1 /*- 2 * Copyright 1998 Massachusetts Institute of Technology 3 * Copyright 2012 ADARA Networks, Inc. 4 * Copyright 2017 Dell EMC Isilon 5 * 6 * Portions of this software were developed by Robert N. M. Watson under 7 * contract to ADARA Networks, Inc. 8 * 9 * Permission to use, copy, modify, and distribute this software and 10 * its documentation for any purpose and without fee is hereby 11 * granted, provided that both the above copyright notice and this 12 * permission notice appear in all copies, that both the above 13 * copyright notice and this permission notice appear in all 14 * supporting documentation, and that the name of M.I.T. not be used 15 * in advertising or publicity pertaining to distribution of the 16 * software without specific, written prior permission. M.I.T. makes 17 * no representations about the suitability of this software for any 18 * purpose. It is provided "as is" without express or implied 19 * warranty. 20 * 21 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS 22 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, 23 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT 25 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 28 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 29 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. 37 * This is sort of sneaky in the implementation, since 38 * we need to pretend to be enough of an Ethernet implementation 39 * to make arp work. The way we do this is by telling everyone 40 * that we are an Ethernet, and then catch the packets that 41 * ether_output() sends to us via if_transmit(), rewrite them for 42 * use by the real outgoing interface, and ask it to send them. 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_inet.h" 49 #include "opt_inet6.h" 50 #include "opt_kern_tls.h" 51 #include "opt_vlan.h" 52 #include "opt_ratelimit.h" 53 54 #include <sys/param.h> 55 #include <sys/eventhandler.h> 56 #include <sys/kernel.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mbuf.h> 60 #include <sys/module.h> 61 #include <sys/rmlock.h> 62 #include <sys/priv.h> 63 #include <sys/queue.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/sysctl.h> 67 #include <sys/systm.h> 68 #include <sys/sx.h> 69 #include <sys/taskqueue.h> 70 71 #include <net/bpf.h> 72 #include <net/ethernet.h> 73 #include <net/if.h> 74 #include <net/if_var.h> 75 #include <net/if_clone.h> 76 #include <net/if_dl.h> 77 #include <net/if_types.h> 78 #include <net/if_vlan_var.h> 79 #include <net/route.h> 80 #include <net/vnet.h> 81 82 #ifdef INET 83 #include <netinet/in.h> 84 #include <netinet/if_ether.h> 85 #endif 86 87 #ifdef INET6 88 /* 89 * XXX: declare here to avoid to include many inet6 related files.. 90 * should be more generalized? 91 */ 92 extern void nd6_setmtu(struct ifnet *); 93 #endif 94 95 #define VLAN_DEF_HWIDTH 4 96 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) 97 98 #define UP_AND_RUNNING(ifp) \ 99 ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) 100 101 CK_SLIST_HEAD(ifvlanhead, ifvlan); 102 103 struct ifvlantrunk { 104 struct ifnet *parent; /* parent interface of this trunk */ 105 struct mtx lock; 106 #ifdef VLAN_ARRAY 107 #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) 108 struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ 109 #else 110 struct ifvlanhead *hash; /* dynamic hash-list table */ 111 uint16_t hmask; 112 uint16_t hwidth; 113 #endif 114 int refcnt; 115 }; 116 117 #if defined(KERN_TLS) || defined(RATELIMIT) 118 struct vlan_snd_tag { 119 struct m_snd_tag com; 120 struct m_snd_tag *tag; 121 }; 122 123 static inline struct vlan_snd_tag * 124 mst_to_vst(struct m_snd_tag *mst) 125 { 126 127 return (__containerof(mst, struct vlan_snd_tag, com)); 128 } 129 #endif 130 131 /* 132 * This macro provides a facility to iterate over every vlan on a trunk with 133 * the assumption that none will be added/removed during iteration. 134 */ 135 #ifdef VLAN_ARRAY 136 #define VLAN_FOREACH(_ifv, _trunk) \ 137 size_t _i; \ 138 for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ 139 if (((_ifv) = (_trunk)->vlans[_i]) != NULL) 140 #else /* VLAN_ARRAY */ 141 #define VLAN_FOREACH(_ifv, _trunk) \ 142 struct ifvlan *_next; \ 143 size_t _i; \ 144 for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ 145 CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) 146 #endif /* VLAN_ARRAY */ 147 148 /* 149 * This macro provides a facility to iterate over every vlan on a trunk while 150 * also modifying the number of vlans on the trunk. The iteration continues 151 * until some condition is met or there are no more vlans on the trunk. 152 */ 153 #ifdef VLAN_ARRAY 154 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ 155 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 156 size_t _i; \ 157 for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ 158 if (((_ifv) = (_trunk)->vlans[_i])) 159 #else /* VLAN_ARRAY */ 160 /* 161 * The hash table case is more complicated. We allow for the hash table to be 162 * modified (i.e. vlans removed) while we are iterating over it. To allow for 163 * this we must restart the iteration every time we "touch" something during 164 * the iteration, since removal will resize the hash table and invalidate our 165 * current position. If acting on the touched element causes the trunk to be 166 * emptied, then iteration also stops. 167 */ 168 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ 169 size_t _i; \ 170 bool _touch = false; \ 171 for (_i = 0; \ 172 !(_cond) && _i < (1 << (_trunk)->hwidth); \ 173 _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ 174 if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ 175 (_touch = true)) 176 #endif /* VLAN_ARRAY */ 177 178 struct vlan_mc_entry { 179 struct sockaddr_dl mc_addr; 180 CK_SLIST_ENTRY(vlan_mc_entry) mc_entries; 181 struct epoch_context mc_epoch_ctx; 182 }; 183 184 struct ifvlan { 185 struct ifvlantrunk *ifv_trunk; 186 struct ifnet *ifv_ifp; 187 #define TRUNK(ifv) ((ifv)->ifv_trunk) 188 #define PARENT(ifv) (TRUNK(ifv)->parent) 189 void *ifv_cookie; 190 int ifv_pflags; /* special flags we have set on parent */ 191 int ifv_capenable; 192 int ifv_encaplen; /* encapsulation length */ 193 int ifv_mtufudge; /* MTU fudged by this much */ 194 int ifv_mintu; /* min transmission unit */ 195 struct ether_8021q_tag ifv_qtag; 196 #define ifv_proto ifv_qtag.proto 197 #define ifv_vid ifv_qtag.vid 198 #define ifv_pcp ifv_qtag.pcp 199 struct task lladdr_task; 200 CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; 201 #ifndef VLAN_ARRAY 202 CK_SLIST_ENTRY(ifvlan) ifv_list; 203 #endif 204 }; 205 206 /* Special flags we should propagate to parent. */ 207 static struct { 208 int flag; 209 int (*func)(struct ifnet *, int); 210 } vlan_pflags[] = { 211 {IFF_PROMISC, ifpromisc}, 212 {IFF_ALLMULTI, if_allmulti}, 213 {0, NULL} 214 }; 215 216 extern int vlan_mtag_pcp; 217 218 static const char vlanname[] = "vlan"; 219 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); 220 221 static eventhandler_tag ifdetach_tag; 222 static eventhandler_tag iflladdr_tag; 223 224 /* 225 * if_vlan uses two module-level synchronizations primitives to allow concurrent 226 * modification of vlan interfaces and (mostly) allow for vlans to be destroyed 227 * while they are being used for tx/rx. To accomplish this in a way that has 228 * acceptable performance and cooperation with other parts of the network stack 229 * there is a non-sleepable epoch(9) and an sx(9). 230 * 231 * The performance-sensitive paths that warrant using the epoch(9) are 232 * vlan_transmit and vlan_input. Both have to check for the vlan interface's 233 * existence using if_vlantrunk, and being in the network tx/rx paths the use 234 * of an epoch(9) gives a measureable improvement in performance. 235 * 236 * The reason for having an sx(9) is mostly because there are still areas that 237 * must be sleepable and also have safe concurrent access to a vlan interface. 238 * Since the sx(9) exists, it is used by default in most paths unless sleeping 239 * is not permitted, or if it is not clear whether sleeping is permitted. 240 * 241 */ 242 #define _VLAN_SX_ID ifv_sx 243 244 static struct sx _VLAN_SX_ID; 245 246 #define VLAN_LOCKING_INIT() \ 247 sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE) 248 249 #define VLAN_LOCKING_DESTROY() \ 250 sx_destroy(&_VLAN_SX_ID) 251 252 #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) 253 #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) 254 #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) 255 #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) 256 #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) 257 #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) 258 #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) 259 260 /* 261 * We also have a per-trunk mutex that should be acquired when changing 262 * its state. 263 */ 264 #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF) 265 #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock) 266 #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock) 267 #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock) 268 #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED); 269 270 /* 271 * The VLAN_ARRAY substitutes the dynamic hash with a static array 272 * with 4096 entries. In theory this can give a boost in processing, 273 * however in practice it does not. Probably this is because the array 274 * is too big to fit into CPU cache. 275 */ 276 #ifndef VLAN_ARRAY 277 static void vlan_inithash(struct ifvlantrunk *trunk); 278 static void vlan_freehash(struct ifvlantrunk *trunk); 279 static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 280 static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); 281 static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); 282 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, 283 uint16_t vid); 284 #endif 285 static void trunk_destroy(struct ifvlantrunk *trunk); 286 287 static void vlan_init(void *foo); 288 static void vlan_input(struct ifnet *ifp, struct mbuf *m); 289 static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); 290 #if defined(KERN_TLS) || defined(RATELIMIT) 291 static int vlan_snd_tag_alloc(struct ifnet *, 292 union if_snd_tag_alloc_params *, struct m_snd_tag **); 293 static int vlan_snd_tag_modify(struct m_snd_tag *, 294 union if_snd_tag_modify_params *); 295 static int vlan_snd_tag_query(struct m_snd_tag *, 296 union if_snd_tag_query_params *); 297 static void vlan_snd_tag_free(struct m_snd_tag *); 298 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *); 299 static void vlan_ratelimit_query(struct ifnet *, 300 struct if_ratelimit_query_results *); 301 #endif 302 static void vlan_qflush(struct ifnet *ifp); 303 static int vlan_setflag(struct ifnet *ifp, int flag, int status, 304 int (*func)(struct ifnet *, int)); 305 static int vlan_setflags(struct ifnet *ifp, int status); 306 static int vlan_setmulti(struct ifnet *ifp); 307 static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); 308 #ifdef ALTQ 309 static void vlan_altq_start(struct ifnet *ifp); 310 static int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m); 311 #endif 312 static int vlan_output(struct ifnet *ifp, struct mbuf *m, 313 const struct sockaddr *dst, struct route *ro); 314 static void vlan_unconfig(struct ifnet *ifp); 315 static void vlan_unconfig_locked(struct ifnet *ifp, int departing); 316 static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag, 317 uint16_t proto); 318 static void vlan_link_state(struct ifnet *ifp); 319 static void vlan_capabilities(struct ifvlan *ifv); 320 static void vlan_trunk_capabilities(struct ifnet *ifp); 321 322 static struct ifnet *vlan_clone_match_ethervid(const char *, int *); 323 static int vlan_clone_match(struct if_clone *, const char *); 324 static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); 325 static int vlan_clone_destroy(struct if_clone *, struct ifnet *); 326 327 static void vlan_ifdetach(void *arg, struct ifnet *ifp); 328 static void vlan_iflladdr(void *arg, struct ifnet *ifp); 329 330 static void vlan_lladdr_fn(void *arg, int pending); 331 332 static struct if_clone *vlan_cloner; 333 334 #ifdef VIMAGE 335 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); 336 #define V_vlan_cloner VNET(vlan_cloner) 337 #endif 338 339 static void 340 vlan_mc_free(struct epoch_context *ctx) 341 { 342 struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx); 343 free(mc, M_VLAN); 344 } 345 346 #ifndef VLAN_ARRAY 347 #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) 348 349 static void 350 vlan_inithash(struct ifvlantrunk *trunk) 351 { 352 int i, n; 353 354 /* 355 * The trunk must not be locked here since we call malloc(M_WAITOK). 356 * It is OK in case this function is called before the trunk struct 357 * gets hooked up and becomes visible from other threads. 358 */ 359 360 KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, 361 ("%s: hash already initialized", __func__)); 362 363 trunk->hwidth = VLAN_DEF_HWIDTH; 364 n = 1 << trunk->hwidth; 365 trunk->hmask = n - 1; 366 trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); 367 for (i = 0; i < n; i++) 368 CK_SLIST_INIT(&trunk->hash[i]); 369 } 370 371 static void 372 vlan_freehash(struct ifvlantrunk *trunk) 373 { 374 #ifdef INVARIANTS 375 int i; 376 377 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 378 for (i = 0; i < (1 << trunk->hwidth); i++) 379 KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]), 380 ("%s: hash table not empty", __func__)); 381 #endif 382 free(trunk->hash, M_VLAN); 383 trunk->hash = NULL; 384 trunk->hwidth = trunk->hmask = 0; 385 } 386 387 static int 388 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 389 { 390 int i, b; 391 struct ifvlan *ifv2; 392 393 VLAN_XLOCK_ASSERT(); 394 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 395 396 b = 1 << trunk->hwidth; 397 i = HASH(ifv->ifv_vid, trunk->hmask); 398 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 399 if (ifv->ifv_vid == ifv2->ifv_vid) 400 return (EEXIST); 401 402 /* 403 * Grow the hash when the number of vlans exceeds half of the number of 404 * hash buckets squared. This will make the average linked-list length 405 * buckets/2. 406 */ 407 if (trunk->refcnt > (b * b) / 2) { 408 vlan_growhash(trunk, 1); 409 i = HASH(ifv->ifv_vid, trunk->hmask); 410 } 411 CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); 412 trunk->refcnt++; 413 414 return (0); 415 } 416 417 static int 418 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 419 { 420 int i, b; 421 struct ifvlan *ifv2; 422 423 VLAN_XLOCK_ASSERT(); 424 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 425 426 b = 1 << trunk->hwidth; 427 i = HASH(ifv->ifv_vid, trunk->hmask); 428 CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) 429 if (ifv2 == ifv) { 430 trunk->refcnt--; 431 CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list); 432 if (trunk->refcnt < (b * b) / 2) 433 vlan_growhash(trunk, -1); 434 return (0); 435 } 436 437 panic("%s: vlan not found\n", __func__); 438 return (ENOENT); /*NOTREACHED*/ 439 } 440 441 /* 442 * Grow the hash larger or smaller if memory permits. 443 */ 444 static void 445 vlan_growhash(struct ifvlantrunk *trunk, int howmuch) 446 { 447 struct ifvlan *ifv; 448 struct ifvlanhead *hash2; 449 int hwidth2, i, j, n, n2; 450 451 VLAN_XLOCK_ASSERT(); 452 KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); 453 454 if (howmuch == 0) { 455 /* Harmless yet obvious coding error */ 456 printf("%s: howmuch is 0\n", __func__); 457 return; 458 } 459 460 hwidth2 = trunk->hwidth + howmuch; 461 n = 1 << trunk->hwidth; 462 n2 = 1 << hwidth2; 463 /* Do not shrink the table below the default */ 464 if (hwidth2 < VLAN_DEF_HWIDTH) 465 return; 466 467 hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK); 468 if (hash2 == NULL) { 469 printf("%s: out of memory -- hash size not changed\n", 470 __func__); 471 return; /* We can live with the old hash table */ 472 } 473 for (j = 0; j < n2; j++) 474 CK_SLIST_INIT(&hash2[j]); 475 for (i = 0; i < n; i++) 476 while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) { 477 CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list); 478 j = HASH(ifv->ifv_vid, n2 - 1); 479 CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); 480 } 481 NET_EPOCH_WAIT(); 482 free(trunk->hash, M_VLAN); 483 trunk->hash = hash2; 484 trunk->hwidth = hwidth2; 485 trunk->hmask = n2 - 1; 486 487 if (bootverbose) 488 if_printf(trunk->parent, 489 "VLAN hash table resized from %d to %d buckets\n", n, n2); 490 } 491 492 static __inline struct ifvlan * 493 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 494 { 495 struct ifvlan *ifv; 496 497 NET_EPOCH_ASSERT(); 498 499 CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) 500 if (ifv->ifv_vid == vid) 501 return (ifv); 502 return (NULL); 503 } 504 505 #if 0 506 /* Debugging code to view the hashtables. */ 507 static void 508 vlan_dumphash(struct ifvlantrunk *trunk) 509 { 510 int i; 511 struct ifvlan *ifv; 512 513 for (i = 0; i < (1 << trunk->hwidth); i++) { 514 printf("%d: ", i); 515 CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list) 516 printf("%s ", ifv->ifv_ifp->if_xname); 517 printf("\n"); 518 } 519 } 520 #endif /* 0 */ 521 #else 522 523 static __inline struct ifvlan * 524 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) 525 { 526 527 return trunk->vlans[vid]; 528 } 529 530 static __inline int 531 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 532 { 533 534 if (trunk->vlans[ifv->ifv_vid] != NULL) 535 return EEXIST; 536 trunk->vlans[ifv->ifv_vid] = ifv; 537 trunk->refcnt++; 538 539 return (0); 540 } 541 542 static __inline int 543 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) 544 { 545 546 trunk->vlans[ifv->ifv_vid] = NULL; 547 trunk->refcnt--; 548 549 return (0); 550 } 551 552 static __inline void 553 vlan_freehash(struct ifvlantrunk *trunk) 554 { 555 } 556 557 static __inline void 558 vlan_inithash(struct ifvlantrunk *trunk) 559 { 560 } 561 562 #endif /* !VLAN_ARRAY */ 563 564 static void 565 trunk_destroy(struct ifvlantrunk *trunk) 566 { 567 VLAN_XLOCK_ASSERT(); 568 569 vlan_freehash(trunk); 570 trunk->parent->if_vlantrunk = NULL; 571 TRUNK_LOCK_DESTROY(trunk); 572 if_rele(trunk->parent); 573 free(trunk, M_VLAN); 574 } 575 576 /* 577 * Program our multicast filter. What we're actually doing is 578 * programming the multicast filter of the parent. This has the 579 * side effect of causing the parent interface to receive multicast 580 * traffic that it doesn't really want, which ends up being discarded 581 * later by the upper protocol layers. Unfortunately, there's no way 582 * to avoid this: there really is only one physical interface. 583 */ 584 static int 585 vlan_setmulti(struct ifnet *ifp) 586 { 587 struct ifnet *ifp_p; 588 struct ifmultiaddr *ifma; 589 struct ifvlan *sc; 590 struct vlan_mc_entry *mc; 591 int error; 592 593 VLAN_XLOCK_ASSERT(); 594 595 /* Find the parent. */ 596 sc = ifp->if_softc; 597 ifp_p = PARENT(sc); 598 599 CURVNET_SET_QUIET(ifp_p->if_vnet); 600 601 /* First, remove any existing filter entries. */ 602 while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { 603 CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); 604 (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); 605 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 606 } 607 608 /* Now program new ones. */ 609 IF_ADDR_WLOCK(ifp); 610 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 611 if (ifma->ifma_addr->sa_family != AF_LINK) 612 continue; 613 mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); 614 if (mc == NULL) { 615 IF_ADDR_WUNLOCK(ifp); 616 CURVNET_RESTORE(); 617 return (ENOMEM); 618 } 619 bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); 620 mc->mc_addr.sdl_index = ifp_p->if_index; 621 CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); 622 } 623 IF_ADDR_WUNLOCK(ifp); 624 CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { 625 error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, 626 NULL); 627 if (error) { 628 CURVNET_RESTORE(); 629 return (error); 630 } 631 } 632 633 CURVNET_RESTORE(); 634 return (0); 635 } 636 637 /* 638 * A handler for parent interface link layer address changes. 639 * If the parent interface link layer address is changed we 640 * should also change it on all children vlans. 641 */ 642 static void 643 vlan_iflladdr(void *arg __unused, struct ifnet *ifp) 644 { 645 struct epoch_tracker et; 646 struct ifvlan *ifv; 647 struct ifnet *ifv_ifp; 648 struct ifvlantrunk *trunk; 649 struct sockaddr_dl *sdl; 650 651 /* Need the epoch since this is run on taskqueue_swi. */ 652 NET_EPOCH_ENTER(et); 653 trunk = ifp->if_vlantrunk; 654 if (trunk == NULL) { 655 NET_EPOCH_EXIT(et); 656 return; 657 } 658 659 /* 660 * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. 661 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR 662 * ioctl calls on the parent garbling the lladdr of the child vlan. 663 */ 664 TRUNK_WLOCK(trunk); 665 VLAN_FOREACH(ifv, trunk) { 666 /* 667 * Copy new new lladdr into the ifv_ifp, enqueue a task 668 * to actually call if_setlladdr. if_setlladdr needs to 669 * be deferred to a taskqueue because it will call into 670 * the if_vlan ioctl path and try to acquire the global 671 * lock. 672 */ 673 ifv_ifp = ifv->ifv_ifp; 674 bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), 675 ifp->if_addrlen); 676 sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; 677 sdl->sdl_alen = ifp->if_addrlen; 678 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 679 } 680 TRUNK_WUNLOCK(trunk); 681 NET_EPOCH_EXIT(et); 682 } 683 684 /* 685 * A handler for network interface departure events. 686 * Track departure of trunks here so that we don't access invalid 687 * pointers or whatever if a trunk is ripped from under us, e.g., 688 * by ejecting its hot-plug card. However, if an ifnet is simply 689 * being renamed, then there's no need to tear down the state. 690 */ 691 static void 692 vlan_ifdetach(void *arg __unused, struct ifnet *ifp) 693 { 694 struct ifvlan *ifv; 695 struct ifvlantrunk *trunk; 696 697 /* If the ifnet is just being renamed, don't do anything. */ 698 if (ifp->if_flags & IFF_RENAMING) 699 return; 700 VLAN_XLOCK(); 701 trunk = ifp->if_vlantrunk; 702 if (trunk == NULL) { 703 VLAN_XUNLOCK(); 704 return; 705 } 706 707 /* 708 * OK, it's a trunk. Loop over and detach all vlan's on it. 709 * Check trunk pointer after each vlan_unconfig() as it will 710 * free it and set to NULL after the last vlan was detached. 711 */ 712 VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, 713 ifp->if_vlantrunk == NULL) 714 vlan_unconfig_locked(ifv->ifv_ifp, 1); 715 716 /* Trunk should have been destroyed in vlan_unconfig(). */ 717 KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); 718 VLAN_XUNLOCK(); 719 } 720 721 /* 722 * Return the trunk device for a virtual interface. 723 */ 724 static struct ifnet * 725 vlan_trunkdev(struct ifnet *ifp) 726 { 727 struct ifvlan *ifv; 728 729 NET_EPOCH_ASSERT(); 730 731 if (ifp->if_type != IFT_L2VLAN) 732 return (NULL); 733 734 ifv = ifp->if_softc; 735 ifp = NULL; 736 if (ifv->ifv_trunk) 737 ifp = PARENT(ifv); 738 return (ifp); 739 } 740 741 /* 742 * Return the 12-bit VLAN VID for this interface, for use by external 743 * components such as Infiniband. 744 * 745 * XXXRW: Note that the function name here is historical; it should be named 746 * vlan_vid(). 747 */ 748 static int 749 vlan_tag(struct ifnet *ifp, uint16_t *vidp) 750 { 751 struct ifvlan *ifv; 752 753 if (ifp->if_type != IFT_L2VLAN) 754 return (EINVAL); 755 ifv = ifp->if_softc; 756 *vidp = ifv->ifv_vid; 757 return (0); 758 } 759 760 static int 761 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp) 762 { 763 struct ifvlan *ifv; 764 765 if (ifp->if_type != IFT_L2VLAN) 766 return (EINVAL); 767 ifv = ifp->if_softc; 768 *pcpp = ifv->ifv_pcp; 769 return (0); 770 } 771 772 /* 773 * Return a driver specific cookie for this interface. Synchronization 774 * with setcookie must be provided by the driver. 775 */ 776 static void * 777 vlan_cookie(struct ifnet *ifp) 778 { 779 struct ifvlan *ifv; 780 781 if (ifp->if_type != IFT_L2VLAN) 782 return (NULL); 783 ifv = ifp->if_softc; 784 return (ifv->ifv_cookie); 785 } 786 787 /* 788 * Store a cookie in our softc that drivers can use to store driver 789 * private per-instance data in. 790 */ 791 static int 792 vlan_setcookie(struct ifnet *ifp, void *cookie) 793 { 794 struct ifvlan *ifv; 795 796 if (ifp->if_type != IFT_L2VLAN) 797 return (EINVAL); 798 ifv = ifp->if_softc; 799 ifv->ifv_cookie = cookie; 800 return (0); 801 } 802 803 /* 804 * Return the vlan device present at the specific VID. 805 */ 806 static struct ifnet * 807 vlan_devat(struct ifnet *ifp, uint16_t vid) 808 { 809 struct ifvlantrunk *trunk; 810 struct ifvlan *ifv; 811 812 NET_EPOCH_ASSERT(); 813 814 trunk = ifp->if_vlantrunk; 815 if (trunk == NULL) 816 return (NULL); 817 ifp = NULL; 818 ifv = vlan_gethash(trunk, vid); 819 if (ifv) 820 ifp = ifv->ifv_ifp; 821 return (ifp); 822 } 823 824 /* 825 * VLAN support can be loaded as a module. The only place in the 826 * system that's intimately aware of this is ether_input. We hook 827 * into this code through vlan_input_p which is defined there and 828 * set here. No one else in the system should be aware of this so 829 * we use an explicit reference here. 830 */ 831 extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); 832 833 /* For if_link_state_change() eyes only... */ 834 extern void (*vlan_link_state_p)(struct ifnet *); 835 836 static int 837 vlan_modevent(module_t mod, int type, void *data) 838 { 839 840 switch (type) { 841 case MOD_LOAD: 842 ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 843 vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); 844 if (ifdetach_tag == NULL) 845 return (ENOMEM); 846 iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, 847 vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 848 if (iflladdr_tag == NULL) 849 return (ENOMEM); 850 VLAN_LOCKING_INIT(); 851 vlan_input_p = vlan_input; 852 vlan_link_state_p = vlan_link_state; 853 vlan_trunk_cap_p = vlan_trunk_capabilities; 854 vlan_trunkdev_p = vlan_trunkdev; 855 vlan_cookie_p = vlan_cookie; 856 vlan_setcookie_p = vlan_setcookie; 857 vlan_tag_p = vlan_tag; 858 vlan_pcp_p = vlan_pcp; 859 vlan_devat_p = vlan_devat; 860 #ifndef VIMAGE 861 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 862 vlan_clone_create, vlan_clone_destroy); 863 #endif 864 if (bootverbose) 865 printf("vlan: initialized, using " 866 #ifdef VLAN_ARRAY 867 "full-size arrays" 868 #else 869 "hash tables with chaining" 870 #endif 871 872 "\n"); 873 break; 874 case MOD_UNLOAD: 875 #ifndef VIMAGE 876 if_clone_detach(vlan_cloner); 877 #endif 878 EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); 879 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); 880 vlan_input_p = NULL; 881 vlan_link_state_p = NULL; 882 vlan_trunk_cap_p = NULL; 883 vlan_trunkdev_p = NULL; 884 vlan_tag_p = NULL; 885 vlan_cookie_p = NULL; 886 vlan_setcookie_p = NULL; 887 vlan_devat_p = NULL; 888 VLAN_LOCKING_DESTROY(); 889 if (bootverbose) 890 printf("vlan: unloaded\n"); 891 break; 892 default: 893 return (EOPNOTSUPP); 894 } 895 return (0); 896 } 897 898 static moduledata_t vlan_mod = { 899 "if_vlan", 900 vlan_modevent, 901 0 902 }; 903 904 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); 905 MODULE_VERSION(if_vlan, 3); 906 907 #ifdef VIMAGE 908 static void 909 vnet_vlan_init(const void *unused __unused) 910 { 911 912 vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, 913 vlan_clone_create, vlan_clone_destroy); 914 V_vlan_cloner = vlan_cloner; 915 } 916 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, 917 vnet_vlan_init, NULL); 918 919 static void 920 vnet_vlan_uninit(const void *unused __unused) 921 { 922 923 if_clone_detach(V_vlan_cloner); 924 } 925 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, 926 vnet_vlan_uninit, NULL); 927 #endif 928 929 /* 930 * Check for <etherif>.<vlan>[.<vlan> ...] style interface names. 931 */ 932 static struct ifnet * 933 vlan_clone_match_ethervid(const char *name, int *vidp) 934 { 935 char ifname[IFNAMSIZ]; 936 char *cp; 937 struct ifnet *ifp; 938 int vid; 939 940 strlcpy(ifname, name, IFNAMSIZ); 941 if ((cp = strrchr(ifname, '.')) == NULL) 942 return (NULL); 943 *cp = '\0'; 944 if ((ifp = ifunit_ref(ifname)) == NULL) 945 return (NULL); 946 /* Parse VID. */ 947 if (*++cp == '\0') { 948 if_rele(ifp); 949 return (NULL); 950 } 951 vid = 0; 952 for(; *cp >= '0' && *cp <= '9'; cp++) 953 vid = (vid * 10) + (*cp - '0'); 954 if (*cp != '\0') { 955 if_rele(ifp); 956 return (NULL); 957 } 958 if (vidp != NULL) 959 *vidp = vid; 960 961 return (ifp); 962 } 963 964 static int 965 vlan_clone_match(struct if_clone *ifc, const char *name) 966 { 967 struct ifnet *ifp; 968 const char *cp; 969 970 ifp = vlan_clone_match_ethervid(name, NULL); 971 if (ifp != NULL) { 972 if_rele(ifp); 973 return (1); 974 } 975 976 if (strncmp(vlanname, name, strlen(vlanname)) != 0) 977 return (0); 978 for (cp = name + 4; *cp != '\0'; cp++) { 979 if (*cp < '0' || *cp > '9') 980 return (0); 981 } 982 983 return (1); 984 } 985 986 static int 987 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) 988 { 989 char *dp; 990 bool wildcard = false; 991 bool subinterface = false; 992 int unit; 993 int error; 994 int vid = 0; 995 uint16_t proto = ETHERTYPE_VLAN; 996 struct ifvlan *ifv; 997 struct ifnet *ifp; 998 struct ifnet *p = NULL; 999 struct ifaddr *ifa; 1000 struct sockaddr_dl *sdl; 1001 struct vlanreq vlr; 1002 static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ 1003 1004 1005 /* 1006 * There are three ways to specify the cloned device: 1007 * o pass a parameter block with the clone request. 1008 * o specify parameters in the text of the clone device name 1009 * o specify no parameters and get an unattached device that 1010 * must be configured separately. 1011 * The first technique is preferred; the latter two are supported 1012 * for backwards compatibility. 1013 * 1014 * XXXRW: Note historic use of the word "tag" here. New ioctls may be 1015 * called for. 1016 */ 1017 1018 if (params) { 1019 error = copyin(params, &vlr, sizeof(vlr)); 1020 if (error) 1021 return error; 1022 vid = vlr.vlr_tag; 1023 proto = vlr.vlr_proto; 1024 1025 #ifdef COMPAT_FREEBSD12 1026 if (proto == 0) 1027 proto = ETHERTYPE_VLAN; 1028 #endif 1029 p = ifunit_ref(vlr.vlr_parent); 1030 if (p == NULL) 1031 return (ENXIO); 1032 } 1033 1034 if ((error = ifc_name2unit(name, &unit)) == 0) { 1035 1036 /* 1037 * vlanX interface. Set wildcard to true if the unit number 1038 * is not fixed (-1) 1039 */ 1040 wildcard = (unit < 0); 1041 } else { 1042 struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid); 1043 if (p_tmp != NULL) { 1044 error = 0; 1045 subinterface = true; 1046 unit = IF_DUNIT_NONE; 1047 wildcard = false; 1048 if (p != NULL) { 1049 if_rele(p_tmp); 1050 if (p != p_tmp) 1051 error = EINVAL; 1052 } else 1053 p = p_tmp; 1054 } else 1055 error = ENXIO; 1056 } 1057 1058 if (error != 0) { 1059 if (p != NULL) 1060 if_rele(p); 1061 return (error); 1062 } 1063 1064 if (!subinterface) { 1065 /* vlanX interface, mark X as busy or allocate new unit # */ 1066 error = ifc_alloc_unit(ifc, &unit); 1067 if (error != 0) { 1068 if (p != NULL) 1069 if_rele(p); 1070 return (error); 1071 } 1072 } 1073 1074 /* In the wildcard case, we need to update the name. */ 1075 if (wildcard) { 1076 for (dp = name; *dp != '\0'; dp++); 1077 if (snprintf(dp, len - (dp-name), "%d", unit) > 1078 len - (dp-name) - 1) { 1079 panic("%s: interface name too long", __func__); 1080 } 1081 } 1082 1083 ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); 1084 ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); 1085 if (ifp == NULL) { 1086 if (!subinterface) 1087 ifc_free_unit(ifc, unit); 1088 free(ifv, M_VLAN); 1089 if (p != NULL) 1090 if_rele(p); 1091 return (ENOSPC); 1092 } 1093 CK_SLIST_INIT(&ifv->vlan_mc_listhead); 1094 ifp->if_softc = ifv; 1095 /* 1096 * Set the name manually rather than using if_initname because 1097 * we don't conform to the default naming convention for interfaces. 1098 */ 1099 strlcpy(ifp->if_xname, name, IFNAMSIZ); 1100 ifp->if_dname = vlanname; 1101 ifp->if_dunit = unit; 1102 1103 ifp->if_init = vlan_init; 1104 #ifdef ALTQ 1105 ifp->if_start = vlan_altq_start; 1106 ifp->if_transmit = vlan_altq_transmit; 1107 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 1108 ifp->if_snd.ifq_drv_maxlen = 0; 1109 IFQ_SET_READY(&ifp->if_snd); 1110 #else 1111 ifp->if_transmit = vlan_transmit; 1112 #endif 1113 ifp->if_qflush = vlan_qflush; 1114 ifp->if_ioctl = vlan_ioctl; 1115 #if defined(KERN_TLS) || defined(RATELIMIT) 1116 ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; 1117 ifp->if_snd_tag_modify = vlan_snd_tag_modify; 1118 ifp->if_snd_tag_query = vlan_snd_tag_query; 1119 ifp->if_snd_tag_free = vlan_snd_tag_free; 1120 ifp->if_next_snd_tag = vlan_next_snd_tag; 1121 ifp->if_ratelimit_query = vlan_ratelimit_query; 1122 #endif 1123 ifp->if_flags = VLAN_IFFLAGS; 1124 ether_ifattach(ifp, eaddr); 1125 /* Now undo some of the damage... */ 1126 ifp->if_baudrate = 0; 1127 ifp->if_type = IFT_L2VLAN; 1128 ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; 1129 ifa = ifp->if_addr; 1130 sdl = (struct sockaddr_dl *)ifa->ifa_addr; 1131 sdl->sdl_type = IFT_L2VLAN; 1132 1133 if (p != NULL) { 1134 error = vlan_config(ifv, p, vid, proto); 1135 if_rele(p); 1136 if (error != 0) { 1137 /* 1138 * Since we've partially failed, we need to back 1139 * out all the way, otherwise userland could get 1140 * confused. Thus, we destroy the interface. 1141 */ 1142 ether_ifdetach(ifp); 1143 vlan_unconfig(ifp); 1144 if_free(ifp); 1145 if (!subinterface) 1146 ifc_free_unit(ifc, unit); 1147 free(ifv, M_VLAN); 1148 1149 return (error); 1150 } 1151 } 1152 1153 return (0); 1154 } 1155 1156 static int 1157 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) 1158 { 1159 struct ifvlan *ifv = ifp->if_softc; 1160 int unit = ifp->if_dunit; 1161 1162 if (ifp->if_vlantrunk) 1163 return (EBUSY); 1164 1165 #ifdef ALTQ 1166 IFQ_PURGE(&ifp->if_snd); 1167 #endif 1168 ether_ifdetach(ifp); /* first, remove it from system-wide lists */ 1169 vlan_unconfig(ifp); /* now it can be unconfigured and freed */ 1170 /* 1171 * We should have the only reference to the ifv now, so we can now 1172 * drain any remaining lladdr task before freeing the ifnet and the 1173 * ifvlan. 1174 */ 1175 taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); 1176 NET_EPOCH_WAIT(); 1177 if_free(ifp); 1178 free(ifv, M_VLAN); 1179 if (unit != IF_DUNIT_NONE) 1180 ifc_free_unit(ifc, unit); 1181 1182 return (0); 1183 } 1184 1185 /* 1186 * The ifp->if_init entry point for vlan(4) is a no-op. 1187 */ 1188 static void 1189 vlan_init(void *foo __unused) 1190 { 1191 } 1192 1193 /* 1194 * The if_transmit method for vlan(4) interface. 1195 */ 1196 static int 1197 vlan_transmit(struct ifnet *ifp, struct mbuf *m) 1198 { 1199 struct ifvlan *ifv; 1200 struct ifnet *p; 1201 int error, len, mcast; 1202 1203 NET_EPOCH_ASSERT(); 1204 1205 ifv = ifp->if_softc; 1206 if (TRUNK(ifv) == NULL) { 1207 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1208 m_freem(m); 1209 return (ENETDOWN); 1210 } 1211 p = PARENT(ifv); 1212 len = m->m_pkthdr.len; 1213 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; 1214 1215 BPF_MTAP(ifp, m); 1216 1217 #if defined(KERN_TLS) || defined(RATELIMIT) 1218 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1219 struct vlan_snd_tag *vst; 1220 struct m_snd_tag *mst; 1221 1222 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 1223 mst = m->m_pkthdr.snd_tag; 1224 vst = mst_to_vst(mst); 1225 if (vst->tag->ifp != p) { 1226 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1227 m_freem(m); 1228 return (EAGAIN); 1229 } 1230 1231 m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag); 1232 m_snd_tag_rele(mst); 1233 } 1234 #endif 1235 1236 /* 1237 * Do not run parent's if_transmit() if the parent is not up, 1238 * or parent's driver will cause a system crash. 1239 */ 1240 if (!UP_AND_RUNNING(p)) { 1241 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1242 m_freem(m); 1243 return (ENETDOWN); 1244 } 1245 1246 if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) { 1247 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1248 return (0); 1249 } 1250 1251 /* 1252 * Send it, precisely as ether_output() would have. 1253 */ 1254 error = (p->if_transmit)(p, m); 1255 if (error == 0) { 1256 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1257 if_inc_counter(ifp, IFCOUNTER_OBYTES, len); 1258 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); 1259 } else 1260 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1261 return (error); 1262 } 1263 1264 static int 1265 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, 1266 struct route *ro) 1267 { 1268 struct ifvlan *ifv; 1269 struct ifnet *p; 1270 1271 NET_EPOCH_ASSERT(); 1272 1273 /* 1274 * Find the first non-VLAN parent interface. 1275 */ 1276 ifv = ifp->if_softc; 1277 do { 1278 if (TRUNK(ifv) == NULL) { 1279 m_freem(m); 1280 return (ENETDOWN); 1281 } 1282 p = PARENT(ifv); 1283 ifv = p->if_softc; 1284 } while (p->if_type == IFT_L2VLAN); 1285 1286 return p->if_output(ifp, m, dst, ro); 1287 } 1288 1289 #ifdef ALTQ 1290 static void 1291 vlan_altq_start(if_t ifp) 1292 { 1293 struct ifaltq *ifq = &ifp->if_snd; 1294 struct mbuf *m; 1295 1296 IFQ_LOCK(ifq); 1297 IFQ_DEQUEUE_NOLOCK(ifq, m); 1298 while (m != NULL) { 1299 vlan_transmit(ifp, m); 1300 IFQ_DEQUEUE_NOLOCK(ifq, m); 1301 } 1302 IFQ_UNLOCK(ifq); 1303 } 1304 1305 static int 1306 vlan_altq_transmit(if_t ifp, struct mbuf *m) 1307 { 1308 int err; 1309 1310 if (ALTQ_IS_ENABLED(&ifp->if_snd)) { 1311 IFQ_ENQUEUE(&ifp->if_snd, m, err); 1312 if (err == 0) 1313 vlan_altq_start(ifp); 1314 } else 1315 err = vlan_transmit(ifp, m); 1316 1317 return (err); 1318 } 1319 #endif /* ALTQ */ 1320 1321 /* 1322 * The ifp->if_qflush entry point for vlan(4) is a no-op. 1323 */ 1324 static void 1325 vlan_qflush(struct ifnet *ifp __unused) 1326 { 1327 } 1328 1329 static void 1330 vlan_input(struct ifnet *ifp, struct mbuf *m) 1331 { 1332 struct ifvlantrunk *trunk; 1333 struct ifvlan *ifv; 1334 struct m_tag *mtag; 1335 uint16_t vid, tag; 1336 1337 NET_EPOCH_ASSERT(); 1338 1339 trunk = ifp->if_vlantrunk; 1340 if (trunk == NULL) { 1341 m_freem(m); 1342 return; 1343 } 1344 1345 if (m->m_flags & M_VLANTAG) { 1346 /* 1347 * Packet is tagged, but m contains a normal 1348 * Ethernet frame; the tag is stored out-of-band. 1349 */ 1350 tag = m->m_pkthdr.ether_vtag; 1351 m->m_flags &= ~M_VLANTAG; 1352 } else { 1353 struct ether_vlan_header *evl; 1354 1355 /* 1356 * Packet is tagged in-band as specified by 802.1q. 1357 */ 1358 switch (ifp->if_type) { 1359 case IFT_ETHER: 1360 if (m->m_len < sizeof(*evl) && 1361 (m = m_pullup(m, sizeof(*evl))) == NULL) { 1362 if_printf(ifp, "cannot pullup VLAN header\n"); 1363 return; 1364 } 1365 evl = mtod(m, struct ether_vlan_header *); 1366 tag = ntohs(evl->evl_tag); 1367 1368 /* 1369 * Remove the 802.1q header by copying the Ethernet 1370 * addresses over it and adjusting the beginning of 1371 * the data in the mbuf. The encapsulated Ethernet 1372 * type field is already in place. 1373 */ 1374 bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, 1375 ETHER_HDR_LEN - ETHER_TYPE_LEN); 1376 m_adj(m, ETHER_VLAN_ENCAP_LEN); 1377 break; 1378 1379 default: 1380 #ifdef INVARIANTS 1381 panic("%s: %s has unsupported if_type %u", 1382 __func__, ifp->if_xname, ifp->if_type); 1383 #endif 1384 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1385 m_freem(m); 1386 return; 1387 } 1388 } 1389 1390 vid = EVL_VLANOFTAG(tag); 1391 1392 ifv = vlan_gethash(trunk, vid); 1393 if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { 1394 if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); 1395 m_freem(m); 1396 return; 1397 } 1398 1399 if (vlan_mtag_pcp) { 1400 /* 1401 * While uncommon, it is possible that we will find a 802.1q 1402 * packet encapsulated inside another packet that also had an 1403 * 802.1q header. For example, ethernet tunneled over IPSEC 1404 * arriving over ethernet. In that case, we replace the 1405 * existing 802.1q PCP m_tag value. 1406 */ 1407 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 1408 if (mtag == NULL) { 1409 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, 1410 sizeof(uint8_t), M_NOWAIT); 1411 if (mtag == NULL) { 1412 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1413 m_freem(m); 1414 return; 1415 } 1416 m_tag_prepend(m, mtag); 1417 } 1418 *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); 1419 } 1420 1421 m->m_pkthdr.rcvif = ifv->ifv_ifp; 1422 if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); 1423 1424 /* Pass it back through the parent's input routine. */ 1425 (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); 1426 } 1427 1428 static void 1429 vlan_lladdr_fn(void *arg, int pending __unused) 1430 { 1431 struct ifvlan *ifv; 1432 struct ifnet *ifp; 1433 1434 ifv = (struct ifvlan *)arg; 1435 ifp = ifv->ifv_ifp; 1436 1437 CURVNET_SET(ifp->if_vnet); 1438 1439 /* The ifv_ifp already has the lladdr copied in. */ 1440 if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); 1441 1442 CURVNET_RESTORE(); 1443 } 1444 1445 static int 1446 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid, 1447 uint16_t proto) 1448 { 1449 struct epoch_tracker et; 1450 struct ifvlantrunk *trunk; 1451 struct ifnet *ifp; 1452 int error = 0; 1453 1454 /* 1455 * We can handle non-ethernet hardware types as long as 1456 * they handle the tagging and headers themselves. 1457 */ 1458 if (p->if_type != IFT_ETHER && 1459 p->if_type != IFT_L2VLAN && 1460 (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 1461 return (EPROTONOSUPPORT); 1462 if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) 1463 return (EPROTONOSUPPORT); 1464 /* 1465 * Don't let the caller set up a VLAN VID with 1466 * anything except VLID bits. 1467 * VID numbers 0x0 and 0xFFF are reserved. 1468 */ 1469 if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) 1470 return (EINVAL); 1471 if (ifv->ifv_trunk) 1472 return (EBUSY); 1473 1474 VLAN_XLOCK(); 1475 if (p->if_vlantrunk == NULL) { 1476 trunk = malloc(sizeof(struct ifvlantrunk), 1477 M_VLAN, M_WAITOK | M_ZERO); 1478 vlan_inithash(trunk); 1479 TRUNK_LOCK_INIT(trunk); 1480 TRUNK_WLOCK(trunk); 1481 p->if_vlantrunk = trunk; 1482 trunk->parent = p; 1483 if_ref(trunk->parent); 1484 TRUNK_WUNLOCK(trunk); 1485 } else { 1486 trunk = p->if_vlantrunk; 1487 } 1488 1489 ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ 1490 ifv->ifv_pcp = 0; /* Default: best effort delivery. */ 1491 error = vlan_inshash(trunk, ifv); 1492 if (error) 1493 goto done; 1494 ifv->ifv_proto = proto; 1495 ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; 1496 ifv->ifv_mintu = ETHERMIN; 1497 ifv->ifv_pflags = 0; 1498 ifv->ifv_capenable = -1; 1499 1500 /* 1501 * If the parent supports the VLAN_MTU capability, 1502 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, 1503 * use it. 1504 */ 1505 if (p->if_capenable & IFCAP_VLAN_MTU) { 1506 /* 1507 * No need to fudge the MTU since the parent can 1508 * handle extended frames. 1509 */ 1510 ifv->ifv_mtufudge = 0; 1511 } else { 1512 /* 1513 * Fudge the MTU by the encapsulation size. This 1514 * makes us incompatible with strictly compliant 1515 * 802.1Q implementations, but allows us to use 1516 * the feature with other NetBSD implementations, 1517 * which might still be useful. 1518 */ 1519 ifv->ifv_mtufudge = ifv->ifv_encaplen; 1520 } 1521 1522 ifv->ifv_trunk = trunk; 1523 ifp = ifv->ifv_ifp; 1524 /* 1525 * Initialize fields from our parent. This duplicates some 1526 * work with ether_ifattach() but allows for non-ethernet 1527 * interfaces to also work. 1528 */ 1529 ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; 1530 ifp->if_baudrate = p->if_baudrate; 1531 ifp->if_input = p->if_input; 1532 ifp->if_resolvemulti = p->if_resolvemulti; 1533 ifp->if_addrlen = p->if_addrlen; 1534 ifp->if_broadcastaddr = p->if_broadcastaddr; 1535 ifp->if_pcp = ifv->ifv_pcp; 1536 1537 /* 1538 * We wrap the parent's if_output using vlan_output to ensure that it 1539 * can't become stale. 1540 */ 1541 ifp->if_output = vlan_output; 1542 1543 /* 1544 * Copy only a selected subset of flags from the parent. 1545 * Other flags are none of our business. 1546 */ 1547 #define VLAN_COPY_FLAGS (IFF_SIMPLEX) 1548 ifp->if_flags &= ~VLAN_COPY_FLAGS; 1549 ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; 1550 #undef VLAN_COPY_FLAGS 1551 1552 ifp->if_link_state = p->if_link_state; 1553 1554 NET_EPOCH_ENTER(et); 1555 vlan_capabilities(ifv); 1556 NET_EPOCH_EXIT(et); 1557 1558 /* 1559 * Set up our interface address to reflect the underlying 1560 * physical interface's. 1561 */ 1562 TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); 1563 ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = 1564 p->if_addrlen; 1565 1566 /* 1567 * Do not schedule link address update if it was the same 1568 * as previous parent's. This helps avoid updating for each 1569 * associated llentry. 1570 */ 1571 if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) { 1572 bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); 1573 taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); 1574 } 1575 1576 /* We are ready for operation now. */ 1577 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1578 1579 /* Update flags on the parent, if necessary. */ 1580 vlan_setflags(ifp, 1); 1581 1582 /* 1583 * Configure multicast addresses that may already be 1584 * joined on the vlan device. 1585 */ 1586 (void)vlan_setmulti(ifp); 1587 1588 done: 1589 if (error == 0) 1590 EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); 1591 VLAN_XUNLOCK(); 1592 1593 return (error); 1594 } 1595 1596 static void 1597 vlan_unconfig(struct ifnet *ifp) 1598 { 1599 1600 VLAN_XLOCK(); 1601 vlan_unconfig_locked(ifp, 0); 1602 VLAN_XUNLOCK(); 1603 } 1604 1605 static void 1606 vlan_unconfig_locked(struct ifnet *ifp, int departing) 1607 { 1608 struct ifvlantrunk *trunk; 1609 struct vlan_mc_entry *mc; 1610 struct ifvlan *ifv; 1611 struct ifnet *parent; 1612 int error; 1613 1614 VLAN_XLOCK_ASSERT(); 1615 1616 ifv = ifp->if_softc; 1617 trunk = ifv->ifv_trunk; 1618 parent = NULL; 1619 1620 if (trunk != NULL) { 1621 parent = trunk->parent; 1622 1623 /* 1624 * Since the interface is being unconfigured, we need to 1625 * empty the list of multicast groups that we may have joined 1626 * while we were alive from the parent's list. 1627 */ 1628 while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { 1629 /* 1630 * If the parent interface is being detached, 1631 * all its multicast addresses have already 1632 * been removed. Warn about errors if 1633 * if_delmulti() does fail, but don't abort as 1634 * all callers expect vlan destruction to 1635 * succeed. 1636 */ 1637 if (!departing) { 1638 error = if_delmulti(parent, 1639 (struct sockaddr *)&mc->mc_addr); 1640 if (error) 1641 if_printf(ifp, 1642 "Failed to delete multicast address from parent: %d\n", 1643 error); 1644 } 1645 CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); 1646 NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); 1647 } 1648 1649 vlan_setflags(ifp, 0); /* clear special flags on parent */ 1650 1651 vlan_remhash(trunk, ifv); 1652 ifv->ifv_trunk = NULL; 1653 1654 /* 1655 * Check if we were the last. 1656 */ 1657 if (trunk->refcnt == 0) { 1658 parent->if_vlantrunk = NULL; 1659 NET_EPOCH_WAIT(); 1660 trunk_destroy(trunk); 1661 } 1662 } 1663 1664 /* Disconnect from parent. */ 1665 if (ifv->ifv_pflags) 1666 if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); 1667 ifp->if_mtu = ETHERMTU; 1668 ifp->if_link_state = LINK_STATE_UNKNOWN; 1669 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1670 1671 /* 1672 * Only dispatch an event if vlan was 1673 * attached, otherwise there is nothing 1674 * to cleanup anyway. 1675 */ 1676 if (parent != NULL) 1677 EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); 1678 } 1679 1680 /* Handle a reference counted flag that should be set on the parent as well */ 1681 static int 1682 vlan_setflag(struct ifnet *ifp, int flag, int status, 1683 int (*func)(struct ifnet *, int)) 1684 { 1685 struct ifvlan *ifv; 1686 int error; 1687 1688 VLAN_SXLOCK_ASSERT(); 1689 1690 ifv = ifp->if_softc; 1691 status = status ? (ifp->if_flags & flag) : 0; 1692 /* Now "status" contains the flag value or 0 */ 1693 1694 /* 1695 * See if recorded parent's status is different from what 1696 * we want it to be. If it is, flip it. We record parent's 1697 * status in ifv_pflags so that we won't clear parent's flag 1698 * we haven't set. In fact, we don't clear or set parent's 1699 * flags directly, but get or release references to them. 1700 * That's why we can be sure that recorded flags still are 1701 * in accord with actual parent's flags. 1702 */ 1703 if (status != (ifv->ifv_pflags & flag)) { 1704 error = (*func)(PARENT(ifv), status); 1705 if (error) 1706 return (error); 1707 ifv->ifv_pflags &= ~flag; 1708 ifv->ifv_pflags |= status; 1709 } 1710 return (0); 1711 } 1712 1713 /* 1714 * Handle IFF_* flags that require certain changes on the parent: 1715 * if "status" is true, update parent's flags respective to our if_flags; 1716 * if "status" is false, forcedly clear the flags set on parent. 1717 */ 1718 static int 1719 vlan_setflags(struct ifnet *ifp, int status) 1720 { 1721 int error, i; 1722 1723 for (i = 0; vlan_pflags[i].flag; i++) { 1724 error = vlan_setflag(ifp, vlan_pflags[i].flag, 1725 status, vlan_pflags[i].func); 1726 if (error) 1727 return (error); 1728 } 1729 return (0); 1730 } 1731 1732 /* Inform all vlans that their parent has changed link state */ 1733 static void 1734 vlan_link_state(struct ifnet *ifp) 1735 { 1736 struct epoch_tracker et; 1737 struct ifvlantrunk *trunk; 1738 struct ifvlan *ifv; 1739 1740 NET_EPOCH_ENTER(et); 1741 trunk = ifp->if_vlantrunk; 1742 if (trunk == NULL) { 1743 NET_EPOCH_EXIT(et); 1744 return; 1745 } 1746 1747 TRUNK_WLOCK(trunk); 1748 VLAN_FOREACH(ifv, trunk) { 1749 ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; 1750 if_link_state_change(ifv->ifv_ifp, 1751 trunk->parent->if_link_state); 1752 } 1753 TRUNK_WUNLOCK(trunk); 1754 NET_EPOCH_EXIT(et); 1755 } 1756 1757 static void 1758 vlan_capabilities(struct ifvlan *ifv) 1759 { 1760 struct ifnet *p; 1761 struct ifnet *ifp; 1762 struct ifnet_hw_tsomax hw_tsomax; 1763 int cap = 0, ena = 0, mena; 1764 u_long hwa = 0; 1765 1766 NET_EPOCH_ASSERT(); 1767 VLAN_SXLOCK_ASSERT(); 1768 1769 p = PARENT(ifv); 1770 ifp = ifv->ifv_ifp; 1771 1772 /* Mask parent interface enabled capabilities disabled by user. */ 1773 mena = p->if_capenable & ifv->ifv_capenable; 1774 1775 /* 1776 * If the parent interface can do checksum offloading 1777 * on VLANs, then propagate its hardware-assisted 1778 * checksumming flags. Also assert that checksum 1779 * offloading requires hardware VLAN tagging. 1780 */ 1781 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1782 cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1783 if (p->if_capenable & IFCAP_VLAN_HWCSUM && 1784 p->if_capenable & IFCAP_VLAN_HWTAGGING) { 1785 ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); 1786 if (ena & IFCAP_TXCSUM) 1787 hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | 1788 CSUM_UDP | CSUM_SCTP); 1789 if (ena & IFCAP_TXCSUM_IPV6) 1790 hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | 1791 CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); 1792 } 1793 1794 /* 1795 * If the parent interface can do TSO on VLANs then 1796 * propagate the hardware-assisted flag. TSO on VLANs 1797 * does not necessarily require hardware VLAN tagging. 1798 */ 1799 memset(&hw_tsomax, 0, sizeof(hw_tsomax)); 1800 if_hw_tsomax_common(p, &hw_tsomax); 1801 if_hw_tsomax_update(ifp, &hw_tsomax); 1802 if (p->if_capabilities & IFCAP_VLAN_HWTSO) 1803 cap |= p->if_capabilities & IFCAP_TSO; 1804 if (p->if_capenable & IFCAP_VLAN_HWTSO) { 1805 ena |= mena & IFCAP_TSO; 1806 if (ena & IFCAP_TSO) 1807 hwa |= p->if_hwassist & CSUM_TSO; 1808 } 1809 1810 /* 1811 * If the parent interface can do LRO and checksum offloading on 1812 * VLANs, then guess it may do LRO on VLANs. False positive here 1813 * cost nothing, while false negative may lead to some confusions. 1814 */ 1815 if (p->if_capabilities & IFCAP_VLAN_HWCSUM) 1816 cap |= p->if_capabilities & IFCAP_LRO; 1817 if (p->if_capenable & IFCAP_VLAN_HWCSUM) 1818 ena |= p->if_capenable & IFCAP_LRO; 1819 1820 /* 1821 * If the parent interface can offload TCP connections over VLANs then 1822 * propagate its TOE capability to the VLAN interface. 1823 * 1824 * All TOE drivers in the tree today can deal with VLANs. If this 1825 * changes then IFCAP_VLAN_TOE should be promoted to a full capability 1826 * with its own bit. 1827 */ 1828 #define IFCAP_VLAN_TOE IFCAP_TOE 1829 if (p->if_capabilities & IFCAP_VLAN_TOE) 1830 cap |= p->if_capabilities & IFCAP_TOE; 1831 if (p->if_capenable & IFCAP_VLAN_TOE) { 1832 TOEDEV(ifp) = TOEDEV(p); 1833 ena |= mena & IFCAP_TOE; 1834 } 1835 1836 /* 1837 * If the parent interface supports dynamic link state, so does the 1838 * VLAN interface. 1839 */ 1840 cap |= (p->if_capabilities & IFCAP_LINKSTATE); 1841 ena |= (mena & IFCAP_LINKSTATE); 1842 1843 #ifdef RATELIMIT 1844 /* 1845 * If the parent interface supports ratelimiting, so does the 1846 * VLAN interface. 1847 */ 1848 cap |= (p->if_capabilities & IFCAP_TXRTLMT); 1849 ena |= (mena & IFCAP_TXRTLMT); 1850 #endif 1851 1852 /* 1853 * If the parent interface supports unmapped mbufs, so does 1854 * the VLAN interface. Note that this should be fine even for 1855 * interfaces that don't support hardware tagging as headers 1856 * are prepended in normal mbufs to unmapped mbufs holding 1857 * payload data. 1858 */ 1859 cap |= (p->if_capabilities & IFCAP_MEXTPG); 1860 ena |= (mena & IFCAP_MEXTPG); 1861 1862 /* 1863 * If the parent interface can offload encryption and segmentation 1864 * of TLS records over TCP, propagate it's capability to the VLAN 1865 * interface. 1866 * 1867 * All TLS drivers in the tree today can deal with VLANs. If 1868 * this ever changes, then a new IFCAP_VLAN_TXTLS can be 1869 * defined. 1870 */ 1871 if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1872 cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1873 if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT)) 1874 ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT); 1875 1876 ifp->if_capabilities = cap; 1877 ifp->if_capenable = ena; 1878 ifp->if_hwassist = hwa; 1879 } 1880 1881 static void 1882 vlan_trunk_capabilities(struct ifnet *ifp) 1883 { 1884 struct epoch_tracker et; 1885 struct ifvlantrunk *trunk; 1886 struct ifvlan *ifv; 1887 1888 VLAN_SLOCK(); 1889 trunk = ifp->if_vlantrunk; 1890 if (trunk == NULL) { 1891 VLAN_SUNLOCK(); 1892 return; 1893 } 1894 NET_EPOCH_ENTER(et); 1895 VLAN_FOREACH(ifv, trunk) 1896 vlan_capabilities(ifv); 1897 NET_EPOCH_EXIT(et); 1898 VLAN_SUNLOCK(); 1899 } 1900 1901 static int 1902 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1903 { 1904 struct ifnet *p; 1905 struct ifreq *ifr; 1906 struct ifaddr *ifa; 1907 struct ifvlan *ifv; 1908 struct ifvlantrunk *trunk; 1909 struct vlanreq vlr; 1910 int error = 0, oldmtu; 1911 1912 ifr = (struct ifreq *)data; 1913 ifa = (struct ifaddr *) data; 1914 ifv = ifp->if_softc; 1915 1916 switch (cmd) { 1917 case SIOCSIFADDR: 1918 ifp->if_flags |= IFF_UP; 1919 #ifdef INET 1920 if (ifa->ifa_addr->sa_family == AF_INET) 1921 arp_ifinit(ifp, ifa); 1922 #endif 1923 break; 1924 case SIOCGIFADDR: 1925 bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], 1926 ifp->if_addrlen); 1927 break; 1928 case SIOCGIFMEDIA: 1929 VLAN_SLOCK(); 1930 if (TRUNK(ifv) != NULL) { 1931 p = PARENT(ifv); 1932 if_ref(p); 1933 error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); 1934 if_rele(p); 1935 /* Limit the result to the parent's current config. */ 1936 if (error == 0) { 1937 struct ifmediareq *ifmr; 1938 1939 ifmr = (struct ifmediareq *)data; 1940 if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { 1941 ifmr->ifm_count = 1; 1942 error = copyout(&ifmr->ifm_current, 1943 ifmr->ifm_ulist, 1944 sizeof(int)); 1945 } 1946 } 1947 } else { 1948 error = EINVAL; 1949 } 1950 VLAN_SUNLOCK(); 1951 break; 1952 1953 case SIOCSIFMEDIA: 1954 error = EINVAL; 1955 break; 1956 1957 case SIOCSIFMTU: 1958 /* 1959 * Set the interface MTU. 1960 */ 1961 VLAN_SLOCK(); 1962 trunk = TRUNK(ifv); 1963 if (trunk != NULL) { 1964 TRUNK_WLOCK(trunk); 1965 if (ifr->ifr_mtu > 1966 (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || 1967 ifr->ifr_mtu < 1968 (ifv->ifv_mintu - ifv->ifv_mtufudge)) 1969 error = EINVAL; 1970 else 1971 ifp->if_mtu = ifr->ifr_mtu; 1972 TRUNK_WUNLOCK(trunk); 1973 } else 1974 error = EINVAL; 1975 VLAN_SUNLOCK(); 1976 break; 1977 1978 case SIOCSETVLAN: 1979 #ifdef VIMAGE 1980 /* 1981 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN 1982 * interface to be delegated to a jail without allowing the 1983 * jail to change what underlying interface/VID it is 1984 * associated with. We are not entirely convinced that this 1985 * is the right way to accomplish that policy goal. 1986 */ 1987 if (ifp->if_vnet != ifp->if_home_vnet) { 1988 error = EPERM; 1989 break; 1990 } 1991 #endif 1992 error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); 1993 if (error) 1994 break; 1995 if (vlr.vlr_parent[0] == '\0') { 1996 vlan_unconfig(ifp); 1997 break; 1998 } 1999 p = ifunit_ref(vlr.vlr_parent); 2000 if (p == NULL) { 2001 error = ENOENT; 2002 break; 2003 } 2004 #ifdef COMPAT_FREEBSD12 2005 if (vlr.vlr_proto == 0) 2006 vlr.vlr_proto = ETHERTYPE_VLAN; 2007 #endif 2008 oldmtu = ifp->if_mtu; 2009 error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto); 2010 if_rele(p); 2011 2012 /* 2013 * VLAN MTU may change during addition of the vlandev. 2014 * If it did, do network layer specific procedure. 2015 */ 2016 if (ifp->if_mtu != oldmtu) { 2017 #ifdef INET6 2018 nd6_setmtu(ifp); 2019 #endif 2020 rt_updatemtu(ifp); 2021 } 2022 break; 2023 2024 case SIOCGETVLAN: 2025 #ifdef VIMAGE 2026 if (ifp->if_vnet != ifp->if_home_vnet) { 2027 error = EPERM; 2028 break; 2029 } 2030 #endif 2031 bzero(&vlr, sizeof(vlr)); 2032 VLAN_SLOCK(); 2033 if (TRUNK(ifv) != NULL) { 2034 strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, 2035 sizeof(vlr.vlr_parent)); 2036 vlr.vlr_tag = ifv->ifv_vid; 2037 vlr.vlr_proto = ifv->ifv_proto; 2038 } 2039 VLAN_SUNLOCK(); 2040 error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); 2041 break; 2042 2043 case SIOCSIFFLAGS: 2044 /* 2045 * We should propagate selected flags to the parent, 2046 * e.g., promiscuous mode. 2047 */ 2048 VLAN_XLOCK(); 2049 if (TRUNK(ifv) != NULL) 2050 error = vlan_setflags(ifp, 1); 2051 VLAN_XUNLOCK(); 2052 break; 2053 2054 case SIOCADDMULTI: 2055 case SIOCDELMULTI: 2056 /* 2057 * If we don't have a parent, just remember the membership for 2058 * when we do. 2059 * 2060 * XXX We need the rmlock here to avoid sleeping while 2061 * holding in6_multi_mtx. 2062 */ 2063 VLAN_XLOCK(); 2064 trunk = TRUNK(ifv); 2065 if (trunk != NULL) 2066 error = vlan_setmulti(ifp); 2067 VLAN_XUNLOCK(); 2068 2069 break; 2070 case SIOCGVLANPCP: 2071 #ifdef VIMAGE 2072 if (ifp->if_vnet != ifp->if_home_vnet) { 2073 error = EPERM; 2074 break; 2075 } 2076 #endif 2077 ifr->ifr_vlan_pcp = ifv->ifv_pcp; 2078 break; 2079 2080 case SIOCSVLANPCP: 2081 #ifdef VIMAGE 2082 if (ifp->if_vnet != ifp->if_home_vnet) { 2083 error = EPERM; 2084 break; 2085 } 2086 #endif 2087 error = priv_check(curthread, PRIV_NET_SETVLANPCP); 2088 if (error) 2089 break; 2090 if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) { 2091 error = EINVAL; 2092 break; 2093 } 2094 ifv->ifv_pcp = ifr->ifr_vlan_pcp; 2095 ifp->if_pcp = ifv->ifv_pcp; 2096 /* broadcast event about PCP change */ 2097 EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); 2098 break; 2099 2100 case SIOCSIFCAP: 2101 VLAN_SLOCK(); 2102 ifv->ifv_capenable = ifr->ifr_reqcap; 2103 trunk = TRUNK(ifv); 2104 if (trunk != NULL) { 2105 struct epoch_tracker et; 2106 2107 NET_EPOCH_ENTER(et); 2108 vlan_capabilities(ifv); 2109 NET_EPOCH_EXIT(et); 2110 } 2111 VLAN_SUNLOCK(); 2112 break; 2113 2114 default: 2115 error = EINVAL; 2116 break; 2117 } 2118 2119 return (error); 2120 } 2121 2122 #if defined(KERN_TLS) || defined(RATELIMIT) 2123 static int 2124 vlan_snd_tag_alloc(struct ifnet *ifp, 2125 union if_snd_tag_alloc_params *params, 2126 struct m_snd_tag **ppmt) 2127 { 2128 struct epoch_tracker et; 2129 struct vlan_snd_tag *vst; 2130 struct ifvlan *ifv; 2131 struct ifnet *parent; 2132 int error; 2133 2134 NET_EPOCH_ENTER(et); 2135 ifv = ifp->if_softc; 2136 if (ifv->ifv_trunk != NULL) 2137 parent = PARENT(ifv); 2138 else 2139 parent = NULL; 2140 if (parent == NULL) { 2141 NET_EPOCH_EXIT(et); 2142 return (EOPNOTSUPP); 2143 } 2144 if_ref(parent); 2145 NET_EPOCH_EXIT(et); 2146 2147 vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT); 2148 if (vst == NULL) { 2149 if_rele(parent); 2150 return (ENOMEM); 2151 } 2152 2153 error = m_snd_tag_alloc(parent, params, &vst->tag); 2154 if_rele(parent); 2155 if (error) { 2156 free(vst, M_VLAN); 2157 return (error); 2158 } 2159 2160 m_snd_tag_init(&vst->com, ifp, vst->tag->type); 2161 2162 *ppmt = &vst->com; 2163 return (0); 2164 } 2165 2166 static struct m_snd_tag * 2167 vlan_next_snd_tag(struct m_snd_tag *mst) 2168 { 2169 struct vlan_snd_tag *vst; 2170 2171 vst = mst_to_vst(mst); 2172 return (vst->tag); 2173 } 2174 2175 static int 2176 vlan_snd_tag_modify(struct m_snd_tag *mst, 2177 union if_snd_tag_modify_params *params) 2178 { 2179 struct vlan_snd_tag *vst; 2180 2181 vst = mst_to_vst(mst); 2182 return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params)); 2183 } 2184 2185 static int 2186 vlan_snd_tag_query(struct m_snd_tag *mst, 2187 union if_snd_tag_query_params *params) 2188 { 2189 struct vlan_snd_tag *vst; 2190 2191 vst = mst_to_vst(mst); 2192 return (vst->tag->ifp->if_snd_tag_query(vst->tag, params)); 2193 } 2194 2195 static void 2196 vlan_snd_tag_free(struct m_snd_tag *mst) 2197 { 2198 struct vlan_snd_tag *vst; 2199 2200 vst = mst_to_vst(mst); 2201 m_snd_tag_rele(vst->tag); 2202 free(vst, M_VLAN); 2203 } 2204 2205 static void 2206 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q) 2207 { 2208 /* 2209 * For vlan, we have an indirect 2210 * interface. The caller needs to 2211 * get a ratelimit tag on the actual 2212 * interface the flow will go on. 2213 */ 2214 q->rate_table = NULL; 2215 q->flags = RT_IS_INDIRECT; 2216 q->max_flows = 0; 2217 q->number_of_rates = 0; 2218 } 2219 2220 #endif 2221