IFCAP_TXCSUM_IPV6) 1743 hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | 1744 CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); 1745 } 1746 1747 /* 1748 * If the parent interface can do TSO on VLANs then 1749 * propagate the hardware-assisted flag. TSO on VLANs 1750 * does not necessarily require hardware VLAN tagging. 1751 */ 1752 memset(&hw_tsomax, 0, sizeof(hw_tsomax)); 1753 if_hw_tsomax_common(p, &hw_tsomax); 1754 if_hw_tsomax_update(ifp, &hw_tsomax); 1755 if (p->if_capabilities & IFCAP_VLAN_HWTSO) 1756 cap |= p->if_capabilities & IFCAP_TSO; 1757 if (p->if_capenable & IFCAP_VLAN_HWTSO) { 1758 ena |= mena & IFCAP_TSO; 1759 if (ena & IFCAP_TSO) 1760 hwa |= p->if_hwassist & CSUM_TSO; 1761 } 1762 1763 /* 1764 * If the parent interface can do LRO and checksum offloading on 1765 * VLANs, then guess it may do LRO on VLANs. False positive here 1766 * cost nothing, while false negative may lead to some confusions. 1767 */ 1768 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1769 cap |= p->if_capabilities & IFCAP_LRO; 1770 if (p->if_capenable & IFCAP_VLAN_HWCSUM) 1771 ena |= p->if_capenable & IFCAP_LRO; 1772 1773 /* 1774 * If the parent interface can offload TCP connections over VLANs then 1775 * propagate its TOE capability to the VLAN interface. 1776 * 1777 * All TOE drivers in the tree today can deal with VLANs. If this 1778 * changes then IFCAP_VLAN_TOE should be promoted to a full capability 1779 * with its own bit. 1780 */ 1781 #define IFCAP_VLAN_TOE IFCAP_TOE 1782 if (p->if_capabilities & IFCAP_VLAN_TOE) 1783 cap |= p->if_capabilities & IFCAP_TOE; 1784 if (p->if_capenable & IFCAP_VLAN_TOE) { 1785 TOEDEV(ifp) = TOEDEV(p); 1786 ena |= mena & IFCAP_TOE; 1787 } 1788 1789 /* 1790 * If the parent interface supports dynamic link state, so does the 1791 * VLAN interface. 1792 */ 1793 cap |= (p->if_capabilities & IFCAP_LINKSTATE); 1794 ena |= (mena & IFCAP_LINKSTATE); 1795 1796 #ifdef RATELIMIT 1797 /* 1798 * If the parent interface supports ratelimiting, so does the 1799 * VLAN interface. 1800 */ 1801 cap |= (p->if_capabilities & IFCAP_TXRTLMT); 1802 ena |= (mena & IFCAP_TXRTLMT); 1803 #endif 1804 1805 /* 1806 * If the parent interface supports unmapped mbufs, so does 1807 * the VLAN interface. Note that this should be fine even for 1808 * interfaces that don't support hardware tagging as headers 1809 * are prepended in normal mbufs to unmapped mbufs holding 1810 * payload data. 1811 */ 1812 cap |= (p->if_capabilities & IFCAP_MEXTPG); 1813 ena |= (mena & IFCAP_MEXTPG); 1814 1815 /* 1816 * If the parent interface can offload encryption and segmentation 1817 * of TLS records over TCP, propagate it's capability to the VLAN 1818 * interface. 1819 * 1820 * All TLS drivers in the tree today can deal with VLANs. If 1821 * this ever changes, then a new IFCAP_VLAN_TXTLS can be 1822 * defined. 1823 */ 1824 if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1825 cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1826 if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1827 ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1828 1829 ifp->if_capabilities = cap; 1830 ifp->if_capenable = ena; 1831 ifp->if_hwassist = hwa; 1832 } 1833 1834 static void 1835 vlan_trunk_capabilities(struct ifnet *ifp) 1836 { 1837 struct epoch_tracker et; 1838 struct ifvlantrunk *trunk; 1839 struct ifvlan *ifv; 1840 1841 VLAN_SLOCK(); 1842 trunk = ifp->if_vlantrunk; 1843 if (trunk == NULL) { 1844 VLAN_SUNLOCK(); 1845 return; 1846 } 1847 NET_EPOCH_ENTER(et); 1848 VLAN_FOREACH(ifv, trunk) 1849 vlan_capabilities(ifv); 1850 NET_EPOCH_EXIT(et); 1851 VLAN_SUNLOCK(); 1852 } 1853 1854 static int 1855 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1856 { 1857 struct ifnet *p; 1858 struct ifreq *ifr; 1859 struct ifaddr *ifa; 1860 struct ifvlan *ifv; 1861 struct ifvlantrunk *trunk; 1862 struct vlanreq vlr; 1863 int error = 0, oldmtu; 1864 1865 ifr = (struct ifreq *)data; 1866 ifa = (struct ifaddr *) data; 1867 ifv = ifp->if_softc; 1868 1869 switch (cmd) { 1870 case SIOCSIFADDR: 1871 ifp->if_flags |= IFF_UP; 1872 #ifdef INET 1873 if (ifa->ifa_addr->sa_family == AF_INET) 1874 arp_ifinit(ifp, ifa); 1875 #endif 1876 break; 1877 case SIOCGIFADDR: 1878 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1879 ifp->if_addrlen); 1880 break; 1881 case SIOCGIFMEDIA: 1882 VLAN_SLOCK(); 1883 if (TRUNK(ifv) != NULL) { 1884 p = PARENT(ifv); 1885 if_ref(p); 1886 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); 1887 if_rele(p); 1888 /* Limit the result to the parent's current config. */ 1889 if (error == 0) { 1890 struct ifmediareq *ifmr; 1891 1892 ifmr = (struct ifmediareq *)data; 1893 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 1894 ifmr->ifm_count = 1; 1895 error = copyout(&ifmr->ifm_current, 1896 ifmr->ifm_ulist, 1897 sizeof(int)); 1898 } 1899 } 1900 } else { 1901 error = EINVAL; 1902 } 1903 VLAN_SUNLOCK(); 1904 break; 1905 1906 case SIOCSIFMEDIA: 1907 error = EINVAL; 1908 break; 1909 1910 case SIOCSIFMTU: 1911 /* 1912 * Set the interface MTU. 1913 */ 1914 VLAN_SLOCK(); 1915 trunk = TRUNK(ifv); 1916 if (trunk != NULL) { 1917 TRUNK_WLOCK(trunk); 1918 if (ifr->ifr_mtu > 1919 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 1920 ifr->ifr_mtu < 1921 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 1922 error = EINVAL; 1923 else 1924 ifp->if_mtu = ifr->ifr_mtu; 1925 TRUNK_WUNLOCK(trunk); 1926 } else 1927 error = EINVAL; 1928 VLAN_SUNLOCK(); 1929 break; 1930 1931 case SIOCSETVLAN: 1932 #ifdef VIMAGE 1933 /* 1934 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN 1935 * interface to be delegated to a jail without allowing the 1936 * jail to change what underlying interface/VID it is 1937 * associated with. We are not entirely convinced that this 1938 * is the right way to accomplish that policy goal. 1939 */ 1940 if (ifp->if_vnet != ifp->if_home_vnet) { 1941 error = EPERM; 1942 break; 1943 } 1944 #endif 1945 error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); 1946 if (error) 1947 break; 1948 if (vlr.vlr_parent[0] == '\0') { 1949 vlan_unconfig(ifp); 1950 break; 1951 } 1952 p = ifunit_ref(vlr.vlr_parent); 1953 if (p == NULL) { 1954 error = ENOENT; 1955 break; 1956 } 1957 #ifdef COMPAT_FREEBSD12 1958 if (vlr.vlr_proto == 0) 1959 vlr.vlr_proto = ETHERTYPE_VLAN; 1960 #endif 1961 oldmtu = ifp->if_mtu; 1962 error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto); 1963 if_rele(p); 1964 1965 /* 1966 * VLAN MTU may change during addition of the vlandev. 1967 * If it did, do network layer specific procedure. 1968 */ 1969 if (ifp->if_mtu != oldmtu) { 1970 #ifdef INET6 1971 nd6_setmtu(ifp); 1972 #endif 1973 rt_updatemtu(ifp); 1974 } 1975 break; 1976 1977 case SIOCGETVLAN: 1978 #ifdef VIMAGE 1979 if (ifp->if_vnet != ifp->if_home_vnet) { 1980 error = EPERM; 1981 break; 1982 } 1983 #endif 1984 bzero(&vlr, sizeof(vlr)); 1985 VLAN_SLOCK(); 1986 if (TRUNK(ifv) != NULL) { 1987 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 1988 sizeof(vlr.vlr_parent)); 1989 vlr.vlr_tag = ifv->ifv_vid; 1990 vlr.vlr_proto = ifv->ifv_proto; 1991 } 1992 VLAN_SUNLOCK(); 1993 error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); 1994 break; 1995 1996 case SIOCSIFFLAGS: 1997 /* 1998 * We should propagate selected flags to the parent, 1999 * e.g., promiscuous mode. 2000 */ 2001 VLAN_XLOCK(); 2002 if (TRUNK(ifv) != NULL) 2003 error = vlan_setflags(ifp, 1); 2004 VLAN_XUNLOCK(); 2005 break; 2006 2007 case SIOCADDMULTI: 2008 case SIOCDELMULTI: 2009 /* 2010 * If we don't have a parent, just remember the membership for 2011 * when we do. 2012 * 2013 * XXX We need the rmlock here to avoid sleeping while 2014 * holding in6_multi_mtx. 2015 */ 2016 VLAN_XLOCK(); 2017 trunk = TRUNK(ifv); 2018 if (trunk != NULL) 2019 error = vlan_setmulti(ifp); 2020 VLAN_XUNLOCK(); 2021 2022 break; 2023 case SIOCGVLANPCP: 2024 #ifdef VIMAGE 2025 if (ifp->if_vnet != ifp->if_home_vnet) { 2026 error = EPERM; 2027 break; 2028 } 2029 #endif 2030 ifr->ifr_vlan_pcp = ifv->ifv_pcp; 2031 break; 2032 2033 case SIOCSVLANPCP: 2034 #ifdef VIMAGE 2035 if (ifp->if_vnet != ifp->if_home_vnet) { 2036 error = EPERM; 2037 break; 2038 } 2039 #endif 2040 error = priv_check(curthread, PRIV_NET_SETVLANPCP); 2041 if (error) 2042 break; 2043 if (ifr->ifr_vlan_pcp > 7) { 2044 error = EINVAL; 2045 break; 2046 } 2047 ifv->ifv_pcp = ifr->ifr_vlan_pcp; 2048 ifp->if_pcp = ifv->ifv_pcp; 2049 /* broadcast event about PCP change */ 2050 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 2051 break; 2052 2053 case SIOCSIFCAP: 2054 VLAN_SLOCK(); 2055 ifv->ifv_capenable = ifr->ifr_reqcap; 2056 trunk = TRUNK(ifv); 2057 if (trunk != NULL) { 2058 struct epoch_tracker et; 2059 2060 NET_EPOCH_ENTER(et); 2061 vlan_capabilities(ifv); 2062 NET_EPOCH_EXIT(et); 2063 } 2064 VLAN_SUNLOCK(); 2065 break; 2066 2067 default: 2068 error = EINVAL; 2069 break; 2070 } 2071 2072 return (error); 2073 } 2074 2075 #if defined(KERN_TLS) || defined(RATELIMIT) 2076 static int 2077 vlan_snd_tag_alloc(struct ifnet *ifp, 2078 union if_snd_tag_alloc_params *params, 2079 struct m_snd_tag **ppmt) 2080 { 2081 struct epoch_tracker et; 2082 struct vlan_snd_tag *vst; 2083 struct ifvlan *ifv; 2084 struct ifnet *parent; 2085 int error; 2086 2087 NET_EPOCH_ENTER(et); 2088 ifv = ifp->if_softc; 2089 if (ifv->ifv_trunk != NULL) 2090 parent = PARENT(ifv); 2091 else 2092 parent = NULL; 2093 if (parent == NULL) { 2094 NET_EPOCH_EXIT(et); 2095 return (EOPNOTSUPP); 2096 } 2097 if_ref(parent); 2098 NET_EPOCH_EXIT(et); 2099 2100 vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT); 2101 if (vst == NULL) { 2102 if_rele(parent); 2103 return (ENOMEM); 2104 } 2105 2106 error = m_snd_tag_alloc(parent, params, &vst->tag); 2107 if_rele(parent); 2108 if (error) { 2109 free(vst, M_VLAN); 2110 return (error); 2111 } 2112 2113 m_snd_tag_init(&vst->com, ifp, vst->tag->type); 2114 2115 *ppmt = &vst->com; 2116 return (0); 2117 } 2118 2119 static struct m_snd_tag * 2120 vlan_next_snd_tag(struct m_snd_tag *mst) 2121 { 2122 struct vlan_snd_tag *vst; 2123 2124 vst = mst_to_vst(mst); 2125 return (vst->tag); 2126 } 2127 2128 static int 2129 vlan_snd_tag_modify(struct m_snd_tag *mst, 2130 union if_snd_tag_modify_params *params) 2131 { 2132 struct vlan_snd_tag *vst; 2133 2134 vst = mst_to_vst(mst); 2135 return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params)); 2136 } 2137 2138 static int 2139 vlan_snd_tag_query(struct m_snd_tag *mst, 2140 union if_snd_tag_query_params *params) 2141 { 2142 struct vlan_snd_tag *vst; 2143 2144 vst = mst_to_vst(mst); 2145 return (vst->tag->ifp->if_snd_tag_query(vst->tag, params)); 2146 } 2147 2148 static void 2149 vlan_snd_tag_free(struct m_snd_tag *mst) 2150 { 2151 struct vlan_snd_tag *vst; 2152 2153 vst = mst_to_vst(mst); 2154 m_snd_tag_rele(vst->tag); 2155 free(vst, M_VLAN); 2156 } 2157 2158 static void 2159 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q) 2160 { 2161 /* 2162 * For vlan, we have an indirect 2163 * interface. The caller needs to 2164 * get a ratelimit tag on the actual 2165 * interface the flow will go on. 2166 */ 2167 q->rate_table = NULL; 2168 q->flags = RT_IS_INDIRECT; 2169 q->max_flows = 0; 2170 q->number_of_rates = 0; 2171 } 2172 2173 #endif 2174