xref: /freebsd/sys/net/if_fwsubr.c (revision 74bf4e164ba5851606a27d4feff27717452583e5)
1 /*
2  * Copyright (c) 2004 Doug Rabson
3  * Copyright (c) 1982, 1989, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/mac.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 
46 #include <net/if.h>
47 #include <net/netisr.h>
48 #include <net/route.h>
49 #include <net/if_llc.h>
50 #include <net/if_dl.h>
51 #include <net/if_types.h>
52 #include <net/bpf.h>
53 #include <net/firewire.h>
54 
55 #if defined(INET) || defined(INET6)
56 #include <netinet/in.h>
57 #include <netinet/in_var.h>
58 #include <netinet/if_ether.h>
59 #include <netinet/ip_fw.h>
60 #include <netinet/ip_dummynet.h>
61 #endif
62 #ifdef INET6
63 #include <netinet6/nd6.h>
64 #endif
65 
66 #define IFP2FC(IFP) ((struct fw_com *)IFP)
67 
68 struct fw_hwaddr firewire_broadcastaddr = {
69 	0xffffffff,
70 	0xffffffff,
71 	0xff,
72 	0xff,
73 	0xffff,
74 	0xffffffff
75 };
76 
77 static int
78 firewire_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
79     struct rtentry *rt0)
80 {
81 	struct fw_com *fc = (struct fw_com *) ifp;
82 	int error, type;
83 	struct rtentry *rt;
84 	struct m_tag *mtag;
85 	union fw_encap *enc;
86 	struct fw_hwaddr *destfw;
87 	uint8_t speed;
88 	uint16_t psize, fsize, dsize;
89 	struct mbuf *mtail;
90 	int unicast, dgl, foff;
91 	static int next_dgl;
92 
93 #ifdef MAC
94 	error = mac_check_ifnet_transmit(ifp, m);
95 	if (error)
96 		goto bad;
97 #endif
98 
99 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) {
100 		error = ENETDOWN;
101 		goto bad;
102 	}
103 
104 	error = rt_check(&rt, &rt0, dst);
105 	if (error)
106 		goto bad;
107 
108 	/*
109 	 * For unicast, we make a tag to store the lladdr of the
110 	 * destination. This might not be the first time we have seen
111 	 * the packet (for instance, the arp code might be trying to
112 	 * re-send it after receiving an arp reply) so we only
113 	 * allocate a tag if there isn't one there already. For
114 	 * multicast, we will eventually use a different tag to store
115 	 * the channel number.
116 	 */
117 	unicast = !(m->m_flags & (M_BCAST | M_MCAST));
118 	if (unicast) {
119 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL);
120 		if (!mtag) {
121 			mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR,
122 			    sizeof (struct fw_hwaddr), M_NOWAIT);
123 			if (!mtag) {
124 				error = ENOMEM;
125 				goto bad;
126 			}
127 			m_tag_prepend(m, mtag);
128 		}
129 		destfw = (struct fw_hwaddr *)(mtag + 1);
130 	} else {
131 		destfw = 0;
132 	}
133 
134 	switch (dst->sa_family) {
135 #ifdef AF_INET
136 	case AF_INET:
137 		/*
138 		 * Only bother with arp for unicast. Allocation of
139 		 * channels etc. for firewire is quite different and
140 		 * doesn't fit into the arp model.
141 		 */
142 		if (unicast) {
143 			error = arpresolve(ifp, rt, m, dst, (u_char *) destfw);
144 			if (error)
145 				return (error == EWOULDBLOCK ? 0 : error);
146 		}
147 		type = ETHERTYPE_IP;
148 		break;
149 
150 	case AF_ARP:
151 	{
152 		struct arphdr *ah;
153 		ah = mtod(m, struct arphdr *);
154 		ah->ar_hrd = htons(ARPHRD_IEEE1394);
155 		type = ETHERTYPE_ARP;
156 		if (unicast)
157 			*destfw = *(struct fw_hwaddr *) ar_tha(ah);
158 
159 		/*
160 		 * The standard arp code leaves a hole for the target
161 		 * hardware address which we need to close up.
162 		 */
163 		bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln);
164 		m_adj(m, -ah->ar_hln);
165 		break;
166 	}
167 #endif
168 
169 #ifdef INET6
170 	case AF_INET6:
171 		if (unicast) {
172 			error = nd6_storelladdr(&fc->fc_if, rt, m, dst,
173 			    (u_char *) destfw);
174 			if (error)
175 				return (error);
176 		}
177 		type = ETHERTYPE_IPV6;
178 		break;
179 #endif
180 
181 	default:
182 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
183 		error = EAFNOSUPPORT;
184 		goto bad;
185 	}
186 
187 	/*
188 	 * Let BPF tap off a copy before we encapsulate.
189 	 */
190 	if (ifp->if_bpf) {
191 		struct fw_bpfhdr h;
192 		if (unicast)
193 			bcopy(destfw, h.firewire_dhost, 8);
194 		else
195 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
196 		bcopy(&fc->fc_hwaddr, h.firewire_shost, 8);
197 		h.firewire_type = htons(type);
198 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
199 	}
200 
201 	/*
202 	 * Punt on MCAP for now and send all multicast packets on the
203 	 * broadcast channel.
204 	 */
205 	if (m->m_flags & M_MCAST)
206 		m->m_flags |= M_BCAST;
207 
208 	/*
209 	 * Figure out what speed to use and what the largest supported
210 	 * packet size is. For unicast, this is the minimum of what we
211 	 * can speak and what they can hear. For broadcast, lets be
212 	 * conservative and use S100. We could possibly improve that
213 	 * by examining the bus manager's speed map or similar. We
214 	 * also reduce the packet size for broadcast to account for
215 	 * the GASP header.
216 	 */
217 	if (unicast) {
218 		speed = min(fc->fc_speed, destfw->sspd);
219 		psize = min(512 << speed, 2 << destfw->sender_max_rec);
220 	} else {
221 		speed = 0;
222 		psize = 512 - 2*sizeof(uint32_t);
223 	}
224 
225 	/*
226 	 * Next, we encapsulate, possibly fragmenting the original
227 	 * datagram if it won't fit into a single packet.
228 	 */
229 	if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) {
230 		/*
231 		 * No fragmentation is necessary.
232 		 */
233 		M_PREPEND(m, sizeof(uint32_t), M_DONTWAIT);
234 		if (!m) {
235 			error = ENOBUFS;
236 			goto bad;
237 		}
238 		enc = mtod(m, union fw_encap *);
239 		enc->unfrag.ether_type = type;
240 		enc->unfrag.lf = FW_ENCAP_UNFRAG;
241 
242 		/*
243 		 * Byte swap the encapsulation header manually.
244 		 */
245 		enc->ul[0] = htonl(enc->ul[0]);
246 
247 		IFQ_HANDOFF(ifp, m, error);
248 		return (error);
249 	} else {
250 		/*
251 		 * Fragment the datagram, making sure to leave enough
252 		 * space for the encapsulation header in each packet.
253 		 */
254 		fsize = psize - 2*sizeof(uint32_t);
255 		dgl = next_dgl++;
256 		dsize = m->m_pkthdr.len;
257 		foff = 0;
258 		while (m) {
259 			if (m->m_pkthdr.len > fsize) {
260 				/*
261 				 * Split off the tail segment from the
262 				 * datagram, copying our tags over.
263 				 */
264 				mtail = m_split(m, fsize, M_DONTWAIT);
265 				m_tag_copy_chain(mtail, m, M_NOWAIT);
266 			} else {
267 				mtail = 0;
268 			}
269 
270 			/*
271 			 * Add our encapsulation header to this
272 			 * fragment and hand it off to the link.
273 			 */
274 			M_PREPEND(m, 2*sizeof(uint32_t), M_DONTWAIT);
275 			if (!m) {
276 				error = ENOBUFS;
277 				goto bad;
278 			}
279 			enc = mtod(m, union fw_encap *);
280 			if (foff == 0) {
281 				enc->firstfrag.lf = FW_ENCAP_FIRST;
282 				enc->firstfrag.datagram_size = dsize - 1;
283 				enc->firstfrag.ether_type = type;
284 				enc->firstfrag.dgl = dgl;
285 			} else {
286 				if (mtail)
287 					enc->nextfrag.lf = FW_ENCAP_NEXT;
288 				else
289 					enc->nextfrag.lf = FW_ENCAP_LAST;
290 				enc->nextfrag.datagram_size = dsize - 1;
291 				enc->nextfrag.fragment_offset = foff;
292 				enc->nextfrag.dgl = dgl;
293 			}
294 			foff += m->m_pkthdr.len - 2*sizeof(uint32_t);
295 
296 			/*
297 			 * Byte swap the encapsulation header manually.
298 			 */
299 			enc->ul[0] = htonl(enc->ul[0]);
300 			enc->ul[1] = htonl(enc->ul[1]);
301 
302 			IFQ_HANDOFF(ifp, m, error);
303 			if (error) {
304 				if (mtail)
305 					m_freem(mtail);
306 				return (ENOBUFS);
307 			}
308 
309 			m = mtail;
310 		}
311 
312 		return (0);
313 	}
314 
315 bad:
316 	if (m)
317 		m_freem(m);
318 	return (error);
319 }
320 
321 static struct mbuf *
322 firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src)
323 {
324 	union fw_encap *enc;
325 	struct fw_reass *r;
326 	struct mbuf *mf, *mprev;
327 	int dsize;
328 	int fstart, fend, start, end, islast;
329 	uint32_t id;
330 
331 	GIANT_REQUIRED;
332 
333 	/*
334 	 * Find an existing reassembly buffer or create a new one.
335 	 */
336 	enc = mtod(m, union fw_encap *);
337 	id = enc->firstfrag.dgl | (src << 16);
338 	STAILQ_FOREACH(r, &fc->fc_frags, fr_link)
339 		if (r->fr_id == id)
340 			break;
341 	if (!r) {
342 		r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT);
343 		if (!r) {
344 			m_freem(m);
345 			return 0;
346 		}
347 		r->fr_id = id;
348 		r->fr_frags = 0;
349 		STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link);
350 	}
351 
352 	/*
353 	 * If this fragment overlaps any other fragment, we must discard
354 	 * the partial reassembly and start again.
355 	 */
356 	if (enc->firstfrag.lf == FW_ENCAP_FIRST)
357 		fstart = 0;
358 	else
359 		fstart = enc->nextfrag.fragment_offset;
360 	fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t);
361 	dsize = enc->nextfrag.datagram_size;
362 	islast = (enc->nextfrag.lf == FW_ENCAP_LAST);
363 
364 	for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) {
365 		enc = mtod(mf, union fw_encap *);
366 		if (enc->nextfrag.datagram_size != dsize) {
367 			/*
368 			 * This fragment must be from a different
369 			 * packet.
370 			 */
371 			goto bad;
372 		}
373 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
374 			start = 0;
375 		else
376 			start = enc->nextfrag.fragment_offset;
377 		end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t);
378 		if ((fstart < end && fend > start) ||
379 		    (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) {
380 			/*
381 			 * Overlap - discard reassembly buffer and start
382 			 * again with this fragment.
383 			 */
384 			goto bad;
385 		}
386 	}
387 
388 	/*
389 	 * Find where to put this fragment in the list.
390 	 */
391 	for (mf = r->fr_frags, mprev = NULL; mf;
392 	    mprev = mf, mf = mf->m_nextpkt) {
393 		enc = mtod(mf, union fw_encap *);
394 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
395 			start = 0;
396 		else
397 			start = enc->nextfrag.fragment_offset;
398 		if (start >= fend)
399 			break;
400 	}
401 
402 	/*
403 	 * If this is a last fragment and we are not adding at the end
404 	 * of the list, discard the buffer.
405 	 */
406 	if (islast && mprev && mprev->m_nextpkt)
407 		goto bad;
408 
409 	if (mprev) {
410 		m->m_nextpkt = mprev->m_nextpkt;
411 		mprev->m_nextpkt = m;
412 
413 		/*
414 		 * Coalesce forwards and see if we can make a whole
415 		 * datagram.
416 		 */
417 		enc = mtod(mprev, union fw_encap *);
418 		if (enc->firstfrag.lf == FW_ENCAP_FIRST)
419 			start = 0;
420 		else
421 			start = enc->nextfrag.fragment_offset;
422 		end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t);
423 		while (end == fstart) {
424 			/*
425 			 * Strip off the encap header from m and
426 			 * append it to mprev, freeing m.
427 			 */
428 			m_adj(m, 2*sizeof(uint32_t));
429 			mprev->m_nextpkt = m->m_nextpkt;
430 			mprev->m_pkthdr.len += m->m_pkthdr.len;
431 			m_cat(mprev, m);
432 
433 			if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) {
434 				/*
435 				 * We have assembled a complete packet
436 				 * we must be finished. Make sure we have
437 				 * merged the whole chain.
438 				 */
439 				STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link);
440 				free(r, M_TEMP);
441 				m = mprev->m_nextpkt;
442 				while (m) {
443 					mf = m->m_nextpkt;
444 					m_freem(m);
445 					m = mf;
446 				}
447 				mprev->m_nextpkt = NULL;
448 
449 				return (mprev);
450 			}
451 
452 			/*
453 			 * See if we can continue merging forwards.
454 			 */
455 			end = fend;
456 			m = mprev->m_nextpkt;
457 			if (m) {
458 				enc = mtod(m, union fw_encap *);
459 				if (enc->firstfrag.lf == FW_ENCAP_FIRST)
460 					fstart = 0;
461 				else
462 					fstart = enc->nextfrag.fragment_offset;
463 				fend = fstart + m->m_pkthdr.len
464 				    - 2*sizeof(uint32_t);
465 			} else {
466 				break;
467 			}
468 		}
469 	} else {
470 		m->m_nextpkt = 0;
471 		r->fr_frags = m;
472 	}
473 
474 	return (0);
475 
476 bad:
477 	while (r->fr_frags) {
478 		mf = r->fr_frags;
479 		r->fr_frags = mf->m_nextpkt;
480 		m_freem(mf);
481 	}
482 	m->m_nextpkt = 0;
483 	r->fr_frags = m;
484 
485 	return (0);
486 }
487 
488 void
489 firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src)
490 {
491 	struct fw_com *fc = (struct fw_com *) ifp;
492 	union fw_encap *enc;
493 	int type, isr;
494 
495 	GIANT_REQUIRED;
496 
497 	/*
498 	 * The caller has already stripped off the packet header
499 	 * (stream or wreqb) and marked the mbuf's M_BCAST flag
500 	 * appropriately. We de-encapsulate the IP packet and pass it
501 	 * up the line after handling link-level fragmentation.
502 	 */
503 	if (m->m_pkthdr.len < sizeof(uint32_t)) {
504 		if_printf(ifp, "discarding frame without "
505 		    "encapsulation header (len %u pkt len %u)\n",
506 		    m->m_len, m->m_pkthdr.len);
507 	}
508 
509 	m = m_pullup(m, sizeof(uint32_t));
510 	enc = mtod(m, union fw_encap *);
511 
512 	/*
513 	 * Byte swap the encapsulation header manually.
514 	 */
515 	enc->ul[0] = htonl(enc->ul[0]);
516 
517 	if (enc->unfrag.lf != 0) {
518 		m = m_pullup(m, 2*sizeof(uint32_t));
519 		if (!m)
520 			return;
521 		enc = mtod(m, union fw_encap *);
522 		enc->ul[1] = htonl(enc->ul[1]);
523 		m = firewire_input_fragment(fc, m, src);
524 		if (!m)
525 			return;
526 		enc = mtod(m, union fw_encap *);
527 		type = enc->firstfrag.ether_type;
528 		m_adj(m, 2*sizeof(uint32_t));
529 	} else {
530 		type = enc->unfrag.ether_type;
531 		m_adj(m, sizeof(uint32_t));
532 	}
533 
534 	if (m->m_pkthdr.rcvif == NULL) {
535 		if_printf(ifp, "discard frame w/o interface pointer\n");
536 		ifp->if_ierrors++;
537 		m_freem(m);
538 		return;
539 	}
540 #ifdef DIAGNOSTIC
541 	if (m->m_pkthdr.rcvif != ifp) {
542 		if_printf(ifp, "Warning, frame marked as received on %s\n",
543 			m->m_pkthdr.rcvif->if_xname);
544 	}
545 #endif
546 
547 #ifdef MAC
548 	/*
549 	 * Tag the mbuf with an appropriate MAC label before any other
550 	 * consumers can get to it.
551 	 */
552 	mac_create_mbuf_from_ifnet(ifp, m);
553 #endif
554 
555 	/*
556 	 * Give bpf a chance at the packet. The link-level driver
557 	 * should have left us a tag with the EUID of the sender.
558 	 */
559 	if (ifp->if_bpf) {
560 		struct fw_bpfhdr h;
561 		struct m_tag *mtag;
562 
563 		mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0);
564 		if (mtag)
565 			bcopy(mtag + 1, h.firewire_shost, 8);
566 		else
567 			bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8);
568 		bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8);
569 		h.firewire_type = htons(type);
570 		bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m);
571 	}
572 
573 	if (ifp->if_flags & IFF_MONITOR) {
574 		/*
575 		 * Interface marked for monitoring; discard packet.
576 		 */
577 		m_freem(m);
578 		return;
579 	}
580 
581 	ifp->if_ibytes += m->m_pkthdr.len;
582 
583 	/* Discard packet if interface is not up */
584 	if ((ifp->if_flags & IFF_UP) == 0) {
585 		m_freem(m);
586 		return;
587 	}
588 
589 	if (m->m_flags & (M_BCAST|M_MCAST))
590 		ifp->if_imcasts++;
591 
592 	switch (type) {
593 #ifdef INET
594 	case ETHERTYPE_IP:
595 		if (ip_fastforward(m))
596 			return;
597 		isr = NETISR_IP;
598 		break;
599 
600 	case ETHERTYPE_ARP:
601 	{
602 		struct arphdr *ah;
603 		ah = mtod(m, struct arphdr *);
604 
605 		/*
606 		 * Adjust the arp packet to insert an empty tha slot.
607 		 */
608 		m->m_len += ah->ar_hln;
609 		m->m_pkthdr.len += ah->ar_hln;
610 		bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln);
611 		isr = NETISR_ARP;
612 		break;
613 	}
614 #endif
615 
616 #ifdef INET6
617 	case ETHERTYPE_IPV6:
618 		isr = NETISR_IPV6;
619 		break;
620 #endif
621 
622 	default:
623 		m_freem(m);
624 		return;
625 	}
626 
627 	netisr_dispatch(isr, m);
628 }
629 
630 int
631 firewire_ioctl(struct ifnet *ifp, int command, caddr_t data)
632 {
633 	struct ifaddr *ifa = (struct ifaddr *) data;
634 	struct ifreq *ifr = (struct ifreq *) data;
635 	int error = 0;
636 
637 	switch (command) {
638 	case SIOCSIFADDR:
639 		ifp->if_flags |= IFF_UP;
640 
641 		switch (ifa->ifa_addr->sa_family) {
642 #ifdef INET
643 		case AF_INET:
644 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
645 			arp_ifinit(ifp, ifa);
646 			break;
647 #endif
648 		default:
649 			ifp->if_init(ifp->if_softc);
650 			break;
651 		}
652 		break;
653 
654 	case SIOCGIFADDR:
655 		{
656 			struct sockaddr *sa;
657 
658 			sa = (struct sockaddr *) & ifr->ifr_data;
659 			bcopy(&IFP2FC(ifp)->fc_hwaddr,
660 			    (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr));
661 		}
662 		break;
663 
664 	case SIOCSIFMTU:
665 		/*
666 		 * Set the interface MTU.
667 		 */
668 		if (ifr->ifr_mtu > 1500) {
669 			error = EINVAL;
670 		} else {
671 			ifp->if_mtu = ifr->ifr_mtu;
672 		}
673 		break;
674 	default:
675 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
676 		break;
677 	}
678 	return (error);
679 }
680 
681 static int
682 firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
683     struct sockaddr *sa)
684 {
685 #ifdef INET
686 	struct sockaddr_in *sin;
687 #endif
688 #ifdef INET6
689 	struct sockaddr_in6 *sin6;
690 #endif
691 
692 	switch(sa->sa_family) {
693 	case AF_LINK:
694 		/*
695 		 * No mapping needed.
696 		 */
697 		*llsa = 0;
698 		return 0;
699 
700 #ifdef INET
701 	case AF_INET:
702 		sin = (struct sockaddr_in *)sa;
703 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
704 			return EADDRNOTAVAIL;
705 		*llsa = 0;
706 		return 0;
707 #endif
708 #ifdef INET6
709 	case AF_INET6:
710 		sin6 = (struct sockaddr_in6 *)sa;
711 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
712 			/*
713 			 * An IP6 address of 0 means listen to all
714 			 * of the Ethernet multicast address used for IP6.
715 			 * (This is used for multicast routers.)
716 			 */
717 			ifp->if_flags |= IFF_ALLMULTI;
718 			*llsa = 0;
719 			return 0;
720 		}
721 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
722 			return EADDRNOTAVAIL;
723 		*llsa = 0;
724 		return 0;
725 #endif
726 
727 	default:
728 		/*
729 		 * Well, the text isn't quite right, but it's the name
730 		 * that counts...
731 		 */
732 		return EAFNOSUPPORT;
733 	}
734 }
735 
736 void
737 firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc)
738 {
739 	struct fw_com *fc = (struct fw_com *) ifp;
740 	struct ifaddr *ifa;
741 	struct sockaddr_dl *sdl;
742 	static const char* speeds[] = {
743 		"S100", "S200", "S400", "S800",
744 		"S1600", "S3200"
745 	};
746 
747 	fc->fc_speed = llc->sspd;
748 	STAILQ_INIT(&fc->fc_frags);
749 
750 	ifp->if_type = IFT_IEEE1394;
751 	ifp->if_addrlen = sizeof(struct fw_hwaddr);
752 	ifp->if_hdrlen = 0;
753 	if_attach(ifp);
754 	ifp->if_mtu = 1500;	/* XXX */
755 	ifp->if_output = firewire_output;
756 	ifp->if_resolvemulti = firewire_resolvemulti;
757 	ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr;
758 
759 	ifa = ifaddr_byindex(ifp->if_index);
760 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
761 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
762 	sdl->sdl_type = IFT_IEEE1394;
763 	sdl->sdl_alen = ifp->if_addrlen;
764 	bcopy(llc, LLADDR(sdl), ifp->if_addrlen);
765 
766 	bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394,
767 	    sizeof(struct fw_hwaddr));
768 
769 	if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n",
770 	    (uint8_t *) &llc->sender_unique_ID_hi, ":",
771 	    ntohs(llc->sender_unicast_FIFO_hi),
772 	    ntohl(llc->sender_unicast_FIFO_lo),
773 	    speeds[llc->sspd],
774 	    (2 << llc->sender_max_rec));
775 }
776 
777 void
778 firewire_ifdetach(struct ifnet *ifp)
779 {
780 	bpfdetach(ifp);
781 	if_detach(ifp);
782 }
783 
784 void
785 firewire_busreset(struct ifnet *ifp)
786 {
787 	struct fw_com *fc = (struct fw_com *) ifp;
788 	struct fw_reass *r;
789 	struct mbuf *m;
790 
791 	/*
792 	 * Discard any partial datagrams since the host ids may have changed.
793 	 */
794 	while ((r = STAILQ_FIRST(&fc->fc_frags))) {
795 		STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link);
796 		while (r->fr_frags) {
797 			m = r->fr_frags;
798 			r->fr_frags = m->m_nextpkt;
799 			m_freem(m);
800 		}
801 		free(r, M_TEMP);
802 	}
803 }
804