xref: /freebsd/sys/net/if_vlan.c (revision 036d2e814bf0f5d88ffb4b24c159320894541757)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_inet.h"
49 #include "opt_kern_tls.h"
50 #include "opt_vlan.h"
51 #include "opt_ratelimit.h"
52 
53 #include <sys/param.h>
54 #include <sys/eventhandler.h>
55 #include <sys/kernel.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/module.h>
60 #include <sys/rmlock.h>
61 #include <sys/priv.h>
62 #include <sys/queue.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/sx.h>
68 #include <sys/taskqueue.h>
69 
70 #include <net/bpf.h>
71 #include <net/ethernet.h>
72 #include <net/if.h>
73 #include <net/if_var.h>
74 #include <net/if_clone.h>
75 #include <net/if_dl.h>
76 #include <net/if_types.h>
77 #include <net/if_vlan_var.h>
78 #include <net/vnet.h>
79 
80 #ifdef INET
81 #include <netinet/in.h>
82 #include <netinet/if_ether.h>
83 #endif
84 
85 #define	VLAN_DEF_HWIDTH	4
86 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
87 
88 #define	UP_AND_RUNNING(ifp) \
89     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
90 
91 CK_SLIST_HEAD(ifvlanhead, ifvlan);
92 
93 struct ifvlantrunk {
94 	struct	ifnet   *parent;	/* parent interface of this trunk */
95 	struct	mtx	lock;
96 #ifdef VLAN_ARRAY
97 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
98 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
99 #else
100 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
101 	uint16_t	hmask;
102 	uint16_t	hwidth;
103 #endif
104 	int		refcnt;
105 };
106 
107 #if defined(KERN_TLS) || defined(RATELIMIT)
108 struct vlan_snd_tag {
109 	struct m_snd_tag com;
110 	struct m_snd_tag *tag;
111 };
112 
113 static inline struct vlan_snd_tag *
114 mst_to_vst(struct m_snd_tag *mst)
115 {
116 
117 	return (__containerof(mst, struct vlan_snd_tag, com));
118 }
119 #endif
120 
121 /*
122  * This macro provides a facility to iterate over every vlan on a trunk with
123  * the assumption that none will be added/removed during iteration.
124  */
125 #ifdef VLAN_ARRAY
126 #define VLAN_FOREACH(_ifv, _trunk) \
127 	size_t _i; \
128 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
129 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
130 #else /* VLAN_ARRAY */
131 #define VLAN_FOREACH(_ifv, _trunk) \
132 	struct ifvlan *_next; \
133 	size_t _i; \
134 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
135 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
136 #endif /* VLAN_ARRAY */
137 
138 /*
139  * This macro provides a facility to iterate over every vlan on a trunk while
140  * also modifying the number of vlans on the trunk. The iteration continues
141  * until some condition is met or there are no more vlans on the trunk.
142  */
143 #ifdef VLAN_ARRAY
144 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
145 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
146 	size_t _i; \
147 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
148 		if (((_ifv) = (_trunk)->vlans[_i]))
149 #else /* VLAN_ARRAY */
150 /*
151  * The hash table case is more complicated. We allow for the hash table to be
152  * modified (i.e. vlans removed) while we are iterating over it. To allow for
153  * this we must restart the iteration every time we "touch" something during
154  * the iteration, since removal will resize the hash table and invalidate our
155  * current position. If acting on the touched element causes the trunk to be
156  * emptied, then iteration also stops.
157  */
158 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
159 	size_t _i; \
160 	bool _touch = false; \
161 	for (_i = 0; \
162 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
163 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
164 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
165 		    (_touch = true))
166 #endif /* VLAN_ARRAY */
167 
168 struct vlan_mc_entry {
169 	struct sockaddr_dl		mc_addr;
170 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
171 	struct epoch_context		mc_epoch_ctx;
172 };
173 
174 struct ifvlan {
175 	struct	ifvlantrunk *ifv_trunk;
176 	struct	ifnet *ifv_ifp;
177 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
178 #define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
179 	void	*ifv_cookie;
180 	int	ifv_pflags;	/* special flags we have set on parent */
181 	int	ifv_capenable;
182 	int	ifv_encaplen;	/* encapsulation length */
183 	int	ifv_mtufudge;	/* MTU fudged by this much */
184 	int	ifv_mintu;	/* min transmission unit */
185 	uint16_t ifv_proto;	/* encapsulation ethertype */
186 	uint16_t ifv_tag;	/* tag to apply on packets leaving if */
187 	uint16_t ifv_vid;	/* VLAN ID */
188 	uint8_t	ifv_pcp;	/* Priority Code Point (PCP). */
189 	struct task lladdr_task;
190 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
191 #ifndef VLAN_ARRAY
192 	CK_SLIST_ENTRY(ifvlan) ifv_list;
193 #endif
194 };
195 
196 /* Special flags we should propagate to parent. */
197 static struct {
198 	int flag;
199 	int (*func)(struct ifnet *, int);
200 } vlan_pflags[] = {
201 	{IFF_PROMISC, ifpromisc},
202 	{IFF_ALLMULTI, if_allmulti},
203 	{0, NULL}
204 };
205 
206 extern int vlan_mtag_pcp;
207 
208 static const char vlanname[] = "vlan";
209 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
210 
211 static eventhandler_tag ifdetach_tag;
212 static eventhandler_tag iflladdr_tag;
213 
214 /*
215  * if_vlan uses two module-level synchronizations primitives to allow concurrent
216  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
217  * while they are being used for tx/rx. To accomplish this in a way that has
218  * acceptable performance and cooperation with other parts of the network stack
219  * there is a non-sleepable epoch(9) and an sx(9).
220  *
221  * The performance-sensitive paths that warrant using the epoch(9) are
222  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
223  * existence using if_vlantrunk, and being in the network tx/rx paths the use
224  * of an epoch(9) gives a measureable improvement in performance.
225  *
226  * The reason for having an sx(9) is mostly because there are still areas that
227  * must be sleepable and also have safe concurrent access to a vlan interface.
228  * Since the sx(9) exists, it is used by default in most paths unless sleeping
229  * is not permitted, or if it is not clear whether sleeping is permitted.
230  *
231  */
232 #define _VLAN_SX_ID ifv_sx
233 
234 static struct sx _VLAN_SX_ID;
235 
236 #define VLAN_LOCKING_INIT() \
237 	sx_init(&_VLAN_SX_ID, "vlan_sx")
238 
239 #define VLAN_LOCKING_DESTROY() \
240 	sx_destroy(&_VLAN_SX_ID)
241 
242 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
243 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
244 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
245 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
246 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
247 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
248 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
249 
250 /*
251  * We also have a per-trunk mutex that should be acquired when changing
252  * its state.
253  */
254 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
255 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
256 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
257 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
258 #define	TRUNK_LOCK_ASSERT(trunk)	MPASS(in_epoch(net_epoch_preempt) || mtx_owned(&(trunk)->lock))
259 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
260 
261 /*
262  * The VLAN_ARRAY substitutes the dynamic hash with a static array
263  * with 4096 entries. In theory this can give a boost in processing,
264  * however in practice it does not. Probably this is because the array
265  * is too big to fit into CPU cache.
266  */
267 #ifndef VLAN_ARRAY
268 static	void vlan_inithash(struct ifvlantrunk *trunk);
269 static	void vlan_freehash(struct ifvlantrunk *trunk);
270 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
271 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
272 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
273 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
274 	uint16_t vid);
275 #endif
276 static	void trunk_destroy(struct ifvlantrunk *trunk);
277 
278 static	void vlan_init(void *foo);
279 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
280 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
281 #if defined(KERN_TLS) || defined(RATELIMIT)
282 static	int vlan_snd_tag_alloc(struct ifnet *,
283     union if_snd_tag_alloc_params *, struct m_snd_tag **);
284 static	int vlan_snd_tag_modify(struct m_snd_tag *,
285     union if_snd_tag_modify_params *);
286 static	int vlan_snd_tag_query(struct m_snd_tag *,
287     union if_snd_tag_query_params *);
288 static	void vlan_snd_tag_free(struct m_snd_tag *);
289 #endif
290 static	void vlan_qflush(struct ifnet *ifp);
291 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
292     int (*func)(struct ifnet *, int));
293 static	int vlan_setflags(struct ifnet *ifp, int status);
294 static	int vlan_setmulti(struct ifnet *ifp);
295 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
296 static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
297     const struct sockaddr *dst, struct route *ro);
298 static	void vlan_unconfig(struct ifnet *ifp);
299 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
300 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
301 static	void vlan_link_state(struct ifnet *ifp);
302 static	void vlan_capabilities(struct ifvlan *ifv);
303 static	void vlan_trunk_capabilities(struct ifnet *ifp);
304 
305 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
306 static	int vlan_clone_match(struct if_clone *, const char *);
307 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
308 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
309 
310 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
311 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
312 
313 static  void vlan_lladdr_fn(void *arg, int pending);
314 
315 static struct if_clone *vlan_cloner;
316 
317 #ifdef VIMAGE
318 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
319 #define	V_vlan_cloner	VNET(vlan_cloner)
320 #endif
321 
322 static void
323 vlan_mc_free(struct epoch_context *ctx)
324 {
325 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
326 	free(mc, M_VLAN);
327 }
328 
329 #ifndef VLAN_ARRAY
330 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
331 
332 static void
333 vlan_inithash(struct ifvlantrunk *trunk)
334 {
335 	int i, n;
336 
337 	/*
338 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
339 	 * It is OK in case this function is called before the trunk struct
340 	 * gets hooked up and becomes visible from other threads.
341 	 */
342 
343 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
344 	    ("%s: hash already initialized", __func__));
345 
346 	trunk->hwidth = VLAN_DEF_HWIDTH;
347 	n = 1 << trunk->hwidth;
348 	trunk->hmask = n - 1;
349 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
350 	for (i = 0; i < n; i++)
351 		CK_SLIST_INIT(&trunk->hash[i]);
352 }
353 
354 static void
355 vlan_freehash(struct ifvlantrunk *trunk)
356 {
357 #ifdef INVARIANTS
358 	int i;
359 
360 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
361 	for (i = 0; i < (1 << trunk->hwidth); i++)
362 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
363 		    ("%s: hash table not empty", __func__));
364 #endif
365 	free(trunk->hash, M_VLAN);
366 	trunk->hash = NULL;
367 	trunk->hwidth = trunk->hmask = 0;
368 }
369 
370 static int
371 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
372 {
373 	int i, b;
374 	struct ifvlan *ifv2;
375 
376 	VLAN_XLOCK_ASSERT();
377 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
378 
379 	b = 1 << trunk->hwidth;
380 	i = HASH(ifv->ifv_vid, trunk->hmask);
381 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
382 		if (ifv->ifv_vid == ifv2->ifv_vid)
383 			return (EEXIST);
384 
385 	/*
386 	 * Grow the hash when the number of vlans exceeds half of the number of
387 	 * hash buckets squared. This will make the average linked-list length
388 	 * buckets/2.
389 	 */
390 	if (trunk->refcnt > (b * b) / 2) {
391 		vlan_growhash(trunk, 1);
392 		i = HASH(ifv->ifv_vid, trunk->hmask);
393 	}
394 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
395 	trunk->refcnt++;
396 
397 	return (0);
398 }
399 
400 static int
401 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
402 {
403 	int i, b;
404 	struct ifvlan *ifv2;
405 
406 	VLAN_XLOCK_ASSERT();
407 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
408 
409 	b = 1 << trunk->hwidth;
410 	i = HASH(ifv->ifv_vid, trunk->hmask);
411 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
412 		if (ifv2 == ifv) {
413 			trunk->refcnt--;
414 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
415 			if (trunk->refcnt < (b * b) / 2)
416 				vlan_growhash(trunk, -1);
417 			return (0);
418 		}
419 
420 	panic("%s: vlan not found\n", __func__);
421 	return (ENOENT); /*NOTREACHED*/
422 }
423 
424 /*
425  * Grow the hash larger or smaller if memory permits.
426  */
427 static void
428 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
429 {
430 	struct ifvlan *ifv;
431 	struct ifvlanhead *hash2;
432 	int hwidth2, i, j, n, n2;
433 
434 	VLAN_XLOCK_ASSERT();
435 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
436 
437 	if (howmuch == 0) {
438 		/* Harmless yet obvious coding error */
439 		printf("%s: howmuch is 0\n", __func__);
440 		return;
441 	}
442 
443 	hwidth2 = trunk->hwidth + howmuch;
444 	n = 1 << trunk->hwidth;
445 	n2 = 1 << hwidth2;
446 	/* Do not shrink the table below the default */
447 	if (hwidth2 < VLAN_DEF_HWIDTH)
448 		return;
449 
450 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
451 	if (hash2 == NULL) {
452 		printf("%s: out of memory -- hash size not changed\n",
453 		    __func__);
454 		return;		/* We can live with the old hash table */
455 	}
456 	for (j = 0; j < n2; j++)
457 		CK_SLIST_INIT(&hash2[j]);
458 	for (i = 0; i < n; i++)
459 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
460 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
461 			j = HASH(ifv->ifv_vid, n2 - 1);
462 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
463 		}
464 	NET_EPOCH_WAIT();
465 	free(trunk->hash, M_VLAN);
466 	trunk->hash = hash2;
467 	trunk->hwidth = hwidth2;
468 	trunk->hmask = n2 - 1;
469 
470 	if (bootverbose)
471 		if_printf(trunk->parent,
472 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
473 }
474 
475 static __inline struct ifvlan *
476 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
477 {
478 	struct ifvlan *ifv;
479 
480 	NET_EPOCH_ASSERT();
481 
482 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
483 		if (ifv->ifv_vid == vid)
484 			return (ifv);
485 	return (NULL);
486 }
487 
488 #if 0
489 /* Debugging code to view the hashtables. */
490 static void
491 vlan_dumphash(struct ifvlantrunk *trunk)
492 {
493 	int i;
494 	struct ifvlan *ifv;
495 
496 	for (i = 0; i < (1 << trunk->hwidth); i++) {
497 		printf("%d: ", i);
498 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
499 			printf("%s ", ifv->ifv_ifp->if_xname);
500 		printf("\n");
501 	}
502 }
503 #endif /* 0 */
504 #else
505 
506 static __inline struct ifvlan *
507 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
508 {
509 
510 	return trunk->vlans[vid];
511 }
512 
513 static __inline int
514 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
515 {
516 
517 	if (trunk->vlans[ifv->ifv_vid] != NULL)
518 		return EEXIST;
519 	trunk->vlans[ifv->ifv_vid] = ifv;
520 	trunk->refcnt++;
521 
522 	return (0);
523 }
524 
525 static __inline int
526 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
527 {
528 
529 	trunk->vlans[ifv->ifv_vid] = NULL;
530 	trunk->refcnt--;
531 
532 	return (0);
533 }
534 
535 static __inline void
536 vlan_freehash(struct ifvlantrunk *trunk)
537 {
538 }
539 
540 static __inline void
541 vlan_inithash(struct ifvlantrunk *trunk)
542 {
543 }
544 
545 #endif /* !VLAN_ARRAY */
546 
547 static void
548 trunk_destroy(struct ifvlantrunk *trunk)
549 {
550 	VLAN_XLOCK_ASSERT();
551 
552 	vlan_freehash(trunk);
553 	trunk->parent->if_vlantrunk = NULL;
554 	TRUNK_LOCK_DESTROY(trunk);
555 	if_rele(trunk->parent);
556 	free(trunk, M_VLAN);
557 }
558 
559 /*
560  * Program our multicast filter. What we're actually doing is
561  * programming the multicast filter of the parent. This has the
562  * side effect of causing the parent interface to receive multicast
563  * traffic that it doesn't really want, which ends up being discarded
564  * later by the upper protocol layers. Unfortunately, there's no way
565  * to avoid this: there really is only one physical interface.
566  */
567 static int
568 vlan_setmulti(struct ifnet *ifp)
569 {
570 	struct ifnet		*ifp_p;
571 	struct ifmultiaddr	*ifma;
572 	struct ifvlan		*sc;
573 	struct vlan_mc_entry	*mc;
574 	int			error;
575 
576 	VLAN_XLOCK_ASSERT();
577 
578 	/* Find the parent. */
579 	sc = ifp->if_softc;
580 	ifp_p = PARENT(sc);
581 
582 	CURVNET_SET_QUIET(ifp_p->if_vnet);
583 
584 	/* First, remove any existing filter entries. */
585 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
586 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
587 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
588 		epoch_call(net_epoch_preempt, &mc->mc_epoch_ctx, vlan_mc_free);
589 	}
590 
591 	/* Now program new ones. */
592 	IF_ADDR_WLOCK(ifp);
593 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
594 		if (ifma->ifma_addr->sa_family != AF_LINK)
595 			continue;
596 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
597 		if (mc == NULL) {
598 			IF_ADDR_WUNLOCK(ifp);
599 			return (ENOMEM);
600 		}
601 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
602 		mc->mc_addr.sdl_index = ifp_p->if_index;
603 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
604 	}
605 	IF_ADDR_WUNLOCK(ifp);
606 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
607 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
608 		    NULL);
609 		if (error)
610 			return (error);
611 	}
612 
613 	CURVNET_RESTORE();
614 	return (0);
615 }
616 
617 /*
618  * A handler for parent interface link layer address changes.
619  * If the parent interface link layer address is changed we
620  * should also change it on all children vlans.
621  */
622 static void
623 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
624 {
625 	struct epoch_tracker et;
626 	struct ifvlan *ifv;
627 	struct ifnet *ifv_ifp;
628 	struct ifvlantrunk *trunk;
629 	struct sockaddr_dl *sdl;
630 
631 	/* Need the epoch since this is run on taskqueue_swi. */
632 	NET_EPOCH_ENTER(et);
633 	trunk = ifp->if_vlantrunk;
634 	if (trunk == NULL) {
635 		NET_EPOCH_EXIT(et);
636 		return;
637 	}
638 
639 	/*
640 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
641 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
642 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
643 	 */
644 	TRUNK_WLOCK(trunk);
645 	VLAN_FOREACH(ifv, trunk) {
646 		/*
647 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
648 		 * to actually call if_setlladdr. if_setlladdr needs to
649 		 * be deferred to a taskqueue because it will call into
650 		 * the if_vlan ioctl path and try to acquire the global
651 		 * lock.
652 		 */
653 		ifv_ifp = ifv->ifv_ifp;
654 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
655 		    ifp->if_addrlen);
656 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
657 		sdl->sdl_alen = ifp->if_addrlen;
658 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
659 	}
660 	TRUNK_WUNLOCK(trunk);
661 	NET_EPOCH_EXIT(et);
662 }
663 
664 /*
665  * A handler for network interface departure events.
666  * Track departure of trunks here so that we don't access invalid
667  * pointers or whatever if a trunk is ripped from under us, e.g.,
668  * by ejecting its hot-plug card.  However, if an ifnet is simply
669  * being renamed, then there's no need to tear down the state.
670  */
671 static void
672 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
673 {
674 	struct ifvlan *ifv;
675 	struct ifvlantrunk *trunk;
676 
677 	/* If the ifnet is just being renamed, don't do anything. */
678 	if (ifp->if_flags & IFF_RENAMING)
679 		return;
680 	VLAN_XLOCK();
681 	trunk = ifp->if_vlantrunk;
682 	if (trunk == NULL) {
683 		VLAN_XUNLOCK();
684 		return;
685 	}
686 
687 	/*
688 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
689 	 * Check trunk pointer after each vlan_unconfig() as it will
690 	 * free it and set to NULL after the last vlan was detached.
691 	 */
692 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
693 	    ifp->if_vlantrunk == NULL)
694 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
695 
696 	/* Trunk should have been destroyed in vlan_unconfig(). */
697 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
698 	VLAN_XUNLOCK();
699 }
700 
701 /*
702  * Return the trunk device for a virtual interface.
703  */
704 static struct ifnet  *
705 vlan_trunkdev(struct ifnet *ifp)
706 {
707 	struct epoch_tracker et;
708 	struct ifvlan *ifv;
709 
710 	if (ifp->if_type != IFT_L2VLAN)
711 		return (NULL);
712 
713 	NET_EPOCH_ENTER(et);
714 	ifv = ifp->if_softc;
715 	ifp = NULL;
716 	if (ifv->ifv_trunk)
717 		ifp = PARENT(ifv);
718 	NET_EPOCH_EXIT(et);
719 	return (ifp);
720 }
721 
722 /*
723  * Return the 12-bit VLAN VID for this interface, for use by external
724  * components such as Infiniband.
725  *
726  * XXXRW: Note that the function name here is historical; it should be named
727  * vlan_vid().
728  */
729 static int
730 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
731 {
732 	struct ifvlan *ifv;
733 
734 	if (ifp->if_type != IFT_L2VLAN)
735 		return (EINVAL);
736 	ifv = ifp->if_softc;
737 	*vidp = ifv->ifv_vid;
738 	return (0);
739 }
740 
741 static int
742 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
743 {
744 	struct ifvlan *ifv;
745 
746 	if (ifp->if_type != IFT_L2VLAN)
747 		return (EINVAL);
748 	ifv = ifp->if_softc;
749 	*pcpp = ifv->ifv_pcp;
750 	return (0);
751 }
752 
753 /*
754  * Return a driver specific cookie for this interface.  Synchronization
755  * with setcookie must be provided by the driver.
756  */
757 static void *
758 vlan_cookie(struct ifnet *ifp)
759 {
760 	struct ifvlan *ifv;
761 
762 	if (ifp->if_type != IFT_L2VLAN)
763 		return (NULL);
764 	ifv = ifp->if_softc;
765 	return (ifv->ifv_cookie);
766 }
767 
768 /*
769  * Store a cookie in our softc that drivers can use to store driver
770  * private per-instance data in.
771  */
772 static int
773 vlan_setcookie(struct ifnet *ifp, void *cookie)
774 {
775 	struct ifvlan *ifv;
776 
777 	if (ifp->if_type != IFT_L2VLAN)
778 		return (EINVAL);
779 	ifv = ifp->if_softc;
780 	ifv->ifv_cookie = cookie;
781 	return (0);
782 }
783 
784 /*
785  * Return the vlan device present at the specific VID.
786  */
787 static struct ifnet *
788 vlan_devat(struct ifnet *ifp, uint16_t vid)
789 {
790 	struct epoch_tracker et;
791 	struct ifvlantrunk *trunk;
792 	struct ifvlan *ifv;
793 
794 	NET_EPOCH_ENTER(et);
795 	trunk = ifp->if_vlantrunk;
796 	if (trunk == NULL) {
797 		NET_EPOCH_EXIT(et);
798 		return (NULL);
799 	}
800 	ifp = NULL;
801 	ifv = vlan_gethash(trunk, vid);
802 	if (ifv)
803 		ifp = ifv->ifv_ifp;
804 	NET_EPOCH_EXIT(et);
805 	return (ifp);
806 }
807 
808 /*
809  * Recalculate the cached VLAN tag exposed via the MIB.
810  */
811 static void
812 vlan_tag_recalculate(struct ifvlan *ifv)
813 {
814 
815        ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0);
816 }
817 
818 /*
819  * VLAN support can be loaded as a module.  The only place in the
820  * system that's intimately aware of this is ether_input.  We hook
821  * into this code through vlan_input_p which is defined there and
822  * set here.  No one else in the system should be aware of this so
823  * we use an explicit reference here.
824  */
825 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
826 
827 /* For if_link_state_change() eyes only... */
828 extern	void (*vlan_link_state_p)(struct ifnet *);
829 
830 static int
831 vlan_modevent(module_t mod, int type, void *data)
832 {
833 
834 	switch (type) {
835 	case MOD_LOAD:
836 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
837 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
838 		if (ifdetach_tag == NULL)
839 			return (ENOMEM);
840 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
841 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
842 		if (iflladdr_tag == NULL)
843 			return (ENOMEM);
844 		VLAN_LOCKING_INIT();
845 		vlan_input_p = vlan_input;
846 		vlan_link_state_p = vlan_link_state;
847 		vlan_trunk_cap_p = vlan_trunk_capabilities;
848 		vlan_trunkdev_p = vlan_trunkdev;
849 		vlan_cookie_p = vlan_cookie;
850 		vlan_setcookie_p = vlan_setcookie;
851 		vlan_tag_p = vlan_tag;
852 		vlan_pcp_p = vlan_pcp;
853 		vlan_devat_p = vlan_devat;
854 #ifndef VIMAGE
855 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
856 		    vlan_clone_create, vlan_clone_destroy);
857 #endif
858 		if (bootverbose)
859 			printf("vlan: initialized, using "
860 #ifdef VLAN_ARRAY
861 			       "full-size arrays"
862 #else
863 			       "hash tables with chaining"
864 #endif
865 
866 			       "\n");
867 		break;
868 	case MOD_UNLOAD:
869 #ifndef VIMAGE
870 		if_clone_detach(vlan_cloner);
871 #endif
872 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
873 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
874 		vlan_input_p = NULL;
875 		vlan_link_state_p = NULL;
876 		vlan_trunk_cap_p = NULL;
877 		vlan_trunkdev_p = NULL;
878 		vlan_tag_p = NULL;
879 		vlan_cookie_p = NULL;
880 		vlan_setcookie_p = NULL;
881 		vlan_devat_p = NULL;
882 		VLAN_LOCKING_DESTROY();
883 		if (bootverbose)
884 			printf("vlan: unloaded\n");
885 		break;
886 	default:
887 		return (EOPNOTSUPP);
888 	}
889 	return (0);
890 }
891 
892 static moduledata_t vlan_mod = {
893 	"if_vlan",
894 	vlan_modevent,
895 	0
896 };
897 
898 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
899 MODULE_VERSION(if_vlan, 3);
900 
901 #ifdef VIMAGE
902 static void
903 vnet_vlan_init(const void *unused __unused)
904 {
905 
906 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
907 		    vlan_clone_create, vlan_clone_destroy);
908 	V_vlan_cloner = vlan_cloner;
909 }
910 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
911     vnet_vlan_init, NULL);
912 
913 static void
914 vnet_vlan_uninit(const void *unused __unused)
915 {
916 
917 	if_clone_detach(V_vlan_cloner);
918 }
919 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
920     vnet_vlan_uninit, NULL);
921 #endif
922 
923 /*
924  * Check for <etherif>.<vlan> style interface names.
925  */
926 static struct ifnet *
927 vlan_clone_match_ethervid(const char *name, int *vidp)
928 {
929 	char ifname[IFNAMSIZ];
930 	char *cp;
931 	struct ifnet *ifp;
932 	int vid;
933 
934 	strlcpy(ifname, name, IFNAMSIZ);
935 	if ((cp = strchr(ifname, '.')) == NULL)
936 		return (NULL);
937 	*cp = '\0';
938 	if ((ifp = ifunit_ref(ifname)) == NULL)
939 		return (NULL);
940 	/* Parse VID. */
941 	if (*++cp == '\0') {
942 		if_rele(ifp);
943 		return (NULL);
944 	}
945 	vid = 0;
946 	for(; *cp >= '0' && *cp <= '9'; cp++)
947 		vid = (vid * 10) + (*cp - '0');
948 	if (*cp != '\0') {
949 		if_rele(ifp);
950 		return (NULL);
951 	}
952 	if (vidp != NULL)
953 		*vidp = vid;
954 
955 	return (ifp);
956 }
957 
958 static int
959 vlan_clone_match(struct if_clone *ifc, const char *name)
960 {
961 	const char *cp;
962 
963 	if (vlan_clone_match_ethervid(name, NULL) != NULL)
964 		return (1);
965 
966 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
967 		return (0);
968 	for (cp = name + 4; *cp != '\0'; cp++) {
969 		if (*cp < '0' || *cp > '9')
970 			return (0);
971 	}
972 
973 	return (1);
974 }
975 
976 static int
977 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
978 {
979 	char *dp;
980 	int wildcard;
981 	int unit;
982 	int error;
983 	int vid;
984 	struct ifvlan *ifv;
985 	struct ifnet *ifp;
986 	struct ifnet *p;
987 	struct ifaddr *ifa;
988 	struct sockaddr_dl *sdl;
989 	struct vlanreq vlr;
990 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
991 
992 	/*
993 	 * There are 3 (ugh) ways to specify the cloned device:
994 	 * o pass a parameter block with the clone request.
995 	 * o specify parameters in the text of the clone device name
996 	 * o specify no parameters and get an unattached device that
997 	 *   must be configured separately.
998 	 * The first technique is preferred; the latter two are
999 	 * supported for backwards compatibility.
1000 	 *
1001 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1002 	 * called for.
1003 	 */
1004 	if (params) {
1005 		error = copyin(params, &vlr, sizeof(vlr));
1006 		if (error)
1007 			return error;
1008 		p = ifunit_ref(vlr.vlr_parent);
1009 		if (p == NULL)
1010 			return (ENXIO);
1011 		error = ifc_name2unit(name, &unit);
1012 		if (error != 0) {
1013 			if_rele(p);
1014 			return (error);
1015 		}
1016 		vid = vlr.vlr_tag;
1017 		wildcard = (unit < 0);
1018 	} else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) {
1019 		unit = -1;
1020 		wildcard = 0;
1021 	} else {
1022 		p = NULL;
1023 		error = ifc_name2unit(name, &unit);
1024 		if (error != 0)
1025 			return (error);
1026 
1027 		wildcard = (unit < 0);
1028 	}
1029 
1030 	error = ifc_alloc_unit(ifc, &unit);
1031 	if (error != 0) {
1032 		if (p != NULL)
1033 			if_rele(p);
1034 		return (error);
1035 	}
1036 
1037 	/* In the wildcard case, we need to update the name. */
1038 	if (wildcard) {
1039 		for (dp = name; *dp != '\0'; dp++);
1040 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1041 		    len - (dp-name) - 1) {
1042 			panic("%s: interface name too long", __func__);
1043 		}
1044 	}
1045 
1046 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1047 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1048 	if (ifp == NULL) {
1049 		ifc_free_unit(ifc, unit);
1050 		free(ifv, M_VLAN);
1051 		if (p != NULL)
1052 			if_rele(p);
1053 		return (ENOSPC);
1054 	}
1055 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1056 	ifp->if_softc = ifv;
1057 	/*
1058 	 * Set the name manually rather than using if_initname because
1059 	 * we don't conform to the default naming convention for interfaces.
1060 	 */
1061 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1062 	ifp->if_dname = vlanname;
1063 	ifp->if_dunit = unit;
1064 
1065 	ifp->if_init = vlan_init;
1066 	ifp->if_transmit = vlan_transmit;
1067 	ifp->if_qflush = vlan_qflush;
1068 	ifp->if_ioctl = vlan_ioctl;
1069 #if defined(KERN_TLS) || defined(RATELIMIT)
1070 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1071 	ifp->if_snd_tag_modify = vlan_snd_tag_modify;
1072 	ifp->if_snd_tag_query = vlan_snd_tag_query;
1073 	ifp->if_snd_tag_free = vlan_snd_tag_free;
1074 #endif
1075 	ifp->if_flags = VLAN_IFFLAGS;
1076 	ether_ifattach(ifp, eaddr);
1077 	/* Now undo some of the damage... */
1078 	ifp->if_baudrate = 0;
1079 	ifp->if_type = IFT_L2VLAN;
1080 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1081 	ifa = ifp->if_addr;
1082 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1083 	sdl->sdl_type = IFT_L2VLAN;
1084 
1085 	if (p != NULL) {
1086 		error = vlan_config(ifv, p, vid);
1087 		if_rele(p);
1088 		if (error != 0) {
1089 			/*
1090 			 * Since we've partially failed, we need to back
1091 			 * out all the way, otherwise userland could get
1092 			 * confused.  Thus, we destroy the interface.
1093 			 */
1094 			ether_ifdetach(ifp);
1095 			vlan_unconfig(ifp);
1096 			if_free(ifp);
1097 			ifc_free_unit(ifc, unit);
1098 			free(ifv, M_VLAN);
1099 
1100 			return (error);
1101 		}
1102 	}
1103 
1104 	return (0);
1105 }
1106 
1107 static int
1108 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1109 {
1110 	struct ifvlan *ifv = ifp->if_softc;
1111 	int unit = ifp->if_dunit;
1112 
1113 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1114 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1115 	/*
1116 	 * We should have the only reference to the ifv now, so we can now
1117 	 * drain any remaining lladdr task before freeing the ifnet and the
1118 	 * ifvlan.
1119 	 */
1120 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1121 	NET_EPOCH_WAIT();
1122 	if_free(ifp);
1123 	free(ifv, M_VLAN);
1124 	ifc_free_unit(ifc, unit);
1125 
1126 	return (0);
1127 }
1128 
1129 /*
1130  * The ifp->if_init entry point for vlan(4) is a no-op.
1131  */
1132 static void
1133 vlan_init(void *foo __unused)
1134 {
1135 }
1136 
1137 /*
1138  * The if_transmit method for vlan(4) interface.
1139  */
1140 static int
1141 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1142 {
1143 	struct epoch_tracker et;
1144 	struct ifvlan *ifv;
1145 	struct ifnet *p;
1146 	int error, len, mcast;
1147 
1148 	NET_EPOCH_ENTER(et);
1149 	ifv = ifp->if_softc;
1150 	if (TRUNK(ifv) == NULL) {
1151 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1152 		NET_EPOCH_EXIT(et);
1153 		m_freem(m);
1154 		return (ENETDOWN);
1155 	}
1156 	p = PARENT(ifv);
1157 	len = m->m_pkthdr.len;
1158 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1159 
1160 	BPF_MTAP(ifp, m);
1161 
1162 #if defined(KERN_TLS) || defined(RATELIMIT)
1163 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1164 		struct vlan_snd_tag *vst;
1165 		struct m_snd_tag *mst;
1166 
1167 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1168 		mst = m->m_pkthdr.snd_tag;
1169 		vst = mst_to_vst(mst);
1170 		if (vst->tag->ifp != p) {
1171 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1172 			NET_EPOCH_EXIT(et);
1173 			m_freem(m);
1174 			return (EAGAIN);
1175 		}
1176 
1177 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1178 		m_snd_tag_rele(mst);
1179 	}
1180 #endif
1181 
1182 	/*
1183 	 * Do not run parent's if_transmit() if the parent is not up,
1184 	 * or parent's driver will cause a system crash.
1185 	 */
1186 	if (!UP_AND_RUNNING(p)) {
1187 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1188 		NET_EPOCH_EXIT(et);
1189 		m_freem(m);
1190 		return (ENETDOWN);
1191 	}
1192 
1193 	if (!ether_8021q_frame(&m, ifp, p, ifv->ifv_vid, ifv->ifv_pcp)) {
1194 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1195 		NET_EPOCH_EXIT(et);
1196 		return (0);
1197 	}
1198 
1199 	/*
1200 	 * Send it, precisely as ether_output() would have.
1201 	 */
1202 	error = (p->if_transmit)(p, m);
1203 	if (error == 0) {
1204 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1205 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1206 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1207 	} else
1208 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1209 	NET_EPOCH_EXIT(et);
1210 	return (error);
1211 }
1212 
1213 static int
1214 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1215     struct route *ro)
1216 {
1217 	struct epoch_tracker et;
1218 	struct ifvlan *ifv;
1219 	struct ifnet *p;
1220 
1221 	NET_EPOCH_ENTER(et);
1222 	ifv = ifp->if_softc;
1223 	if (TRUNK(ifv) == NULL) {
1224 		NET_EPOCH_EXIT(et);
1225 		m_freem(m);
1226 		return (ENETDOWN);
1227 	}
1228 	p = PARENT(ifv);
1229 	NET_EPOCH_EXIT(et);
1230 	return p->if_output(ifp, m, dst, ro);
1231 }
1232 
1233 
1234 /*
1235  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1236  */
1237 static void
1238 vlan_qflush(struct ifnet *ifp __unused)
1239 {
1240 }
1241 
1242 static void
1243 vlan_input(struct ifnet *ifp, struct mbuf *m)
1244 {
1245 	struct epoch_tracker et;
1246 	struct ifvlantrunk *trunk;
1247 	struct ifvlan *ifv;
1248 	struct m_tag *mtag;
1249 	uint16_t vid, tag;
1250 
1251 	NET_EPOCH_ENTER(et);
1252 	trunk = ifp->if_vlantrunk;
1253 	if (trunk == NULL) {
1254 		NET_EPOCH_EXIT(et);
1255 		m_freem(m);
1256 		return;
1257 	}
1258 
1259 	if (m->m_flags & M_VLANTAG) {
1260 		/*
1261 		 * Packet is tagged, but m contains a normal
1262 		 * Ethernet frame; the tag is stored out-of-band.
1263 		 */
1264 		tag = m->m_pkthdr.ether_vtag;
1265 		m->m_flags &= ~M_VLANTAG;
1266 	} else {
1267 		struct ether_vlan_header *evl;
1268 
1269 		/*
1270 		 * Packet is tagged in-band as specified by 802.1q.
1271 		 */
1272 		switch (ifp->if_type) {
1273 		case IFT_ETHER:
1274 			if (m->m_len < sizeof(*evl) &&
1275 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1276 				if_printf(ifp, "cannot pullup VLAN header\n");
1277 				NET_EPOCH_EXIT(et);
1278 				return;
1279 			}
1280 			evl = mtod(m, struct ether_vlan_header *);
1281 			tag = ntohs(evl->evl_tag);
1282 
1283 			/*
1284 			 * Remove the 802.1q header by copying the Ethernet
1285 			 * addresses over it and adjusting the beginning of
1286 			 * the data in the mbuf.  The encapsulated Ethernet
1287 			 * type field is already in place.
1288 			 */
1289 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1290 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1291 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1292 			break;
1293 
1294 		default:
1295 #ifdef INVARIANTS
1296 			panic("%s: %s has unsupported if_type %u",
1297 			      __func__, ifp->if_xname, ifp->if_type);
1298 #endif
1299 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1300 			NET_EPOCH_EXIT(et);
1301 			m_freem(m);
1302 			return;
1303 		}
1304 	}
1305 
1306 	vid = EVL_VLANOFTAG(tag);
1307 
1308 	ifv = vlan_gethash(trunk, vid);
1309 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1310 		NET_EPOCH_EXIT(et);
1311 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1312 		m_freem(m);
1313 		return;
1314 	}
1315 
1316 	if (vlan_mtag_pcp) {
1317 		/*
1318 		 * While uncommon, it is possible that we will find a 802.1q
1319 		 * packet encapsulated inside another packet that also had an
1320 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1321 		 * arriving over ethernet.  In that case, we replace the
1322 		 * existing 802.1q PCP m_tag value.
1323 		 */
1324 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1325 		if (mtag == NULL) {
1326 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1327 			    sizeof(uint8_t), M_NOWAIT);
1328 			if (mtag == NULL) {
1329 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1330 				NET_EPOCH_EXIT(et);
1331 				m_freem(m);
1332 				return;
1333 			}
1334 			m_tag_prepend(m, mtag);
1335 		}
1336 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1337 	}
1338 
1339 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1340 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1341 	NET_EPOCH_EXIT(et);
1342 
1343 	/* Pass it back through the parent's input routine. */
1344 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1345 }
1346 
1347 static void
1348 vlan_lladdr_fn(void *arg, int pending __unused)
1349 {
1350 	struct ifvlan *ifv;
1351 	struct ifnet *ifp;
1352 
1353 	ifv = (struct ifvlan *)arg;
1354 	ifp = ifv->ifv_ifp;
1355 
1356 	CURVNET_SET(ifp->if_vnet);
1357 
1358 	/* The ifv_ifp already has the lladdr copied in. */
1359 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1360 
1361 	CURVNET_RESTORE();
1362 }
1363 
1364 static int
1365 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid)
1366 {
1367 	struct epoch_tracker et;
1368 	struct ifvlantrunk *trunk;
1369 	struct ifnet *ifp;
1370 	int error = 0;
1371 
1372 	/*
1373 	 * We can handle non-ethernet hardware types as long as
1374 	 * they handle the tagging and headers themselves.
1375 	 */
1376 	if (p->if_type != IFT_ETHER &&
1377 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1378 		return (EPROTONOSUPPORT);
1379 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1380 		return (EPROTONOSUPPORT);
1381 	/*
1382 	 * Don't let the caller set up a VLAN VID with
1383 	 * anything except VLID bits.
1384 	 * VID numbers 0x0 and 0xFFF are reserved.
1385 	 */
1386 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1387 		return (EINVAL);
1388 	if (ifv->ifv_trunk)
1389 		return (EBUSY);
1390 
1391 	VLAN_XLOCK();
1392 	if (p->if_vlantrunk == NULL) {
1393 		trunk = malloc(sizeof(struct ifvlantrunk),
1394 		    M_VLAN, M_WAITOK | M_ZERO);
1395 		vlan_inithash(trunk);
1396 		TRUNK_LOCK_INIT(trunk);
1397 		TRUNK_WLOCK(trunk);
1398 		p->if_vlantrunk = trunk;
1399 		trunk->parent = p;
1400 		if_ref(trunk->parent);
1401 		TRUNK_WUNLOCK(trunk);
1402 	} else {
1403 		trunk = p->if_vlantrunk;
1404 	}
1405 
1406 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1407 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1408 	vlan_tag_recalculate(ifv);
1409 	error = vlan_inshash(trunk, ifv);
1410 	if (error)
1411 		goto done;
1412 	ifv->ifv_proto = ETHERTYPE_VLAN;
1413 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1414 	ifv->ifv_mintu = ETHERMIN;
1415 	ifv->ifv_pflags = 0;
1416 	ifv->ifv_capenable = -1;
1417 
1418 	/*
1419 	 * If the parent supports the VLAN_MTU capability,
1420 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1421 	 * use it.
1422 	 */
1423 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1424 		/*
1425 		 * No need to fudge the MTU since the parent can
1426 		 * handle extended frames.
1427 		 */
1428 		ifv->ifv_mtufudge = 0;
1429 	} else {
1430 		/*
1431 		 * Fudge the MTU by the encapsulation size.  This
1432 		 * makes us incompatible with strictly compliant
1433 		 * 802.1Q implementations, but allows us to use
1434 		 * the feature with other NetBSD implementations,
1435 		 * which might still be useful.
1436 		 */
1437 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1438 	}
1439 
1440 	ifv->ifv_trunk = trunk;
1441 	ifp = ifv->ifv_ifp;
1442 	/*
1443 	 * Initialize fields from our parent.  This duplicates some
1444 	 * work with ether_ifattach() but allows for non-ethernet
1445 	 * interfaces to also work.
1446 	 */
1447 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1448 	ifp->if_baudrate = p->if_baudrate;
1449 	ifp->if_input = p->if_input;
1450 	ifp->if_resolvemulti = p->if_resolvemulti;
1451 	ifp->if_addrlen = p->if_addrlen;
1452 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1453 	ifp->if_pcp = ifv->ifv_pcp;
1454 
1455 	/*
1456 	 * We wrap the parent's if_output using vlan_output to ensure that it
1457 	 * can't become stale.
1458 	 */
1459 	ifp->if_output = vlan_output;
1460 
1461 	/*
1462 	 * Copy only a selected subset of flags from the parent.
1463 	 * Other flags are none of our business.
1464 	 */
1465 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1466 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1467 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1468 #undef VLAN_COPY_FLAGS
1469 
1470 	ifp->if_link_state = p->if_link_state;
1471 
1472 	NET_EPOCH_ENTER(et);
1473 	vlan_capabilities(ifv);
1474 	NET_EPOCH_EXIT(et);
1475 
1476 	/*
1477 	 * Set up our interface address to reflect the underlying
1478 	 * physical interface's.
1479 	 */
1480 	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1481 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1482 	    p->if_addrlen;
1483 
1484 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1485 
1486 	/* We are ready for operation now. */
1487 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1488 
1489 	/* Update flags on the parent, if necessary. */
1490 	vlan_setflags(ifp, 1);
1491 
1492 	/*
1493 	 * Configure multicast addresses that may already be
1494 	 * joined on the vlan device.
1495 	 */
1496 	(void)vlan_setmulti(ifp);
1497 
1498 done:
1499 	if (error == 0)
1500 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1501 	VLAN_XUNLOCK();
1502 
1503 	return (error);
1504 }
1505 
1506 static void
1507 vlan_unconfig(struct ifnet *ifp)
1508 {
1509 
1510 	VLAN_XLOCK();
1511 	vlan_unconfig_locked(ifp, 0);
1512 	VLAN_XUNLOCK();
1513 }
1514 
1515 static void
1516 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1517 {
1518 	struct ifvlantrunk *trunk;
1519 	struct vlan_mc_entry *mc;
1520 	struct ifvlan *ifv;
1521 	struct ifnet  *parent;
1522 	int error;
1523 
1524 	VLAN_XLOCK_ASSERT();
1525 
1526 	ifv = ifp->if_softc;
1527 	trunk = ifv->ifv_trunk;
1528 	parent = NULL;
1529 
1530 	if (trunk != NULL) {
1531 		parent = trunk->parent;
1532 
1533 		/*
1534 		 * Since the interface is being unconfigured, we need to
1535 		 * empty the list of multicast groups that we may have joined
1536 		 * while we were alive from the parent's list.
1537 		 */
1538 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1539 			/*
1540 			 * If the parent interface is being detached,
1541 			 * all its multicast addresses have already
1542 			 * been removed.  Warn about errors if
1543 			 * if_delmulti() does fail, but don't abort as
1544 			 * all callers expect vlan destruction to
1545 			 * succeed.
1546 			 */
1547 			if (!departing) {
1548 				error = if_delmulti(parent,
1549 				    (struct sockaddr *)&mc->mc_addr);
1550 				if (error)
1551 					if_printf(ifp,
1552 		    "Failed to delete multicast address from parent: %d\n",
1553 					    error);
1554 			}
1555 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1556 			epoch_call(net_epoch_preempt, &mc->mc_epoch_ctx, vlan_mc_free);
1557 		}
1558 
1559 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1560 
1561 		vlan_remhash(trunk, ifv);
1562 		ifv->ifv_trunk = NULL;
1563 
1564 		/*
1565 		 * Check if we were the last.
1566 		 */
1567 		if (trunk->refcnt == 0) {
1568 			parent->if_vlantrunk = NULL;
1569 			NET_EPOCH_WAIT();
1570 			trunk_destroy(trunk);
1571 		}
1572 	}
1573 
1574 	/* Disconnect from parent. */
1575 	if (ifv->ifv_pflags)
1576 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1577 	ifp->if_mtu = ETHERMTU;
1578 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1579 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1580 
1581 	/*
1582 	 * Only dispatch an event if vlan was
1583 	 * attached, otherwise there is nothing
1584 	 * to cleanup anyway.
1585 	 */
1586 	if (parent != NULL)
1587 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1588 }
1589 
1590 /* Handle a reference counted flag that should be set on the parent as well */
1591 static int
1592 vlan_setflag(struct ifnet *ifp, int flag, int status,
1593 	     int (*func)(struct ifnet *, int))
1594 {
1595 	struct ifvlan *ifv;
1596 	int error;
1597 
1598 	VLAN_SXLOCK_ASSERT();
1599 
1600 	ifv = ifp->if_softc;
1601 	status = status ? (ifp->if_flags & flag) : 0;
1602 	/* Now "status" contains the flag value or 0 */
1603 
1604 	/*
1605 	 * See if recorded parent's status is different from what
1606 	 * we want it to be.  If it is, flip it.  We record parent's
1607 	 * status in ifv_pflags so that we won't clear parent's flag
1608 	 * we haven't set.  In fact, we don't clear or set parent's
1609 	 * flags directly, but get or release references to them.
1610 	 * That's why we can be sure that recorded flags still are
1611 	 * in accord with actual parent's flags.
1612 	 */
1613 	if (status != (ifv->ifv_pflags & flag)) {
1614 		error = (*func)(PARENT(ifv), status);
1615 		if (error)
1616 			return (error);
1617 		ifv->ifv_pflags &= ~flag;
1618 		ifv->ifv_pflags |= status;
1619 	}
1620 	return (0);
1621 }
1622 
1623 /*
1624  * Handle IFF_* flags that require certain changes on the parent:
1625  * if "status" is true, update parent's flags respective to our if_flags;
1626  * if "status" is false, forcedly clear the flags set on parent.
1627  */
1628 static int
1629 vlan_setflags(struct ifnet *ifp, int status)
1630 {
1631 	int error, i;
1632 
1633 	for (i = 0; vlan_pflags[i].flag; i++) {
1634 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1635 				     status, vlan_pflags[i].func);
1636 		if (error)
1637 			return (error);
1638 	}
1639 	return (0);
1640 }
1641 
1642 /* Inform all vlans that their parent has changed link state */
1643 static void
1644 vlan_link_state(struct ifnet *ifp)
1645 {
1646 	struct epoch_tracker et;
1647 	struct ifvlantrunk *trunk;
1648 	struct ifvlan *ifv;
1649 
1650 	/* Called from a taskqueue_swi task, so we cannot sleep. */
1651 	NET_EPOCH_ENTER(et);
1652 	trunk = ifp->if_vlantrunk;
1653 	if (trunk == NULL) {
1654 		NET_EPOCH_EXIT(et);
1655 		return;
1656 	}
1657 
1658 	TRUNK_WLOCK(trunk);
1659 	VLAN_FOREACH(ifv, trunk) {
1660 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1661 		if_link_state_change(ifv->ifv_ifp,
1662 		    trunk->parent->if_link_state);
1663 	}
1664 	TRUNK_WUNLOCK(trunk);
1665 	NET_EPOCH_EXIT(et);
1666 }
1667 
1668 static void
1669 vlan_capabilities(struct ifvlan *ifv)
1670 {
1671 	struct ifnet *p;
1672 	struct ifnet *ifp;
1673 	struct ifnet_hw_tsomax hw_tsomax;
1674 	int cap = 0, ena = 0, mena;
1675 	u_long hwa = 0;
1676 
1677 	VLAN_SXLOCK_ASSERT();
1678 	NET_EPOCH_ASSERT();
1679 	p = PARENT(ifv);
1680 	ifp = ifv->ifv_ifp;
1681 
1682 	/* Mask parent interface enabled capabilities disabled by user. */
1683 	mena = p->if_capenable & ifv->ifv_capenable;
1684 
1685 	/*
1686 	 * If the parent interface can do checksum offloading
1687 	 * on VLANs, then propagate its hardware-assisted
1688 	 * checksumming flags. Also assert that checksum
1689 	 * offloading requires hardware VLAN tagging.
1690 	 */
1691 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1692 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1693 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1694 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1695 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1696 		if (ena & IFCAP_TXCSUM)
1697 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1698 			    CSUM_UDP | CSUM_SCTP);
1699 		if (ena & IFCAP_TXCSUM_IPV6)
1700 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1701 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1702 	}
1703 
1704 	/*
1705 	 * If the parent interface can do TSO on VLANs then
1706 	 * propagate the hardware-assisted flag. TSO on VLANs
1707 	 * does not necessarily require hardware VLAN tagging.
1708 	 */
1709 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1710 	if_hw_tsomax_common(p, &hw_tsomax);
1711 	if_hw_tsomax_update(ifp, &hw_tsomax);
1712 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1713 		cap |= p->if_capabilities & IFCAP_TSO;
1714 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1715 		ena |= mena & IFCAP_TSO;
1716 		if (ena & IFCAP_TSO)
1717 			hwa |= p->if_hwassist & CSUM_TSO;
1718 	}
1719 
1720 	/*
1721 	 * If the parent interface can do LRO and checksum offloading on
1722 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1723 	 * cost nothing, while false negative may lead to some confusions.
1724 	 */
1725 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1726 		cap |= p->if_capabilities & IFCAP_LRO;
1727 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1728 		ena |= p->if_capenable & IFCAP_LRO;
1729 
1730 	/*
1731 	 * If the parent interface can offload TCP connections over VLANs then
1732 	 * propagate its TOE capability to the VLAN interface.
1733 	 *
1734 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1735 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1736 	 * with its own bit.
1737 	 */
1738 #define	IFCAP_VLAN_TOE IFCAP_TOE
1739 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1740 		cap |= p->if_capabilities & IFCAP_TOE;
1741 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1742 		TOEDEV(ifp) = TOEDEV(p);
1743 		ena |= mena & IFCAP_TOE;
1744 	}
1745 
1746 	/*
1747 	 * If the parent interface supports dynamic link state, so does the
1748 	 * VLAN interface.
1749 	 */
1750 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1751 	ena |= (mena & IFCAP_LINKSTATE);
1752 
1753 #ifdef RATELIMIT
1754 	/*
1755 	 * If the parent interface supports ratelimiting, so does the
1756 	 * VLAN interface.
1757 	 */
1758 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1759 	ena |= (mena & IFCAP_TXRTLMT);
1760 #endif
1761 
1762 	/*
1763 	 * If the parent interface supports unmapped mbufs, so does
1764 	 * the VLAN interface.  Note that this should be fine even for
1765 	 * interfaces that don't support hardware tagging as headers
1766 	 * are prepended in normal mbufs to unmapped mbufs holding
1767 	 * payload data.
1768 	 */
1769 	cap |= (p->if_capabilities & IFCAP_NOMAP);
1770 	ena |= (mena & IFCAP_NOMAP);
1771 
1772 	/*
1773 	 * If the parent interface can offload encryption and segmentation
1774 	 * of TLS records over TCP, propagate it's capability to the VLAN
1775 	 * interface.
1776 	 *
1777 	 * All TLS drivers in the tree today can deal with VLANs.  If
1778 	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
1779 	 * defined.
1780 	 */
1781 	if (p->if_capabilities & IFCAP_TXTLS)
1782 		cap |= p->if_capabilities & IFCAP_TXTLS;
1783 	if (p->if_capenable & IFCAP_TXTLS)
1784 		ena |= mena & IFCAP_TXTLS;
1785 
1786 	ifp->if_capabilities = cap;
1787 	ifp->if_capenable = ena;
1788 	ifp->if_hwassist = hwa;
1789 }
1790 
1791 static void
1792 vlan_trunk_capabilities(struct ifnet *ifp)
1793 {
1794 	struct epoch_tracker et;
1795 	struct ifvlantrunk *trunk;
1796 	struct ifvlan *ifv;
1797 
1798 	VLAN_SLOCK();
1799 	trunk = ifp->if_vlantrunk;
1800 	if (trunk == NULL) {
1801 		VLAN_SUNLOCK();
1802 		return;
1803 	}
1804 	NET_EPOCH_ENTER(et);
1805 	VLAN_FOREACH(ifv, trunk) {
1806 		vlan_capabilities(ifv);
1807 	}
1808 	NET_EPOCH_EXIT(et);
1809 	VLAN_SUNLOCK();
1810 }
1811 
1812 static int
1813 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1814 {
1815 	struct ifnet *p;
1816 	struct ifreq *ifr;
1817 	struct ifaddr *ifa;
1818 	struct ifvlan *ifv;
1819 	struct ifvlantrunk *trunk;
1820 	struct vlanreq vlr;
1821 	int error = 0;
1822 
1823 	ifr = (struct ifreq *)data;
1824 	ifa = (struct ifaddr *) data;
1825 	ifv = ifp->if_softc;
1826 
1827 	switch (cmd) {
1828 	case SIOCSIFADDR:
1829 		ifp->if_flags |= IFF_UP;
1830 #ifdef INET
1831 		if (ifa->ifa_addr->sa_family == AF_INET)
1832 			arp_ifinit(ifp, ifa);
1833 #endif
1834 		break;
1835 	case SIOCGIFADDR:
1836 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1837 		    ifp->if_addrlen);
1838 		break;
1839 	case SIOCGIFMEDIA:
1840 		VLAN_SLOCK();
1841 		if (TRUNK(ifv) != NULL) {
1842 			p = PARENT(ifv);
1843 			if_ref(p);
1844 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1845 			if_rele(p);
1846 			/* Limit the result to the parent's current config. */
1847 			if (error == 0) {
1848 				struct ifmediareq *ifmr;
1849 
1850 				ifmr = (struct ifmediareq *)data;
1851 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1852 					ifmr->ifm_count = 1;
1853 					error = copyout(&ifmr->ifm_current,
1854 						ifmr->ifm_ulist,
1855 						sizeof(int));
1856 				}
1857 			}
1858 		} else {
1859 			error = EINVAL;
1860 		}
1861 		VLAN_SUNLOCK();
1862 		break;
1863 
1864 	case SIOCSIFMEDIA:
1865 		error = EINVAL;
1866 		break;
1867 
1868 	case SIOCSIFMTU:
1869 		/*
1870 		 * Set the interface MTU.
1871 		 */
1872 		VLAN_SLOCK();
1873 		trunk = TRUNK(ifv);
1874 		if (trunk != NULL) {
1875 			TRUNK_WLOCK(trunk);
1876 			if (ifr->ifr_mtu >
1877 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1878 			    ifr->ifr_mtu <
1879 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1880 				error = EINVAL;
1881 			else
1882 				ifp->if_mtu = ifr->ifr_mtu;
1883 			TRUNK_WUNLOCK(trunk);
1884 		} else
1885 			error = EINVAL;
1886 		VLAN_SUNLOCK();
1887 		break;
1888 
1889 	case SIOCSETVLAN:
1890 #ifdef VIMAGE
1891 		/*
1892 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1893 		 * interface to be delegated to a jail without allowing the
1894 		 * jail to change what underlying interface/VID it is
1895 		 * associated with.  We are not entirely convinced that this
1896 		 * is the right way to accomplish that policy goal.
1897 		 */
1898 		if (ifp->if_vnet != ifp->if_home_vnet) {
1899 			error = EPERM;
1900 			break;
1901 		}
1902 #endif
1903 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
1904 		if (error)
1905 			break;
1906 		if (vlr.vlr_parent[0] == '\0') {
1907 			vlan_unconfig(ifp);
1908 			break;
1909 		}
1910 		p = ifunit_ref(vlr.vlr_parent);
1911 		if (p == NULL) {
1912 			error = ENOENT;
1913 			break;
1914 		}
1915 		error = vlan_config(ifv, p, vlr.vlr_tag);
1916 		if_rele(p);
1917 		break;
1918 
1919 	case SIOCGETVLAN:
1920 #ifdef VIMAGE
1921 		if (ifp->if_vnet != ifp->if_home_vnet) {
1922 			error = EPERM;
1923 			break;
1924 		}
1925 #endif
1926 		bzero(&vlr, sizeof(vlr));
1927 		VLAN_SLOCK();
1928 		if (TRUNK(ifv) != NULL) {
1929 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1930 			    sizeof(vlr.vlr_parent));
1931 			vlr.vlr_tag = ifv->ifv_vid;
1932 		}
1933 		VLAN_SUNLOCK();
1934 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
1935 		break;
1936 
1937 	case SIOCSIFFLAGS:
1938 		/*
1939 		 * We should propagate selected flags to the parent,
1940 		 * e.g., promiscuous mode.
1941 		 */
1942 		VLAN_XLOCK();
1943 		if (TRUNK(ifv) != NULL)
1944 			error = vlan_setflags(ifp, 1);
1945 		VLAN_XUNLOCK();
1946 		break;
1947 
1948 	case SIOCADDMULTI:
1949 	case SIOCDELMULTI:
1950 		/*
1951 		 * If we don't have a parent, just remember the membership for
1952 		 * when we do.
1953 		 *
1954 		 * XXX We need the rmlock here to avoid sleeping while
1955 		 * holding in6_multi_mtx.
1956 		 */
1957 		VLAN_XLOCK();
1958 		trunk = TRUNK(ifv);
1959 		if (trunk != NULL)
1960 			error = vlan_setmulti(ifp);
1961 		VLAN_XUNLOCK();
1962 
1963 		break;
1964 	case SIOCGVLANPCP:
1965 #ifdef VIMAGE
1966 		if (ifp->if_vnet != ifp->if_home_vnet) {
1967 			error = EPERM;
1968 			break;
1969 		}
1970 #endif
1971 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
1972 		break;
1973 
1974 	case SIOCSVLANPCP:
1975 #ifdef VIMAGE
1976 		if (ifp->if_vnet != ifp->if_home_vnet) {
1977 			error = EPERM;
1978 			break;
1979 		}
1980 #endif
1981 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
1982 		if (error)
1983 			break;
1984 		if (ifr->ifr_vlan_pcp > 7) {
1985 			error = EINVAL;
1986 			break;
1987 		}
1988 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
1989 		ifp->if_pcp = ifv->ifv_pcp;
1990 		vlan_tag_recalculate(ifv);
1991 		/* broadcast event about PCP change */
1992 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1993 		break;
1994 
1995 	case SIOCSIFCAP:
1996 		VLAN_SLOCK();
1997 		ifv->ifv_capenable = ifr->ifr_reqcap;
1998 		trunk = TRUNK(ifv);
1999 		if (trunk != NULL) {
2000 			struct epoch_tracker et;
2001 
2002 			NET_EPOCH_ENTER(et);
2003 			vlan_capabilities(ifv);
2004 			NET_EPOCH_EXIT(et);
2005 		}
2006 		VLAN_SUNLOCK();
2007 		break;
2008 
2009 	default:
2010 		error = EINVAL;
2011 		break;
2012 	}
2013 
2014 	return (error);
2015 }
2016 
2017 #if defined(KERN_TLS) || defined(RATELIMIT)
2018 static int
2019 vlan_snd_tag_alloc(struct ifnet *ifp,
2020     union if_snd_tag_alloc_params *params,
2021     struct m_snd_tag **ppmt)
2022 {
2023 	struct epoch_tracker et;
2024 	struct vlan_snd_tag *vst;
2025 	struct ifvlan *ifv;
2026 	struct ifnet *parent;
2027 	int error;
2028 
2029 	NET_EPOCH_ENTER(et);
2030 	ifv = ifp->if_softc;
2031 	if (ifv->ifv_trunk != NULL)
2032 		parent = PARENT(ifv);
2033 	else
2034 		parent = NULL;
2035 	if (parent == NULL || parent->if_snd_tag_alloc == NULL) {
2036 		NET_EPOCH_EXIT(et);
2037 		return (EOPNOTSUPP);
2038 	}
2039 	if_ref(parent);
2040 	NET_EPOCH_EXIT(et);
2041 
2042 	vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2043 	if (vst == NULL) {
2044 		if_rele(parent);
2045 		return (ENOMEM);
2046 	}
2047 
2048 	error = parent->if_snd_tag_alloc(parent, params, &vst->tag);
2049 	if_rele(parent);
2050 	if (error) {
2051 		free(vst, M_VLAN);
2052 		return (error);
2053 	}
2054 
2055 	m_snd_tag_init(&vst->com, ifp);
2056 
2057 	*ppmt = &vst->com;
2058 	return (0);
2059 }
2060 
2061 static int
2062 vlan_snd_tag_modify(struct m_snd_tag *mst,
2063     union if_snd_tag_modify_params *params)
2064 {
2065 	struct vlan_snd_tag *vst;
2066 
2067 	vst = mst_to_vst(mst);
2068 	return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params));
2069 }
2070 
2071 static int
2072 vlan_snd_tag_query(struct m_snd_tag *mst,
2073     union if_snd_tag_query_params *params)
2074 {
2075 	struct vlan_snd_tag *vst;
2076 
2077 	vst = mst_to_vst(mst);
2078 	return (vst->tag->ifp->if_snd_tag_query(vst->tag, params));
2079 }
2080 
2081 static void
2082 vlan_snd_tag_free(struct m_snd_tag *mst)
2083 {
2084 	struct vlan_snd_tag *vst;
2085 
2086 	vst = mst_to_vst(mst);
2087 	m_snd_tag_rele(vst->tag);
2088 	free(vst, M_VLAN);
2089 }
2090 #endif
2091