xref: /freebsd/sys/net/if_fwsubr.c (revision 7d0d268b8a67f28ccefdd0b8ce6fb38acac78d80)
1 /*-
2  * Copyright (c) 2004 Doug Rabson
3  * Copyright (c) 1982, 1989, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 
46 #include <net/if.h>
47 #include <net/netisr.h>
48 #include <net/route.h>
49 #include <net/if_llc.h>
50 #include <net/if_dl.h>
51 #include <net/if_types.h>
52 #include <net/bpf.h>
53 #include <net/firewire.h>
54 #include <net/if_llatbl.h>
55 
56 #if defined(INET) || defined(INET6)
57 #include <netinet/in.h>
58 #include <netinet/in_var.h>
59 #include <netinet/if_ether.h>
60 #endif
61 #ifdef INET6
62 #include <netinet6/nd6.h>
63 #endif
64 
65 #include <security/mac/mac_framework.h>
66 
67 MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals");
68 
69 struct fw_hwaddr firewire_broadcastaddr = {
70 	0xffffffff,
71 	0xffffffff,
72 	0xff,
73 	0xff,
74 	0xffff,
75 	0xffffffff
76 };
77 
78 static int
79 firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
80     struct rtentry *rt0)
81 {
82 	struct fw_com *fc = IFP2FWC(ifp);
83 	int error, type;
84 	struct m_tag *mtag;
85 	union fw_encap *enc;
86 	struct fw_hwaddr *destfw;
87 	uint8_t speed;
88 	uint16_t psize, fsize, dsize;
89 	struct mbuf *mtail;
90 	int unicast, dgl, foff;
91 	static int next_dgl;
92 	struct llentry *lle;
93 
94 #ifdef MAC
95 	error = mac_ifnet_check_transmit(ifp, m);
96 	if (error)
97 		goto bad;
98 #endif
99 
100 	if (!((ifp->if_flags & IFF_UP) &&
101 	   (ifp->if_drv_flags & IFF_DRV_RUNNING))) {
102 		error = ENETDOWN;
103 		goto bad;
104 	}
105 
106 	/*
107 	 * For unicast, we make a tag to store the lladdr of the
108 	 * destination. This might not be the first time we have seen
109 	 * the packet (for instance, the arp code might be trying to
110 	 * re-send it after receiving an arp reply) so we only
111 	 * allocate a tag if there isn't one there already. For
112 	 * multicast, we will eventually use a different tag to store
113 	 * the channel number.
114 	 */
115 	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
116 	if (unicast) {
117 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
118 		if (!mtag) {
119 			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
120 			    sizeof (struct fw_hwaddr), M_NOWAIT);
121 			if (!mtag) {
122 				error = ENOMEM;
123 				goto bad;
124 			}
125 			m_tag_prepend(m, mtag);
126 		}
127 		destfw = (struct fw_hwaddr *)(mtag + 1);
128 	} else {
129 		destfw = 0;
130 	}
131 
132 	switch (dst->sa_family) {
133 #ifdef INET
134 	case AF_INET:
135 		/*
136 		 * Only bother with arp for unicast. Allocation of
137 		 * channels etc. for firewire is quite different and
138 		 * doesn't fit into the arp model.
139 		 */
140 		if (unicast) {
141 			error = arpresolve(ifp, rt0, m, dst, (u_char *) destfw, &lle);
142 			if (error)
143 				return (error == EWOULDBLOCK ? 0 : error);
144 		}
145 		type = ETHERTYPE_IP;
146 		break;
147 
148 	case AF_ARP:
149 	{
150 		struct arphdr *ah;
151 		ah = mtod(m, struct arphdr *);
152 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
153 		type = ETHERTYPE_ARP;
154 		if (unicast)
155 			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
156 
157 		/*
158 		 * The standard arp code leaves a hole for the target
159 		 * hardware address which we need to close up.
160 		 */
161 		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
162 		m_adj(m, -ah->ar_hln);
163 		break;
164 	}
165 #endif
166 
167 #ifdef INET6
168 	case AF_INET6:
169 		if (unicast) {
170 			error = nd6_storelladdr(fc->fc_ifp, m, dst,
171 			    (u_char *) destfw, &lle);
172 			if (error)
173 				return (error);
174 		}
175 		type = ETHERTYPE_IPV6;
176 		break;
177 #endif
178 
179 	default:
180 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
181 		error = EAFNOSUPPORT;
182 		goto bad;
183 	}
184 
185 	/*
186 	 * Let BPF tap off a copy before we encapsulate.
187 	 */
188 	if (bpf_peers_present(ifp->if_bpf)) {
189 		struct fw_bpfhdr h;
190 		if (unicast)
191 			bcopy(destfw, h.firewire_dhost, 8);
192 		else
193 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
194 		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
195 		h.firewire_type = htons(type);
196 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
197 	}
198 
199 	/*
200 	 * Punt on MCAP for now and send all multicast packets on the
201 	 * broadcast channel.
202 	 */
203 	if (m->m_flags & M_MCAST)
204 		m->m_flags |= M_BCAST;
205 
206 	/*
207 	 * Figure out what speed to use and what the largest supported
208 	 * packet size is. For unicast, this is the minimum of what we
209 	 * can speak and what they can hear. For broadcast, lets be
210 	 * conservative and use S100. We could possibly improve that
211 	 * by examining the bus manager's speed map or similar. We
212 	 * also reduce the packet size for broadcast to account for
213 	 * the GASP header.
214 	 */
215 	if (unicast) {
216 		speed = min(fc->fc_speed, destfw->sspd);
217 		psize = min(512 << speed, 2 << destfw->sender_max_rec);
218 	} else {
219 		speed = 0;
220 		psize = 512 - 2*sizeof(uint32_t);
221 	}
222 
223 	/*
224 	 * Next, we encapsulate, possibly fragmenting the original
225 	 * datagram if it won't fit into a single packet.
226 	 */
227 	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
228 		/*
229 		 * No fragmentation is necessary.
230 		 */
231 		M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
232 		if (!m) {
233 			error = ENOBUFS;
234 			goto bad;
235 		}
236 		enc = mtod(m, union fw_encap *);
237 		enc->unfrag.ether_type = type;
238 		enc->unfrag.lf = FW_ENCAP_UNFRAG;
239 		enc->unfrag.reserved = 0;
240 
241 		/*
242 		 * Byte swap the encapsulation header manually.
243 		 */
244 		enc->ul[0] = htonl(enc->ul[0]);
245 
246 		error = (ifp->if_transmit)(ifp, m);
247 		return (error);
248 	} else {
249 		/*
250 		 * Fragment the datagram, making sure to leave enough
251 		 * space for the encapsulation header in each packet.
252 		 */
253 		fsize = psize - 2*sizeof(uint32_t);
254 		dgl = next_dgl++;
255 		dsize = m->m_pkthdr.len;
256 		foff = 0;
257 		while (m) {
258 			if (m->m_pkthdr.len > fsize) {
259 				/*
260 				 * Split off the tail segment from the
261 				 * datagram, copying our tags over.
262 				 */
263 				mtail = m_split(m, fsize, M_DONTWAIT);
264 				m_tag_copy_chain(mtail, m, M_NOWAIT);
265 			} else {
266 				mtail = 0;
267 			}
268 
269 			/*
270 			 * Add our encapsulation header to this
271 			 * fragment and hand it off to the link.
272 			 */
273 			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
274 			if (!m) {
275 				error = ENOBUFS;
276 				goto bad;
277 			}
278 			enc = mtod(m, union fw_encap *);
279 			if (foff == 0) {
280 				enc->firstfrag.lf = FW_ENCAP_FIRST;
281 				enc->firstfrag.reserved1 = 0;
282 				enc->firstfrag.reserved2 = 0;
283 				enc->firstfrag.datagram_size = dsize - 1;
284 				enc->firstfrag.ether_type = type;
285 				enc->firstfrag.dgl = dgl;
286 			} else {
287 				if (mtail)
288 					enc->nextfrag.lf = FW_ENCAP_NEXT;
289 				else
290 					enc->nextfrag.lf = FW_ENCAP_LAST;
291 				enc->nextfrag.reserved1 = 0;
292 				enc->nextfrag.reserved2 = 0;
293 				enc->nextfrag.reserved3 = 0;
294 				enc->nextfrag.datagram_size = dsize - 1;
295 				enc->nextfrag.fragment_offset = foff;
296 				enc->nextfrag.dgl = dgl;
297 			}
298 			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
299 
300 			/*
301 			 * Byte swap the encapsulation header manually.
302 			 */
303 			enc->ul[0] = htonl(enc->ul[0]);
304 			enc->ul[1] = htonl(enc->ul[1]);
305 
306 			error = (ifp->if_transmit)(ifp, m);
307 			if (error) {
308 				if (mtail)
309 					m_freem(mtail);
310 				return (ENOBUFS);
311 			}
312 
313 			m = mtail;
314 		}
315 
316 		return (0);
317 	}
318 
319 bad:
320 	if (m)
321 		m_freem(m);
322 	return (error);
323 }
324 
325 static struct mbuf *
326 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
327 {
328 	union fw_encap *enc;
329 	struct fw_reass *r;
330 	struct mbuf *mf, *mprev;
331 	int dsize;
332 	int fstart, fend, start, end, islast;
333 	uint32_t id;
334 
335 	/*
336 	 * Find an existing reassembly buffer or create a new one.
337 	 */
338 	enc = mtod(m, union fw_encap *);
339 	id = enc->firstfrag.dgl | (src << 16);
340 	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
341 		if (r->fr_id == id)
342 			break;
343 	if (!r) {
344 		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
345 		if (!r) {
346 			m_freem(m);
347 			return 0;
348 		}
349 		r->fr_id = id;
350 		r->fr_frags = 0;
351 		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
352 	}
353 
354 	/*
355 	 * If this fragment overlaps any other fragment, we must discard
356 	 * the partial reassembly and start again.
357 	 */
358 	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
359 		fstart = 0;
360 	else
361 		fstart = enc->nextfrag.fragment_offset;
362 	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
363 	dsize = enc->nextfrag.datagram_size;
364 	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
365 
366 	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
367 		enc = mtod(mf, union fw_encap *);
368 		if (enc->nextfrag.datagram_size != dsize) {
369 			/*
370 			 * This fragment must be from a different
371 			 * packet.
372 			 */
373 			goto bad;
374 		}
375 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
376 			start = 0;
377 		else
378 			start = enc->nextfrag.fragment_offset;
379 		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
380 		if ((fstart < end && fend > start) ||
381 		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
382 			/*
383 			 * Overlap - discard reassembly buffer and start
384 			 * again with this fragment.
385 			 */
386 			goto bad;
387 		}
388 	}
389 
390 	/*
391 	 * Find where to put this fragment in the list.
392 	 */
393 	for (mf = r->fr_frags, mprev = NULL; mf;
394 	    mprev = mf, mf = mf->m_nextpkt) {
395 		enc = mtod(mf, union fw_encap *);
396 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
397 			start = 0;
398 		else
399 			start = enc->nextfrag.fragment_offset;
400 		if (start >= fend)
401 			break;
402 	}
403 
404 	/*
405 	 * If this is a last fragment and we are not adding at the end
406 	 * of the list, discard the buffer.
407 	 */
408 	if (islast && mprev && mprev->m_nextpkt)
409 		goto bad;
410 
411 	if (mprev) {
412 		m->m_nextpkt = mprev->m_nextpkt;
413 		mprev->m_nextpkt = m;
414 
415 		/*
416 		 * Coalesce forwards and see if we can make a whole
417 		 * datagram.
418 		 */
419 		enc = mtod(mprev, union fw_encap *);
420 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
421 			start = 0;
422 		else
423 			start = enc->nextfrag.fragment_offset;
424 		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
425 		while (end == fstart) {
426 			/*
427 			 * Strip off the encap header from m and
428 			 * append it to mprev, freeing m.
429 			 */
430 			m_adj(m, 2*sizeof(uint32_t));
431 			mprev->m_nextpkt = m->m_nextpkt;
432 			mprev->m_pkthdr.len += m->m_pkthdr.len;
433 			m_cat(mprev, m);
434 
435 			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
436 				/*
437 				 * We have assembled a complete packet
438 				 * we must be finished. Make sure we have
439 				 * merged the whole chain.
440 				 */
441 				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
442 				free(r, M_TEMP);
443 				m = mprev->m_nextpkt;
444 				while (m) {
445 					mf = m->m_nextpkt;
446 					m_freem(m);
447 					m = mf;
448 				}
449 				mprev->m_nextpkt = NULL;
450 
451 				return (mprev);
452 			}
453 
454 			/*
455 			 * See if we can continue merging forwards.
456 			 */
457 			end = fend;
458 			m = mprev->m_nextpkt;
459 			if (m) {
460 				enc = mtod(m, union fw_encap *);
461 				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
462 					fstart = 0;
463 				else
464 					fstart = enc->nextfrag.fragment_offset;
465 				fend = fstart + m->m_pkthdr.len
466 				    - 2*sizeof(uint32_t);
467 			} else {
468 				break;
469 			}
470 		}
471 	} else {
472 		m->m_nextpkt = 0;
473 		r->fr_frags = m;
474 	}
475 
476 	return (0);
477 
478 bad:
479 	while (r->fr_frags) {
480 		mf = r->fr_frags;
481 		r->fr_frags = mf->m_nextpkt;
482 		m_freem(mf);
483 	}
484 	m->m_nextpkt = 0;
485 	r->fr_frags = m;
486 
487 	return (0);
488 }
489 
490 void
491 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
492 {
493 	struct fw_com *fc = IFP2FWC(ifp);
494 	union fw_encap *enc;
495 	int type, isr;
496 
497 	/*
498 	 * The caller has already stripped off the packet header
499 	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
500 	 * appropriately. We de-encapsulate the IP packet and pass it
501 	 * up the line after handling link-level fragmentation.
502 	 */
503 	if (m->m_pkthdr.len < sizeof(uint32_t)) {
504 		if_printf(ifp, "discarding frame without "
505 		    "encapsulation header (len %u pkt len %u)\n",
506 		    m->m_len, m->m_pkthdr.len);
507 	}
508 
509 	m = m_pullup(m, sizeof(uint32_t));
510 	if (m == NULL)
511 		return;
512 	enc = mtod(m, union fw_encap *);
513 
514 	/*
515 	 * Byte swap the encapsulation header manually.
516 	 */
517 	enc->ul[0] = ntohl(enc->ul[0]);
518 
519 	if (enc->unfrag.lf != 0) {
520 		m = m_pullup(m, 2*sizeof(uint32_t));
521 		if (!m)
522 			return;
523 		enc = mtod(m, union fw_encap *);
524 		enc->ul[1] = ntohl(enc->ul[1]);
525 		m = firewire_input_fragment(fc, m, src);
526 		if (!m)
527 			return;
528 		enc = mtod(m, union fw_encap *);
529 		type = enc->firstfrag.ether_type;
530 		m_adj(m, 2*sizeof(uint32_t));
531 	} else {
532 		type = enc->unfrag.ether_type;
533 		m_adj(m, sizeof(uint32_t));
534 	}
535 
536 	if (m->m_pkthdr.rcvif == NULL) {
537 		if_printf(ifp, "discard frame w/o interface pointer\n");
538 		ifp->if_ierrors++;
539 		m_freem(m);
540 		return;
541 	}
542 #ifdef DIAGNOSTIC
543 	if (m->m_pkthdr.rcvif != ifp) {
544 		if_printf(ifp, "Warning, frame marked as received on %s\n",
545 			m->m_pkthdr.rcvif->if_xname);
546 	}
547 #endif
548 
549 #ifdef MAC
550 	/*
551 	 * Tag the mbuf with an appropriate MAC label before any other
552 	 * consumers can get to it.
553 	 */
554 	mac_ifnet_create_mbuf(ifp, m);
555 #endif
556 
557 	/*
558 	 * Give bpf a chance at the packet. The link-level driver
559 	 * should have left us a tag with the EUID of the sender.
560 	 */
561 	if (bpf_peers_present(ifp->if_bpf)) {
562 		struct fw_bpfhdr h;
563 		struct m_tag *mtag;
564 
565 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
566 		if (mtag)
567 			bcopy(mtag + 1, h.firewire_shost, 8);
568 		else
569 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
570 		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
571 		h.firewire_type = htons(type);
572 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
573 	}
574 
575 	if (ifp->if_flags & IFF_MONITOR) {
576 		/*
577 		 * Interface marked for monitoring; discard packet.
578 		 */
579 		m_freem(m);
580 		return;
581 	}
582 
583 	ifp->if_ibytes += m->m_pkthdr.len;
584 
585 	/* Discard packet if interface is not up */
586 	if ((ifp->if_flags & IFF_UP) == 0) {
587 		m_freem(m);
588 		return;
589 	}
590 
591 	if (m->m_flags & (M_BCAST|M_MCAST))
592 		ifp->if_imcasts++;
593 
594 	switch (type) {
595 #ifdef INET
596 	case ETHERTYPE_IP:
597 		if ((m = ip_fastforward(m)) == NULL)
598 			return;
599 		isr = NETISR_IP;
600 		break;
601 
602 	case ETHERTYPE_ARP:
603 	{
604 		struct arphdr *ah;
605 		ah = mtod(m, struct arphdr *);
606 
607 		/*
608 		 * Adjust the arp packet to insert an empty tha slot.
609 		 */
610 		m->m_len += ah->ar_hln;
611 		m->m_pkthdr.len += ah->ar_hln;
612 		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
613 		isr = NETISR_ARP;
614 		break;
615 	}
616 #endif
617 
618 #ifdef INET6
619 	case ETHERTYPE_IPV6:
620 		isr = NETISR_IPV6;
621 		break;
622 #endif
623 
624 	default:
625 		m_freem(m);
626 		return;
627 	}
628 
629 	netisr_dispatch(isr, m);
630 }
631 
632 int
633 firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
634 {
635 	struct ifaddr *ifa = (struct ifaddr *) data;
636 	struct ifreq *ifr = (struct ifreq *) data;
637 	int error = 0;
638 
639 	switch (command) {
640 	case SIOCSIFADDR:
641 		ifp->if_flags |= IFF_UP;
642 
643 		switch (ifa->ifa_addr->sa_family) {
644 #ifdef INET
645 		case AF_INET:
646 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
647 			arp_ifinit(ifp, ifa);
648 			break;
649 #endif
650 		default:
651 			ifp->if_init(ifp->if_softc);
652 			break;
653 		}
654 		break;
655 
656 	case SIOCGIFADDR:
657 		{
658 			struct sockaddr *sa;
659 
660 			sa = (struct sockaddr *) & ifr->ifr_data;
661 			bcopy(&IFP2FWC(ifp)->fc_hwaddr,
662 			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
663 		}
664 		break;
665 
666 	case SIOCSIFMTU:
667 		/*
668 		 * Set the interface MTU.
669 		 */
670 		if (ifr->ifr_mtu > 1500) {
671 			error = EINVAL;
672 		} else {
673 			ifp->if_mtu = ifr->ifr_mtu;
674 		}
675 		break;
676 	default:
677 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
678 		break;
679 	}
680 	return (error);
681 }
682 
683 static int
684 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
685     struct sockaddr *sa)
686 {
687 #ifdef INET
688 	struct sockaddr_in *sin;
689 #endif
690 #ifdef INET6
691 	struct sockaddr_in6 *sin6;
692 #endif
693 
694 	switch(sa->sa_family) {
695 	case AF_LINK:
696 		/*
697 		 * No mapping needed.
698 		 */
699 		*llsa = 0;
700 		return 0;
701 
702 #ifdef INET
703 	case AF_INET:
704 		sin = (struct sockaddr_in *)sa;
705 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
706 			return EADDRNOTAVAIL;
707 		*llsa = 0;
708 		return 0;
709 #endif
710 #ifdef INET6
711 	case AF_INET6:
712 		sin6 = (struct sockaddr_in6 *)sa;
713 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
714 			/*
715 			 * An IP6 address of 0 means listen to all
716 			 * of the Ethernet multicast address used for IP6.
717 			 * (This is used for multicast routers.)
718 			 */
719 			ifp->if_flags |= IFF_ALLMULTI;
720 			*llsa = 0;
721 			return 0;
722 		}
723 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
724 			return EADDRNOTAVAIL;
725 		*llsa = 0;
726 		return 0;
727 #endif
728 
729 	default:
730 		/*
731 		 * Well, the text isn't quite right, but it's the name
732 		 * that counts...
733 		 */
734 		return EAFNOSUPPORT;
735 	}
736 }
737 
738 void
739 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
740 {
741 	struct fw_com *fc = IFP2FWC(ifp);
742 	struct ifaddr *ifa;
743 	struct sockaddr_dl *sdl;
744 	static const char* speeds[] = {
745 		"S100", "S200", "S400", "S800",
746 		"S1600", "S3200"
747 	};
748 
749 	fc->fc_speed = llc->sspd;
750 	STAILQ_INIT(&fc->fc_frags);
751 
752 	ifp->if_addrlen = sizeof(struct fw_hwaddr);
753 	ifp->if_hdrlen = 0;
754 	if_attach(ifp);
755 	ifp->if_mtu = 1500;	/* XXX */
756 	ifp->if_output = firewire_output;
757 	ifp->if_resolvemulti = firewire_resolvemulti;
758 	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
759 
760 	ifa = ifp->if_addr;
761 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
762 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
763 	sdl->sdl_type = IFT_IEEE1394;
764 	sdl->sdl_alen = ifp->if_addrlen;
765 	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
766 
767 	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
768 	    sizeof(struct fw_hwaddr));
769 
770 	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
771 	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
772 	    ntohs(llc->sender_unicast_FIFO_hi),
773 	    ntohl(llc->sender_unicast_FIFO_lo),
774 	    speeds[llc->sspd],
775 	    (2 << llc->sender_max_rec));
776 }
777 
778 void
779 firewire_ifdetach(struct ifnet *ifp)
780 {
781 	bpfdetach(ifp);
782 	if_detach(ifp);
783 }
784 
785 void
786 firewire_busreset(struct ifnet *ifp)
787 {
788 	struct fw_com *fc = IFP2FWC(ifp);
789 	struct fw_reass *r;
790 	struct mbuf *m;
791 
792 	/*
793 	 * Discard any partial datagrams since the host ids may have changed.
794 	 */
795 	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
796 		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
797 		while (r->fr_frags) {
798 			m = r->fr_frags;
799 			r->fr_frags = m->m_nextpkt;
800 			m_freem(m);
801 		}
802 		free(r, M_TEMP);
803 	}
804 }
805 
806 static void *
807 firewire_alloc(u_char type, struct ifnet *ifp)
808 {
809 	struct fw_com	*fc;
810 
811 	fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO);
812 	fc->fc_ifp = ifp;
813 
814 	return (fc);
815 }
816 
817 static void
818 firewire_free(void *com, u_char type)
819 {
820 
821 	free(com, M_FWCOM);
822 }
823 
824 static int
825 firewire_modevent(module_t mod, int type, void *data)
826 {
827 
828 	switch (type) {
829 	case MOD_LOAD:
830 		if_register_com_alloc(IFT_IEEE1394,
831 		    firewire_alloc, firewire_free);
832 		break;
833 	case MOD_UNLOAD:
834 		if_deregister_com_alloc(IFT_IEEE1394);
835 		break;
836 	default:
837 		return (EOPNOTSUPP);
838 	}
839 
840 	return (0);
841 }
842 
843 static moduledata_t firewire_mod = {
844 	"if_firewire",
845 	firewire_modevent,
846 	0
847 };
848 
849 DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
850 MODULE_VERSION(if_firewire, 1);
851